JP2012192367A - Treatment device for organic waste water containing nitrogen - Google Patents
Treatment device for organic waste water containing nitrogen Download PDFInfo
- Publication number
- JP2012192367A JP2012192367A JP2011059463A JP2011059463A JP2012192367A JP 2012192367 A JP2012192367 A JP 2012192367A JP 2011059463 A JP2011059463 A JP 2011059463A JP 2011059463 A JP2011059463 A JP 2011059463A JP 2012192367 A JP2012192367 A JP 2012192367A
- Authority
- JP
- Japan
- Prior art keywords
- methane fermentation
- concentrated water
- containing nitrogen
- acid
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Treating Waste Gases (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
本発明は窒素を含有する有機物性排水の処理装置に関する。詳しくは、窒素を含有する有機物性排水を嫌気性条件下でメタン発酵処理して純水製造用の原水として利用する排水処理に好適な処理装置に関する。 The present invention relates to an apparatus for treating organic physical wastewater containing nitrogen. Specifically, the present invention relates to a treatment apparatus suitable for waste water treatment in which organic waste water containing nitrogen is subjected to methane fermentation treatment under anaerobic conditions and used as raw water for producing pure water.
半導体製造、液晶製造等の電子産業工場においては、イソプロピルアルコール(IPA)、ブチルジグリコール(BDG)、メタノールなどのアルコール類、モノエタノールアミン(MEA)、テトラメチルアンモニウムハイドロオキサイド(TMAH)などの窒素含有有機物、ジメチルスルホキシド(DMSO)のような硫黄含有有機物が、プロセス工程において、洗浄剤、剥離剤などとして使用されており、純水にこうした有機物を含んだ排水が多量に発生する。近年、これら電子産業工場では、このような排水を生物処理し、その処理水を純水製造の原料として再び用いる水回収が進んでいる。 In electronic industry factories such as semiconductor manufacturing and liquid crystal manufacturing, alcohols such as isopropyl alcohol (IPA), butyl diglycol (BDG) and methanol, nitrogen such as monoethanolamine (MEA) and tetramethylammonium hydroxide (TMAH) Organic substances, sulfur-containing organic substances such as dimethyl sulfoxide (DMSO) are used as cleaning agents, stripping agents, and the like in process steps, and a large amount of waste water containing such organic substances is generated in pure water. In recent years, in these electronic industrial factories, water recovery has been progressing in which such wastewater is biologically treated and the treated water is reused as a raw material for producing pure water.
生物処理水を純水製造に再利用する場合、処理水を固液分離装置で処理して微生物体を分離した後、逆浸透(RO)膜分離装置で脱塩処理することがある(例えば、特開2007−175582号公報)。このRO膜分離装置で得られる濃縮水は、下水道などに放流されることもあるが、エバポレータや蒸発塔によりさらに濃縮した上で産廃として排出するケースが多い。 When biologically treated water is reused for the production of pure water, the treated water may be treated with a solid-liquid separation device to separate microorganisms, and then desalted with a reverse osmosis (RO) membrane separation device (for example, JP, 2007-175582, A). Concentrated water obtained by this RO membrane separation apparatus may be discharged into sewers or the like, but in many cases, it is further concentrated by an evaporator or an evaporation tower and then discharged as industrial waste.
上述の電子産業工場排水のような、窒素を含有する有機物性排水の生物処理を嫌気性条件下でのメタン発酵により行った場合、TMAH、MEAなどに含まれる窒素分はアンモニアとして排出されるが、これらは同じく有機物の分解により生成するCO2で中和され、NH4HCO3として液中に留まる。NH4HCO3はRO膜による除去率が高い物質であるため、NH4HCO3を含む生物処理水をRO膜分離処理すると、NH4HCO3は、RO膜で濃縮されて大部分が濃縮水側に移行する。NH4HCO3は水溶液中では70℃程度の加熱で、アンモニアと二酸化炭素と水に分解してしまうことから、エバポレータ、蒸発塔で濃縮することができず、また、NH4HCO3を含有するRO濃縮水を蒸発濃縮する場合にはアンモニアガスの捕集、除去設備が必要となる。このため、RO濃縮水を下水道などに放流できないケースでは、産廃処理費用の増加に繋がっていた。 When biological treatment of organic physical wastewater containing nitrogen, such as the above-mentioned electronic industrial factory wastewater, is performed by methane fermentation under anaerobic conditions, nitrogen contained in TMAH, MEA, etc. is discharged as ammonia. , These are also neutralized with CO 2 produced by the decomposition of organic matter and remain in the liquid as NH 4 HCO 3 . Since NH 4 HCO 3 is a substance with a high removal rate by the RO membrane, when the biologically treated water containing NH 4 HCO 3 is subjected to RO membrane separation treatment, NH 4 HCO 3 is concentrated in the RO membrane and most of it is concentrated water. To the side. NH 4 HCO 3 is decomposed into ammonia, carbon dioxide, and water by heating at about 70 ° C. in an aqueous solution, and therefore cannot be concentrated by an evaporator or an evaporation tower, and contains NH 4 HCO 3 . When evaporating and concentrating RO concentrated water, a facility for collecting and removing ammonia gas is required. For this reason, in the case where RO concentrated water cannot be discharged into the sewer, etc., it has led to an increase in industrial waste treatment costs.
