JP2013056321A - Anaerobic biological treatment method and anaerobic biological treatment apparatus - Google Patents

Anaerobic biological treatment method and anaerobic biological treatment apparatus Download PDF

Info

Publication number
JP2013056321A
JP2013056321A JP2011197441A JP2011197441A JP2013056321A JP 2013056321 A JP2013056321 A JP 2013056321A JP 2011197441 A JP2011197441 A JP 2011197441A JP 2011197441 A JP2011197441 A JP 2011197441A JP 2013056321 A JP2013056321 A JP 2013056321A
Authority
JP
Japan
Prior art keywords
biological treatment
anaerobic
reaction tank
sludge
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011197441A
Other languages
Japanese (ja)
Other versions
JP5912353B2 (en
Inventor
Masahiro Eguchi
正浩 江口
Keisuke Murakami
敬介 村上
Shinichi Kusano
真一 草野
Akira Era
彰 恵良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48132691&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013056321(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2011197441A priority Critical patent/JP5912353B2/en
Publication of JP2013056321A publication Critical patent/JP2013056321A/en
Application granted granted Critical
Publication of JP5912353B2 publication Critical patent/JP5912353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anaerobic biological treatment method and an anaerobic biological treatment apparatus capable of stable treatment with high load in an anaerobic biological treatment of wastewater containing organic matters with a carbon number of 6 or less.SOLUTION: The anaerobic biological treatment apparatus 1 is used which includes a reaction tank 16 which ferments the wastewater containing the organic matters having the carbon number of 6 or less with methane under an anaerobic condition, and a membrane separator 26 that separates a treatment liquid obtained by the reaction tank 16 into sludge and treated water by a filter membrane, wherein a biological sludge concentration in the reaction tank 16 is adjusted to be within a range of 15,000-35,000 mg/L.

Description

本発明は、炭素数6以下の有機物等を含有する排水を嫌気性下で生物処理する生物処理方法及び生物処理装置に関する。   The present invention relates to a biological treatment method and biological treatment apparatus for biologically treating wastewater containing organic matter having 6 or less carbon atoms under anaerobic conditions.

従来、電子産業工場やパルプ製造工場、化学工場から排出される炭素数6以下、具体的にはメタノール、テトラメチルアンモニウムハイドロオキサイド(以下、TMAHと呼ぶ場合がある)、エタノール、アセトアルデヒド、酢酸等の有機物を主成分とする排水を高負荷で嫌気処理する場合、グラニュール汚泥を利用したUASB(Upflow Anaerobic Sludge Blanket)やEGSB(Expanded Granular Sludge Blanket)等が適用されている。   Conventionally, carbon number of 6 or less, specifically methanol, tetramethylammonium hydroxide (hereinafter sometimes referred to as TMAH), ethanol, acetaldehyde, acetic acid, etc. discharged from electronic industrial factories, pulp manufacturing factories, and chemical factories In the case of anaerobic treatment of wastewater containing organic substances as a main component under high load, UASB (Upflow Anaerobic Sludge Blanket), EGSB (Expanded Granular Sludge Blanket), etc. using granule sludge are applied.

通常の嫌気処理では、高分子の糖質、タンパク質、脂質を低分子に分解する嫌気性加水分解菌や有機酸を生成する酸生成細菌が生成するバイオポリマー等の架橋効果がグラニュールの生成、維持に重要な働きをしていると考えられている。さらに、糸状性のメタン生成細菌であるMethanosaeta属がグラニュール化の骨格となるとも言われており、グラニュール形成に重要な存在である。   In normal anaerobic treatment, the cross-linking effect of anaerobic hydrolyzing bacteria that decompose high molecular carbohydrates, proteins, and lipids into low molecules and biopolymers produced by acid-producing bacteria that produce organic acids, etc. It is thought to play an important role in maintenance. Furthermore, the genus Methanosaeta, which is a filamentous methanogenic bacterium, is said to be a skeleton for granulation, and is an important entity for granule formation.

ところが、炭素数の小さい有機物を分解する場合、嫌気性加水分解菌や酸生成細菌が少なく、メタン生成細菌が主要な生物相となる。さらに、メタノールやTMAH等では糸状性のメタン生成細菌であるMethanosaeta属より、糸状性でないメタン生成細菌であるMethanosarcina属やMethanobacteriumu属が優占し易く、グラニュール汚泥が微細化し崩れる傾向がある。グラニュール汚泥が微細化し崩れると反応槽内の汚泥が流出し処理が不安定となる。   However, when decomposing organic substances having a small number of carbon atoms, there are few anaerobic hydrolyzing bacteria and acid-producing bacteria, and methanogenic bacteria are the main biota. Further, in methanol, TMAH, and the like, the genus Methanosalucina and Methanobacterium, which are non-filamentous methanogens, are more dominant than the genus Methanosaeta, which is a filamentous methanogen, and the granular sludge tends to become finer and collapse. If the granule sludge becomes finer and collapses, the sludge in the reaction tank flows out and the treatment becomes unstable.

従来、これらの対策の具体例としては、例えば、高分子凝集剤を添加する方法、亜硝酸や硝酸を添加する方法、酢酸を添加する方法、デンプンやグルコースを添加する方法、糖蜜やアルコールを添加する方法等が提案されている(例えば、特許文献1〜6参照)。   Conventional examples of these measures include, for example, a method of adding a polymer flocculant, a method of adding nitrous acid and nitric acid, a method of adding acetic acid, a method of adding starch and glucose, and adding molasses and alcohol And the like have been proposed (see, for example, Patent Documents 1 to 6).

また、電子産業工場から排出されるジメチルスルホキシド、モノエタノールアミン、TMAHを含む排水を嫌気性下でメタン発酵させて生物処理した後、ろ過膜により固液分離処理する方法が提案されている(例えば、特許文献7,8参照)。   In addition, a method has been proposed in which wastewater containing dimethyl sulfoxide, monoethanolamine, and TMAH discharged from an electronics industry factory is subjected to biological treatment by anaerobic methane fermentation and then subjected to solid-liquid separation treatment using a filtration membrane (for example, And Patent Documents 7 and 8).

特許第4193310号公報Japanese Patent No. 4193310 特開2008−279383号公報JP 2008-279383 A 特許第2563004号公報Japanese Patent No. 2563004 特開2008−279385号公報JP 2008-279385 A 特開2010−274207号公報JP 2010-274207 A 特開2009−255067号公報JP 2009-255067 A 特開2010−17614号公報JP 2010-17614 A 特開2010−17615号公報JP 2010-17615 A

しかし、特許文献1〜6に記載の方法では、高分子凝集剤や硝酸、有機物などを外部から添加する必要があるため、それら薬剤の適切な管理が必要である。また、特許文献7,8に記載の方法では、薬剤の添加は行われないものの、低濃度排水系において低負荷処理を行うものである。   However, in the methods described in Patent Documents 1 to 6, since it is necessary to add a polymer flocculant, nitric acid, organic matter, and the like from the outside, appropriate management of these drugs is necessary. In addition, in the methods described in Patent Documents 7 and 8, although a chemical is not added, low load treatment is performed in a low-concentration drainage system.

そこで、本発明の目的は、炭素数6以下の有機物を含む排水の嫌気性生物処理において、高負荷で安定して処理を行うことができる嫌気性生物処理方法及び嫌気性生物処理装置を提供することにある。   Accordingly, an object of the present invention is to provide an anaerobic biological treatment method and an anaerobic biological treatment apparatus that can stably perform treatment at high load in anaerobic biological treatment of wastewater containing organic matter having 6 or less carbon atoms. There is.

本発明の嫌気性生物処理方法は、炭素数6以下の有機物を含有する排水を嫌気性下でメタン発酵する生物処理工程と、前記生物処理工程で得られる処理液をろ過膜により汚泥と処理水とに分離する膜分離工程と、を有し、前記生物処理工程における生物汚泥濃度を、15000〜35000mg/Lの範囲に調整する。   The anaerobic biological treatment method of the present invention includes a biological treatment step of subjecting wastewater containing an organic substance having 6 or less carbon atoms to methane fermentation under anaerobic conditions, and treating liquid obtained in the biological treatment step with sludge and treated water using a filtration membrane. And the biological sludge concentration in the biological treatment step is adjusted to a range of 15000 to 35000 mg / L.

また、前記嫌気性生物処理方法において、前記有機物は、テトラメチルアンモニウムヒドロキシドおよびメタノールのうち少なくともいずれか一方であることが好ましい。   In the anaerobic biological treatment method, the organic substance is preferably at least one of tetramethylammonium hydroxide and methanol.

また、前記嫌気性生物処理方法において、前記排水を、前記有機物が単一で、前記排水中の全有機物の90重量%以上含有するように調整することが好ましい。   In the anaerobic biological treatment method, it is preferable to adjust the waste water so that the organic matter is single and contains 90% by weight or more of the total organic matter in the waste water.

また、前記嫌気性生物処理方法において、前記生物処理工程では、CODcr負荷10kg/m/d以上又はTMAH負荷5kg/m/dで生物処理が行われる場合に有効である。 In the anaerobic biological treatment method, the biological treatment step is effective when the biological treatment is performed with a CODcr load of 10 kg / m 3 / d or more or a TMAH load of 5 kg / m 3 / d.

