JP2010017614A - Method and apparatus for treating organic wastewater - Google Patents

Method and apparatus for treating organic wastewater Download PDF

Info

Publication number
JP2010017614A
JP2010017614A JP2008178122A JP2008178122A JP2010017614A JP 2010017614 A JP2010017614 A JP 2010017614A JP 2008178122 A JP2008178122 A JP 2008178122A JP 2008178122 A JP2008178122 A JP 2008178122A JP 2010017614 A JP2010017614 A JP 2010017614A
Authority
JP
Japan
Prior art keywords
membrane
water
organic wastewater
anaerobic
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008178122A
Other languages
Japanese (ja)
Inventor
Kazuya Komatsu
和也 小松
Tetsuro Fukase
哲朗 深瀬
Katsuhiko Momozaki
勝彦 百崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008178122A priority Critical patent/JP2010017614A/en
Publication of JP2010017614A publication Critical patent/JP2010017614A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To stably maintain a membrane flux over a long period of time by preventing clogging of an RO membrane due to microorganisms or mucilage produced by microorganisms in organic wastewater treatment for solid-liquid separating biologically treated water and desalting the treated water with the RO membrane to recover water. <P>SOLUTION: When subjecting the organic wastewater to methane fermentation treatment in an anaerobic digestion tank 1 for solid-liquid separating the treated water by a UF membrane separator 2 to get the separated water desalted by an RO membrane separator 3, the concentrated water of the UF membrane separator 2 is returned to the anaerobic digestion tank 1. High molecular components adhering to the surface of the RO membrane to cause clogging are separated by the UF membrane, circulated to the anaerobic digestion tank 1 and kept for a long period of holding time under an anaerobic condition to be decomposed away by anaerobic microorganisms. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機性排水を嫌気性消化処理する方法及び装置に関し、特に、排水を嫌気性消化処理して純水製造用の原料として利用する有機性排水の処理方法及び装置に関する。   The present invention relates to a method and an apparatus for anaerobic digestion treatment of organic wastewater, and more particularly to an organic wastewater treatment method and apparatus for anaerobic digestion treatment of wastewater to be used as a raw material for producing pure water.

半導体製造、液晶製造等の電子産業工場のように、純水を使用してその排水を排出する設備では、モノエタノールアミン、テトラメチルアンモニウムヒドロキシドなどの、プロセス工程で洗浄剤、剥離剤などとして使用される有機物を含む排水を生物処理し、その処理水を純水製造の原料として用いる水回収が進んでいる。生物処理水を純水製造に再利用する場合、処理水を固液分離処理して微生物体を分離した後、逆浸透(RO)膜分離装置で脱塩処理することが行われている(例えば、特許文献1)。   In equipment that uses pure water and discharges its waste water, such as in the electronics industry factories such as semiconductor manufacturing and liquid crystal manufacturing, monoethanolamine, tetramethylammonium hydroxide, etc., as cleaning agents, release agents, etc. Water recovery is progressing by biologically treating wastewater containing organic substances to be used and using the treated water as a raw material for producing pure water. In the case of reusing biologically treated water for pure water production, the treated water is subjected to a solid-liquid separation process to separate microorganisms, and then desalted with a reverse osmosis (RO) membrane separator (for example, Patent Document 1).

しかし、生物処理水の固液分離水をRO膜分離処理すると、微生物自体及び微生物から産生した粘質物等が膜面に付着して、RO膜の目詰まりを生じる傾向があり、このため、経時による膜のフラックス(透過流束)の低下の問題がある。この微生物が産生する粘質物は、高分子有機物を主体とした難生物分解性成分であると言われている。   However, when the solid-liquid separation water of biologically treated water is subjected to RO membrane separation treatment, the microorganism itself and mucilage produced from the microorganism tend to adhere to the membrane surface, and the RO membrane tends to be clogged. There is a problem of decrease in the flux (permeation flux) of the membrane due to. It is said that the mucilage produced by this microorganism is a non-biodegradable component mainly composed of high molecular organic substances.

なお、特許文献2には、嫌気性消化処理液を限外濾過(UF)装置で濾過して得られる濾液を2次処理工程に送ると記載されているが、通常、この2次処理工程とは、好気性生物処理をさすものであり、例えば、特許文献3では、嫌気性生物処理液を固液分離した分離水を好気性生物処理している。また、特許文献1では、好気性生物処理液を濾過装置で濾過した後RO膜分離装置で脱塩処理しているが、このRO膜分離装置の前段で嫌気性生物処理と好気性生物処理とを行うため、RO膜の膜フラックスの低下を抑制できると記載されている。
特開2007−175582号公報 特公平3−18955号公報 特開平11−156392号公報
In Patent Document 2, it is described that the filtrate obtained by filtering the anaerobic digestion treatment liquid with an ultrafiltration (UF) device is sent to the secondary treatment step. Usually, this secondary treatment step and Refers to aerobic biological treatment. For example, in Patent Document 3, an aerobic biological treatment is performed on separated water obtained by solid-liquid separation of an anaerobic biological treatment liquid. In Patent Document 1, the aerobic biological treatment liquid is filtered by a filtration device and then desalted by an RO membrane separation device. An anaerobic biological treatment and an aerobic biological treatment are performed before the RO membrane separation device. Therefore, it is described that the decrease in the membrane flux of the RO membrane can be suppressed.
JP 2007-175582 A Japanese Patent Publication No. 3-18955 Japanese Patent Laid-Open No. 11-156392