本発明は、窒素を含有する有機物性排水をメタン発酵処理し、メタン発酵処理液から微生物体を分離した後RO膜分離装置で脱塩処理して水回収する際に、NH4HCO3が濃縮されたRO濃縮水の蒸発濃縮の際のNH4HCO3の分解の問題を解決し、このRO濃縮水の蒸発濃縮を可能とする装置を提供することを課題とする。 In the present invention, when organic wastewater containing nitrogen is subjected to methane fermentation treatment, microbial cells are separated from the methane fermentation treatment liquid, and then desalted with an RO membrane separator to recover water, NH 4 HCO 3 is concentrated. It is an object of the present invention to provide a device that solves the problem of decomposition of NH 4 HCO 3 when evaporating and concentrating RO concentrated water, and enables evaporating and concentrating this RO concentrated water.
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、RO濃縮水に硫酸、塩酸等の酸を添加すると、濃縮水中のNH4HCO3は(NH4)2SO4やNH4Clなどの、加熱しても分解しない安定な強酸の塩に転換されるため、RO濃縮水の蒸発濃縮が可能となることを見出した。 As a result of intensive studies to solve the above problems, the inventors of the present invention added NH 4 HCO 3 in concentrated water to (NH 4 ) 2 SO 4 or NH when an acid such as sulfuric acid or hydrochloric acid is added to RO concentrated water. such as 4 Cl, to be converted into a salt of a stable strong acid does not decompose even when heated, have found that it is possible to evaporative concentration of RO concentrate.
本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。 The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.
[1] 窒素を含有する有機物性排水を嫌気性条件下でメタン発酵処理するメタン発酵槽と、該メタン発酵処理液を固液分離する精密濾過又は限外濾過膜分離装置と、該精密濾過又は限外濾過膜分離装置の濾液を脱塩処理する逆浸透膜分離装置と、該逆浸透膜分離装置の濃縮水をさらに濃縮する蒸発濃縮装置とを備えた窒素を含有する有機物性排水の処理装置において、前記蒸発濃縮装置に導入される前記逆浸透膜分離装置の濃縮水に酸を添加する手段を備えたことを特徴とする窒素を含有する有機物性排水の処理装置。 [1] A methane fermentation tank for subjecting nitrogen-containing organic wastewater to methane fermentation under anaerobic conditions, a microfiltration or ultrafiltration membrane separation device for solid-liquid separation of the methane fermentation treatment liquid, and the microfiltration or A treatment apparatus for organic physical wastewater containing nitrogen, comprising a reverse osmosis membrane separation apparatus for desalting the filtrate of an ultrafiltration membrane separation apparatus, and an evaporation concentration apparatus for further concentrating the concentrated water of the reverse osmosis membrane separation apparatus And a means for adding an acid to the concentrated water of the reverse osmosis membrane separation device introduced into the evaporation concentration device.
[2] [1]の処理装置において、前記メタン発酵槽から発生するバイオガス中の硫化水素を酸化する生物脱硫装置をさらに備え、該生物脱硫装置から排出する硫酸含有液を前記濃縮水に酸として添加する手段を備えたことを特徴とする窒素を含有する有機物性排水の処理装置。 [2] The treatment apparatus according to [1], further comprising a biological desulfurization apparatus that oxidizes hydrogen sulfide in the biogas generated from the methane fermentation tank, and the sulfuric acid-containing liquid discharged from the biological desulfurization apparatus is acidified in the concentrated water. An apparatus for treating organic physical wastewater containing nitrogen, characterized by comprising means for adding as
[3] [2]において、前記濃縮水の一部を、前記生物脱硫装置のpH調整剤として散布する散布手段を備えたことを特徴とする窒素を含有する有機物性排水の処理装置。 [3] An apparatus for treating organic wastewater containing nitrogen, comprising spraying means for spraying a part of the concentrated water as a pH adjuster of the biological desulfurization device in [2].
本発明によれば、窒素を含有する有機物性排水をメタン発酵処理し、メタン発酵処理液から微生物体を分離した後RO膜分離装置で脱塩処理して水回収する際に、NH4HCO3が濃縮されたRO濃縮水に酸を添加することにより、この濃縮水中のNH4HCO3を(NH4)2SO4やNH4Clなどの、加熱しても分解しない安定な強酸の塩に転換することができ、RO濃縮水をエバポレータや蒸発塔でさらに濃縮して、産廃として処理することが可能となる。また、このような強酸の塩に転換することにより、濃縮塩類自体の量も低減することができ、産廃発生量を低減して産廃処理費用を削減することが可能となる。 According to the present invention, when organic wastewater containing nitrogen is subjected to methane fermentation treatment, microorganisms are separated from the methane fermentation treatment liquid, and then desalted by the RO membrane separator to recover water, NH 4 HCO 3 by but adding an acid to the RO concentrate enriched, the NH 4 HCO 3 in the concentrate water (NH 4), such as 2 SO 4 and NH 4 Cl, the stable salts of strong acids that do not decompose on heating The RO concentrated water can be further concentrated by an evaporator or an evaporation tower, and can be treated as industrial waste. Moreover, by converting to such a strong acid salt, the amount of the concentrated salt itself can be reduced, and the amount of industrial waste generated can be reduced to reduce industrial waste treatment costs.