また、本発明の嫌気性生物処理装置は、炭素数6以下の有機物を含有する排水を嫌気性下でメタン発酵する反応槽と、前記反応槽で得られる処理液をろ過膜により汚泥と処理水とに分離する膜分離部と、を有し、前記反応槽における生物汚泥濃度を、15000〜35000mg/Lの範囲に調整する。   Moreover, the anaerobic biological treatment apparatus of this invention is a reaction tank which carries out methane fermentation of the waste_water | drain containing C6 or less organic substance under anaerobic condition, and the process liquid obtained in the said reaction tank is made into sludge and treated water with a filtration membrane. And the biological sludge concentration in the reaction tank is adjusted to a range of 15000 to 35000 mg / L.

また、前記嫌気性生物処理装置において、前記有機物は、テトラメチルアンモニウムヒドロキシドおよびメタノールのうち少なくともいずれか一方であることが好ましい。   In the anaerobic biological treatment apparatus, the organic substance is preferably at least one of tetramethylammonium hydroxide and methanol.

また、前記嫌気性生物処理装置において、前記膜分離部は、前記反応槽外に設けられていることが好ましい。   Moreover, in the anaerobic biological treatment apparatus, the membrane separation unit is preferably provided outside the reaction tank.

また、前記嫌気性生物処理装置において、前記排水を、前記有機物が単一で、前記排水中の全有機物の90重量%以上含有するように調整する手段を有することが好ましい。   Moreover, in the anaerobic biological treatment apparatus, it is preferable that the waste water has means for adjusting the organic matter so that the organic matter is contained in a single amount and is 90% by weight or more of the total organic matter in the waste water.

また、前記嫌気性生物処理装置において、前記反応槽では、CODcr負荷10kg/m/d以上又はTMAH負荷5kg/m/dで生物処理が行われる場合に有効である。 In the anaerobic biological treatment apparatus, the reaction vessel is effective when biological treatment is performed at a CODcr load of 10 kg / m 3 / d or more or a TMAH load of 5 kg / m 3 / d.

本発明によれば、炭素数6以下の有機物を含む排水の嫌気性生物処理において、高負荷で安定して処理を行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, in the anaerobic biological treatment of the waste_water | drain containing C6 or less organic substance, it can process stably with high load.

本実施形態に係る嫌気性生物処理装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the anaerobic biological treatment apparatus which concerns on this embodiment. 本実施形態に係る嫌気性生物処理装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the anaerobic biological treatment apparatus which concerns on this embodiment. 本実施形態に係る嫌気性生物処理装置の構成の他の一例を示す模式図である。It is a schematic diagram which shows another example of a structure of the anaerobic biological treatment apparatus which concerns on this embodiment. 実施例1により得られる処理水中のTMAH濃度及びTMAH負荷である。It is the TMAH density | concentration and TMAH load in the treated water obtained by Example 1. FIG. 実施例1で用いたろ過膜の吸引圧力の経日変化である。It is a daily change of the suction pressure of the filtration membrane used in Example 1. FIG. 比較例1により得られる処理水中のTMAH濃度及びTMAH負荷である。It is a TMAH density | concentration and TMAH load in the treated water obtained by the comparative example 1. 実施例2により得られる処理水中のメタノール濃度及びCODcr負荷である。It is the methanol density | concentration and CODcr load in the treated water obtained by Example 2. FIG. 実施例2で用いたろ過膜の吸引圧力の経日変化である。It is a daily change of the suction pressure of the filtration membrane used in Example 2. FIG. 実施例3の嫌気性汚泥の汚泥濃度と粘度との関係をまとめた図である。It is the figure which put together the relationship between the sludge density | concentration of the anaerobic sludge of Example 3, and a viscosity.

本発明の実施形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る嫌気性生物処理装置の構成の一例を示す模式図である。図1に示すように、嫌気性生物処理装置1は、原水第1ライン10、原水槽12、原水第2ライン14、反応槽16、処理液排出ライン19、処理水排出ライン20、ガス排出ライン22、濃縮水返送ライン24、膜分離装置26、栄養剤供給装置、pH調整剤供給装置、を備える。本実施形態の栄養剤供給装置は、栄養剤貯槽30、栄養剤供給ライン32から構成されている。本実施形態のpH調整剤供給装置は、pH調整剤貯槽34、pH調整剤供給ライン36から構成されている。但し、各供給装置の構成は、溶液を排水に供給することができるものであれば上記構成に制限されるものではなく、例えば、溶液の流量を自在に調節するために、各供給ラインにポンプを設置することが好ましい。原水槽12内には、撹拌装置38が設けられており、撹拌装置38等で濃度の均一化を行うことが好ましい。   FIG. 1 is a schematic diagram illustrating an example of the configuration of the anaerobic biological treatment apparatus according to the present embodiment. As shown in FIG. 1, the anaerobic biological treatment apparatus 1 includes a raw water first line 10, a raw water tank 12, a raw water second line 14, a reaction tank 16, a treatment liquid discharge line 19, a treated water discharge line 20, and a gas discharge line. 22, a concentrated water return line 24, a membrane separation device 26, a nutrient supply device, and a pH adjuster supply device. The nutrient supply device of the present embodiment includes a nutrient storage tank 30 and a nutrient supply line 32. The pH adjuster supply device of this embodiment includes a pH adjuster storage tank 34 and a pH adjuster supply line 36. However, the configuration of each supply device is not limited to the above configuration as long as the solution can be supplied to the waste water. For example, in order to freely adjust the flow rate of the solution, a pump is connected to each supply line. It is preferable to install. A stirring device 38 is provided in the raw water tank 12, and it is preferable to make the concentration uniform by the stirring device 38 or the like.

原水槽12の原水導入口(不図示)には、原水第1ライン10が接続されている。栄養剤貯槽30の栄養剤排出口(不図示)と原水槽12の栄養剤供給口(不図示)間は、栄養剤供給ライン32により接続され、pH原水槽12のpH調整剤排出口(不図示)と原水槽12のpH調整剤供給口(不図示)間は、pH調整剤供給ライン36により接続されている。また、原水槽12の原水排出口(不図示)と反応槽16間は、原水第2ライン14により接続されている。なお、反応槽16側の原水第2ライン14の接続位置は反応槽16の下部であることが好ましい。   A raw water first line 10 is connected to a raw water inlet (not shown) of the raw water tank 12. A nutrient solution discharge port (not shown) of the nutrient solution storage tank 30 and a nutrient solution supply port (not shown) of the raw water tank 12 are connected by a nutrient solution supply line 32, and a pH adjuster discharge port (not shown) of the pH raw water tank 12. The pH adjuster supply port (not shown) of the raw water tank 12 is connected by a pH adjuster supply line 36. The raw water discharge port (not shown) of the raw water tank 12 and the reaction tank 16 are connected by a raw water second line 14. In addition, it is preferable that the connection position of the raw | natural water 2nd line 14 by the side of the reaction tank 16 is the lower part of the reaction tank 16. FIG.

反応槽16内には、気固液分離装置(以下、GSSと呼ぶ場合がある)が設けられている。気固液分離装置は、互いに逆方向に傾斜する仕切り板40a,40bを備え、その上部内側に固液分離部42が形成される。仕切り板40a,40bの下端部は隔離しており、連通路44が形成され、また、仕切り板40a,40bの一方の下端部は他方の下端部の下側を覆い、浮上するガスが連通路44から固液分離部42に入るのを阻止する構造となっている。固液分離部42には越流式の処理液取出部46が設けられており、処理水取出部46の処理水排出口(不図示)には、処理水排出ライン20が接続されている。また、反応槽16の頂部には、ガス排出ライン22が接続されている。   A gas-solid-liquid separator (hereinafter sometimes referred to as GSS) is provided in the reaction tank 16. The gas-solid-liquid separator includes partition plates 40a and 40b that are inclined in opposite directions, and a solid-liquid separator 42 is formed inside the upper part thereof. The lower ends of the partition plates 40a and 40b are isolated, and a communication passage 44 is formed. One lower end portion of the partition plates 40a and 40b covers the lower side of the other lower end portion, and the rising gas is connected to the communication passage. In this structure, the solid-liquid separation unit 42 is prevented from entering from 44. The solid-liquid separation unit 42 is provided with an overflow type treatment liquid extraction unit 46, and the treatment water discharge line 20 is connected to a treatment water discharge port (not shown) of the treatment water extraction unit 46. A gas discharge line 22 is connected to the top of the reaction tank 16.

反応槽16としては、有機物を含む排水を嫌気性下で生物処理することができるものであればよいため、図1の反応槽16のように槽内にGSSを設置した混合型の反応槽に限定されるものではなく、槽内にGSSを設置しない混合型の反応槽等であってもよい。   Since the reaction tank 16 may be anything that can biologically treat wastewater containing organic matter under anaerobic conditions, the reaction tank 16 is a mixed reaction tank in which GSS is installed in the tank like the reaction tank 16 in FIG. It is not limited, A mixed reaction tank etc. which does not install GSS in a tank may be sufficient.

反応槽16内には、嫌気性下での生物処理に先立ち、該生物処理に利用される種汚泥を投入することが望ましい。種汚泥としては、特に制限されるものではないが、例えば、食品工場、飲料工場、製紙工場、化学工場、畜産排水処理等で使用される嫌気性汚泥、グラニュール、又は下水処理場の消化汚泥等が挙げられる。   Prior to biological treatment under anaerobic conditions, seed sludge used for biological treatment is preferably introduced into the reaction tank 16. The seed sludge is not particularly limited, but for example, anaerobic sludge, granule, or digested sludge from a sewage treatment plant used in food factories, beverage factories, paper factories, chemical factories, livestock wastewater treatment, etc. Etc.

