JP2008279385A - Anaerobic treatment method and anaerobic treatment apparatus - Google Patents

Anaerobic treatment method and anaerobic treatment apparatus Download PDF

Info

Publication number
JP2008279385A
JP2008279385A JP2007126596A JP2007126596A JP2008279385A JP 2008279385 A JP2008279385 A JP 2008279385A JP 2007126596 A JP2007126596 A JP 2007126596A JP 2007126596 A JP2007126596 A JP 2007126596A JP 2008279385 A JP2008279385 A JP 2008279385A
Authority
JP
Japan
Prior art keywords
liquid
sludge
treated
anaerobic treatment
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007126596A
Other languages
Japanese (ja)
Other versions
JP5261977B2 (en
JP2008279385A5 (en
Inventor
Takaaki Tokutomi
孝明 徳富
Motoyuki Yoda
元之 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007126596A priority Critical patent/JP5261977B2/en
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to CN2008800156417A priority patent/CN101679085B/en
Priority to PCT/JP2008/055003 priority patent/WO2008139779A1/en
Priority to CN201110279363XA priority patent/CN102358641B/en
Priority to CA 2687228 priority patent/CA2687228A1/en
Priority to EP20110187701 priority patent/EP2428492A1/en
Priority to EP20080722397 priority patent/EP2157057B1/en
Publication of JP2008279385A publication Critical patent/JP2008279385A/en
Priority to US12/591,163 priority patent/US7972511B2/en
Publication of JP2008279385A5 publication Critical patent/JP2008279385A5/ja
Application granted granted Critical
Publication of JP5261977B2 publication Critical patent/JP5261977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably enable a high load and rate anaerobic treatment by preventing a granule sludge from collapsing under the condition of generating the collapse of the granule sludge. <P>SOLUTION: An anaerobic treatment is carried out in a reaction vessel 20 holding the granule sludge by adding a carbohydrate such as starch and the like to a wastewater having a high methanol concentration and a large bias of a substrate such as an evaporated water condensate exhausted from a pulp industry process. It is recommended that the starch is gelatinized, and added particularly in the liquid state to the reaction vessel 20 or a treatment liquid path 31 so as to be supplied to the whole granule sludge in the reaction vessel 20 as uniformly as possible. The addition of the starch allows the proliferation of microorganisms having a high capability of producing a viscous material in the granule sludge so that the strength of the granule sludge can be maintained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機物含有水をメタン発酵させる嫌気性生物処理方法および嫌気性処理装置に関し、特に、グラニュール汚泥を保持する反応槽内に有機物含有水を導入して嫌気的に生物処理する嫌気性生物処理方法および装置に関する。   TECHNICAL FIELD The present invention relates to an anaerobic biological treatment method and anaerobic treatment apparatus for methane fermentation of organic matter-containing water, and in particular, anaerobic biological treatment by introducing organic matter-containing water into a reaction vessel holding granule sludge. The present invention relates to a biological treatment method and apparatus.

有機物を含む排液の嫌気性処理方法として、高密度で沈降性の大きいグラニュール汚泥を用いて高負荷高速処理を行うUASB(Upflow Anaerobic Sludge Blanket…上向流嫌気性スラッジブランケット)法が知られている。UASBでは、グラニュール汚泥で形成したスラッジブランケットを保持する反応槽内に有機物含有水を導入し上向流通液することで、スラッジブランケットと接触させる。この方法では、高負荷高速処理するために、有機物含有水に消化速度の遅い固形有機物が含まれる場合はこれを分離し、消化速度の速い溶解性有機物をグラニュール汚泥により嫌気的に生物処理する。UASB法を発展させ、さらに高負荷高速処理を可能とする処理法として、高さの高い反応槽内に有機物含有水をさらに高流速で通液し、スラッジブランケットを高展開率で展開させるEGSB法(Expanded Granule Sludge Blanket)も知られている。   UASB (Upflow Anaerobic Sludge Blanket) method is known as an anaerobic treatment method for waste liquids containing organic substances, which uses high-density, high-sediment granule sludge and high-load high-speed treatment. ing. In UASB, organic substance-containing water is introduced into a reaction tank holding a sludge blanket formed of granule sludge, and the mixture is brought into contact with the sludge blanket by flowing upward. In this method, in order to perform high-load and high-speed treatment, when organic material-containing water contains solid organic matter having a low digestion rate, this is separated, and soluble organic matter having a high digestion rate is anaerobically biotreated with granule sludge. . An EGSB method that develops the UASB method and allows high-load, high-speed treatment to pass through the organic substance-containing water at a higher flow rate in a high-height reaction tank and develops the sludge blanket at a high development rate. (Expanded Granule Sludge Blanket) is also known.

これらUASB法、EGSB法では、嫌気性微生物が粒状化したグラニュール汚泥を用いており、嫌気性微生物を含む汚泥をグラニュール(粒)状に維持、増殖させる。グラニュール汚泥を用いる生物処理法は、担体に微生物を保持させる固定床や流動床と比較して高い汚泥保持濃度が得られるため高負荷運転が可能である。また、グラニュール汚泥は、微生物密度が高く、沈降性に優れるため固液分離も容易である。さらに、既に稼働中の反応槽内のグラニュール汚泥を余剰汚泥として抜き出して、新設する反応槽内に投入すれば新設した反応槽を短期間で立上げて安定した処理を行えるため、最も効率的な嫌気性処理法として認識されている。   In these UASB method and EGSB method, granular sludge in which anaerobic microorganisms are granulated is used, and sludge containing anaerobic microorganisms is maintained and propagated in the form of granules (grains). The biological treatment method using granular sludge can be operated at a high load because a high sludge retention concentration can be obtained as compared with a fixed bed or fluidized bed in which microorganisms are held on a carrier. In addition, granule sludge has a high microbial density and is excellent in sedimentation, so that solid-liquid separation is easy. In addition, if the granular sludge in the reaction tank that is already in operation is extracted as excess sludge and put into the newly installed reaction tank, the newly installed reaction tank can be started up in a short period of time, and stable treatment can be performed. It is recognized as an anaerobic treatment method.

グラニュール汚泥を用いるUASB法等において有機物含有水を安定的かつ良好に処理する最大のポイントは、グラニュール汚泥を維持、増殖させることである。反応槽内に、グラニュール汚泥を維持、増殖させることができないと、処理性能は徐々に低下し、やがて処理不能に陥ることもある。   In the UASB method or the like using granular sludge, the greatest point of stably and satisfactorily treating organic substance-containing water is to maintain and propagate the granular sludge. If granule sludge cannot be maintained and propagated in the reaction tank, the treatment performance gradually decreases and may eventually become untreatable.

グラニュール汚泥は、酢酸資化性のMethanosaeta属(旧称:Methanothrix属)の微生物が骨格となって形成され、水素資化性メタン細菌、酢酸生成細菌、酸生成細菌等が共存する一種の生態系を構成している。これらの微生物の中でも酸生成細菌は、糖質、脂質、タンパク等を分解し、粘質物を産出することから細菌同士の結合力を強める働きをする。よって、糖基質の培養液を用いれば、最も強度の強いグラニュール汚泥が形成される。   Granule sludge is a kind of ecosystem in which acetic acid-assimilating microorganisms belonging to the genus Methanosaeta (formerly Methanothrix) are formed as a skeleton, and hydrogen-utilizing methane bacteria, acetic acid-producing bacteria, acid-producing bacteria, etc. coexist. Is configured. Among these microorganisms, acid-producing bacteria degrade sugars, lipids, proteins, and the like, and produce mucilage, thereby strengthening the binding force between bacteria. Therefore, the strongest granular sludge is formed by using a culture solution of a sugar substrate.

一般的な下水や産業排水等の有機物含有水は、糖質その他の高分子の有機物を含有していることから、これを嫌気性処理すると酸生成細菌が増殖する。嫌気性処理の過程では、酸生成細菌以外の上記の微生物も増殖して有機酸が生成され、この有機酸は順次低分子化されて酢酸となり、さらにメタンと炭酸ガスに分解される。酸生成細菌が増殖する条件下では、上記一連の嫌気性処理に関与して増殖する上記各種の微生物が粘質物により結合され、強度の大きいグラニュール汚泥が形成される。したがって、グラニュール汚泥は、一般的な有機物含有水を上向流で通液して嫌気性処理を行うことにより、自然発生的に形成することができる。   Since organic matter-containing water such as general sewage and industrial wastewater contains carbohydrates and other high-molecular organic matter, acid-producing bacteria grow when anaerobically treated. In the process of anaerobic treatment, the above-mentioned microorganisms other than acid-producing bacteria also grow to produce organic acids, which are successively reduced in molecular weight to acetic acid, and further decomposed into methane and carbon dioxide. Under conditions in which acid-producing bacteria grow, the various microorganisms that grow by participating in the series of anaerobic treatments are bound together by mucilage to form a granular sludge with high strength. Therefore, granule sludge can be formed spontaneously by passing an ordinary organic substance-containing water in an upward flow and performing anaerobic treatment.