本発明は、生物処理水を固液分離して分離水をRO膜で脱塩処理することにより水回収を図る有機性排水の処理において、微生物自体及び微生物が産生した粘質物等によるRO膜の目詰まりを防止して、膜フラックスを長期に亘り安定に維持する有機性排水の処理方法及び装置を提供することを目的とする。   In the treatment of organic wastewater which collects water by recovering water by solid-liquid separation of biologically treated water and desalting the separated water with the RO membrane, the RO membrane of the microorganism itself and the viscous material produced by the microorganism is used. It aims at providing the processing method and apparatus of the organic waste water which prevents clogging and maintains a membrane flux stably over a long period of time.

本発明者らは、上記課題を解決すべく鋭意検討した結果、生物処理水をUF膜分離処理して得られる分離水をRO膜分離処理する際、RO膜の膜面に付着して目詰まりを生じさせる高分子成分が、UF膜による固液分離により生物処理槽内に留まり、また、嫌気性条件下で滞留時間を長く(例えば、50日以上)保つことで、嫌気性微生物により分解されること、従って、UF膜濃縮水を嫌気性消化工程に返送して循環処理することにより、この高分子成分を分解してその系内濃度を低減し、このような高分子成分によるRO膜の目詰まりを防止することができることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have adhered to the membrane surface of the RO membrane and clogged when the separation water obtained by subjecting the biologically treated water to the UF membrane separation treatment is RO membrane separation treatment. The macromolecular components that cause stagnation remain in the biological treatment tank by solid-liquid separation using a UF membrane, and are degraded by anaerobic microorganisms by maintaining a long residence time (for example, 50 days or more) under anaerobic conditions. Therefore, the UF membrane concentrated water is returned to the anaerobic digestion process and circulated, thereby decomposing this polymer component and reducing its concentration in the system. It was found that clogging can be prevented.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] 有機性排水をメタン発酵処理する嫌気性消化工程と、該嫌気性消化工程の処理水を限外濾過膜分離処理する固液分離工程と、該固液分離工程で分離された分離水を好気性生物処理することなく逆浸透膜分離処理する脱塩工程とを有する有機性排水の処理方法において、前記固液分離工程で分離された濃縮水を前記嫌気性消化工程に返送する返送工程を有することを特徴とする有機性排水の処理方法。 [1] An anaerobic digestion step of subjecting organic wastewater to methane fermentation, a solid-liquid separation step of treating the treated water of the anaerobic digestion step with an ultrafiltration membrane, and separated water separated in the solid-liquid separation step In the organic wastewater treatment method having a desalting step of performing reverse osmosis membrane separation treatment without aerobic biological treatment, a return step of returning the concentrated water separated in the solid-liquid separation step to the anaerobic digestion step An organic wastewater treatment method characterized by comprising:

[2] [1]において、前記有機性排水がモノエタノールアミン及び/又はテトラメチルアンモニウムヒドロキシドを含むことを特徴とする有機性排水の処理方法。 [2] The method for treating organic wastewater according to [1], wherein the organic wastewater contains monoethanolamine and / or tetramethylammonium hydroxide.

[3] [1]又は[2]において、前記限外濾過膜の分画分子量が20万ダルトン以下であることを特徴とする有機性排水の処理方法。 [3] The method for treating organic waste water according to [1] or [2], wherein the ultrafiltration membrane has a molecular weight cut-off of 200,000 daltons or less.

[4] 有機性排水をメタン発酵処理する嫌気性消化槽と、該嫌気性消化槽の処理水を固液分離する限外濾過膜分離装置と、該限外濾過膜分離装置で分離された分離水を好気性生物処理することなく脱塩処理する逆浸透膜分離装置とを有する有機性排水の処理装置において、前記限外濾過膜分離装置で分離された濃縮水を前記嫌気性消化槽に返送する返送手段を有することを特徴とする有機性排水の処理装置。 [4] Anaerobic digester for methane fermentation treatment of organic wastewater, ultrafiltration membrane separator for solid-liquid separation of treated water in the anaerobic digester, and separation separated by the ultrafiltration membrane separator In an organic wastewater treatment device having a reverse osmosis membrane separation device that desalinates water without aerobic biological treatment, the concentrated water separated by the ultrafiltration membrane separation device is returned to the anaerobic digester An organic wastewater treatment apparatus characterized by having a return means.

[5] [4]において、前記有機性排水がモノエタノールアミン及び/又はテトラメチルアンモニウムヒドロキシドを含むことを特徴とする有機性排水の処理装置。 [5] The treatment apparatus for organic wastewater according to [4], wherein the organic wastewater contains monoethanolamine and / or tetramethylammonium hydroxide.

[6] [4]又は[5]において、前記限外濾過膜の分画分子量が20万ダルトン以下であることを特徴とする有機性排水の処理装置。 [6] The organic wastewater treatment apparatus according to [4] or [5], wherein the ultrafiltration membrane has a molecular weight cut-off of 200,000 daltons or less.