このRO濃縮水に添加する酸としては、DMSOなどの硫黄含有有機物を含む有機物性排水をメタン発酵処理した際に発生するバイオガス中の硫化水素を酸化する生物脱硫装置から排出される硫酸含有液(通常pH1〜5程度)を用いることにより、薬品としての酸を不要とすることができる。 The acid added to this RO concentrated water is a sulfuric acid-containing liquid discharged from a biological desulfurization apparatus that oxidizes hydrogen sulfide in biogas generated when methane fermentation treatment is performed on organic wastewater containing sulfur-containing organic substances such as DMSO. By using (usually about pH 1 to 5), acid as a chemical can be made unnecessary.
また、このような生物脱硫装置を用いる場合、生物脱硫装置のpH調整に用いるアルカリとして、RO濃縮水(通常pH8〜12程度)の一部を用いることにより、生物脱硫装置のpH調整のための薬品も不要とすることができる。 Moreover, when using such a biological desulfurization apparatus, by using a part of RO concentrated water (normally about pH 8-12) as an alkali used for pH adjustment of a biological desulfurization apparatus, it is for pH adjustment of a biological desulfurization apparatus. Chemicals can also be dispensed with.
以下、図面を参照して本発明の窒素を含有する有機物性排水の処理装置の実施の形態を詳細に説明する。図1は本発明の窒素を含有する有機物性排水の処理装置の一例を示す系統図である。
図1中、1はメタン発酵槽、2は浸漬膜分離槽、3は濾液槽、4はRO給水槽、5はRO膜分離装置、6は蒸発濃縮装置、7は生物脱硫装置である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a treatment apparatus for organic physical wastewater containing nitrogen according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a system diagram showing an example of a treatment apparatus for organic physical wastewater containing nitrogen according to the present invention.
In FIG. 1, 1 is a methane fermentation tank, 2 is an immersion membrane separation tank, 3 is a filtrate tank, 4 is an RO water supply tank, 5 is an RO membrane separation apparatus, 6 is an evaporative concentration apparatus, and 7 is a biological desulfurization apparatus.
[窒素を含有する有機物性排水]
本発明において、処理対象となる窒素を含有する有機物性排水は、窒素と有機物を含有するものであれば特に限定されるものではないが、例えば、電子産業排水、化学工場排水などが挙げられる。半導体、液晶などの電子部品製造プロセスでは、現像工程、剥離工程、エッチング工程、洗浄工程などから各種の窒素を含有する有機物性排水が多量に発生し、しかも排水を回収して純水レベルに浄化して再使用することが望まれているので、これらの排水は本発明の処理対象排水として適している。
[Organic wastewater containing nitrogen]
In the present invention, the organic physical wastewater containing nitrogen to be treated is not particularly limited as long as it contains nitrogen and organic matter, and examples thereof include electronic industrial wastewater and chemical factory wastewater. In the manufacturing process of electronic parts such as semiconductors and liquid crystals, a large amount of organic physical wastewater containing various types of nitrogen is generated from the development process, peeling process, etching process, cleaning process, etc., and the wastewater is collected and purified to the pure water level. Therefore, these wastewaters are suitable as the wastewater to be treated of the present invention.
このような排水には、通常、モノエタノールアミン(MEA)、テトラメチルアンモニウムハイドロオキサイド(TMAH)などの有機窒素化合物と、イソプロピルアルコール(IPA)、ブチルジグリコール(BDG)、エチルアルコールなどのアルコール類、更にはジメチルスルホキシド(DMSO)などの有機硫黄化合物などが含まれる。 Such wastewater usually contains organic nitrogen compounds such as monoethanolamine (MEA) and tetramethylammonium hydroxide (TMAH), and alcohols such as isopropyl alcohol (IPA), butyl diglycol (BDG) and ethyl alcohol. Furthermore, organic sulfur compounds such as dimethyl sulfoxide (DMSO) are included.
本発明で処理する排水は、有機物をCODCr濃度として200〜50,000mg/L程度、有機窒素化合物をT−N濃度として50〜5,000mg−N/L程度、有機硫黄化合物を全硫黄濃度として10〜1,000mg−S/L程度含む排水であることが好ましい。 Wastewater, organics 200~50,000mg / L about as COD Cr concentration, 50~5,000mg-N / L about the organic nitrogen compound as a T-N concentration, total sulfur concentration of organic sulfur compounds treated in the present invention It is preferable that the waste water contains about 10 to 1,000 mg-S / L.