ところがこのような通常の有機物含有水と異なり、酸生成細菌の基質濃度の低い被処理液、例えば化学工場等から排出される炭素数4以下の低級有機物を含む被処理液を処理するとグラニュール汚泥が崩壊しやすくなる。特に酢酸、エタノール、アセトアルデヒドなどの炭素数2以下の有機物を主成分(全有機物の70〜90質量%程度)とする被処理液を処理する場合は、Methanosarcina属が主として増殖する微生物となる。   However, unlike such normal organic substance-containing water, if the liquid to be treated with a low substrate concentration of acid-producing bacteria, for example, the liquid to be treated containing a lower organic substance having 4 or less carbon atoms discharged from a chemical factory or the like, granule sludge is treated. Is prone to collapse. In particular, when treating a liquid to be treated containing an organic substance having 2 or less carbon atoms such as acetic acid, ethanol, or acetaldehyde as a main component (about 70 to 90% by mass of the total organic substance), the genus Methanosarcina is a microorganism that mainly grows.

Methanosaeta属、Methanosarcina属、およびMethanobacterium属の菌はグラニュール汚泥を形成しにくく、汚泥中での粘質物の産出が少なくなるため、グラニュール汚泥の増殖は芳しくなく、強度も不十分となる。このためこのような有機物含有水を被処理液として長期間運転を継続すると、グラニュール汚泥が解体して小粒径化し、反応槽内の汚泥量が減少することになる。   The bacteria of the genus Methanosaeta, Methanosarcina, and Methanobacterium are less likely to form granule sludge, and the production of mucilage in sludge is reduced, so that the growth of granule sludge is not good and the strength is insufficient. For this reason, if such organic substance-containing water is used for a long period of time and the operation is continued for a long time, the granular sludge is disassembled to reduce the particle size, and the amount of sludge in the reaction tank is reduced.

とりわけ、炭素数1の基質、具体的にはメタノール、蟻酸、ホルムアルデヒド等を主成分とする被処理液を処理する場合には、上述のMethanosaeta属はこれらの基質を資化できないため、Methanosarcina属やMethanobacterium属のメタン菌が成育してよりグラニュール化しにくい状況となる。例えばメタノールを単一基質としてUASB式の処理装置を長期間継続して運転すると、グラニュール汚泥は解体し、微細化して汚泥量が激減する。このため上記のような低分子の有機物を主成分とする被処理液をグラニュール汚泥により嫌気性処理することは困難であった。   In particular, when treating a substrate having 1 carbon atom, specifically, a liquid to be treated mainly containing methanol, formic acid, formaldehyde, etc., the above Methanosaeta genus cannot assimilate these substrates. Methanobacterium methane bacteria grow and become more difficult to granulate. For example, when a UASB type treatment apparatus is operated continuously for a long time using methanol as a single substrate, the granular sludge is disassembled and refined to drastically reduce the amount of sludge. For this reason, it has been difficult to anaerobically treat the liquid to be treated mainly composed of low-molecular organic substances as described above with granular sludge.

ところでUASBのようなグラニュール汚泥を用いる嫌気性処理の立上げに際して、立ち上げ時に酢酸、又は酢酸を生成する物質を供給することを特徴とする処理方法が提案されている(例えば、特許文献1)。特許文献1に開示された方法は、前述のようなグラニュールのできにくい有機物含有水を処理する装置の立ち上げ時に、酢酸または酢酸を生成する基質を与え、Methanothrix属のメタン生成細菌を優占的に増殖させて短期間でグラニュール汚泥を増殖させようとする方法である。
特許第2563004号公報
By the way, at the time of start-up of anaerobic treatment using granular sludge such as UASB, a treatment method characterized by supplying acetic acid or a substance that generates acetic acid at the time of start-up has been proposed (for example, Patent Document 1). ). The method disclosed in Patent Document 1 gives acetic acid or a substrate for producing acetic acid when starting up an apparatus for treating organic substance-containing water which is difficult to granulate as described above, and predominates the methanogenic bacteria of the genus Methanothrix. It is a method that attempts to grow granulated sludge in a short period of time.
Japanese Patent No. 2563004

しかし、Methanothrix属は低分子化合物を基質にできないため、特許文献1に開示された方法でグラニュール汚泥を用いる嫌気性処理を立ち上げた後、酢酸の投入を停止すると徐々にMethanosarcina属やMethanobacterium属のメタン菌が成育してグラニュールの解体が始まるという欠点がある。   However, since the genus Methanothrix cannot use low molecular weight compounds as substrates, after starting anaerobic treatment using granulated sludge by the method disclosed in Patent Document 1, when the acetic acid input is stopped, the genus Methanosarcina and the genus Methanobacterium gradually The disadvantage is that the methane bacteria grow and granule dismantling begins.

これに対し、本発明は、反応槽内をグラニュール汚泥の維持に寄与する微生物が増殖する条件にすることで、グラニュール汚泥を維持しようとするものである。これにより、グラニュール汚泥が崩壊し易い条件で処理を行う場合でも、安定して効率よい嫌気性処理ができる嫌気性処理方法および嫌気性処理装置を提供することを目的とする。   On the other hand, this invention tries to maintain granule sludge by making the inside of a reaction tank into the conditions where the microorganisms which contribute to maintenance of granule sludge grow. Accordingly, it is an object of the present invention to provide an anaerobic treatment method and an anaerobic treatment apparatus capable of stably and efficiently performing an anaerobic treatment even when the treatment is performed under the condition that the granular sludge is easily disintegrated.

本発明は以下を提供する。   The present invention provides the following.

(1)グラニュール汚泥を保持する反応槽に、被処理液を導入してグラニュール汚泥と接触させ嫌気性処理を行う方法において、 前記被処理液の炭素数4以下の有機物の含有量が全有機物含有量の70質量%以上である場合、前記被処理液がキレート剤、スケール分散剤、殺菌剤からなる群より選ばれる1以上の剤を含む場合、または前記反応槽への汚泥負荷0.3kgCODcr/kg−Vss/dを超えるか前記反応槽内の上昇流速が1m/hを超える場合、 前記反応槽または前記被処理液に糖質を添加して前記被処理液をグラニュール汚泥と接触させて嫌気性処理を行う嫌気性処理方法。
(2)前記被処理液は、パルプ製造過程で排出された蒸発凝縮水である(1)に記載の嫌気性処理方法。
(3)前記糖質は澱粉である(1)または(2)に記載の嫌気性処理方法。
(4)前記糖質として、アルファ化させた澱粉を添加する(3)に記載の嫌気性処理方法。
(5)前記被処理液のCODcr濃度に対して前記澱粉の添加量がCODcr比として0.02〜0.2となるように添加を行う(3)または(4)に記載の嫌気性処理方法。
(6)前記反応槽内に、凝集剤を供給しながら嫌気性処理を行う(1)から(5)のいずれかに記載の嫌気性処理方法。
(7)前記被処理液は、パルプ製造過程で排出された蒸発凝縮水であり、 前記反応槽または前記被処理液に硝酸または亜硝酸を、添加後の濃度が1〜1000mg/Lとなるように添加して嫌気性処理を行う(3)から(6)のいずれかに記載の嫌気性処理方法。
(1) In a method of introducing an treatment liquid into a reaction tank holding granule sludge and performing anaerobic treatment by bringing it into contact with the granule sludge, the content of organic matter having 4 or less carbon atoms in the treatment liquid is all When the organic matter content is 70% by mass or more, when the liquid to be treated contains one or more agents selected from the group consisting of a chelating agent, a scale dispersant, and a bactericidal agent, or the sludge load to the reaction tank is 0. When 3 kg CODcr / kg-Vss / d exceeds or the rising flow velocity in the reaction tank exceeds 1 m / h, a saccharide is added to the reaction tank or the liquid to be treated and the liquid to be treated is brought into contact with the granular sludge. An anaerobic treatment method in which anaerobic treatment is performed.
(2) The anaerobic treatment method according to (1), wherein the liquid to be treated is evaporated condensed water discharged in a pulp manufacturing process.
(3) The anaerobic treatment method according to (1) or (2), wherein the sugar is starch.
(4) The anaerobic treatment method according to (3), wherein pregelatinized starch is added as the carbohydrate.
(5) The anaerobic treatment method according to (3) or (4), wherein the starch is added such that the added amount of the starch is 0.02 to 0.2 as the CODcr ratio with respect to the CODcr concentration of the liquid to be treated. .
(6) The anaerobic treatment method according to any one of (1) to (5), wherein an anaerobic treatment is performed while supplying a flocculant into the reaction tank.
(7) The liquid to be treated is evaporated condensed water discharged in the pulp manufacturing process, and the concentration after addition of nitric acid or nitrous acid to the reaction tank or the liquid to be treated is 1 to 1000 mg / L. The anaerobic treatment method according to any one of (3) to (6), wherein the anaerobic treatment is performed by adding to the solution.