本発明によれば、生物処理水を固液分離して分離水をRO膜で脱塩処理することにより水回収を図る有機性排水の処理において、RO膜の目詰まりの原因となる微生物自体及び微生物が産生した粘質物等の高分子成分を、UF膜で分離し、この高分子成分を含む濃縮水を嫌気性消化工程(槽)に返送して循環処理することにより、嫌気性消化工程(槽)での滞留時間を極めて長くすることができる。これにより、嫌気性消化工程(槽)において、このような遅生物分解性の高分子成分をも分解し得る微生物が馴養され、この遅生物分解性の高分子成分が嫌気性消化工程(槽)で分解されるようになり、RO膜の目詰まりが防止され、RO膜の膜フラックスを長期に亘り安定に維持することができるようになる。   According to the present invention, in the treatment of organic wastewater that recovers water by solid-liquid separation of biologically treated water and desalting the separated water with the RO membrane, the microorganism itself that causes clogging of the RO membrane and The anaerobic digestion process (by separating the polymer components such as mucilage produced by microorganisms with a UF membrane and returning the concentrated water containing the polymer components to the anaerobic digestion process (tank) The residence time in the tank can be made extremely long. Thereby, in the anaerobic digestion process (tank), microorganisms capable of degrading such a slow biodegradable polymer component are acclimatized, and the slow biodegradable polymer component is anaerobic digestion process (tank). Thus, the RO membrane is prevented from being clogged, and the membrane flux of the RO membrane can be maintained stably over a long period of time.

RO膜の目詰まりを生じさせる高分子成分は、電子産業の工場排水のようなモノエタノールアミンやテトラメチルアンモニウムヒドロキシドを含む排水を原水とする場合に生成し易い。このため、本発明はモノエタノールアミン及び/又はテトラメチルアンモニウムヒドロキシドを含む有機性排水の処理に有効である(請求項2,5)。   The polymer component that causes clogging of the RO membrane is easily generated when wastewater containing monoethanolamine or tetramethylammonium hydroxide, such as factory wastewater in the electronics industry, is used as raw water. For this reason, this invention is effective in the process of the organic waste water containing a monoethanolamine and / or tetramethylammonium hydroxide (Claims 2 and 5).

また、RO膜の目詰まりを生じさせる高分子成分は、分子量30〜100万ダルトンの高分子有機物と推定され、従って、UF膜として分画分子量20万ダルトン以下のものを用いることにより、これらの高分子成分をUF膜で確実に分離濃縮することができる。   In addition, the polymer component that causes clogging of the RO membrane is presumed to be a high molecular organic substance having a molecular weight of 300 to 1,000,000 daltons. Therefore, by using a UF membrane having a fractional molecular weight of 200,000 dalton or less, these The polymer component can be reliably separated and concentrated by the UF membrane.

本発明によれば、半導体製造、液晶製造等の電子産業工場のように、純水を使用してその排水を排出する設備において、排出された有機物を含む排水を生物処理し、その処理水を効率的に水回収して純水製造の原料として用いることができる。   According to the present invention, in an electronic industry factory such as semiconductor manufacturing, liquid crystal manufacturing, etc., in a facility that discharges the waste water using pure water, the waste water containing the discharged organic matter is biologically treated, and the treated water is Water can be efficiently recovered and used as a raw material for producing pure water.

以下に、図面を参照して本発明の有機性排水の処理方法及び装置の実施の形態を詳細に説明する。   Embodiments of an organic wastewater treatment method and apparatus according to the present invention will be described below in detail with reference to the drawings.

図1は本発明の有機性排水の処理装置の実施の形態を示す系統図である。
本発明においては、図1に示す如く、有機性排水を原水として、嫌気性消化槽1で原水をメタン発酵処理し、処理水をUF膜分離装置2で固液分離し、分離水をRO膜分離装置で脱塩処理して、透過水を処理水として取り出す有機性排水の処理に当たり、UF膜分離装置2の濃縮水の一部又は全部を嫌気性消化槽1に返送して循環処理する。
FIG. 1 is a system diagram showing an embodiment of an organic wastewater treatment apparatus of the present invention.
In the present invention, as shown in FIG. 1, organic wastewater is used as raw water, raw water is subjected to methane fermentation treatment in an anaerobic digestion tank 1, the treated water is subjected to solid-liquid separation using a UF membrane separation device 2, and the separated water is supplied to an RO membrane. In the treatment of the organic waste water which is desalted by the separator and takes out the permeate as the treated water, a part or all of the concentrated water of the UF membrane separator 2 is returned to the anaerobic digester 1 and circulated.