反応槽16の処理液排出口(不図示)と膜分離装置26の処理液供給口(不図示)間は処理液排出ライン19が接続されている。また、膜分離装置の処理水排出口(不図示)には、処理水排出ライン20が接続されている。また、膜分離装置26の濃縮水排出口(不図示)と原水槽12の濃縮水供給口(不図示)間は、濃縮水返送ライン24により接続されている。   A processing liquid discharge line 19 is connected between the processing liquid discharge port (not shown) of the reaction tank 16 and the processing liquid supply port (not shown) of the membrane separation device 26. A treated water discharge line 20 is connected to a treated water discharge port (not shown) of the membrane separation device. The concentrated water discharge port (not shown) of the membrane separator 26 and the concentrated water supply port (not shown) of the raw water tank 12 are connected by a concentrated water return line 24.

膜分離装置26内にはろ過膜が設けられている。このろ過膜は、主に反応槽16により処理された処理液中の汚泥等を分離することができるものであれば特に制限されるものではないが、例えば、限外ろ過膜(UF膜)や精密ろ過膜(MF膜)等が挙げられる。膜分離装置26のモジュール形成は特に制限されるものではなく、例えば、中空糸膜を束ねたモジュール形式、平膜をユニット化した形式等が採用される。また、本実施形態では、膜分離装置26は、反応槽16の槽外に設けられる槽外型であるが、これに制限されるものではなく、後述するように槽内に設けられる槽内型であってもよい。但し、反応槽16とは個別に膜分離装置26のろ過膜を洗浄又は交換することができる等の運転管理の面で、槽外型の膜分離装置が好ましい。槽外型の膜分離装置の場合、後述する生物汚泥によるろ過膜の目詰まりを防止する等の点で、例えば、クロスフロー型で膜面線流速を0.1〜3m/sの範囲とすることが好ましい。   A filtration membrane is provided in the membrane separator 26. The filtration membrane is not particularly limited as long as it can separate sludge and the like in the treatment liquid mainly treated by the reaction tank 16, but for example, an ultrafiltration membrane (UF membrane), Examples thereof include a microfiltration membrane (MF membrane). The module formation of the membrane separation device 26 is not particularly limited, and for example, a module format in which hollow fiber membranes are bundled, a format in which flat membranes are unitized, or the like is adopted. In the present embodiment, the membrane separation device 26 is an outside tank type provided outside the reaction tank 16, but is not limited to this, and an inside tank type provided in the tank as will be described later. It may be. However, an outside tank type membrane separation device is preferable in terms of operation management such that the filtration membrane of the membrane separation device 26 can be washed or replaced separately from the reaction vessel 16. In the case of an outside tank type membrane separation device, for example, a cross flow type membrane surface flow velocity is set in a range of 0.1 to 3 m / s in order to prevent clogging of a filtration membrane due to biological sludge described later. It is preferable.

本実施形態の嫌気性生物処理装置1の動作について説明する。   Operation | movement of the anaerobic biological treatment apparatus 1 of this embodiment is demonstrated.

まず、炭素数6以下の有機物を含有する排水が原水第1ライン10から原水槽12に供給される。そして、該排水が原水第2ライン14から反応槽16内へ導入される。反応槽16では、炭素数6以下の有機物が、嫌気性下で生物汚泥によりメタン発酵処理され、メタン、炭酸イオン等に分解される。前述した通り、通常、炭素数6以下の有機物を含有する排水を嫌気性下で生物処理すると、反応槽内の生物汚泥の粒子が微細化され(特にグラニュール汚泥において顕著)、反応槽16から処理水と共に生物汚泥が流出し、その後段の膜分離装置に用いられるろ過膜の目詰まりが生じやすくなる。したがって、従来では、嫌気性下での生物処理と、ろ過膜を用いた固液分離処理(膜処理)を併用した嫌気MBR(Membrane Bioreactor)により、炭素数6以下の有機物を含有する排水を継続して安定に処理すること、UASB(Upflow Anaerobic Sludge Blanket)やEGSB(Expanded Granular Sludge Blanket)等のグラニュールを用いた処理と同等の高負荷処理を実現することは困難であった。しかし、発明者らは鋭意検討の結果、炭素数6以下の有機物を含有する排水を適切な運転条件で嫌気性生物処理することにより、高濃度の汚泥を保持しつつ、微生物汚泥の過度な粘度上昇が抑制されて、後段のろ過膜の細孔に生物汚泥が詰まり難くなることを見出した。これにより、高負荷でも安定した処理を実現できる。   First, wastewater containing an organic substance having 6 or less carbon atoms is supplied from the raw water first line 10 to the raw water tank 12. Then, the waste water is introduced into the reaction tank 16 from the raw water second line 14. In the reaction tank 16, organic substances having 6 or less carbon atoms are subjected to methane fermentation treatment with biological sludge under anaerobic conditions, and decomposed into methane, carbonate ions, and the like. As described above, when wastewater containing an organic substance having 6 or less carbon atoms is biologically treated under anaerobic conditions, biological sludge particles in the reaction tank are refined (particularly noticeably in granular sludge). Biological sludge flows out together with the treated water, and clogging of the filtration membrane used in the subsequent membrane separation device is likely to occur. Therefore, conventionally, wastewater containing organic substances with 6 or less carbon atoms has been maintained by anaerobic MBR (Membrane Bioreactor) that combines biological treatment under anaerobic conditions and solid-liquid separation treatment (membrane treatment) using a filtration membrane. Thus, it has been difficult to realize stable processing and high load processing equivalent to processing using granules such as UASB (Upflow Analytic Slack Blanket) and EGSB (Expanded Granular Sludge Blanket). However, as a result of intensive studies, the inventors of the present invention treated the wastewater containing organic matter having 6 or less carbon atoms with anaerobic biological treatment under appropriate operating conditions, thereby maintaining an excessive viscosity of microbial sludge while maintaining a high concentration of sludge. It has been found that the rise is suppressed and the biological sludge is less likely to clog the pores of the subsequent filtration membrane. As a result, stable processing can be realized even with a high load.

本実施形態では、炭素数6以下の単一の有機物が、全体の有機物の90重量%以上含まれている排水を嫌気性下で生物処理する場合に特に有効である。   In the present embodiment, a single organic substance having 6 or less carbon atoms is particularly effective when biologically treating wastewater containing 90% by weight or more of the entire organic substance under anaerobic conditions.

したがって、電子産業工場やパルプ製造工場、化学工場等から排出される排水中に、例えば、TMAH、メタノール、及びその他の炭素数7以上の有機物が含まれている場合には、排水を反応槽16に投入する前(実質的には原水第1ライン10に投入する前)に、TMAHが全体の有機物の90重量%以上含まれる排水、メタノールが全体の有機物の90重量%以上含まれる排水に分別処理しておく。そして、例えば、TMAHが全体の有機物の90重量%以上含まれる排水を反応槽16に投入し、生物処理を行う。上記分別処理は炭素数6以下の単一の有機物の含有率が上記範囲を満たすような処理であれば、特に制限されるものではない。   Therefore, for example, when TMAH, methanol, and other organic substances having 7 or more carbon atoms are contained in the waste water discharged from the electronic industry factory, pulp manufacturing factory, chemical factory, etc., the waste water is used as the reaction tank 16. Before being put into the wastewater (substantially before being put into the raw water first line 10), TMAH is separated into wastewater containing 90% by weight or more of the whole organic matter, and wastewater containing 90% by weight or more of the whole organic matter. Process it. Then, for example, wastewater containing 90% by weight or more of TMAH in the whole organic matter is put into the reaction tank 16 to perform biological treatment. The fractionation treatment is not particularly limited as long as the content of a single organic substance having 6 or less carbon atoms satisfies the above range.

本実施形態の排水中に含まれる炭素数6以下の有機物は、例えば、テトラメチルアンモニウムヒドロキシド(TMAH)、テトラエチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、ジメチルジエチルアンモニウムヒドロキシド、イソプロピルアルコール(IPA)、メタノール、モノエタノールアミン、酢酸、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン、ジメチルスルホキシド(DMSO)、プロピレングリコールメチルエーテルアセテート(PGMEA)等が挙げられる。本実施形態では、特に、半導体製造工場等から排出されるテトラメチルアンモニウムヒドロキシド(TMAH)、メタノールの処理に好適である。   Examples of the organic matter having 6 or less carbon atoms contained in the waste water of this embodiment include tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, trimethylethylammonium hydroxide, dimethyldiethylammonium hydroxide, and isopropyl alcohol (IPA). , Methanol, monoethanolamine, acetic acid, propylene glycol monomethyl ether (PGME), cyclohexanone, dimethyl sulfoxide (DMSO), propylene glycol methyl ether acetate (PGMEA) and the like. The present embodiment is particularly suitable for the treatment of tetramethylammonium hydroxide (TMAH) and methanol discharged from a semiconductor manufacturing factory or the like.