[メタン発酵処理]
上記のような窒素を含有する有機物性排水は、まず、メタン発酵槽1に導入されて、メタン発酵処理される。このメタン発酵槽は、酸生成反応とメタン生成反応とを同一槽で行う1槽式でも、各反応を別の槽で行う2槽式でも良い。各反応槽は浮遊方式(撹拌方式)、汚泥床方式(スラッジブランケット方式)など任意の方式でよく、また、担体添加型、造粒汚泥型であってもよい。
[Methane fermentation treatment]
The organic physical waste water containing nitrogen as described above is first introduced into the methane fermentation tank 1 and subjected to methane fermentation treatment. This methane fermentation tank may be a single tank type in which the acid generation reaction and the methane generation reaction are performed in the same tank, or a two tank type in which each reaction is performed in separate tanks. Each reaction vessel may be of any method such as a floating method (stirring method) or a sludge bed method (sludge blanket method), or may be a carrier addition type or a granulated sludge type.
メタン発酵槽としては特に限定されないが、高負荷運転が可能なUASB(上向流式嫌気性スラッジブランケット)やMBR(メンブレンバイオリアクター)方式、特にMBR方式の反応槽を用いることが好ましい。 Although it does not specifically limit as a methane fermentation tank, It is preferable to use the reaction tank of UASB (upward flow type anaerobic sludge blanket) and MBR (membrane bioreactor) system which can perform high load operation, especially MBR system.
メタン発酵槽のCODCr負荷は1〜30kg/m3・d、特には2〜10kg/m3・dが好ましい。メタン発酵槽の温度は20〜40℃、もしくは45〜60℃が好ましく、HRTは3〜72hr程度、特には20〜48hrが好ましい。 The COD Cr load of the methane fermenter is preferably 1 to 30 kg / m 3 · d, particularly 2 to 10 kg / m 3 · d. The temperature of the methane fermenter is preferably 20 to 40 ° C. or 45 to 60 ° C., and the HRT is preferably about 3 to 72 hr, particularly preferably 20 to 48 hr.
[微生物体の固液分離]
メタン発酵槽1のメタン発酵処理液はポンプP1により浸漬膜分離槽2に送給され、UF膜又はMF膜モジュール2Mにより微生物体が固液分離される。膜モジュールは図1のように別置型の膜浸漬槽に設けても、メタン発酵槽内に設けてもよい。また、浸漬型でない内圧式の槽外膜に処理液を循環させるようにしてもよい。
この浸漬膜分離槽2のUF膜又はMF膜モジュール2Mの下方には散気管2Aが設けられている。散気管2Aからはメタン発酵槽1で発生したバイオガスの一部がブロワBにより曝気され、UF膜又はMF膜モジュール2Mは、この散気管2Aからのバイオガスの曝気流による膜表面の剥離作用で膜の目詰りが防止される。このUF膜又はMF膜モジュール2Mの膜形状は平膜、チューブラ膜、中空糸膜などのいずれでもよい。
[Solid-liquid separation of microorganisms]
Methane fermentation broth of methane fermentation tank 1 is fed to the submerged membrane separation tank 2 by a pump P 1, microbial bodies are solid-liquid separation by UF membrane or
An
なお、この場合、浸漬膜分離槽2内のガス相のガス及び槽内液は、それぞれ配管11及び12によりメタン発酵槽1に循環される。
In this case, the gas of the gas phase in the submerged membrane separation tank 2 and the liquid in the tank are circulated to the methane fermentation tank 1 through the
[RO膜分離処理]
浸漬膜分離槽2のUF膜又はMF膜モジュール2MからポンプP2により抜き出された濾液は、濾液槽3及びRO給水槽4を経てポンプP3によりRO膜分離装置5に導入されて脱塩処理される。RO膜分離装置5の透過水は処理水として系外へ排出される。
[RO membrane separation treatment]
Withdrawn by dipping the membrane separation tank 2 of UF membranes, or pumps P 2 from
一方、濃縮水の一部はRO給水槽へ循環され、残部(図1においては、RO濃縮水の他の一部は生物脱硫装置7に送給される。)はエバポレーター、蒸発塔等の蒸発濃縮装置6に送給され、加熱濃縮され、濃縮塩は系外へ排出され、産廃として処分される。 On the other hand, a part of the concentrated water is circulated to the RO water tank, and the remainder (in FIG. 1, the other part of the RO concentrated water is fed to the biological desulfurization device 7) is evaporated by an evaporator, an evaporation tower, or the like. The concentrated salt 6 is fed to the concentrating device 6 and concentrated by heating. The concentrated salt is discharged out of the system and disposed of as industrial waste.