本発明において、原水として処理する有機性排水の性状は特に限定されるものではないが、前述の如く、RO膜の目詰まりを生じさせる高分子成分は、モノエタノールアミンやテトラメチルアンモニウムヒドロキシドを含む排水を原水とする場合に生成し易い。このため、本発明は、半導体製造、液晶製造等の電子産業工場等で排出されるモノエタノールアミン、テトラメチルアンモニウムヒドロキシドなどプロセス工程で洗浄剤、剥離剤などとして使用される有機物を含む排水を原水として処理する場合に有効である。例えば、モノエタノールアミン及び/又はテトラメチルアンモニウムヒドロキシドを50〜1,000mg/L程度含む、TOC30〜500mg/L程度の有機性排水の処理に有効である。   In the present invention, the nature of the organic wastewater treated as raw water is not particularly limited, but as described above, the polymer component that causes clogging of the RO membrane is monoethanolamine or tetramethylammonium hydroxide. It is easy to produce when the wastewater it contains is used as raw water. For this reason, the present invention provides wastewater containing organic substances used as cleaning agents, stripping agents, etc. in process steps such as monoethanolamine and tetramethylammonium hydroxide discharged in electronic industry factories such as semiconductor manufacturing and liquid crystal manufacturing. Effective when treated as raw water. For example, it is effective for the treatment of organic wastewater having a TOC of about 30 to 500 mg / L containing about 50 to 1,000 mg / L of monoethanolamine and / or tetramethylammonium hydroxide.

このような原水は、嫌気性消化槽1内でメタン生成菌群を主体とする嫌気性生物処理でメタン発酵処理されて有機物が除去される。嫌気性消化槽1でのメタン発酵処理は、槽内液の温度が15℃以上40℃以下となるような条件で行えば、微生物が高分子有機物を生成した場合でもその90%程度が分解されるため、好ましい。また、槽内液のpHを6以上9以下とすることにより、微生物が生成した高分子有機物の90%程度が分解されるため、好ましい。   Such raw water is subjected to methane fermentation treatment in the anaerobic digester 1 by an anaerobic biological treatment mainly composed of methanogenic bacteria to remove organic substances. If the methane fermentation treatment in the anaerobic digestion tank 1 is performed under such conditions that the temperature of the liquid in the tank is 15 ° C. or higher and 40 ° C. or lower, about 90% of the microorganism is decomposed even when the microorganism produces a high molecular organic substance. Therefore, it is preferable. Further, it is preferable to adjust the pH of the liquid in the tank to 6 or more and 9 or less because about 90% of the high-molecular organic matter produced by the microorganism is decomposed.

嫌気性消化槽1からの処理水には微生物が含まれるため、UF膜分離装置2で固液分離した後、固形分が除去された水(分離水)をRO膜分離装置3で脱塩処理し、処理水(RO膜透過水)は、純水原料等として取り出される。   Since the treated water from the anaerobic digestion tank 1 contains microorganisms, water (separated water) from which the solid content has been removed after the solid-liquid separation by the UF membrane separator 2 is desalted by the RO membrane separator 3. The treated water (RO membrane permeated water) is taken out as a pure water raw material or the like.

本発明において、UF膜分離装置2のUF膜としては、分画分子量20万ダルトン以下のものを用いることが好ましい。即ち、RO膜の目詰まりを生じさせる高分子成分は、分子量30〜100万ダルトンの高分子有機物と推定され、従って、UF膜として分画分子量20万ダルトン以下のものを用いることにより、これらの高分子成分をUF膜で確実に分離濃縮することができる。なお、このUF膜の分画分子量が過度に小さいと、分離水量が著しく減少し、必要な膜面積が増加したり、吸引ポンプなどの膜分離における消費エネルギーが増加して経済的でないため、UF膜の分画分子量は3,000〜20万ダルトンとすることが好ましい。   In the present invention, it is preferable to use a UF membrane of the UF membrane separation device 2 having a molecular weight cut off of 200,000 daltons or less. That is, the polymer component that causes clogging of the RO membrane is presumed to be a high molecular weight organic substance having a molecular weight of 300 to 1,000,000 daltons. Therefore, by using a UF membrane having a fractional molecular weight of 200,000 dalton or less, The polymer component can be reliably separated and concentrated by the UF membrane. If the molecular weight cut off of the UF membrane is excessively small, the amount of separated water is remarkably reduced, the required membrane area is increased, and energy consumption in membrane separation such as a suction pump is increased, which is not economical. The molecular weight cutoff of the membrane is preferably 3,000 to 200,000 daltons.

UF膜分離装置2のモジュール形式は特に限定されないが、嫌気性消化槽1から送液される汚泥がUF膜分離装置2の内部で閉塞又は滞留しにくいように構成されていることが好ましく、例えばチューブラ形式や平膜形式を好適に使用できる。また、嫌気性消化槽1の処理水中の液分と固形分とを分離するUF膜は、本実施形態のように嫌気性消化槽1外に設ける、いわゆる槽外型とすれば膜面流速のコントロールが容易であるため、膜面の汚れ防止の観点から好ましい。   The module type of the UF membrane separation device 2 is not particularly limited, but it is preferable that the sludge fed from the anaerobic digester 1 is configured to be less likely to block or stay inside the UF membrane separation device 2, for example, Tubular type or flat membrane type can be preferably used. Moreover, if the UF membrane which separates the liquid content and the solid content in the treated water of the anaerobic digestion tank 1 is provided outside the anaerobic digestion tank 1 as in this embodiment, the so-called outside tank type has a membrane surface flow velocity. Since control is easy, it is preferable from the viewpoint of preventing contamination of the film surface.