また、反応槽16に供給される排水中に、炭素数6以下の単一の有機物、例えばTMAHが、全体の有機物の90重量%以上含まれていれば、その他の炭素数6以下の有機物や、炭素数7以上の有機物を含んでいてもよい。炭素数7以上の有機物は、例えば、例えば、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、メチルトリエチルアンモニウムヒドロキシド、トリメチル(2−ヒドロキシエチル)アンモニウムヒドロキシド(即ち、コリン)等が挙げられる。   In addition, if the wastewater supplied to the reaction tank 16 contains a single organic substance having 6 or less carbon atoms, such as TMAH, in an amount of 90% by weight or more of the whole organic substance, other organic substances having 6 or less carbon atoms or Further, it may contain an organic substance having 7 or more carbon atoms. Examples of the organic substance having 7 or more carbon atoms include, for example, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, trimethyl (2-hydroxyethyl) ammonium hydroxide (that is, choline) and the like.

上記でも説明したように、反応槽16では、排水中の有機物が嫌気性下で生物処理されることによって、メタン、炭酸イオン等に分解される。そして、生物処理された液(生物汚泥等も含む)が連通路44から固液分離部42に入り、固液分離された処理液は越流して処理液取出部46へ流れ、処理液排出ライン19から取り出される。反応槽16で発生するメタン等のガスは、仕切り板40a,40bに遮られて固液分離部42には流入せず、反応槽16を上昇し、ガス排出ライン22から取り出される。   As described above, in the reaction tank 16, organic matter in the wastewater is decomposed into methane, carbonate ions, and the like by biological treatment under anaerobic conditions. Then, the biologically processed liquid (including biological sludge and the like) enters the solid-liquid separation unit 42 from the communication path 44, and the solid-liquid separated processing liquid overflows and flows to the processing liquid extraction unit 46, and the processing liquid discharge line 19 is taken out. A gas such as methane generated in the reaction tank 16 is blocked by the partition plates 40 a and 40 b and does not flow into the solid-liquid separation unit 42, but rises in the reaction tank 16 and is taken out from the gas discharge line 22.

処理液排出ライン19を流れる処理液は、膜分離装置26に流入し、汚泥と処理水とに分離される。そして、処理水は膜分離装置26から排出され、処理水排出ライン20を通り、系外へ排出される。また、膜分離装置26内の濃縮水(汚泥も含む)は、濃縮水返送ライン24から原水槽12に供給される。これにより、原水槽12から反応槽16へ濃縮水が供給されるため、反応槽16内の汚泥濃度の減少を容易に防止することが可能となる。   The treatment liquid flowing through the treatment liquid discharge line 19 flows into the membrane separation device 26 and is separated into sludge and treated water. And treated water is discharged | emitted from the membrane separator 26, passes through the treated water discharge line 20, and is discharged | emitted out of the system. Concentrated water (including sludge) in the membrane separator 26 is supplied to the raw water tank 12 from the concentrated water return line 24. Thereby, since concentrated water is supplied from the raw water tank 12 to the reaction tank 16, it is possible to easily prevent a decrease in the sludge concentration in the reaction tank 16.

本実施形態では、反応槽16内に消化汚泥やグラニュール等を投入すること、膜分離装置26内の濃縮水(生物汚泥も含む)を反応槽16に供給する等して、反応槽16内の汚泥濃度を15000〜35000mg/Lの範囲に調整する。また、生物処理により汚泥は増加するため、汚泥濃度が35000mg/Lを超過した場合は、反応槽16及び膜分離装置の濃縮水を反応槽16に供給するラインの少なくとも一方から、汚泥の一部を引き抜いて、反応槽16内の汚泥濃度を15000〜35000mg/Lの範囲に調整する。反応槽16内の汚泥濃度が15000mg/L未満であると、高負荷で生物処理を行うことができない場合がある。ここで、「高負荷処理」とは、例えば、10kg/m/d以上のCODcr負荷又は5kg/m/d以上のTMAH負荷で嫌気性生物処理を行うことをいう。また、反応槽16内の汚泥濃度が35000mg/Lを超えると、生物汚泥の粘度が上昇し、後段のろ過膜の目詰まりを引き起こして、結果的に高負荷での処理ができない場合がある。 In the present embodiment, digested sludge, granules and the like are introduced into the reaction tank 16, and concentrated water (including biological sludge) in the membrane separation device 26 is supplied to the reaction tank 16. The sludge concentration is adjusted to the range of 15000 to 35000 mg / L. In addition, since sludge increases due to biological treatment, when the sludge concentration exceeds 35000 mg / L, a part of the sludge is obtained from at least one of the reaction tank 16 and the line for supplying the concentrated water of the membrane separator to the reaction tank 16. And the sludge concentration in the reaction tank 16 is adjusted to a range of 15000 to 35000 mg / L. When the sludge concentration in the reaction tank 16 is less than 15000 mg / L, biological treatment may not be performed with a high load. Here, “high load treatment” refers to performing an anaerobic biological treatment with a CODcr load of 10 kg / m 3 / d or more or a TMAH load of 5 kg / m 3 / d or more, for example. Moreover, when the sludge density | concentration in the reaction tank 16 exceeds 35000 mg / L, the viscosity of biological sludge will raise and the clogging of the filtration membrane of a back | latter stage will be caused, and as a result, the process with a high load may be impossible.

以下に、本実施形態の嫌気性生物処理のその他の条件の一例について説明する。   Below, an example of the other conditions of the anaerobic biological treatment of this embodiment is demonstrated.

本実施形態では、反応槽16に流入する際(生物処理する際)の排水中の炭素数6以下の単一の有機物濃度を10000mg/L以下とすることが好ましく、2000mg/L以上から5000mg/L以下の範囲とすることが好ましい。反応槽16に流入する際の排水中の炭素数6以下の単一の有機物濃度が、10000mg/Lを超えると、生物処理の際、有機物の分解反応速度が遅くなる場合がある。本実施形態において、原水槽12に供給された排水中の炭素数6以下の単一の有機物濃度が、10000mg/Lを超える場合等には、生物処理後の処理水の一部を濃縮水返送ライン24から原水槽12に供給して、10000mg/L以下の濃度に希釈することが望ましい。   In the present embodiment, the concentration of a single organic substance having 6 or less carbon atoms in the wastewater when flowing into the reaction tank 16 (when biologically treating) is preferably 10000 mg / L or less, and is 2000 mg / L or more to 5000 mg / L. It is preferable to set it as the range below L. If the concentration of a single organic substance having 6 or less carbon atoms in the waste water when flowing into the reaction tank 16 exceeds 10,000 mg / L, the decomposition reaction rate of the organic substance may be slow during biological treatment. In this embodiment, when the concentration of a single organic substance having 6 or less carbon atoms in the wastewater supplied to the raw water tank 12 exceeds 10,000 mg / L, a part of the treated water after biological treatment is returned to the concentrated water. It is desirable to supply the raw water tank 12 from the line 24 and dilute to a concentration of 10000 mg / L or less.

本実施形態では、例えば、処理水排出ライン20等に生物処理後の処理水中の有機物濃度を検出するセンサを設置してもよい。そして、検出した有機物濃度に基づいて、反応槽16に流入する際の炭素数6以下の単一の有機物濃度を推定し、その推定値に基づいて、炭素数6以下の単一の有機物濃度が上記範囲となるように、処理水の供給量を決定することが好ましい。また、例えば、原水槽12又は原水第1ライン10等に有機物濃度を検出するセンサを設置してもよい。また、上記生物処理した処理水に代えて、例えば、工業用水、放流水、又は工場内で設備がある場合にはアンモニア廃液、IPA廃液の蒸留等から得られる蒸留処理水(凝縮水)等の希釈水を用いて、排水の希釈を行ってもよい。蒸留処理水は、水温が40℃と高いことから、反応槽16を加温し、有機物の分解反応を促進させることができる点で好ましい。   In the present embodiment, for example, a sensor that detects the concentration of organic substances in the treated water after biological treatment may be installed in the treated water discharge line 20 or the like. And based on the detected organic substance density | concentration, the single organic substance density | concentration of C6 or less at the time of flowing in into the reaction tank 16 is estimated, and based on the estimated value, a single organic substance density | concentration of C6 or less is obtained. It is preferable to determine the supply amount of the treated water so as to be in the above range. Further, for example, a sensor for detecting the organic substance concentration may be installed in the raw water tank 12 or the raw water first line 10 or the like. Moreover, instead of the biologically treated treated water, for example, industrial water, effluent water, or distilled water (condensed water) obtained from distillation of ammonia waste liquid, IPA waste liquid or the like when there is equipment in the factory. Dilution water may be diluted using dilution water. Distilled water is preferable in that the water temperature is as high as 40 ° C., so that the reaction tank 16 can be heated and the decomposition reaction of organic matter can be promoted.