本発明は、グラニュール汚泥が保持された反応槽内に、有機物含有水を導入して嫌気性処理をする場合において、グラニュール汚泥の崩壊を防止して一定量以上のグラニュール汚泥を反応槽内に長期かつ安定的に保持する嫌気性処理方法および装置に関する。換言すれば、本発明は、反応槽内に既に保持されたグラニュール汚泥からグラニュール汚泥を増殖させる。なお、グラニュール汚泥の崩壊とは、すでに形成されたグラニュール汚泥が嫌気性処理を行っている間に崩壊する現象をいう。   In the case where anaerobic treatment is performed by introducing organic substance-containing water into a reaction tank in which granule sludge is held, the present invention prevents the granule sludge from collapsing, and a certain amount or more of the granular sludge is added to the reaction tank. TECHNICAL FIELD The present invention relates to an anaerobic treatment method and apparatus for stably holding in a long term. In other words, the present invention grows granulated sludge from the granular sludge already held in the reaction vessel. The collapse of granule sludge refers to a phenomenon in which granule sludge that has already been formed collapses during anaerobic treatment.

上述した通り、グラニュール汚泥を用いる嫌気性処理法である種の産業排水を処理すると、処理時間の経過に伴ってグラニュール汚泥が崩壊する場合がある。こうした排水としては、例えばパルプ製造過程で排出される蒸発凝縮水(エバポレート・コンデンサ)がある。蒸発凝縮水は、メタノールを主体とする有機物含有水であり、全CODcr成分の70質量%以上、通常は90質量%程度がメタノールで占められる。   As described above, when a certain type of industrial wastewater, which is an anaerobic treatment method using granule sludge, is treated, the granule sludge may collapse as the treatment time elapses. Examples of such waste water include evaporative condensed water (evaporation condenser) discharged in the pulp manufacturing process. Evaporated condensed water is organic matter-containing water mainly composed of methanol, and methanol accounts for 70% by mass or more, usually about 90% by mass of the total CODcr component.

このため、グラニュール汚泥を用いて蒸発凝縮水を嫌気的に処理すると、メタノールを基質として増殖するMethanosarcina属やMethanobacterium属の微生物の増殖が速く、グラニュール汚泥の崩壊を招く。特に、蒸発凝縮水のようにタンパク質の含有量も少ない(例えば全CODcrの10質量%以下)有機物含有水は、グラニュール汚泥を構成する微生物群集の偏りを生じさせ易い。本発明は、このようにグラニュール汚泥の構成微生物種の偏りを生じさせ易い被処理液を処理する場合に特に好適に適用できる。   For this reason, when evaporative condensate is treated anaerobically using granular sludge, microorganisms of the genus Methanosarcina and Methanobacterium that grow using methanol as a substrate grow rapidly, leading to the collapse of the granular sludge. In particular, water containing a small amount of protein (e.g., 10% by mass or less of the total CODcr) like evaporative condensed water tends to cause a bias in the microbial community constituting the granule sludge. The present invention can be particularly suitably applied to the case where a liquid to be treated that tends to cause a bias in the constituent microbial species of granule sludge is treated.

本発明では、グラニュール汚泥の崩壊が生じるような条件での処理時に、反応槽にまたは反応槽に導入する被処理液に糖質を添加する。糖質としては澱粉が好ましく、凝集剤とともに添加してもよい。また、デンプンは糊化(アルファ化)させて液状として添加することも好ましい。   In the present invention, a saccharide is added to the reaction tank or to the liquid to be treated which is introduced into the reaction tank at the time of treatment under conditions that cause the granule sludge to collapse. As the saccharide, starch is preferable, and it may be added together with the flocculant. Moreover, it is also preferable that starch is gelatinized (alpha-ized) and added as a liquid.

本発明によれば、グラニュール汚泥の崩壊を防止できる。よって、従来、グラニュール汚泥の維持、増殖が困難であった有機物含有水を被処理液とする高負荷高速処理を長期に渡り、安定的に継続できる。   According to the present invention, the granule sludge can be prevented from collapsing. Therefore, the high-load high-speed treatment using the organic substance-containing water, which has conventionally been difficult to maintain and multiply the granular sludge, can be stably continued over a long period of time.

以下、本発明について図面を用いて詳細に説明する。図1は、本発明の第1実施形態に係る有機物含有水の嫌気性処理装置(以下、単に「処理装置」という)1の模式図である。処理装置1は、硝酸/亜硝酸添加手段と反応槽20とを備える。硝酸/亜硝酸添加手段は、ここでは亜硝酸を添加する設備として構成され、硝酸貯槽11および硝酸添加路12で構成されている。反応槽20には、被処理液である有機物含有水が導入される被処理液路31、処理済の液が取り出される処理液路32、および発生したガスが取り出されるガス路33が接続されている。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of an anaerobic treatment apparatus (hereinafter simply referred to as “treatment apparatus”) 1 of organic substance-containing water according to a first embodiment of the present invention. The processing apparatus 1 includes nitric acid / nitrous acid addition means and a reaction tank 20. Here, the nitric acid / nitrous acid addition means is configured as equipment for adding nitrous acid, and includes a nitric acid storage tank 11 and a nitric acid addition path 12. Connected to the reaction tank 20 are a treatment liquid path 31 into which organic substance-containing water as a treatment liquid is introduced, a treatment liquid path 32 from which the treated liquid is taken out, and a gas path 33 through which the generated gas is taken out. Yes.

反応槽20内には、グラニュール汚泥が充填されている。被処理液路31は反応槽20下部に接続されている。有機物含有水は、被処理液路31に設けられたポンプPにより反応槽20に導入され上向流で反応槽20内を流れる。また、反応槽20の上部には、気固液分離装置(GSS)が設けられている。GSSの頂部は、反応槽20内の液面から突出する。ガス路33は、反応槽20上部に接続されている。処理液路32は、GSSの内側に連絡している。   The reaction tank 20 is filled with granular sludge. The liquid path 31 to be treated is connected to the lower part of the reaction tank 20. The organic substance-containing water is introduced into the reaction tank 20 by a pump P provided in the liquid passage 31 to be treated and flows through the reaction tank 20 in an upward flow. In addition, a gas-solid-liquid separator (GSS) is provided in the upper part of the reaction tank 20. The top of the GSS protrudes from the liquid level in the reaction vessel 20. The gas path 33 is connected to the upper part of the reaction tank 20. The processing liquid path 32 communicates with the inside of the GSS.

反応槽20内において、GSSの内側は気固液分離部分であり、その下部はグラニュール汚泥が展開する反応部22となっている。反応部22ではグラニュール汚泥が展開してスラッジブランケット24が形成される。グラニュール汚泥は、嫌気性微生物を含む微生物が自己造粒して平均粒径0.5〜1.0mm程度の粒状になった汚泥であり、密度は1.02〜1.1kg/L程度であり沈降性に優れる。反応部22の液はGSS内部で気固液分離され、処理液路32からグラニュール汚泥と分離された処理液が取り出される。   In the reaction tank 20, the inside of the GSS is a gas-solid separation part, and the lower part thereof is a reaction part 22 where the granular sludge is developed. In the reaction part 22, the granular sludge is developed to form a sludge blanket 24. Granule sludge is sludge in which anaerobic microorganisms are self-granulated into granules having an average particle size of about 0.5 to 1.0 mm, and the density is about 1.02 to 1.1 kg / L. There is excellent sedimentation. The liquid in the reaction unit 22 is gas-solid-liquid separated inside the GSS, and the treatment liquid separated from the granular sludge is taken out from the treatment liquid path 32.