なお、UF膜分離装置2には図示しないガス排管が接続されており、嫌気性消化槽1からの処理水と共に生成ガスがUF膜分離装置2に送られる。このガスは、UF膜分離装置2内の被処理水流路に沿って移動しながら分離膜を曝気洗浄する。   Note that a gas exhaust pipe (not shown) is connected to the UF membrane separation device 2, and the generated gas is sent to the UF membrane separation device 2 together with the treated water from the anaerobic digestion tank 1. This gas aerates and cleans the separation membrane while moving along the treated water flow path in the UF membrane separation device 2.

本発明では、このUF膜分離装置1で分離された濃縮水は、嫌気性消化槽1に返送される。   In the present invention, the concentrated water separated by the UF membrane separation device 1 is returned to the anaerobic digester 1.

なお、嫌気性消化槽1におけるメタン生成菌群は好気性微生物に比べて増殖速度が遅いが、このように濃縮水の返送を行って嫌気性消化槽1内の汚泥(MLSS)濃度を6,000〜15,000mg/L程度に維持し、嫌気性消化槽1の水理学的滞留時間を2〜8時間程度にすることにより、好気性の活性汚泥による好気性生物処理を行う場合と同程度の分解速度を得ることができると共に、RO膜の目詰まりの原因となる遅生物分解性の高分子成分をも分解除去することが可能となる。この嫌気性消化槽1からは、図示しない排泥管を介して適宜、余剰汚泥を引き抜くことにより、嫌気性消化槽1内の汚泥濃度を調整する。   The methanogen group in the anaerobic digestion tank 1 has a slower growth rate than the aerobic microorganisms, but the concentrated water is returned in this way so that the sludge (MLSS) concentration in the anaerobic digestion tank 1 is 6, The same level as when aerobic biological treatment with aerobic activated sludge is carried out by maintaining it at about 000 to 15,000 mg / L and setting the hydraulic residence time of the anaerobic digester 1 to about 2 to 8 hours. It is possible to obtain a decomposition rate of the polymer, and it is also possible to decompose and remove a slow biodegradable polymer component that causes clogging of the RO membrane. From this anaerobic digester 1, the sludge concentration in the anaerobic digester 1 is adjusted by drawing out excess sludge as appropriate through a sludge pipe (not shown).

UF膜分離装置2の分離水を脱塩処理するRO膜分離装置3の分離膜には特に制限はなく、平膜、チューブラ、スパイラルなど任意の膜形式のものを用いることができる。   There is no particular limitation on the separation membrane of the RO membrane separation device 3 for desalting the separation water of the UF membrane separation device 2, and any membrane type such as a flat membrane, tubular, spiral, etc. can be used.

このRO膜分離装置3で処理され、塩類が除去された透過水は処理水として取り出される。この処理水は、純水製造用の原水等として利用できる。具体的には、RO膜分離装置3の後段に脱炭酸装置やイオン交換装置、紫外線殺菌装置等の純水製造装置を構成する機器類を配置し、これら機器類を用いてRO膜分離装置3から取り出した透過水を処理することで純水が製造できる。   The permeated water that has been treated by the RO membrane separation device 3 and from which salts have been removed is taken out as treated water. This treated water can be used as raw water for producing pure water. Specifically, equipment constituting a pure water production apparatus such as a decarboxylation apparatus, an ion exchange apparatus, and an ultraviolet sterilization apparatus is arranged at the subsequent stage of the RO membrane separation apparatus 3, and the RO membrane separation apparatus 3 is used by using these equipments. Pure water can be produced by treating the permeated water taken out from the water.

RO膜分離装置3から排出される、塩類が濃縮された濃縮水は系外へ排出される。   Concentrated water enriched with salts discharged from the RO membrane separation device 3 is discharged out of the system.

本発明では、UF膜分離装置でメタン発酵処理水を固液分離し、分離された濃縮水を循環処理することにより、RO膜の目詰まりの原因となる高分子成分のRO膜分離装置への流入をUF膜で阻止すると共に、これを嫌気性消化槽で分解除去してこの高分子成分の系内蓄積を防止する。これにより、RO膜の膜フラックスを高く維持して長期に亘り安定かつ効率的な処理を行える。   In the present invention, the methane fermentation treated water is subjected to solid-liquid separation in the UF membrane separation apparatus, and the separated concentrated water is circulated, whereby the polymer component that causes the clogging of the RO membrane is supplied to the RO membrane separation apparatus. Inflow is blocked by a UF membrane, and this is decomposed and removed in an anaerobic digester to prevent the accumulation of this polymer component in the system. Thereby, the membrane flux of the RO membrane can be maintained high and stable and efficient treatment can be performed over a long period of time.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

[実施例1]
以下水質の有機性排水を原水として、図1に示す本発明の有機性排水の処理装置により処理を行った。
[Example 1]
In the following, water was treated with the organic wastewater treatment apparatus of the present invention shown in FIG.