[RO濃縮水への酸の添加]
本発明においては、このRO濃縮水に酸を添加して、RO濃縮水中のNH4HCO3を(NH4)2SO4やNH4Clといった、70〜100℃程度の加熱によっても分解しない安定な塩に転換して蒸発濃縮装置6に導入する。
[Addition of acid to RO concentrated water]
In the present invention, an acid is added to this RO concentrated water, and NH 4 HCO 3 in the RO concentrated water is not decomposed even by heating at about 70 to 100 ° C. such as (NH 4 ) 2 SO 4 or NH 4 Cl. The salt is converted into a salt and introduced into the evaporative concentration apparatus 6.
なお、図1においては、このRO濃縮水に添加する酸として、生物脱硫装置7で発生する硫酸含有液(通常pH1〜5程度)をポンプP4により導入しているが、薬品としての酸を添加してもよく、この硫酸含有液と薬品としての酸とを併用して添加してもよい。
RO濃縮水に添加する酸としては、NH4HCO3よりも安定なアンモニウム塩を形成することができるものであればよく、通常、硫酸、塩酸等が用いられる。
In FIG. 1, a sulfuric acid-containing liquid (usually about pH 1 to 5) generated in the biological desulfurization apparatus 7 is introduced by the pump P 4 as an acid to be added to this RO concentrated water. The sulfuric acid-containing liquid and a chemical acid may be used in combination.
The acid added to the RO concentrated water may be any acid that can form a more stable ammonium salt than NH 4 HCO 3 , and sulfuric acid, hydrochloric acid, or the like is usually used.
RO濃縮水への酸の添加量は、濃縮水中のNH4HCO3が(NH4)2SO4又はNH4Cl等の安定な塩に転換される程度の量であればよく、通常、濃縮水中のNH4HCO3の1〜3倍当量程度添加される。ここで酸添加量が少な過ぎるとNH4HCO3が残留し、好ましくなく、多過ぎると薬品使用量や濃縮塩量の増加につながり好ましくない。 The amount of acid added to the RO concentrated water may be such that NH 4 HCO 3 in the concentrated water is converted to a stable salt such as (NH 4 ) 2 SO 4 or NH 4 Cl. About 1 to 3 equivalents of NH 4 HCO 3 in water is added. If the amount of acid added is too small, NH 4 HCO 3 remains, which is not preferable. If the amount is too large, the amount of chemical used or the amount of concentrated salt increases, which is not preferable.
[蒸発濃縮処理]
蒸発濃縮装置6では、酸が添加された濃縮水を60〜100℃程度に加熱して、250〜700mmHg程度の減圧下に蒸発濃縮する。
[Evaporation concentration treatment]
In the evaporative concentration apparatus 6, the concentrated water to which the acid has been added is heated to about 60 to 100 ° C. and evaporated and concentrated under a reduced pressure of about 250 to 700 mmHg.
本発明では、RO濃縮水の蒸発濃縮に当たり、NH4HCO3を含むRO濃縮水に酸を添加して濃縮水中のNH4HCO3を(NH4)2SO4又はNH4Clのような安定な強酸のアンモニウム塩に転換するため、上記蒸発濃縮条件において、NH4HCO3が分解してアンモニアが発生することはなく、従って、アンモニアガスの捕集、除去装置が不要である。また、NH4HCO3を(NH4)2SO4又はNH4Cl等に転換することにより、濃縮塩量の低減も可能となる。 In the present invention, per the evaporative concentration of RO concentrate, NH 4 HCO (NH 4) a NH 4 HCO 3 concentration in water by adding an acid to the RO concentrate containing 3 2 SO 4 or NH 4 stable as Cl Therefore, NH 4 HCO 3 is not decomposed and ammonia is not generated under the above evaporative concentration conditions. Therefore, an ammonia gas collecting and removing device is unnecessary. In addition, the amount of concentrated salt can be reduced by converting NH 4 HCO 3 into (NH 4 ) 2 SO 4 or NH 4 Cl.
[生物脱硫処理]
メタン発酵処理に供する排水が、DMSO等の有機硫黄化合物を含む場合、メタン発酵槽1で発生するバイオガスは、硫化水素を含むものとなるため、図1の装置では、このバイオガスを生物脱硫装置7に導入して生物脱硫処理することにより、硫化水素を硫酸に酸化する。
[Biodesulfurization treatment]
When the wastewater to be subjected to the methane fermentation treatment contains an organic sulfur compound such as DMSO, the biogas generated in the methane fermentation tank 1 contains hydrogen sulfide. Therefore, in the apparatus of FIG. Hydrogen sulfide is oxidized to sulfuric acid by introducing it into the apparatus 7 and subjecting it to biological desulfurization.