このように処理装置1では、グラニュール汚泥を保持する反応槽20に有機物含有水を上向流で通液してグラニュール汚泥を展開させ、スラッジブランケット24を形成する。これにより、有機物含有水とグラニュール汚泥との接触効率が高くなるため、高さ5〜7m程度の反応槽内に高さ3〜5m程度のスラッジブランケットを展開させるUASBでは、汚泥負荷0.1〜0.7kg−CODcr/kg−VSS/d、反応槽内の上昇流速0.3〜1.5m/h程度の高負荷高速処理が可能である。高さ7〜20m程度の反応槽内に、高さ5〜18m程度のスラッジブランケットを展開させるEGSBでは、汚泥負荷0.1〜1.0kg−CODcr/kg−VSS/d、反応槽内の上昇流速3〜10m/h程度にできる。   As described above, in the processing apparatus 1, the organic sludge blanket 24 is formed by causing the organic sludge to flow through the reaction tank 20 that holds the granule sludge in an upward flow to develop the granule sludge. As a result, the contact efficiency between the organic substance-containing water and the granule sludge is increased. Therefore, in the UASB in which a sludge blanket having a height of about 3 to 5 m is developed in a reaction tank having a height of about 5 to 7 m, the sludge load is 0.1. High load high speed processing of about 0.7 kg-CODcr / kg-VSS / d and an ascending flow rate in the reaction tank of about 0.3 to 1.5 m / h is possible. In EGSB where a sludge blanket with a height of about 5 to 18 m is deployed in a reaction tank with a height of about 7 to 20 m, a sludge load of 0.1 to 1.0 kg-CODcr / kg-VSS / d, an increase in the reaction tank The flow rate can be about 3 to 10 m / h.

反応槽20に導入される有機物含有水は、有機物濃度としてCODcr500〜30,000mg/L、好ましくは1,000〜20,000mg/Lのものが適している。また、反応槽20に対する有機物負荷は5〜30kg−CODcr/m/d、特に8〜20kg−CODcr/m/dが好ましい。また、反応槽20内には酸素を供給せずに嫌気的条件とし、温度は25〜40℃、特に30〜38℃とすることが好ましい。 The organic substance-containing water introduced into the reaction tank 20 has an organic substance concentration of CODcr of 500 to 30,000 mg / L, preferably 1,000 to 20,000 mg / L. Moreover, the organic substance load with respect to the reaction tank 20 is 5-30 kg-CODcr / m < 3 > / d, Especially 8-20 kg-CODcr / m < 3 > / d is preferable. Moreover, it is preferable to set it as anaerobic conditions without supplying oxygen in the reaction tank 20, and to make temperature into 25-40 degreeC, especially 30-38 degreeC.

反応槽20内には、本発明に係る嫌気性処理を行うに先立ち、上記性状のグラニュール汚泥を反応槽容積あたり20〜50%程度、保持しておく。グラニュール汚泥は被処理液を嫌気性処理することにより自然発生的に形成することができ、浮遊性の嫌気性汚泥を保持する反応槽内に凝集剤等を添加して自己造粒を促進して浮遊性汚泥を自己造粒させることもできる。しかし、自然発生的なグラニュール汚泥の形成には時間がかかる。また凝集剤を添加して浮遊汚泥を造粒させると、形成されたグラニュール汚泥の密度が低くなる場合もある。   Prior to performing the anaerobic treatment according to the present invention, about 20 to 50% of the granular sludge having the above properties is retained in the reaction tank 20 per reaction tank volume. Granule sludge can be formed spontaneously by anaerobic treatment of the liquid to be treated, and promotes self-granulation by adding a flocculant etc. to the reaction tank holding floating anaerobic sludge. The floating sludge can be self-granulated. However, it takes time to form naturally occurring granular sludge. Moreover, when a flocculant is added and floating sludge is granulated, the density of the formed granular sludge may become low.

これに対し、既設のUASB、またはEGSB式の反応槽から余剰汚泥として排出されるグラニュール汚泥を反応槽内に充填して、グラニュール汚泥を増殖させる基質を含む有機物含有水を供給すれば、短時間で反応槽を立ち上げることができる(すなわち必要量のグラニュール汚泥を保持する反応槽が得られる)。これは、グラニュール汚泥が反応槽内で成長し、反応槽内の水流やガスの発生に伴う流動により破砕され、破砕された微小な粒子や破片が核となって、新たにグラニュール状の汚泥が形成されるためとされている。   On the other hand, if the granular sludge discharged as surplus sludge from the existing UASB or EGSB type reaction tank is filled in the reaction tank and the organic substance-containing water containing the substrate for growing the granular sludge is supplied, The reaction tank can be started up in a short time (that is, a reaction tank holding a necessary amount of granular sludge can be obtained). This is because granule sludge grows in the reaction tank and is crushed by the flow of water and gas generated in the reaction tank. It is said that sludge is formed.

UASBで安定した処理を行うためには、反応槽20内には平均粒径0.5〜3.0mm、好ましくは0.8〜1.5mm程度のグラニュール汚泥を、上述したスラッジブランケット24を形成できるように維持する。EGSBの場合は、反応槽20内に、平均粒径0.5〜3.0mm、好ましくは1.0〜1.5mm程度のグラニュール汚泥を安定的に保持する必要がある。   In order to perform a stable treatment with UASB, granule sludge having an average particle size of 0.5 to 3.0 mm, preferably about 0.8 to 1.5 mm, and the sludge blanket 24 described above are provided in the reaction tank 20. Maintain to form. In the case of EGSB, it is necessary to stably hold granular sludge having an average particle diameter of 0.5 to 3.0 mm, preferably about 1.0 to 1.5 mm, in the reaction tank 20.

ここで、反応槽20に導入する被処理液は、グラニュール汚泥と接触させて嫌気性処理を行うことにより処理可能な有機物を含む液であればよい。しかし、被処理液の性状や反応槽20の運転条件によっては、処理を継続するうちにグラニュール汚泥が崩壊して、反応槽20内のグラニュール汚泥の保持量が低下する場合がある。   Here, the to-be-processed liquid introduce | transduced into the reaction tank 20 should just be a liquid containing the organic substance which can be processed by making it contact with a granular sludge and performing an anaerobic process. However, depending on the properties of the liquid to be treated and the operating conditions of the reaction tank 20, the granular sludge may collapse while the treatment is continued, and the retained amount of granular sludge in the reaction tank 20 may decrease.

本発明は、このようにグラニュール汚泥が崩壊しやすい被処理液の処理、または運転条件での処理に用いる。グラニュール汚泥が崩壊しやすい被処理液としては、酸生成細菌の基質となる有機物(糖質、脂肪、タンパク質等の炭素数5以上の有機物)の含量が少ない有機物含有水、例えば酸生成細菌の基質の含有量が全有機物の30質量%以下、特に20質量%以下である有機物含有水が挙げられる。具体的には低級有機物を主として(例えば全体の有機物の70質量%以上、特に80質量%以上)含む被処理液が挙げられる。ここで低級有機物としては炭素数4以下、特に2以下の有機物が挙げられ、炭素数が小さい有機物を多く含むほどグラニュール汚泥が崩壊しやすくなる。   The present invention is used for the treatment of the liquid to be treated, in which the granular sludge is easily broken, or for the treatment under the operating conditions. As the liquid to be treated in which granule sludge is easy to disintegrate, organic substance-containing water having a low content of organic substances (organic substances having 5 or more carbon atoms such as sugars, fats, proteins, etc.) which are substrates of acid-producing bacteria, such as acid-producing bacteria Organic substance-containing water whose content of the substrate is 30% by mass or less, particularly 20% by mass or less of the total organic substances. Specifically, a liquid to be treated mainly containing lower organic substances (for example, 70% by mass or more, particularly 80% by mass or more of the whole organic substances) can be mentioned. Here, examples of the lower organic substance include organic substances having 4 or less carbon atoms, particularly 2 or less carbon atoms, and the more sludge containing the organic substances having a smaller carbon number, the more easily the granular sludge collapses.

例えば、パルプをアルカリ溶液中に蒸解させてなる蒸解液を再利用するために蒸留を行うことで排出される廃液(蒸発凝縮水、またはエバポレータ・コンデンセイト)は、CODcrが2,000〜3,000mg/L程度ある。そして、その大部分(概ね80〜90質量%)がメタノールであり、酸生成細菌の基質となる炭素数5以上の有機物の含有量は10〜20質量%程度である。本発明では、このような被処理液が特に好適な処理対象となる。   For example, a waste liquid (evaporated condensed water or evaporator / condensate) discharged by distillation to reuse a cooking liquid obtained by digesting pulp into an alkaline solution has a CODcr of 2,000 to 3,000 mg. There are about / L. And most (approximately 80-90 mass%) is methanol, and the content of the organic substance having 5 or more carbon atoms that serves as a substrate for acid-producing bacteria is about 10-20 mass%. In the present invention, such a liquid to be treated is a particularly suitable treatment target.