<原水水質>
TOC:200mg/L
T−N:70mg/L
T−P:1.0mg/L
有機物の組成:
テトラメチルアンモニウムヒドロキシド:100mg/L
モノエタノールアミン:250mg/L
ジエチレングリコールモノブチルエーテル:100mg/L
<Raw water quality>
TOC: 200 mg / L
TN: 70 mg / L
TP: 1.0 mg / L
Organic composition:
Tetramethylammonium hydroxide: 100 mg / L
Monoethanolamine: 250 mg / L
Diethylene glycol monobutyl ether: 100 mg / L

嫌気性消化槽(実容量1m)の温度は35℃、pHは7.5、水理学的滞留時間は6時間とした。この嫌気性消化槽は、下水汚泥を種汚泥として6ヶ月馴養し、槽内MLSS12,000mg/Lを維持するように汚泥を引き抜いた。 The temperature of the anaerobic digester (actual volume 1 m 3 ) was 35 ° C., the pH was 7.5, and the hydraulic residence time was 6 hours. This anaerobic digester was acclimatized for 6 months using sewage sludge as seed sludge, and the sludge was pulled out so as to maintain the MLSS in the tank at 12,000 mg / L.

UF膜分離装置には、平膜形式のUF膜(ポリフッ化ビニリデン製、分画分子量:20万ダルトン、膜面積:20m)を配置し、嫌気性消化槽からの処理水を槽内のガスとともに流入させ、濃縮水とガスは嫌気性消化槽に返送した。循環ガス量は100m/日(5m/m・日)、透過水量(フラックス)は0.3m/日とした。 In the UF membrane separator, a flat membrane UF membrane (made of polyvinylidene fluoride, molecular weight cut off: 200,000 daltons, membrane area: 20 m 2 ) is disposed, and the treated water from the anaerobic digestion tank is gas in the tank. The concentrated water and gas were returned to the anaerobic digester. The amount of circulating gas was 100 m 3 / day (5 m 3 / m 2 · day), and the amount of permeated water (flux) was 0.3 m / day.

[比較例1]
UF膜分離装置に平膜形式のMF膜(ポリフッ化ビニリデン製、孔径:0.40μm、膜面積:20m)を配置した以外は、実施例1と同様の条件で運転を行った。
[Comparative Example 1]
The operation was performed under the same conditions as in Example 1, except that a flat membrane type MF membrane (made of polyvinylidene fluoride, pore size: 0.40 μm, membrane area: 20 m 2 ) was placed in the UF membrane separation apparatus.

上記条件で30日間処理を行ったところ、UF膜分離装置から得られた分離水の平均TOC濃度は、実施例1で3.2mg/L(除去率98%)、比較例1で5.7mg/L(除去率97%)であった。   When the treatment was performed for 30 days under the above conditions, the average TOC concentration of the separated water obtained from the UF membrane separator was 3.2 mg / L in Example 1 (removal rate 98%), and 5.7 mg in Comparative Example 1. / L (removal rate 97%).

また、各UF膜分離装置の分離水をRO膜分離装置(RO膜として全芳香族ポリアミド系の超低圧膜を備えたスパイラル式のもの)により750kPaで脱塩処理したところ、20時間経過後の透過水量は、実施例1では通水開始時の90%を維持していたのに対し、比較例1では40%まで低下した。   Moreover, when the separation water of each UF membrane separator was desalted at 750 kPa with an RO membrane separator (spiral type having a wholly aromatic polyamide ultra-low pressure membrane as the RO membrane), after 20 hours had elapsed The amount of permeated water was maintained at 90% at the start of water flow in Example 1, but decreased to 40% in Comparative Example 1.

また、UF膜分離装置の分離水及びこの分離水を孔径の異なるフィルターにより濾過した濾液についてTOCを分析したところ、表1に示すように、実施例1では、フィルター濾過したものも濾過しないものもTOC濃度は変わらないことから、比較例1で見られた高分子成分が実施例1では存在しないことが確認された。   Moreover, when TOC was analyzed about the separated water of a UF membrane separation apparatus and the filtrate which filtered this separated water with the filter from which a hole diameter differs, as shown in Table 1, in Example 1, what was filtered and what was not filtered are also shown. Since the TOC concentration did not change, it was confirmed that the polymer component found in Comparative Example 1 was not present in Example 1.

また、実施例1における嫌気性消化槽内の溶解性TOC濃度は120〜140mg/Lで安定しており、UF膜を通過しない高分子成分は嫌気性消化槽内で分解され、槽内に蓄積することはなかった。   Moreover, the soluble TOC concentration in the anaerobic digestion tank in Example 1 is stable at 120 to 140 mg / L, and the polymer component that does not pass through the UF membrane is decomposed in the anaerobic digestion tank and accumulated in the tank. I never did.

Figure 2010017614
Figure 2010017614

以上の結果から、本発明によれば、生物処理水をRO膜で脱塩して水回収する際に、RO膜の目詰まりを生じさせる高分子成分を減少させて、効率的な水回収を行うことができることが分かる。   From the above results, according to the present invention, when desalting the biologically treated water with the RO membrane and recovering the water, the polymer component causing the clogging of the RO membrane is reduced, and the efficient water recovery is achieved. You can see that it can be done.

本発明の有機性排水の処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing apparatus of the organic waste_water | drain of this invention.