この生物脱硫装置7では、硫化水素が酸化されて硫酸となることにより、pHが低下するため、アルカリを添加して生物脱硫に好適なpH3〜6程度にpH調整する必要がある。図1の装置では、このpH調整のためのアルカリとしてRO膜分離装置5の濃縮水(通常pH8〜12程度)の一部をポンプP5より生物脱硫装置7に導入して生物脱硫の微生物層に散布しているが、別途薬品としてのアルカリ剤を散布してもよく、アルカリ剤とRO濃縮水との両方を散布してもよい。 In this biological desulfurization apparatus 7, since hydrogen sulfide is oxidized and becomes sulfuric acid, the pH is lowered. Therefore, it is necessary to add an alkali and adjust the pH to about 3 to 6 suitable for biological desulfurization. In the apparatus of Figure 1, the alkali as RO membrane separator 5 concentrated water (usually about PH8~12) microbial layer of the biological desulfurization by introducing part biological desulfurization apparatus 7 from the pump P 5 for the pH adjustment However, an alkali agent as a chemical may be separately sprayed, or both the alkali agent and RO concentrated water may be sprayed.
また、生物脱硫装置7には、脱硫微生物に必要な栄養塩を添加する必要があるが、RO濃縮水には、純水系の排水処理において、メタン発酵処理を良好に進めるために添加される各種の無機塩類が高濃度で含有されていることから、生物脱硫装置7のpH調整のためのアルカリとして、このRO濃縮水を用いることにより、生物脱硫装置7への栄養剤の添加を不要とすることもできる。ただし、このRO濃縮水とは別に更に別途栄養剤を添加してもよい。 The biological desulfurization apparatus 7 needs to be added with nutrients necessary for the desulfurization microorganisms, but the RO concentrated water is added with various kinds of water added to promote the methane fermentation process well in the pure water wastewater treatment. Therefore, the use of this RO concentrated water as an alkali for adjusting the pH of the biological desulfurization apparatus 7 makes it unnecessary to add nutrients to the biological desulfurization apparatus 7. You can also. However, a nutrient may be added separately from the RO concentrated water.
生物脱硫装置7の脱硫排ガスは、系外へ排出され、メタンガスの使用場所へ送給される。また、生物脱硫装置7で発生した硫酸含有液は前述の如く、一部がポンプP4よりRO濃縮水に酸として添加され残部は、排水として系外へ排出される。 The desulfurization exhaust gas from the biological desulfurization apparatus 7 is discharged out of the system and sent to the place where methane gas is used. In addition, as described above, a part of the sulfuric acid-containing liquid generated in the biological desulfurization apparatus 7 is added as acid to the RO concentrated water from the pump P 4, and the remaining part is discharged out of the system as waste water.
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[実施例1]
液晶製造工場から排出される下記水質の排水(主成分はMEA、TMAH、DMSO)を図1に示す装置で処理した(排水量1.8m3/d)。
[Example 1]
Waste water of the following water quality (main components are MEA, TMAH, DMSO) discharged from the liquid crystal manufacturing factory was treated with the apparatus shown in FIG. 1 (drainage amount 1.8 m 3 / d).
<排水水質>
TOC:100〜300mg/L(平均250mg/L)
CODCr:350〜1,060mg/L(平均880mg/L)
T−N:42〜130mg−N/L(平均105mg−N/L)
T−S:21〜62mg−S/L(平均51mg−S/L)
<Drainage water quality>
TOC: 100 to 300 mg / L (average 250 mg / L)
COD Cr : 350 to 1,060 mg / L (average 880 mg / L)
TN: 42-130 mg-N / L (average 105 mg-N / L)
TS: 21-62 mg-S / L (average 51 mg-S / L)
まず、実容量0.375m3の完全混合型メタン発酵槽1で35℃、4.2kg/m3・dのCODCr負荷、HRT5hrで処理し、メタン発酵処理液を中空糸MF膜モジュール(三菱レイヨン製、膜面積6m2、孔径0.4μm)2Mで固液分離し、濾液をRO膜分離装置(日東電工製、ES−20、0.75MPa)で脱塩処理した。RO濃縮水(pH10〜11)の一部0.1m3/dに、生物脱硫装置7からの硫酸含有液(pH3,硫酸含有量1,300〜1,500mg−SO4/L)0.05m3/dを添加して蒸発濃縮装置(エバポレータ)6で70℃、300mmHgで減圧蒸発濃縮し、濃縮塩40〜50L/dを得た。
RO濃縮水の残部のうち、0.1m3/dは生物脱硫装置7に送給した。
First, 35 ° C. in complete mixing type methane fermentation tank 1 of the real volume 0.375m 3, COD Cr load of 4.2kg / m 3 · d, is treated with HRT5hr, hollow fiber methane fermentation broth MF membrane module (Mitsubishi Solid-liquid separation was performed with 2M (manufactured by Rayon, membrane area 6 m 2 , pore size 0.4 μm), and the filtrate was desalted with an RO membrane separator (manufactured by Nitto Denko, ES-20, 0.75 MPa). To 0.1 m 3 / d of RO concentrated water (pH 10-11), sulfuric acid-containing liquid (pH 3, sulfuric acid content 1,300-1,500 mg-SO 4 / L) 0.05 m from biological desulfurization device 7 3 / d was added, and the solution was evaporated and concentrated under reduced pressure at 70 ° C. and 300 mmHg with an evaporation concentrator (evaporator) 6 to obtain concentrated salt 40 to 50 L / d.