また、被処理液中に酸生成細菌の基質が十分に存在する場合であっても、被処理液中にキレート剤やスケール分散剤、殺菌剤などが含まれている場合はグラニュール汚泥が崩壊しやすくなるため、このような場合にも本発明方法を適用するとよい。特にEDTA(エチレンジアミン四酢酸)やNTA(ニトリル三酢酸)等のキレート剤が被処理液中に3mg/L以上の濃度で含まれる場合等はグラニュール汚泥が崩壊しやすい。また殺菌剤としては特にジチオカーバメイト類はグラニュール汚泥を崩壊させる傾向がある。   Even if the substrate for acid-producing bacteria is sufficiently present in the liquid to be treated, the granule sludge will disintegrate if the liquid to be treated contains a chelating agent, a scale dispersant, or a bactericidal agent. In this case, the method of the present invention is preferably applied. In particular, when a chelating agent such as EDTA (ethylenediaminetetraacetic acid) or NTA (nitrile triacetic acid) is contained in the liquid to be treated at a concentration of 3 mg / L or more, the granular sludge is likely to collapse. Moreover, dithiocarbamate especially as a disinfectant tends to disintegrate granular sludge.

さらに、被処理液自体にはグラニュール汚泥を崩壊させる原因がない場合でも、処理の条件によってはグラニュール汚泥が崩壊しやすくなることがある。このようなケースとしては例えば汚泥負荷が高い場合や通液速度が大きい場合が挙げられる。   Furthermore, even if the liquid to be treated itself has no cause for causing the granular sludge to collapse, the granular sludge may be easily broken depending on the processing conditions. Examples of such a case include a case where the sludge load is high and the liquid passing speed is high.

例えばUASB式の場合であれば、汚泥負荷は0.2〜0.6kgCODcr/kg−Vss/d、上昇流速は0.5〜1.0m/hが好適であり、反応槽20への汚泥負荷が0.6kgCODcr/kg−Vss/dを超える場合、あるいは上昇流速が1m/hを超える場合とグラニュール汚泥が崩壊しやすい。また、EGSB方式であれば、汚泥負荷は0.2〜0.7kgCODcr/kg−Vss/d、上昇流速は2〜5m/hが好適であり、汚泥負荷が0.7kgCODcr/kg−Vss/d、上昇流速が5m/hをそれぞれ超えるような場合はグラニュール汚泥が崩壊しやすくなる。   For example, in the case of the UASB type, the sludge load is preferably 0.2 to 0.6 kg CODcr / kg-Vss / d, and the rising flow rate is preferably 0.5 to 1.0 m / h. Is more than 0.6 kgCODcr / kg-Vss / d, or when the ascending flow rate exceeds 1 m / h, the granular sludge tends to collapse. Further, in the case of the EGSB system, the sludge load is preferably 0.2 to 0.7 kg CODcr / kg-Vss / d, the rising flow rate is preferably 2 to 5 m / h, and the sludge load is 0.7 kg CODcr / kg-Vss / d. When the ascending flow rate exceeds 5 m / h, the granular sludge tends to collapse.

そこで、上記性状の被処理液を処理する場合、または上記条件で被処理液を処理する場合、本発明を適用し、反応槽20内に、または被処理液に糖質、具体的には澱粉を添加して嫌気性処理を行うとよい。以下、澱粉をアルファ化して被処理液に添加して反応槽20に導入する構成とする場合を例として説明する。   Therefore, in the case of treating the liquid to be treated having the above properties, or when the liquid to be treated is treated under the above-mentioned conditions, the present invention is applied, and a saccharide, specifically starch is added to the reaction tank 20 or in the liquid to be treated. An anaerobic treatment may be performed by adding. Hereinafter, a case where starch is pregelatinized and added to the liquid to be treated and introduced into the reaction tank 20 will be described as an example.

ただし、本発明はこれ以外の態様で実施することもでき、例えば、澱粉をアルファ化せずに粉末で、または単に水に溶解した状態で被処理液に添加してもよい。また、澱粉を被処理液に添加する代わりに反応槽20に直接添加してもよい。さらに、反応槽20前段にpH調整が設けられている場合、pH調整槽に澱粉を添加してもよい。   However, the present invention can be carried out in other modes. For example, starch may be added to the liquid to be treated in a powder form without being pregelatinized or simply dissolved in water. Moreover, you may add starch directly to the reaction tank 20 instead of adding to a to-be-processed liquid. Furthermore, when pH adjustment is provided in the previous stage of the reaction tank 20, starch may be added to the pH adjustment tank.

処理装置1では、被処理液路31の途中に澱粉添加路12の先端が接続されている。澱粉添加路12の基端は澱粉貯槽11と接続され、澱粉貯槽11内のアルファ化された液状の澱粉が被処理液路31に添加されるように構成されている。澱粉添加路12の途中には弁Vが設けられており、弁Vを開閉することにより、澱粉の添加量やタイミングが調節される。   In the processing apparatus 1, the tip of the starch addition path 12 is connected to the liquid path 31 to be processed. The base end of the starch addition path 12 is connected to the starch storage tank 11 so that the pregelatinized liquid starch in the starch storage tank 11 is added to the liquid path 31 to be treated. A valve V is provided in the middle of the starch addition path 12. By opening and closing the valve V, the amount and timing of starch addition are adjusted.

澱粉液は、被処理液に添加し、均一に溶解した状態でグラニュール汚泥と接触させる。澱粉の添加量は、被処理液のCODcr濃度に対してCODcrとしての比が0.02〜0.2となる範囲とすることが好ましい。アルファ化させた澱粉を添加する方法としては、例えばアルファ化させた澱粉粉末を水に溶解させて澱粉液として被処理液等に添加してもよく、アルファ化させた澱粉粉末を被処理液等に直接添加してもよい。あるいはアルファ化していない澱粉を水と混合して加熱またはアルカリ条件にする等によって澱粉をアルファ化した液状として用いてもよい。アルファ化した澱粉は溶解性に優れ反応槽内を均一に広がりやすいため、グラニュール汚泥に対する澱粉の供給が部分的に偏ることを防止してグラニュール汚泥の崩壊防止効果向上に寄与する。   The starch solution is added to the liquid to be treated, and is brought into contact with the granular sludge in a uniformly dissolved state. The amount of starch added is preferably in a range where the ratio of CODcr to the CODcr concentration of the liquid to be treated is 0.02 to 0.2. As a method of adding the pregelatinized starch, for example, the pregelatinized starch powder may be dissolved in water and added to the liquid to be treated as a starch liquid, and the pregelatinized starch powder may be added to the liquid to be treated. It may be added directly to. Alternatively, starch that has not been pregelatinized may be used as a liquid in which starch has been pregelatinized by mixing it with water and heating or making it alkaline. Since the pregelatinized starch is excellent in solubility and easily spreads uniformly in the reaction tank, the supply of starch to the granule sludge is prevented from being partially biased and contributes to an improvement in the effect of preventing the granule sludge from collapsing.

また、アルファ化の有無にかかわらず澱粉とともに凝集剤を添加することでグラニュール汚泥の崩壊防止効果をより高くすることができる。図2は、本発明の第2実施形態に係る有機物含有水の嫌気性処理装置2である。処理装置2は、被処理液路31の途中に先端が接続された凝集剤路42と、凝集剤路42の基端が接続された凝集剤貯槽41とをさらに備える。これにより、反応槽20内には、澱粉に加えて凝集剤が含まれる被処理液が導入される。   Further, the addition of a flocculant with starch regardless of the presence or absence of pregelatinization can further enhance the effect of preventing the granular sludge from collapsing. FIG. 2 shows an anaerobic treatment apparatus 2 of organic substance-containing water according to the second embodiment of the present invention. The processing apparatus 2 further includes a flocculant path 42 having a tip connected to the middle of the liquid path 31 to be treated and a flocculant storage tank 41 to which the base end of the flocculant path 42 is connected. Thereby, the to-be-processed liquid which contains a flocculant in addition to starch is introduce | transduced in the reaction tank 20. FIG.