符号の説明Explanation of symbols

1 嫌気性消化槽
2 UF膜分離装置
3 RO膜分離装置
1 Anaerobic digester 2 UF membrane separator 3 RO membrane separator

Claims (6)

有機性排水をメタン発酵処理する嫌気性消化工程と、
該嫌気性消化工程の処理水を限外濾過膜分離処理する固液分離工程と、
該固液分離工程で分離された分離水を好気性生物処理することなく逆浸透膜分離処理する脱塩工程とを有する有機性排水の処理方法において、
前記固液分離工程で分離された濃縮水を前記嫌気性消化工程に返送する返送工程を有することを特徴とする有機性排水の処理方法。
An anaerobic digestion process for methane fermentation of organic wastewater;
A solid-liquid separation step of subjecting the treated water of the anaerobic digestion step to ultrafiltration membrane separation;
In a method for treating organic wastewater, which comprises a desalting step of separating the separated water separated in the solid-liquid separation step without subjecting to aerobic biological treatment, reverse osmosis membrane separation treatment,
An organic wastewater treatment method comprising a return step of returning the concentrated water separated in the solid-liquid separation step to the anaerobic digestion step.
請求項1において、前記有機性排水がモノエタノールアミン及び/又はテトラメチルアンモニウムヒドロキシドを含むことを特徴とする有機性排水の処理方法。   2. The method for treating organic waste water according to claim 1, wherein the organic waste water contains monoethanolamine and / or tetramethylammonium hydroxide. 請求項1又は2において、前記限外濾過膜の分画分子量が20万ダルトン以下であることを特徴とする有機性排水の処理方法。   The method for treating organic waste water according to claim 1 or 2, wherein the ultrafiltration membrane has a molecular weight cut-off of 200,000 daltons or less. 有機性排水をメタン発酵処理する嫌気性消化槽と、
該嫌気性消化槽の処理水を固液分離する限外濾過膜分離装置と、
該限外濾過膜分離装置で分離された分離水を好気性生物処理することなく脱塩処理する逆浸透膜分離装置とを有する有機性排水の処理装置において、
前記限外濾過膜分離装置で分離された濃縮水を前記嫌気性消化槽に返送する返送手段を有することを特徴とする有機性排水の処理装置。
An anaerobic digester for methane fermentation of organic wastewater;
An ultrafiltration membrane separation device for solid-liquid separation of the treated water in the anaerobic digester;
In an organic wastewater treatment apparatus having a reverse osmosis membrane separation apparatus for desalinating the separated water separated by the ultrafiltration membrane separation apparatus without subjecting to aerobic biological treatment,
An organic wastewater treatment apparatus comprising return means for returning the concentrated water separated by the ultrafiltration membrane separator to the anaerobic digester.
請求項4において、前記有機性排水がモノエタノールアミン及び/又はテトラメチルアンモニウムヒドロキシドを含むことを特徴とする有機性排水の処理装置。   5. The organic wastewater treatment apparatus according to claim 4, wherein the organic wastewater contains monoethanolamine and / or tetramethylammonium hydroxide. 請求項4又は5において、前記限外濾過膜の分画分子量が20万ダルトン以下であることを特徴とする有機性排水の処理装置。   6. The organic wastewater treatment apparatus according to claim 4 or 5, wherein the ultrafiltration membrane has a molecular weight cut-off of 200,000 daltons or less.
JP2008178122A 2008-07-08 2008-07-08 Method and apparatus for treating organic wastewater Pending JP2010017614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008178122A JP2010017614A (en) 2008-07-08 2008-07-08 Method and apparatus for treating organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008178122A JP2010017614A (en) 2008-07-08 2008-07-08 Method and apparatus for treating organic wastewater

Publications (1)

Publication Number Publication Date
JP2010017614A true JP2010017614A (en) 2010-01-28

Family

ID=41703023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008178122A Pending JP2010017614A (en) 2008-07-08 2008-07-08 Method and apparatus for treating organic wastewater

Country Status (1)

Country Link
JP (1) JP2010017614A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184178A (en) * 2009-02-10 2010-08-26 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
WO2012128119A1 (en) * 2011-03-23 2012-09-27 栗田工業株式会社 Treatment method for photoresist development wastewater
JP2013056321A (en) * 2011-09-09 2013-03-28 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment apparatus
CN104529087A (en) * 2015-01-04 2015-04-22 威士邦(厦门)环境科技有限公司 Complete equipment and technology for reutilization and energy regeneration treatment of wastewater
JP2015157291A (en) * 2015-06-10 2015-09-03 株式会社神鋼環境ソリューション Water treatment method and apparatus
JP2016209842A (en) * 2015-05-12 2016-12-15 栗田工業株式会社 Organic wastewater treatment method
WO2018020591A1 (en) * 2016-07-26 2018-02-01 栗田工業株式会社 Method for treating organic wastewater
CN113501621A (en) * 2021-07-26 2021-10-15 上海东振环保工程技术有限公司 Developer solution effluent disposal system
CN114053878A (en) * 2021-11-25 2022-02-18 山东省舜天化工集团有限公司 Method and equipment for treating melamine wastewater by using ultrafiltration membrane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845796A (en) * 1981-09-16 1983-03-17 Nishihara Environ Sanit Res Corp Anaerobic digestion of highly-concentrated organic waste water
JPH0487698A (en) * 1990-07-31 1992-03-19 Tadayoshi Doi Treatment of waste water
JPH05261390A (en) * 1992-03-17 1993-10-12 Hitachi Plant Eng & Constr Co Ltd Biological treatment of waste water and equipment
JPH0970599A (en) * 1995-09-06 1997-03-18 Sharp Corp Waste water treating device and treatment of waste water
JP2002511832A (en) * 1998-02-20 2002-04-16 バイオスキャン・アクティーゼルスカブ Method and plant for treating liquid organic waste
JP2005058934A (en) * 2003-08-18 2005-03-10 Kurita Water Ind Ltd Treatment method for biologically treated water-containing water
JP2007175582A (en) * 2005-12-27 2007-07-12 Kurita Water Ind Ltd Treatment apparatus and method of organic matter-containing waste water