Of the remainder of the RO concentrated water, 0.1 m 3 / d was fed to the biological desulfurization apparatus 7.
メタン発酵処理槽1で得られたバイオガスを50NL/minで浸漬膜分離槽2の散気管2Aの曝気ガスとして循環させながら、残部は生物脱硫装置7で脱硫処理した。
この生物脱硫装置7にはRO濃縮水0.1m3/dが散水され、600NL/dの脱硫排ガスと、0.1m3/dの硫酸含有液が得られた。
前述の如く、この硫酸含有液の一部はRO濃縮水に添加し、残部は系外へ排出した。
The biogas obtained in the methane fermentation treatment tank 1 was circulated as an aeration gas in the
This biological desulfurization apparatus 7 was sprayed with 0.1 m 3 / d of RO concentrated water to obtain a desulfurization exhaust gas of 600 NL / d and a sulfuric acid-containing liquid of 0.1 m 3 / d.
As described above, a part of this sulfuric acid-containing liquid was added to the RO concentrated water, and the remainder was discharged out of the system.
このような処理において、蒸発濃縮装置6におけるRO濃縮水の加熱蒸発の際、アンモニアを発生させることなく、安定に濃縮処理することができた。 In such a process, it was possible to stably perform the concentration process without generating ammonia during the heating and evaporation of the RO concentrated water in the evaporative concentration apparatus 6.
[比較例1]
実施例1において、RO濃縮水に生物脱硫装置からの硫酸含有液を添加しないこと以外は同様に処理を行ったところ、蒸発濃縮装置6において、NH4HCO3の分解でアンモニアが発生し、蒸発濃縮を行うことができなかった。
[Comparative Example 1]
In Example 1, when the same treatment was performed except that the sulfuric acid-containing liquid from the biological desulfurization apparatus was not added to the RO concentrated water, ammonia was generated by decomposition of NH 4 HCO 3 in the evaporation concentration apparatus 6 and evaporated. Concentration could not be performed.
1 メタン発酵槽
2 浸漬膜分離槽
3 濾液槽
4 RO給水槽
5 RO膜分離装置
6 蒸発濃縮装置
7 生物脱硫装置
DESCRIPTION OF SYMBOLS 1 Methane fermentation tank 2 Immersion membrane separation tank 3 Filtrate tank 4 RO water supply tank 5 RO membrane separation apparatus 6 Evaporation concentration apparatus 7 Biodesulfurization apparatus
Claims (3)
該メタン発酵処理液を固液分離する精密濾過又は限外濾過膜分離装置と、
該精密濾過又は限外濾過膜分離装置の濾液を脱塩処理する逆浸透膜分離装置と、
該逆浸透膜分離装置の濃縮水をさらに濃縮する蒸発濃縮装置とを備えた窒素を含有する有機物性排水の処理装置において、
前記蒸発濃縮装置に導入される前記逆浸透膜分離装置の濃縮水に酸を添加する手段を備えたことを特徴とする窒素を含有する有機物性排水の処理装置。 A methane fermentation tank for methane fermentation of an organic wastewater containing nitrogen under anaerobic conditions;
A microfiltration or ultrafiltration membrane separation device for solid-liquid separation of the methane fermentation treatment liquid;
A reverse osmosis membrane separation device for desalting the filtrate of the microfiltration or ultrafiltration membrane separation device;
In an apparatus for treating organic wastewater containing nitrogen, comprising an evaporating and concentrating device for further concentrating the concentrated water of the reverse osmosis membrane separator,
An apparatus for treating organic wastewater containing nitrogen, comprising means for adding an acid to the concentrated water of the reverse osmosis membrane separation apparatus introduced into the evaporation and concentration apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011059463A JP2012192367A (en) | 2011-03-17 | 2011-03-17 | Treatment device for organic waste water containing nitrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011059463A JP2012192367A (en) | 2011-03-17 | 2011-03-17 | Treatment device for organic waste water containing nitrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012192367A true JP2012192367A (en) | 2012-10-11 |
Family
ID=47084809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011059463A Withdrawn JP2012192367A (en) | 2011-03-17 | 2011-03-17 | Treatment device for organic waste water containing nitrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012192367A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015037557A1 (en) * | 2013-09-11 | 2015-03-19 | 三菱レイヨン株式会社 | Apparatus and method for treating organic-containing wastewater |
JP2015163388A (en) * | 2014-01-31 | 2015-09-10 | 三菱レイヨン株式会社 | Method and system for wastewater treatment |
JP2015163389A (en) * | 2014-01-31 | 2015-09-10 | 三菱レイヨン株式会社 | Method and system for wastewater treatment |
JP2017144410A (en) * | 2016-02-19 | 2017-08-24 | オルガノ株式会社 | Recovery system and recovery method for isopropyl alcohol |
CN109574401A (en) * | 2018-12-28 | 2019-04-05 | 苏州南风优联环保工程有限公司 | Textile auxiliary produces waste water zero discharge treatment process and equipment |
WO2020080008A1 (en) * | 2018-10-19 | 2020-04-23 | オルガノ株式会社 | System for treating tetraalkylammonium-hydroxide-containing liquid, and method for treating same |