凝集剤は、反応槽20内のグラニュール汚泥表面に付着することでグラニュール汚泥の強度を高める。添加する凝集剤の種類は限定されず、ノニオン系、カチオン系、アニオン系、両性系など処理系に適したものが使用できる。好ましい高分子凝集剤としては、ノニオン系の凝集剤としてポリアクリルアミド、ポリエチレンオキシド等が例示できる。カチオン系としては、ポリアミノアルキルメタクリレート、ポリエチレンイミン、ハロゲン化ポリジアリルアンモニウム、キトサン、尿素−ホルマリン樹脂等が挙げられる。アニオン系としては、ポリアクリル酸ナトリウム、ポリアクリルアミド部分加水分解物、部分スルホメチル化ポリアクリルアミド、ポリ(2−アクリルアミド)−2−メチルプロパン硫酸塩等が挙げられ、両性系としてアクリルアミドとアミノアルキルメタクリレートとアクリル酸ナトリウムの共重体等が挙げられる。凝集剤の添加濃度は高分子凝集剤の場合0.01〜2mg/l、特に0.01〜1mg/l程度とするとよい。   The flocculant increases the strength of the granular sludge by adhering to the surface of the granular sludge in the reaction tank 20. The kind of the flocculant to be added is not limited, and those suitable for the processing system such as nonionic, cationic, anionic and amphoteric can be used. Preferred examples of the polymer flocculant include polyacrylamide and polyethylene oxide as nonionic flocculants. Examples of the cationic system include polyaminoalkyl methacrylate, polyethyleneimine, halogenated polydiallylammonium, chitosan, and urea-formalin resin. Examples of the anionic system include sodium polyacrylate, polyacrylamide partial hydrolyzate, partially sulfomethylated polyacrylamide, poly (2-acrylamide) -2-methylpropane sulfate, and the amphoteric system includes acrylamide and aminoalkyl methacrylate. Examples include sodium acrylate copolymer. In the case of a polymer flocculant, the addition concentration of the flocculant is preferably about 0.01 to 2 mg / l, particularly about 0.01 to 1 mg / l.

このように、反応槽20内の液が凝集剤をさらに含むことでグラニュール汚泥の強度をより確実に高めることができる。また、本発明では澱粉を基質とする微生物をグラニュール汚泥に含ませて粘質物を生産させるため、凝集剤の添加量は少なくてよい。また凝集剤は連続的に添加してもよいが、間欠的に添加してもよい。さらに、凝集剤は澱粉より先に添加しても後に添加してもよい。   Thus, the strength of the granular sludge can be increased more reliably by the liquid in the reaction tank 20 further containing a flocculant. In the present invention, the amount of the flocculant added may be small because a viscous substance is produced by adding a microorganism using starch as a substrate to the granule sludge. The flocculant may be added continuously, but may be added intermittently. Further, the flocculant may be added before or after the starch.

あるいは、凝集剤の代わりに、または凝集剤に加えて硝酸または亜硝酸を、添加後の濃度が1〜1,000mg−N/Lとなるように添加反応槽または被処理液に添加してもよい。硝酸または亜硝酸は嫌気性脱窒微生物の基質となるため、反応槽20内に硝酸または亜硝酸を存在させることで脱窒微生物を増殖させることができる。そして、脱窒微生物は粘質物を生産することから、硝酸または亜硝酸の添加により反応槽20内で脱窒微生物が増殖することでグラニュール汚泥の強度を保持できる。なお、硝酸または亜硝酸としては硝酸溶液等に限らず、被処理液等に添加されると硝酸イオンまたは亜硝酸イオンを放出する物質、例えば硝酸塩または亜硝酸塩等を用いればよい。   Alternatively, instead of or in addition to the flocculant, nitric acid or nitrous acid may be added to the addition reaction tank or the liquid to be treated so that the concentration after addition becomes 1 to 1,000 mg-N / L. Good. Since nitric acid or nitrous acid serves as a substrate for anaerobic denitrifying microorganisms, the denitrifying microorganisms can be grown by the presence of nitric acid or nitrous acid in the reaction tank 20. And since the denitrification microorganisms produce mucilage, the strength of the granular sludge can be maintained by the growth of the denitrification microorganisms in the reaction tank 20 by the addition of nitric acid or nitrous acid. Nitric acid or nitrous acid is not limited to a nitric acid solution or the like, and a substance that releases nitrate ions or nitrite ions when added to a liquid to be treated, such as nitrate or nitrite, may be used.

硝酸または亜硝酸は、反応槽20前段で添加してもよく、反応槽20に直接添加してもよい。デンプン、硝酸または亜硝酸、および凝集剤の添加順序は特に限定されない。   Nitric acid or nitrous acid may be added before the reaction tank 20 or may be added directly to the reaction tank 20. The order of adding starch, nitric acid or nitrous acid, and the flocculant is not particularly limited.

反応槽20における嫌気性処理の好ましい条件は、上述したとおりである。反応槽20内では、有機物含有水中の有機物がグラニュール汚泥の働きにより分解され、メタンを含むガスが発生する。また、グラニュール汚泥は、有機物含有水を基質として増殖する。   Preferred conditions for the anaerobic treatment in the reaction tank 20 are as described above. In the reaction tank 20, organic substances in the organic substance-containing water are decomposed by the action of the granular sludge, and gas containing methane is generated. Granule sludge grows using organic substance-containing water as a substrate.

反応槽10で生成されたガスおよび増殖した汚泥を含む混合液は、GSS内部で気固液分離され、ガスはガス路33から反応槽20外に取り出されてガスホルダ30に貯留される。また、汚泥が分離され清澄化された液分は、処理液路32から反応槽20外に取り出される。処理液は、後段に設けた好気性生物処理装置(図示せず)等によりさらに処理してもよい。   The mixed liquid containing the gas generated in the reaction tank 10 and the grown sludge is gas-solid-liquid separated inside the GSS, and the gas is taken out of the reaction tank 20 from the gas path 33 and stored in the gas holder 30. Further, the liquid component separated and clarified from the sludge is taken out of the reaction tank 20 from the treatment liquid path 32. The treatment liquid may be further treated by an aerobic biological treatment apparatus (not shown) provided at a later stage.

〈実施例1〉
以下、実施例に基づき本発明をさらに詳しく説明する。実施例では、図1に示す処理装置1を模した実験装置に次に述べる性状の有機物含有水を導入し、嫌気性処理を行った。有機物含有水としては蒸発凝縮水を模した合成排水を用いた。具体的には、水道水にメタノールをCODcrとしての濃度が2,970mg/Lとなるように添加し、野菜エキスと肉エキスを1:1で混合した混合基質をCODcrとして30mg/L含み、さらに、窒素源としてNHClを30mg−N/L、リン源としてKHPOを5mg−P/L添加した合成排水である。
<Example 1>
Hereinafter, the present invention will be described in more detail based on examples. In the examples, anaerobic treatment was performed by introducing organic substance-containing water having the following properties into an experimental apparatus simulating the treatment apparatus 1 shown in FIG. As the organic substance-containing water, synthetic waste water imitating evaporative condensed water was used. Specifically, methanol is added to tap water so that the concentration as CODcr is 2,970 mg / L, and a mixed substrate in which vegetable extract and meat extract are mixed at a 1: 1 ratio includes 30 mg / L as CODcr, This is a synthetic waste water to which 30 mg-N / L of NH 4 Cl is added as a nitrogen source and 5 mg-P / L of KH 2 PO 4 is added as a phosphorus source.

反応槽20は、内径6cm、高さ1.2mでGSSが設置された部分を除く反応部12の容量は3L、GSS部を含めた部分の容量は4Lである。反応槽20内には、化学工場の既設のUASB式の反応槽から取り出したグラニュール汚泥(密度1.03〜1.1mm、粒径1.2〜1.5mm)を1.0L、充填することにより反応槽20の立ち上げを完了させた状態で実験を開始した。   The reaction tank 20 has an inner diameter of 6 cm, a height of 1.2 m, and the capacity of the reaction part 12 excluding the part where the GSS is installed is 3 L, and the capacity of the part including the GSS part is 4 L. The reaction tank 20 is filled with 1.0 L of granular sludge (density 1.03-1.1 mm, particle size 1.2-1.5 mm) taken out from the existing UASB-type reaction tank in the chemical factory. Thus, the experiment was started in a state where the start-up of the reaction vessel 20 was completed.