本実施形態では、有機物含有排水を生物処理するに当たり、排水のpHは6.5〜9.0の範囲が好ましく、7.0〜8.0の範囲がより好ましい。排水のpH調整は、例えば、pH調整剤供給ライン36から原水槽12にpH調整剤を供給することにより行われる。有機物含有排水のpHが上記範囲外であると、生物処理による有機物の分解反応速度が低下する場合がある。また、従来、TMAH等のアルキルアンモニウム塩を嫌気性生物処理する場合においては、アンモニア阻害を抑制するために、pH6.5〜7の弱酸性が好ましいとされていたが、TMAH等のアルキルアンモニウム塩の処理に関しては、pH7〜8の弱アルカリ側で、最も処理性能が良くなる。   In this embodiment, when biologically treating organic matter-containing wastewater, the pH of the wastewater is preferably in the range of 6.5 to 9.0, and more preferably in the range of 7.0 to 8.0. The pH adjustment of the waste water is performed by supplying the pH adjuster to the raw water tank 12 from the pH adjuster supply line 36, for example. If the pH of the organic matter-containing wastewater is outside the above range, the decomposition reaction rate of organic matter due to biological treatment may decrease. Conventionally, in the case of anaerobic biological treatment of alkylammonium salts such as TMAH, a weak acidity of pH 6.5 to 7 has been preferred to suppress ammonia inhibition, but alkylammonium salts such as TMAH are preferred. As for the treatment, the treatment performance is best on the weak alkali side having a pH of 7-8.

本実施形態で用いられるpH調整剤としては、塩酸等の酸剤、水酸化ナトリウム等のアルカリ剤等特に制限されるものではない。また、pH調整剤は、例えば、緩衝作用を持つ重炭酸ナトリウム、燐酸緩衝液等であってもよい。   The pH adjuster used in the present embodiment is not particularly limited, such as an acid agent such as hydrochloric acid or an alkali agent such as sodium hydroxide. Further, the pH adjusting agent may be, for example, sodium bicarbonate having a buffering action, a phosphate buffer or the like.

本実施形態では、嫌気性生物汚泥の分解活性を良好に維持するために、例えば、栄養剤供給ライン32から原水槽12に栄養剤を供給することが好ましい。栄養剤としては、特に制限されるものではないが、例えば、炭素源、窒素源、その他無機塩類等が挙げられる。   In this embodiment, in order to maintain the decomposition | disassembly activity of anaerobic biological sludge favorably, it is preferable to supply a nutrient to the raw | natural water tank 12 from the nutrient supply line 32, for example. Although it does not restrict | limit especially as a nutrient, For example, a carbon source, a nitrogen source, other inorganic salts etc. are mentioned.

本実施形態では、有機物含有排水を生物処理するに当たり、反応槽16内の水温を20℃以上となるように温度調整することが好ましく、28〜35℃の範囲となるように温度調整することがより好ましい。嫌気性生物処理による有機物の分解は、20℃未満でも可能であるが、20℃未満であると、分解反応速度が低下してしまうため、水温を上記範囲に調整することが好ましい。上記温度調整方法は、特に制限されるものではないが、例えば、蒸気を原水槽12に供給することで、反応槽16内の水温を調整してもよいし、反応槽16にヒータを設置して、ヒータの熱により反応槽16内の水温を調整しても良い。また、例えば、加温した希釈水を供給することで、反応槽16内の水温を調整してもよい。また、例えば、炭素数6以下の有機物の分解によりメタンガスが発生するが、通常の嫌気処理同様に脱硫処理を実施後、メタンガスボイラーで熱エネルギとして回収し、該熱エネルギを反応槽16に供給し、水温を調整してもよい。   In the present embodiment, when biologically treating organic matter-containing wastewater, it is preferable to adjust the temperature of the water in the reaction tank 16 to be 20 ° C. or higher, and to adjust the temperature to be in the range of 28 to 35 ° C. More preferred. The decomposition of the organic substance by the anaerobic biological treatment is possible even at a temperature lower than 20 ° C. However, if the temperature is lower than 20 ° C., the decomposition reaction rate is lowered. The temperature adjusting method is not particularly limited. For example, the water temperature in the reaction tank 16 may be adjusted by supplying steam to the raw water tank 12, or a heater is installed in the reaction tank 16. The water temperature in the reaction tank 16 may be adjusted by the heat of the heater. Further, for example, the water temperature in the reaction tank 16 may be adjusted by supplying warmed dilution water. In addition, for example, methane gas is generated by decomposition of an organic substance having 6 or less carbon atoms, but after performing a desulfurization process in the same manner as a normal anaerobic process, it is recovered as thermal energy with a methane gas boiler, and the thermal energy is supplied to the reaction tank 16. The water temperature may be adjusted.

図2は、本実施形態に係る嫌気性生物処理装置の構成の他の一例を示す模式図である。図2に示す嫌気性生物処理装置2において、図1に示す嫌気性生物処理装置1と同様の構成については同一の符号を付し、その説明を省略する。図2に示す嫌気性生物処理装置2では、反応槽16内に膜分離装置27が設けられており、膜分離装置27の処理水排出口(不図示)に処理水排出ライン20が接続されている。なお、本実施形態では、反応槽16内に固液分離装置は設置されていない。   FIG. 2 is a schematic diagram illustrating another example of the configuration of the anaerobic biological treatment apparatus according to the present embodiment. In the anaerobic biological treatment apparatus 2 shown in FIG. 2, the same components as those in the anaerobic biological treatment apparatus 1 shown in FIG. In the anaerobic biological treatment apparatus 2 shown in FIG. 2, a membrane separation device 27 is provided in the reaction tank 16, and a treated water discharge line 20 is connected to a treated water discharge port (not shown) of the membrane separation device 27. Yes. In the present embodiment, no solid-liquid separation device is installed in the reaction tank 16.

本実施形態でも、前述したように、炭素数6以下の有機物が含まれている排水が反応槽16内に供給され、汚泥濃度を15000〜30000mg/Lに調整された嫌気性下で生物処理される。その結果、反応槽16内の生物汚泥の微細化は緩和され、また生物汚泥の粘度の増加も抑制される。その結果、反応槽16内に膜分離装置27を設置した場合でも、膜分離装置27のろ過膜の目詰まりを抑制することができるため、高負荷での処理が可能となる。   Also in this embodiment, as described above, wastewater containing organic matter having 6 or less carbon atoms is supplied into the reaction tank 16 and biologically treated under anaerobic conditions in which the sludge concentration is adjusted to 15000 to 30000 mg / L. The As a result, the refinement of the biological sludge in the reaction tank 16 is alleviated and the increase in the viscosity of the biological sludge is also suppressed. As a result, even when the membrane separation device 27 is installed in the reaction tank 16, clogging of the filtration membrane of the membrane separation device 27 can be suppressed, so that processing with a high load is possible.

反応槽16内に設置する分離膜装置27としては、例えば、多数の中空糸膜が束ねられ、筒状ケース内に平行に延びるように収容された中空糸膜モジュールとすることが好ましい。なお、束ねられた中空糸膜は、その両端部が筒状ケース内で接着用樹脂を用いて互いに接着固定される。   The separation membrane device 27 installed in the reaction tank 16 is preferably a hollow fiber membrane module in which a large number of hollow fiber membranes are bundled and accommodated so as to extend in parallel in a cylindrical case. Note that both ends of the bundled hollow fiber membranes are bonded and fixed to each other using an adhesive resin in a cylindrical case.

図3は、本実施形態に係る嫌気性生物処理装置の構成の他の一例を示す模式図である。図3に示す嫌気性生物処理装置3において、図1に示す嫌気性生物処理装置1と同様の構成については同一の符号を付し、その説明を省略する。本実施形態の嫌気性生物処理装置3には、複数の反応槽が設けられている。具体的には、第1反応槽16と、第2反応槽17が設けられている。そして、第2反応槽17内に、膜分離装置27が設置されている。また、図3に示すように、第1反応槽16の処理水排出口(不図示)と第2反応槽17の処理水供給口(不図示)との間には、処理液排出ライン19が接続されている。また、膜分離装置27の濃縮水排出口(不図示)と第1反応槽16の濃縮水供給口(不図示)との間には濃縮水返送ライン24が接続されている。さらに、膜分離装置27の処理水排出口(不図示)には処理水排出ライン20が接続されている。   FIG. 3 is a schematic diagram showing another example of the configuration of the anaerobic biological treatment apparatus according to the present embodiment. In the anaerobic biological treatment apparatus 3 shown in FIG. 3, the same code | symbol is attached | subjected about the structure similar to the anaerobic biological treatment apparatus 1 shown in FIG. The anaerobic biological treatment apparatus 3 of the present embodiment is provided with a plurality of reaction vessels. Specifically, a first reaction tank 16 and a second reaction tank 17 are provided. A membrane separation device 27 is installed in the second reaction tank 17. In addition, as shown in FIG. 3, a treatment liquid discharge line 19 is provided between a treated water discharge port (not shown) of the first reaction tank 16 and a treated water supply port (not shown) of the second reaction tank 17. It is connected. A concentrated water return line 24 is connected between the concentrated water discharge port (not shown) of the membrane separator 27 and the concentrated water supply port (not shown) of the first reaction tank 16. Further, a treated water discharge line 20 is connected to a treated water discharge port (not shown) of the membrane separation device 27.