WO2022071027A1 (en) * | 2020-09-30 | 2022-04-07 | 日東電工株式会社 | Method for treating wastewater containing organic substance |
-
2011
- 2011-03-17 JP JP2011059463A patent/JP2012192367A/en not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105555717B (en) * | 2013-09-11 | 2018-06-05 | 三菱化学株式会社 | The processing unit and processing method of organic sewage |
CN105555717A (en) * | 2013-09-11 | 2016-05-04 | 三菱丽阳株式会社 | Apparatus and method for treating organic-containing wastewater |
JPWO2015037557A1 (en) * | 2013-09-11 | 2017-03-02 | 三菱レイヨン株式会社 | Organic wastewater treatment apparatus and treatment method |
WO2015037557A1 (en) * | 2013-09-11 | 2015-03-19 | 三菱レイヨン株式会社 | Apparatus and method for treating organic-containing wastewater |
JP2015163388A (en) * | 2014-01-31 | 2015-09-10 | 三菱レイヨン株式会社 | Method and system for wastewater treatment |
JP2015163389A (en) * | 2014-01-31 | 2015-09-10 | 三菱レイヨン株式会社 | Method and system for wastewater treatment |
JP2017144410A (en) * | 2016-02-19 | 2017-08-24 | オルガノ株式会社 | Recovery system and recovery method for isopropyl alcohol |
WO2020080008A1 (en) * | 2018-10-19 | 2020-04-23 | オルガノ株式会社 | System for treating tetraalkylammonium-hydroxide-containing liquid, and method for treating same |
JPWO2020080008A1 (en) * | 2018-10-19 | 2021-09-09 | オルガノ株式会社 | Treatment system and treatment method for tetraalkylammonium hydroxide-containing liquid |
US11524261B2 (en) | 2018-10-19 | 2022-12-13 | Organo Corporation | System for treating tetraalkylammonium hydroxide-containing liquid and method for treating same |
JP7357635B2 (en) | 2018-10-19 | 2023-10-06 | オルガノ株式会社 | Treatment system and method for liquid containing tetraalkylammonium hydroxide |
CN109574401A (en) * | 2018-12-28 | 2019-04-05 | 苏州南风优联环保工程有限公司 | Textile auxiliary produces waste water zero discharge treatment process and equipment |
WO2022071027A1 (en) * | 2020-09-30 | 2022-04-07 | 日東電工株式会社 | Method for treating wastewater containing organic substance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Song et al. | Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges | |
JP5194771B2 (en) | Biological treatment method and apparatus for water containing organic matter | |
JP2012192367A (en) | Treatment device for organic waste water containing nitrogen | |
Singhania et al. | Immersed membrane bioreactors: an overview with special emphasis on anaerobic bioprocesses | |
JP5194783B2 (en) | Biological treatment method and apparatus for water containing organic matter | |
TWI596063B (en) | Method for treating organic waste water and treating waste containing organic matter | |
CN106132518B (en) | Water treatment method and water treatment device using membrane | |
JP2011173040A (en) | Waste water treatment method and apparatus | |
JP5764224B2 (en) | Water treatment method and water treatment apparatus | |
JP2010017614A (en) | Method and apparatus for treating organic wastewater | |
KR101956383B1 (en) | Method of treating organic waste water by membrane separator activated sludge device | |
JP2010017615A (en) | Method and apparatus for treating dmso-containing wastewater | |
KR102100991B1 (en) | Liquefied fertilizer purification apparatus using porous ceramic membrane | |
JP5801769B2 (en) | Method and apparatus for anaerobic digestion treatment of organic wastewater | |
KR20010065008A (en) | A treatment method of leachates discharged from landfill by using reverse osmosis system and evaporation method | |
JP2012206041A (en) | Treatment method of organic wastewater | |
JP2008510619A (en) | Anoxic biological reduction systems and methods | |
KR20180116805A (en) | Bio-reactor for sewage treatment and sewage treatment system comprising the same | |
JP2012206039A (en) | Treatment apparatus of organic matter containing wastewater | |
JP2012205992A (en) | Treatment apparatus and treatment method of organic matter containing wastewater | |
JP2011212585A (en) | Method and apparatus for treating organic matter-containing wastewater | |
WO2016136957A1 (en) | Method for treating water containing organic material, and device for treating water containing organic material | |
KR20150134331A (en) | Method and device for treating organic wastewater | |
WO2015002121A1 (en) | Process for purification treatment of wastewater and apparatus for purification treatment of wastewater | |
JP5817177B2 (en) | Organic wastewater treatment equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140603 |