実施例1では、被処理液と混合した後の液体の澱粉濃度がCODcrとして90mg/Lの範囲内となるように、被処理液路31の途中に澱粉添加路12を接続することで上記合成排水に澱粉を添加した。反応槽20には、CODcr負荷10g−CODcr/L/d、汚泥負荷0.4〜0.7g−CODcr/g−VSS/dで合成排水を通水した。合成排水は、反応槽20内での上昇流速が3m/hとなるように通水し、グラニュール汚泥を展開させてスラッジブランケットを形成させた。反応槽20内の温度は30〜35℃に維持し、pH7.0となるようにpH調整を行った。pH調整は、pH調整剤槽(図示せず)に貯留したpH調整剤(酸、またはアルカリ)を、被処理液路31を流れる合成排水に適宜、添加することにより行った。   In Example 1, the synthesis is performed by connecting the starch addition path 12 in the middle of the liquid path 31 to be processed so that the starch concentration of the liquid after mixing with the liquid to be processed falls within the range of 90 mg / L as CODcr. Starch was added to the wastewater. Synthetic wastewater was passed through the reaction tank 20 at a CODcr load of 10 g-CODcr / L / d and a sludge load of 0.4 to 0.7 g-CODcr / g-VSS / d. The synthetic waste water was passed through so that the ascending flow rate in the reaction tank 20 was 3 m / h, and the sludge blanket was formed by developing the granular sludge. The temperature in the reaction vessel 20 was maintained at 30 to 35 ° C., and the pH was adjusted to be pH 7.0. The pH adjustment was performed by appropriately adding a pH adjuster (acid or alkali) stored in a pH adjuster tank (not shown) to the synthetic waste water flowing in the liquid to be treated 31.

ここで、澱粉は、あらかじめアルファ化してある粉体を水に溶解させた液体として、被処理液路31に添加した。   Here, the starch was added to the liquid channel 31 to be treated as a liquid obtained by dissolving a pre-gelatinized powder in water.

反応槽20から取り出された処理液のCODcr濃度は40〜80mg/Lであり、CODcr除去率は97%以上であった。また、グラニュール汚泥が展開されて形成されるスラッジブランケットの上端(汚泥界面)高さの低下は認められず、90日の実験期間中、継続して、処理開始時のグラニュール汚泥量以上の量のグラニュール汚泥を反応槽20内に維持できた。このとき、グラニュール汚泥の平均粒径も小さくならず、グラニュール汚泥の崩壊を防止できた。   The CODcr concentration of the treatment liquid taken out from the reaction tank 20 was 40 to 80 mg / L, and the CODcr removal rate was 97% or more. In addition, no decrease in the height of the upper end (sludge interface) of the sludge blanket formed by the development of the granule sludge was observed, and during the 90-day experiment period, the amount of granule sludge exceeded the amount at the start of treatment. An amount of granular sludge could be maintained in the reactor 20. At this time, the average particle size of the granular sludge was not reduced, and the granule sludge could be prevented from collapsing.

〈実施例2〉
実施例2として図2に示す処理装置2を用いて、合成排水に凝集剤をさらに添加した。凝集剤としては、カチオン系の高分子凝集剤(ポリアミノアルキルアクリレート)を用い、その添加量は凝集剤と被処理液とを混合した後の濃度が0.03mg/Lとなるようにした。その他は実施例1と同様にして実験を行ったところ、処理液のCODcr濃度は40〜80mg/Lであり、CODcr除去率は97%以上であった。また、反応槽20内のグラニュール汚泥量は減少せず、平均粒径も小さくならず、密度低下も認められなかった。
<Example 2>
The flocculant was further added to the synthetic waste water using the processing apparatus 2 shown in FIG. As the flocculant, a cationic polymer flocculant (polyaminoalkyl acrylate) was used, and the amount added was such that the concentration after the flocculant and the liquid to be treated were mixed was 0.03 mg / L. When the experiment was conducted in the same manner as in Example 1, the CODcr concentration of the treatment liquid was 40 to 80 mg / L, and the CODcr removal rate was 97% or more. Further, the amount of granular sludge in the reaction tank 20 was not reduced, the average particle size was not reduced, and no decrease in density was observed.

〈実施例3〉
実施例3として図2に示す処理装置2を用い、凝集剤に代えて硝酸(硝酸ナトリウム溶液)を添加した。硝酸の添加量は、硝酸ナトリウム溶液と被処理液とを混合した後の硝酸の濃度が20mg−N/Lとなるようにした。実施例3では、処理液のCODcr濃度は40〜80mg/Lであり、CODcr除去率は97%以上であった。また、反応槽20内のグラニュール汚泥量は減少せず、平均粒径も小さくならず、密度低下も認められなかった。
<Example 3>
2 was used as Example 3, and nitric acid (sodium nitrate solution) was added instead of the flocculant. The amount of nitric acid added was such that the concentration of nitric acid after mixing the sodium nitrate solution and the liquid to be treated was 20 mg-N / L. In Example 3, the CODcr concentration of the treatment liquid was 40 to 80 mg / L, and the CODcr removal rate was 97% or more. Further, the amount of granular sludge in the reaction tank 20 was not reduced, the average particle size was not reduced, and no decrease in density was observed.

〈実施例4〉
実施例4として凝集剤と硝酸とを、反応槽20前段で合成排水にさらに添加した。すなわち、実施例4では、硝酸、凝集剤、および澱粉を合成排水に添加している。凝集剤、およびデンプンの種類、および添加量は、それぞれ実施例2、実施例3と同様であり、その他の条件は実施例1と同様である。実施例4では、処理液のCODcr濃度は40〜80mg/Lであり、CODcr除去率は97%以上であった。また、反応槽20内のグラニュール汚泥量は減少せず、平均粒径も小さくならず、密度低下も認められなかった。
<Example 4>
In Example 4, a flocculant and nitric acid were further added to the synthetic waste water in the previous stage of the reaction tank 20. That is, in Example 4, nitric acid, a flocculant, and starch are added to the synthetic waste water. The type and amount of the flocculant and starch are the same as in Example 2 and Example 3, respectively, and other conditions are the same as in Example 1. In Example 4, the CODcr concentration of the treatment liquid was 40 to 80 mg / L, and the CODcr removal rate was 97% or more. Further, the amount of granular sludge in the reaction tank 20 was not reduced, the average particle size was not reduced, and no decrease in density was observed.

〈比較例1〉
比較例1では、澱粉を添加しない以外は実施例1と同様の条件で実験を行った。その結果、反応槽20内のグラニュール汚泥量がわずかずつ減少し、その粒径も低下した。
<Comparative example 1>
In Comparative Example 1, the experiment was performed under the same conditions as in Example 1 except that no starch was added. As a result, the amount of granular sludge in the reaction tank 20 decreased little by little, and its particle size also decreased.

実施例1〜4および比較例1により、本発明によればデンプンを添加することでグラニュール汚泥の崩壊を防止できることが示された。   Examples 1-4 and Comparative Example 1 show that according to the present invention, the addition of starch can prevent the granular sludge from collapsing.

本発明は、製紙工場等から排出される蒸発濃縮液等のメタノールを主成分とする有機物含有水の処理に好適に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for the treatment of organic substance-containing water whose main component is methanol, such as an evaporative concentrate discharged from a paper mill or the like.

本発明の第1実施形態に係る生物処理装置の模式図。The schematic diagram of the biological treatment apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る生物処理装置の模式図。The schematic diagram of the biological treatment apparatus which concerns on 2nd Embodiment of this invention. 実施例および比較例の結果を示す図。The figure which shows the result of an Example and a comparative example. 実施例および比較例の結果を示す図。The figure which shows the result of an Example and a comparative example.

符号の説明Explanation of symbols

1、2 嫌気性処理装置
11 澱粉貯槽
12 澱粉添加路
20 反応槽
22 反応部
24 スラッジブランケット
30 ガスホルダ
31 被処理液路
32 処理液路
33 ガス路
41 凝集剤貯槽
42 凝集剤路
DESCRIPTION OF SYMBOLS 1, 2 Anaerobic processing apparatus 11 Starch storage tank 12 Starch addition path 20 Reaction tank 22 Reaction part 24 Sludge blanket 30 Gas holder 31 Processed liquid path 32 Treatment liquid path 33 Gas path 41 Coagulant storage tank 42 Coagulant storage path 42

Claims (7)