図3に示す嫌気性生物処理装置では、炭素数6以下の単一の有機物が含まれている排水が第1の反応槽16内に供給され、汚泥濃度を15000〜3000mg/Lに調整された嫌気性下で生物処理される。また、第1反応槽16内の排水、第1反応槽16内で生物処理された処理液は処理液排出ライン19から第2反応槽17内へ供給される。そして、第2反応槽17内でも有機物を含む排水が嫌気性下で生物処理されると共に、第2反応槽17内の膜分離装置27により、処理液中の生物汚泥が除去される。膜分離処理された濃縮水の一部は濃縮水返送ライン24から第1反応槽16内に返送されることにより、例えば、第1反応槽16内の汚泥濃度が調整される。膜分離装置27により固液分離された処理水は処理水排出ライン20から系外へ排出される。   In the anaerobic biological treatment apparatus shown in FIG. 3, wastewater containing a single organic substance having 6 or less carbon atoms is supplied into the first reaction tank 16 and the sludge concentration is adjusted to 15000 to 3000 mg / L. Biologically treated under anaerobic conditions. Further, the waste water in the first reaction tank 16 and the treatment liquid biologically treated in the first reaction tank 16 are supplied from the treatment liquid discharge line 19 into the second reaction tank 17. In the second reaction tank 17, wastewater containing organic matter is biologically treated under anaerobic conditions, and biological sludge in the treatment liquid is removed by the membrane separation device 27 in the second reaction tank 17. A part of the concentrated water that has been subjected to the membrane separation treatment is returned from the concentrated water return line 24 into the first reaction tank 16 so that, for example, the sludge concentration in the first reaction tank 16 is adjusted. The treated water that has been solid-liquid separated by the membrane separator 27 is discharged from the treated water discharge line 20 to the outside of the system.

本実施形態でも、前述したように、炭素数6以下の単一の有機物が含まれている排水が第1反応槽16及び第2反応槽17内に供給され、嫌気性下で生物処理される。その結果、第1反応槽16及び第2反応槽17内の生物汚泥の微細化は緩和され、また生物汚泥の粘度の増加も抑制される。その結果、第2反応槽17内に膜分離装置27を設置した場合でも、膜分離装置27のろ過膜の目詰まりを抑制することができるため、高負荷での処理が可能となる。   Also in this embodiment, as described above, wastewater containing a single organic substance having 6 or less carbon atoms is supplied into the first reaction tank 16 and the second reaction tank 17 and is biologically treated under anaerobic conditions. . As a result, the refinement of the biological sludge in the first reaction tank 16 and the second reaction tank 17 is alleviated, and the increase in the viscosity of the biological sludge is suppressed. As a result, even when the membrane separation device 27 is installed in the second reaction tank 17, clogging of the filtration membrane of the membrane separation device 27 can be suppressed, so that processing with a high load is possible.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1)
実施例1の試験は図3に示す嫌気性生物処理装置を用いて行った。実施例1において生物処理される排水は、半導体工場から排出されたTMAH含有の実排水であり、全体の有機物の90重量%以上がTMAHとなるように分別処理したものである。そして、この実排水中のTMAH濃度を8000mgTMAH/Lになるように調整した。次に、内容積1.5Lの第1反応槽に種汚泥として嫌気性汚泥(汚泥濃度23000mg/L)を添加した後、上記実排水を10kgTMAH/m/d(TOC負荷では5.4kgTOC/m/d)のTMAH負荷で通水した。また、0.4μmのPVDF製の中空糸膜を用いた固液分離装置を槽内に設置した第2反応槽(内容積1.2L)に、第1反応槽内の排水を供給し、0.3m/dで吸引ろ過した。固液分離処理は、7分吸引ろ過、1分停止のサイクルで行った。
Example 1
The test of Example 1 was performed using the anaerobic biological treatment apparatus shown in FIG. The wastewater to be biologically treated in Example 1 is TMAH-containing actual wastewater discharged from a semiconductor factory, and is subjected to separation treatment so that 90% by weight or more of the entire organic matter becomes TMAH. And the TMAH density | concentration in this real waste_water | drain was adjusted so that it might become 8000 mgTMAH / L. Next, after adding anaerobic sludge (sludge concentration: 23000 mg / L) as seed sludge to the first reaction tank having an internal volume of 1.5 L, the actual waste water is 10 kg TMAH / m 3 / d (5.4 kg TOC / in TOC load). Water was passed through with a TMAH load of m 3 / d). Further, the waste water in the first reaction tank is supplied to a second reaction tank (internal volume 1.2 L) in which a solid-liquid separation device using a 0.4 μm PVDF hollow fiber membrane is installed in the tank, and 0 Suction filtered at 3 m / d. The solid-liquid separation treatment was performed in a cycle of 7 minutes suction filtration and 1 minute stop.

第1反応槽に排水を通水する際の温度は30℃、pHは7〜8となるように調整した。また、栄養剤(85%リン酸)を0.16mL、微量元素(オルガノ(株)製のオルガミン10)を5mL/L、Ni、Coを各0.4mg/L添加した。   The temperature when draining water into the first reaction tank was adjusted to 30 ° C. and the pH to 7-8. Further, 0.16 mL of nutrient (85% phosphoric acid), 5 mL / L of trace elements (Orgamine 10 manufactured by Organo Corporation), and 0.4 mg / L of Ni and Co were added.

(比較例1)
比較例1は、嫌気性グラニュールを用いたUASB処理装置に、実施例1と同じ排水を通水して、排水処理を行った。なお、UASBから排出される処理水をUASB処理装置に流入する際の排水に供給して、排水中のTMAH濃度を8000mgTMAH/Lになるように調整した。処理装置立ち上げ時は、UASB処理装置に流入する際の排水に工水を供給してTMAH濃度を調整した。処理装置立ち上げ時のTMAH負荷を1kgTMAH/m/dとし、処理状況を確認しながら増加させた。その他の処理条件は、実施例1と同様に行った。
(Comparative Example 1)
In Comparative Example 1, waste water treatment was performed by passing the same waste water as in Example 1 through a UASB treatment device using anaerobic granules. In addition, the treated water discharged | emitted from UASB was supplied to the waste_water | drain at the time of flowing in into a UASB processing apparatus, and the TMAH density | concentration in waste_water | drain was adjusted so that it might become 8000 mgTMAH / L. When the treatment apparatus was started up, the TMAH concentration was adjusted by supplying industrial water to the waste water flowing into the UASB treatment apparatus. The TMAH load at the start-up of the processing apparatus was set to 1 kg TMAH / m 3 / d and increased while checking the processing status. Other processing conditions were the same as in Example 1.

図4は、実施例1により得られる処理水中のTMAH濃度及びTMAH負荷である。図5は、実施例1で用いたろ過膜の吸引圧力の経日変化である。また、図6は、比較例1により得られる処理水中のTMAH濃度及びTMAH負荷である。図4に示すように、実施例1では、TMAH負荷が10kgTMAH/m/d(TOC負荷では5.4kgTOC/m/d)と高負荷で処理を行っても、実施例1により得られる処理水、すなわち、膜分離装置から排出された処理水中のTMAH濃度は30日経過しても上昇することなく、高負荷でも安定してTMAHを除去することが可能であるとわかった。また、図5に示すように、ろ過膜の吸引圧力も変化することがなかった。すなわち、ろ過膜の膜目詰まりもほとんどなく、安定したフラックスでの膜処理が可能であることを確認した。一方、比較例1では、通水開始から10日程度までは、3kgTMAH/m/dのTMAH負荷で、比較例1により得られる処理水中のTMAH濃度もほとんど上昇することはなかった。しかし、通水開始から14日以降では、UASB処理装置内の嫌気性グラニュールが微細化して、UASB処理装置から流出し、UASB処理装置から排出された処理水中のTMAH濃度は上昇した。通水開始から20日目では、TMAH除去率は50%程度に低下し、安定した処理を行うことができなくなった。 FIG. 4 shows the TMAH concentration and TMAH load in the treated water obtained in Example 1. FIG. 5 shows changes over time in the suction pressure of the filtration membrane used in Example 1. FIG. 6 shows the TMAH concentration and TMAH load in the treated water obtained in Comparative Example 1. As shown in FIG. 4, in the first embodiment, be subjected to a treatment with (5.4kgTOC / m 3 / d in the TOC load) and high load TMAH load 10kgTMAH / m 3 / d, obtained by Example 1 It has been found that the TMAH concentration in the treated water, that is, the treated water discharged from the membrane separation device does not increase even after 30 days, and that TMAH can be stably removed even at a high load. Moreover, as shown in FIG. 5, the suction pressure of the filtration membrane did not change. That is, it was confirmed that there was almost no clogging of the filtration membrane, and membrane treatment with a stable flux was possible. On the other hand, in Comparative Example 1, the TMAH concentration in the treated water obtained in Comparative Example 1 hardly increased with a TMAH load of 3 kg TMAH / m 3 / d from about 10 days after the start of water flow. However, after 14 days from the start of water flow, the anaerobic granules in the UASB treatment device were refined and flowed out of the UASB treatment device, and the TMAH concentration in the treated water discharged from the UASB treatment device increased. On the 20th day from the start of water flow, the TMAH removal rate decreased to about 50%, and stable treatment could not be performed.