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845796A (en) * 1981-09-16 1983-03-17 Nishihara Environ Sanit Res Corp Anaerobic digestion of highly-concentrated organic waste water
JPH0487698A (en) * 1990-07-31 1992-03-19 Tadayoshi Doi Treatment of waste water
JPH05261390A (en) * 1992-03-17 1993-10-12 Hitachi Plant Eng & Constr Co Ltd Biological treatment of waste water and equipment
JPH0970599A (en) * 1995-09-06 1997-03-18 Sharp Corp Waste water treating device and treatment of waste water
JP2002511832A (en) * 1998-02-20 2002-04-16 バイオスキャン・アクティーゼルスカブ Method and plant for treating liquid organic waste
JP2005058934A (en) * 2003-08-18 2005-03-10 Kurita Water Ind Ltd Treatment method for biologically treated water-containing water
JP2007175582A (en) * 2005-12-27 2007-07-12 Kurita Water Ind Ltd Treatment apparatus and method of organic matter-containing waste water

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184178A (en) * 2009-02-10 2010-08-26 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
CN103443032B (en) * 2011-03-23 2016-06-01 栗田工业株式会社 The treatment process of development of photoresist waste water
WO2012128119A1 (en) * 2011-03-23 2012-09-27 栗田工業株式会社 Treatment method for photoresist development wastewater
CN103443032A (en) * 2011-03-23 2013-12-11 栗田工业株式会社 Treatment method for photoresist development wastewater
JPWO2012128119A1 (en) * 2011-03-23 2014-07-24 栗田工業株式会社 Photoresist development wastewater treatment method
JP2013056321A (en) * 2011-09-09 2013-03-28 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment apparatus
CN104529087A (en) * 2015-01-04 2015-04-22 威士邦(厦门)环境科技有限公司 Complete equipment and technology for reutilization and energy regeneration treatment of wastewater
CN104529087B (en) * 2015-01-04 2016-05-25 威士邦(厦门)环境科技有限公司 A kind of sewage recycling, energy are processed into complete equipment and technique
JP2016209842A (en) * 2015-05-12 2016-12-15 栗田工業株式会社 Organic wastewater treatment method
JP2015157291A (en) * 2015-06-10 2015-09-03 株式会社神鋼環境ソリューション Water treatment method and apparatus
WO2018020591A1 (en) * 2016-07-26 2018-02-01 栗田工業株式会社 Method for treating organic wastewater
CN113501621A (en) * 2021-07-26 2021-10-15 上海东振环保工程技术有限公司 Developer solution effluent disposal system
CN114053878A (en) * 2021-11-25 2022-02-18 山东省舜天化工集团有限公司 Method and equipment for treating melamine wastewater by using ultrafiltration membrane

Similar Documents

Publication Publication Date Title
JP2010017614A (en) Method and apparatus for treating organic wastewater
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
KR101985037B1 (en) Organic sewage collection processing device and collection processing method
CN103249472A (en) Chemical cleaning method for immersed membrane element
JP2012206040A (en) Treatment method and treatment apparatus of organic matter containing wastewater
JP2009154114A (en) Method and apparatus for biological treatment of water containing organic matter
JP2010017615A (en) Method and apparatus for treating dmso-containing wastewater
JP2012205997A (en) Treatment method of organic wastewater by membrane separation activated sludge apparatus
JP2012192367A (en) Treatment device for organic waste water containing nitrogen
JP6123840B2 (en) Organic wastewater treatment method
JPH05329477A (en) Membrane separation
JP2012206041A (en) Treatment method of organic wastewater
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
AU2012324220B2 (en) Fresh water generation system
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP5105608B2 (en) Waste water treatment system and operation method thereof
JP2012205992A (en) Treatment apparatus and treatment method of organic matter containing wastewater
JP4552482B2 (en) Organic wastewater treatment method
JP2009189943A (en) Water treatment method and apparatus
JP6614175B2 (en) Organic wastewater treatment method
JP2012179571A (en) Anaerobic organism processing method and device for organic waste liquid
JP2003340247A (en) Device and method for treating water
KR101575345B1 (en) Biological Treatment Apparatus and Biological Treatment Process of Aqueous Organic Wastes
KR20060052370A (en) Apparatus and process for recovering water from organic containing water
JP2002035554A (en) Method for treating water and its apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130430