(実施例2)
実施例2において生物処理される排水は、半導体工場から排出されたメタノール含有の実排水であり、全体の有機物の90重量%以上がメタノールとなるように分別処理したものである。そして、この実排水中のTMAH濃度を10000mg/Lになるように調整した。次に、内容積1.5Lの第1反応槽に種汚泥として嫌気性汚泥(汚泥濃度23000mg/L)を添加した後、上記実排水を12kgCODcr/m/d(TOC負荷では3.2kgTOC/m/d)のCODcr負荷で通水した。また、0.4μmのPVDF製の中空糸膜を用いたろ過装置を槽内に設置した第2反応槽(内容積1.2L)に、第1反応槽内の排水を供給し、0.3m/dで吸引ろ過した。
(Example 2)
The wastewater to be biologically treated in Example 2 is an actual wastewater containing methanol discharged from a semiconductor factory, and is subjected to a separation treatment so that 90% by weight or more of the whole organic matter becomes methanol. And the TMAH density | concentration in this real waste_water | drain was adjusted so that it might become 10000 mg / L. Next, after adding anaerobic sludge (sludge concentration: 23000 mg / L) as seed sludge to the first reaction tank having an internal volume of 1.5 L, the actual waste water is added to 12 kg CODcr / m 3 / d (3.2 kg TOC / at TOC load). Water was passed with a CODcr load of m 3 / d). Further, the waste water in the first reaction tank was supplied to a second reaction tank (internal volume 1.2 L) in which a filtration device using a 0.4 μm PVDF hollow fiber membrane was installed in the tank, and 0.3 m / D was filtered by suction.

第1反応槽に排水を通水する際の温度は30℃、pHは7〜8となるように調整した。また、栄養剤(オルガノ(株)製、オルガミンNP−51)を0.3g/L、微量元素(オルガノ(株)製のオルガミン10)を3mL/L、Ni、Coを各0.3mg/L添加した。   The temperature when draining water into the first reaction tank was adjusted to 30 ° C. and the pH to 7-8. In addition, 0.3 g / L of nutrient (Orgamine NP-51, manufactured by Organo Corp.), 3 mL / L of trace element (Orgamine 10 manufactured by Organo Corp.), 0.3 mg / L each of Ni and Co Added.

図7は、実施例2により得られる処理水中のメタノール濃度及びCODcr負荷である。図8は、実施例2で用いたろ過膜の吸引圧力の経日変化である。図7に示すように、実施例2では、CODcr負荷が10kgCODcr/m/d(TOC負荷では3.2kgTOC/m/d)と高負荷で処理を行っても、実施例2により得られる処理水、すなわち、膜分離装置から排出された処理水中のメタノール濃度は25日経過しても上昇することなく、安定してメタノールを除去することが可能であるとわかった。また、図8に示すように、ろ過膜の吸引圧力もほとんど変化することがなかった。すなわち、ろ過膜の膜目詰まりもほとんどなく、高負荷でも安定したフラックスでの膜処理が可能であることを確認した。 FIG. 7 shows the methanol concentration and CODcr load in the treated water obtained in Example 2. FIG. 8 shows changes over time in the suction pressure of the filtration membrane used in Example 2. As shown in FIG. 7, in Example 2, be subjected to a treatment at a high load (3.2kgTOC / m 3 / d in the TOC load) and CODcr load 10kgCODcr / m 3 / d, obtained by Example 2 It has been found that the methanol concentration in the treated water, that is, the treated water discharged from the membrane separation apparatus, can be stably removed without increasing even after 25 days. Moreover, as shown in FIG. 8, the suction pressure of the filtration membrane hardly changed. That is, it was confirmed that there was almost no clogging of the filtration membrane, and membrane treatment with a stable flux was possible even under high load.

(実施例3)
実施例3では、内容積1.5Lの第1反応槽に投入する嫌気性汚泥の汚泥濃度を0〜40000mg/Lまで変化させ、各汚泥濃度における粘度を測定した。嫌気性汚泥の汚泥濃度は、工水による希釈や遠心分離による濃縮で調整し、汚泥粘度は粘度計(リオン(株)製、ビスコテスタVT−03E)を用いて測定した。
(Example 3)
In Example 3, the sludge density | concentration of the anaerobic sludge thrown into the 1st reaction tank with an internal volume of 1.5L was changed to 0-40000 mg / L, and the viscosity in each sludge density | concentration was measured. The sludge concentration of the anaerobic sludge was adjusted by dilution with industrial water or concentration by centrifugation, and the sludge viscosity was measured using a viscometer (manufactured by Lion Co., Ltd., Viscotester VT-03E).

図9は、実施例3の嫌気性汚泥の汚泥濃度と粘度との関係をまとめた図である。図9に示すように、汚泥濃度(MLSS)が35000mg/Lを超えると、汚泥粘度が急激に上昇することを確認した。これにより反応槽内の汚泥濃度が35000mg/L以下となるように運転管理することで、後段の膜分離装置の膜の目詰まりをより抑制するため、高負荷での処理が可能となると言える。   FIG. 9 is a diagram summarizing the relationship between the sludge concentration and the viscosity of the anaerobic sludge of Example 3. As shown in FIG. 9, when the sludge concentration (MLSS) exceeded 35000 mg / L, it was confirmed that the sludge viscosity rapidly increased. By controlling the operation so that the sludge concentration in the reaction tank is 35000 mg / L or less, the clogging of the membrane of the subsequent membrane separation apparatus is further suppressed, and thus it can be said that processing with a high load becomes possible.

1〜3 嫌気性生物処理装置、10 原水第1ライン、12 原水槽、14 原水第2ライン、16 第1反応槽、17 第2反応槽、19 処理液排出ライン、20 処理水排出ライン、22 ガス排出ライン、24 濃縮水返送ライン、26,27 膜分離装置、30 栄養剤貯槽、32 栄養剤供給ライン、34 pH調整剤貯槽、36 pH調整剤供給ライン、38 撹拌装置、40a,40b 仕切り板、42 固液分離部、44 連通路、46 処理液取出部。   1-3 Anaerobic biological treatment apparatus, 10 Raw water first line, 12 Raw water tank, 14 Raw water second line, 16 First reaction tank, 17 Second reaction tank, 19 Treatment liquid discharge line, 20 Treated water discharge line, 22 Gas discharge line, 24 Concentrated water return line, 26, 27 Membrane separation device, 30 Nutrient storage tank, 32 Nutrient supply line, 34 pH adjuster storage tank, 36 pH adjuster supply line, 38 Stirrer, 40a, 40b Partition plate , 42 Solid-liquid separation part, 44 Communication path, 46 Processing liquid extraction part.

Claims (9)

炭素数6以下の有機物を含有する排水を嫌気性下でメタン発酵する生物処理工程と、前記生物処理工程で得られる処理液をろ過膜により汚泥と処理水とに分離する膜分離工程と、を有し、
前記生物処理工程における生物汚泥濃度を、15000〜35000mg/Lの範囲に調整することを特徴とする嫌気性生物処理方法。
A biological treatment process for methane fermentation of wastewater containing organic matter having 6 or less carbon atoms under anaerobic conditions, and a membrane separation process for separating the treatment liquid obtained in the biological treatment process into sludge and treated water by a filtration membrane. Have
An anaerobic biological treatment method comprising adjusting a biological sludge concentration in the biological treatment step to a range of 15000 to 35000 mg / L.
前記有機物は、テトラメチルアンモニウムヒドロキシドおよびメタノールのうち少なくともいずれか一方であることを特徴とする請求項1に記載の嫌気性生物処理方法。   The anaerobic biological treatment method according to claim 1, wherein the organic substance is at least one of tetramethylammonium hydroxide and methanol. 前記排水を、前記有機物が単一で、前記排水中の全有機物の90重量%以上含有するように調整することを特徴とする請求項1または2に記載の嫌気性生物処理方法。   The anaerobic biological treatment method according to claim 1 or 2, wherein the waste water is adjusted so that the organic matter is single and contains 90% by weight or more of the total organic matter in the waste water. 前記生物処理工程では、CODcr負荷10kg/m/d以上又はTMAH負荷5kg/m/dで生物処理を行うことを特徴とする請求項1〜3のいずれか1項に記載の嫌気性生物処理方法。 The anaerobic organism according to any one of claims 1 to 3, wherein in the biological treatment step, biological treatment is performed at a CODcr load of 10 kg / m 3 / d or more or a TMAH load of 5 kg / m 3 / d. Processing method. 炭素数6以下の有機物を含有する排水を嫌気性下でメタン発酵する反応槽と、前記反応槽で得られる処理液をろ過膜により汚泥と処理水とに分離する膜分離部と、を有し、
前記反応槽における生物汚泥濃度を、15000〜35000mg/Lの範囲に調整することを特徴とする嫌気性生物処理装置。
A reaction tank for methane fermentation of wastewater containing organic matter having 6 or less carbon atoms under anaerobic conditions, and a membrane separation unit for separating the treatment liquid obtained in the reaction tank into sludge and treated water by a filtration membrane ,
An anaerobic biological treatment apparatus, wherein the biological sludge concentration in the reaction tank is adjusted to a range of 15000 to 35000 mg / L.
前記有機物は、テトラメチルアンモニウムヒドロキシドおよびメタノールのうち少なくともいずれか一方であることを特徴とする請求項5に記載の嫌気性生物処理装置。   The anaerobic biological treatment apparatus according to claim 5, wherein the organic substance is at least one of tetramethylammonium hydroxide and methanol. 前記膜分離部は、前記反応槽外に設けられていることを特徴とする請求項5または6に記載の嫌気性生物処理装置。   The anaerobic biological treatment apparatus according to claim 5, wherein the membrane separation unit is provided outside the reaction tank. 前記排水を、前記有機物が単一で、前記排水中の全有機物の90重量%以上含有するように調整する手段を有することを特徴とする請求項5〜7のいずれか1項に記載の嫌気性生物処理装置。   The anaerobic apparatus according to any one of claims 5 to 7, further comprising means for adjusting the waste water so that the organic matter is single and contains 90% by weight or more of the total organic matter in the waste water. Sex biological treatment equipment. 前記反応槽では、CODcr負荷10kg/m/d以上又はTMAH負荷5kg/m/dで生物処理が行われることを特徴とする請求項5〜8のいずれか1項に記載の嫌気性生物処理装置。 The anaerobic organism according to any one of claims 5 to 8, wherein in the reaction vessel, biological treatment is carried out at a CODcr load of 10 kg / m 3 / d or more or a TMAH load of 5 kg / m 3 / d. Processing equipment.
JP2011197441A 2011-09-09 2011-09-09 Anaerobic biological treatment method and anaerobic biological treatment apparatus Active JP5912353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011197441A JP5912353B2 (en) 2011-09-09 2011-09-09 Anaerobic biological treatment method and anaerobic biological treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011197441A JP5912353B2 (en) 2011-09-09 2011-09-09 Anaerobic biological treatment method and anaerobic biological treatment apparatus

Publications (2)

Publication Number Publication Date
JP2013056321A true JP2013056321A (en) 2013-03-28
JP5912353B2 JP5912353B2 (en) 2016-04-27

Family

ID=48132691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011197441A Active JP5912353B2 (en) 2011-09-09 2011-09-09 Anaerobic biological treatment method and anaerobic biological treatment apparatus

Country Status (1)

Country Link
JP (1) JP5912353B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226512A (en) * 2012-04-25 2013-11-07 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus, and anaerobic treatment method
JP2015051419A (en) * 2013-09-09 2015-03-19 株式会社東芝 Organic effluent treatment system
JP2019150763A (en) * 2018-03-02 2019-09-12 オルガノ株式会社 Water treatment method and water treatment device
JP7327540B1 (en) 2022-02-09 2023-08-16 栗田工業株式会社 Anaerobic treatment method and apparatus for organic wastewater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110606564A (en) * 2019-10-24 2019-12-24 江西省科学院能源研究所 Improved generation anaerobic membrane bioreactor

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209097A (en) * 1985-03-12 1986-09-17 Kurita Water Ind Ltd Apparatus for treatment of sewage
JPS62279897A (en) * 1986-05-30 1987-12-04 Ebara Corp Methane fermentation of organic aqueous solution
JPH04310294A (en) * 1991-04-09 1992-11-02 Ebara Infilco Co Ltd Treatment of methanol-containing waste water
JPH0584499A (en) * 1991-09-27 1993-04-06 Kanzaki Paper Mfg Co Ltd Method for methane-fermenting kraft pulp waste water
JPH05138192A (en) * 1991-11-21 1993-06-01 Sanki Eng Co Ltd Anaerobic treatment of high-concentration organic waste water containing organic suspended solid and equipment thereof
JPH09155384A (en) * 1995-12-05 1997-06-17 Kurita Water Ind Ltd Anaerobic treatment process for organic discharge
JPH11147098A (en) * 1997-11-18 1999-06-02 Kurita Water Ind Ltd Anaerobic treatment apparatus
JPH11216495A (en) * 1998-02-03 1999-08-10 Kurita Water Ind Ltd Biological denitrification method
JP2008279385A (en) * 2007-05-11 2008-11-20 Kurita Water Ind Ltd Anaerobic treatment method and anaerobic treatment apparatus
JP2009255067A (en) * 2008-03-26 2009-11-05 Kobelco Eco-Solutions Co Ltd Method for processing waste water
JP2010017614A (en) * 2008-07-08 2010-01-28 Kurita Water Ind Ltd Method and apparatus for treating organic wastewater
JP2010017615A (en) * 2008-07-08 2010-01-28 Kurita Water Ind Ltd Method and apparatus for treating dmso-containing wastewater
JP2010184178A (en) * 2009-02-10 2010-08-26 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2010221112A (en) * 2009-03-23 2010-10-07 Kobelco Eco-Solutions Co Ltd Wastewater treatment method
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2011011171A (en) * 2009-07-03 2011-01-20 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP2012205991A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Treatment apparatus of organic wastewater
JP2012205990A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Treatment apparatus of organic wastewater

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209097A (en) * 1985-03-12 1986-09-17 Kurita Water Ind Ltd Apparatus for treatment of sewage
JPS62279897A (en) * 1986-05-30 1987-12-04 Ebara Corp Methane fermentation of organic aqueous solution
JPH04310294A (en) * 1991-04-09 1992-11-02 Ebara Infilco Co Ltd Treatment of methanol-containing waste water
JPH0584499A (en) * 1991-09-27 1993-04-06 Kanzaki Paper Mfg Co Ltd Method for methane-fermenting kraft pulp waste water
JPH05138192A (en) * 1991-11-21 1993-06-01 Sanki Eng Co Ltd Anaerobic treatment of high-concentration organic waste water containing organic suspended solid and equipment thereof
JPH09155384A (en) * 1995-12-05 1997-06-17 Kurita Water Ind Ltd Anaerobic treatment process for organic discharge
JPH11147098A (en) * 1997-11-18 1999-06-02 Kurita Water Ind Ltd Anaerobic treatment apparatus
JPH11216495A (en) * 1998-02-03 1999-08-10 Kurita Water Ind Ltd Biological denitrification method
JP2008279385A (en) * 2007-05-11 2008-11-20 Kurita Water Ind Ltd Anaerobic treatment method and anaerobic treatment apparatus
JP2009255067A (en) * 2008-03-26 2009-11-05 Kobelco Eco-Solutions Co Ltd Method for processing waste water
JP2010017614A (en) * 2008-07-08 2010-01-28 Kurita Water Ind Ltd Method and apparatus for treating organic wastewater
JP2010017615A (en) * 2008-07-08 2010-01-28 Kurita Water Ind Ltd Method and apparatus for treating dmso-containing wastewater
JP2010184178A (en) * 2009-02-10 2010-08-26 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2010221112A (en) * 2009-03-23 2010-10-07 Kobelco Eco-Solutions Co Ltd Wastewater treatment method
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2011011171A (en) * 2009-07-03 2011-01-20 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP2012205991A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Treatment apparatus of organic wastewater
JP2012205990A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Treatment apparatus of organic wastewater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226512A (en) * 2012-04-25 2013-11-07 Sumitomo Heavy Ind Ltd Anaerobic treatment apparatus, and anaerobic treatment method
JP2015051419A (en) * 2013-09-09 2015-03-19 株式会社東芝 Organic effluent treatment system
JP2019150763A (en) * 2018-03-02 2019-09-12 オルガノ株式会社 Water treatment method and water treatment device
JP6993266B2 (en) 2018-03-02 2022-02-15 オルガノ株式会社 Water treatment method and water treatment equipment
JP7327540B1 (en) 2022-02-09 2023-08-16 栗田工業株式会社 Anaerobic treatment method and apparatus for organic wastewater
WO2023153026A1 (en) * 2022-02-09 2023-08-17 栗田工業株式会社 Method and apparatus for anaerobic treatment of organic wastewater
JP2023117424A (en) * 2022-02-09 2023-08-24 栗田工業株式会社 Anaerobic treatment method and apparatus for organic wastewater

Also Published As

Publication number Publication date
JP5912353B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5443057B2 (en) Anaerobic biological treatment method and anaerobic biological treatment apparatus
US8062527B2 (en) Method and apparatus for desalinating sea water
JP5912353B2 (en) Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
US20100248335A1 (en) Method and apparatus for treatment of organic waste
JP6491406B2 (en) Anaerobic biological treatment method and anaerobic biological treatment apparatus
CN105417843B (en) A kind of processing method of Municipal Solid Waste Incineration Plant Leachate site zero-emission
CN204174044U (en) Landfill leachate treatment and recycling system
Martínez et al. Comparison of external and submerged membranes used in anaerobic membrane bioreactors: Fouling related issues and biological activity
CN104386881B (en) A kind of Coal Chemical Industry production wastewater treatment and high power reuse technology and dedicated system thereof
Jeison Anaerobic membrane bioreactors for wastewater treatment: feasibility and potential applications
Bokhary et al. Anaerobic membrane bioreactors: Basic process design and operation
CN101265000B (en) Method for treating waste water in grape wine brewage
US20120040442A1 (en) Method for use in palm oil mill effluent (pome) treatment
WO2016027223A1 (en) Anaerobic membrane bioreactor system
Abdelrahman et al. Primary and A-sludge treatment by anaerobic membrane bioreactors in view of energy-positive wastewater treatment plants
An et al. Post‐treatment of upflow anaerobic sludge blanket effluent by combining the membrane filtration process: fouling control by intermittent permeation and air sparging
Basset et al. Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment
Shi et al. Pilot study on ceramic flat membrane bioreactor in treatment of coal chemical wastewater
CN104150673A (en) System and method for treating and recycling methanol aromatization wastewater
JP2012206041A (en) Treatment method of organic wastewater
KR20080097779A (en) Livestock wastewater treatment method for the production of liquid fertilizer
JP5801769B2 (en) Method and apparatus for anaerobic digestion treatment of organic wastewater
CN215906041U (en) Leachate treatment system
KR20160121666A (en) Water treatment apparatus using forward osmosis membrane bioreactor and reverse osmosis process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160224

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250