グラニュール汚泥を保持する反応槽に、被処理液を導入してグラニュール汚泥と接触させ嫌気性処理を行う方法において、
前記被処理液の炭素数4以下の有機物の含有量が全有機物含有量の70質量%以上である場合、前記被処理液がキレート剤、スケール分散剤、殺菌剤からなる群より選ばれる1以上の剤を含む場合、または前記反応槽への汚泥負荷0.3kgCODcr/kg−Vss/dを超えるか前記反応槽内の上昇流速が1m/hを超える場合、
前記反応槽または前記被処理液に糖質を添加して前記被処理液をグラニュール汚泥と接触させて嫌気性処理を行う嫌気性処理方法。
In the method of introducing the liquid to be treated into the reaction tank holding the granule sludge and bringing it into contact with the granule sludge and performing anaerobic treatment,
When the content of the organic substance having 4 or less carbon atoms in the liquid to be treated is 70% by mass or more of the total organic substance content, the liquid to be treated is one or more selected from the group consisting of a chelating agent, a scale dispersant, and a bactericide. Or when the sludge load on the reaction tank exceeds 0.3 kg CODcr / kg-Vss / d or the rising flow rate in the reaction tank exceeds 1 m / h,
An anaerobic treatment method for performing anaerobic treatment by adding a saccharide to the reaction vessel or the liquid to be treated and bringing the liquid to be treated into contact with granular sludge.
前記被処理液は、パルプ製造過程で排出された蒸発凝縮水である請求項1に記載の嫌気性処理方法。   The anaerobic treatment method according to claim 1, wherein the liquid to be treated is evaporated condensed water discharged in a pulp manufacturing process. 前記糖質は澱粉である請求項1または2に記載の嫌気性処理方法。   The anaerobic treatment method according to claim 1, wherein the carbohydrate is starch. 前記糖質として、アルファ化させた澱粉を添加する請求項3に記載の嫌気性処理方法。   The anaerobic treatment method according to claim 3, wherein pregelatinized starch is added as the carbohydrate. 前記被処理液のCODcr濃度に対して前記澱粉の添加量がCODcr比として0.02〜0.2となるように添加を行う請求項3または4に記載の嫌気性処理方法。   The anaerobic treatment method according to claim 3 or 4, wherein the starch is added so that an amount of the starch added is 0.02 to 0.2 as a CODcr ratio with respect to the CODcr concentration of the liquid to be treated. 前記反応槽内に、凝集剤を供給しながら嫌気性処理を行う請求項1から5のいずれかに記載の嫌気性処理方法。   The anaerobic treatment method according to any one of claims 1 to 5, wherein the anaerobic treatment is performed while supplying a flocculant into the reaction tank. 前記被処理液は、パルプ製造過程で排出された蒸発凝縮水であり、
前記反応槽または前記被処理液に硝酸または亜硝酸を、添加後の濃度が1〜1000mg/Lとなるように添加して嫌気性処理を行う請求項3から6のいずれかに記載の嫌気性処理方法。
The liquid to be treated is evaporated condensed water discharged in the pulp manufacturing process,
The anaerobic treatment according to any one of claims 3 to 6, wherein the anaerobic treatment is performed by adding nitric acid or nitrous acid to the reaction tank or the liquid to be treated so that the concentration after addition becomes 1 to 1000 mg / L. Processing method.
JP2007126596A 2007-05-11 2007-05-11 Anaerobic treatment method and anaerobic treatment apparatus Active JP5261977B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2007126596A JP5261977B2 (en) 2007-05-11 2007-05-11 Anaerobic treatment method and anaerobic treatment apparatus
PCT/JP2008/055003 WO2008139779A1 (en) 2007-05-11 2008-03-18 Method of anaerobic treatment and anaerobic treatment apparatus
CN201110279363XA CN102358641B (en) 2007-05-11 2008-03-18 Anaerobic treatment method
CA 2687228 CA2687228A1 (en) 2007-05-11 2008-03-18 Anaerobic treatment method and anaerobic treatment apparatus
CN2008800156417A CN101679085B (en) 2007-05-11 2008-03-18 Method of anaerobic treatment and anaerobic treatment apparatus
EP20110187701 EP2428492A1 (en) 2007-05-11 2008-03-18 Anaerobic treatment method and anaerobic treatment apparatus
EP20080722397 EP2157057B1 (en) 2007-05-11 2008-03-18 Method of anaerobic treatment
US12/591,163 US7972511B2 (en) 2007-05-11 2009-11-10 Anaerobic treatment method and anaerobic treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126596A JP5261977B2 (en) 2007-05-11 2007-05-11 Anaerobic treatment method and anaerobic treatment apparatus

Publications (3)

Publication Number Publication Date
JP2008279385A true JP2008279385A (en) 2008-11-20
JP2008279385A5 JP2008279385A5 (en) 2010-06-03
JP5261977B2 JP5261977B2 (en) 2013-08-14

Family

ID=40140666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126596A Active JP5261977B2 (en) 2007-05-11 2007-05-11 Anaerobic treatment method and anaerobic treatment apparatus

Country Status (1)

Country Link
JP (1) JP5261977B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255067A (en) * 2008-03-26 2009-11-05 Kobelco Eco-Solutions Co Ltd Method for processing waste water
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2011011171A (en) * 2009-07-03 2011-01-20 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP2012183539A (en) * 2012-06-01 2012-09-27 Kobelco Eco-Solutions Co Ltd Wastewater treatment method
JP2013056321A (en) * 2011-09-09 2013-03-28 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP2013059729A (en) * 2011-09-14 2013-04-04 Swing Corp Device for anaerobic treatment of organic waste water
JP2014133211A (en) * 2013-01-10 2014-07-24 Swing Corp Anaerobic treatment method and anaerobic treatment apparatus
CN115259367A (en) * 2022-07-26 2022-11-01 上海净豚环保科技有限公司 Method for proliferating and culturing anaerobic granular sludge for food wastewater
WO2023158160A1 (en) * 2022-02-17 2023-08-24 주식회사 부강테크 Apparatus and method for accelerating sludge granulation

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774083A (en) * 1980-08-18 1982-05-10 Unisearch Ltd Method and apparatus for decomposing organic substance by anaerobic bacteria
JPS57187099A (en) * 1981-05-13 1982-11-17 Idemitsu Kosan Co Ltd Preventing method for generation of hydrogen sulfide occuring in microbes
JPS58107200A (en) * 1981-12-07 1983-06-25 サンコ−ル・インコ−ポレ−テツド Production of starch coagulant with improved efficiency
JPS6354997A (en) * 1986-08-25 1988-03-09 Kurita Water Ind Ltd Anaerobic treatment
JPS6458398A (en) * 1987-08-31 1989-03-06 Eiji Fujisawa Drain treatment method
JPH0584499A (en) * 1991-09-27 1993-04-06 Kanzaki Paper Mfg Co Ltd Method for methane-fermenting kraft pulp waste water
JPH06154785A (en) * 1992-11-16 1994-06-03 Kurita Water Ind Ltd High temperature anaerobic processing method and device
JPH06228896A (en) * 1993-02-04 1994-08-16 Mitsubishi Paper Mills Ltd Treatment of stripping gas
JPH10314787A (en) * 1997-05-16 1998-12-02 Mitsubishi Heavy Ind Ltd Method for treatment of waste water containing ethanolamine
JP2001121158A (en) * 1999-10-29 2001-05-08 Ebara Corp Flocculation auxiliary for water purification treatment and production thereof and coagulation treatment and treatment apparatus thereof
JP2001137889A (en) * 1999-11-18 2001-05-22 Kurita Water Ind Ltd Method and device for anaerobic treatment
JP2002273453A (en) * 2001-03-16 2002-09-24 Ebara Corp Method and device for removing phosphor in water
JP2003094096A (en) * 2001-09-26 2003-04-02 Mitsubishi Heavy Ind Ltd Method for treating organic waste, apparatus therefor, and sludge
JP2003145168A (en) * 2001-11-07 2003-05-20 Ebara Corp Flocculation and solid-liquid separation method for aqueous suspension and apparatus adapted thereto
JP2003213584A (en) * 2002-01-15 2003-07-30 Masahiro Izutsu Method for using lignocellulose-based biomass
JP2004000955A (en) * 2002-04-22 2004-01-08 Kurita Water Ind Ltd Method for anaerobic treatment
JP2008086862A (en) * 2006-09-29 2008-04-17 Nippon Paper Industries Co Ltd Anaerobic treatment method and arrangement

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5774083A (en) * 1980-08-18 1982-05-10 Unisearch Ltd Method and apparatus for decomposing organic substance by anaerobic bacteria
JPS57187099A (en) * 1981-05-13 1982-11-17 Idemitsu Kosan Co Ltd Preventing method for generation of hydrogen sulfide occuring in microbes
JPS58107200A (en) * 1981-12-07 1983-06-25 サンコ−ル・インコ−ポレ−テツド Production of starch coagulant with improved efficiency
JPH03198800A (en) * 1981-12-07 1991-08-29 Suncor Inc Use of starch flocculant improved in efficiency
JPS6354997A (en) * 1986-08-25 1988-03-09 Kurita Water Ind Ltd Anaerobic treatment
JPS6458398A (en) * 1987-08-31 1989-03-06 Eiji Fujisawa Drain treatment method
JPH0584499A (en) * 1991-09-27 1993-04-06 Kanzaki Paper Mfg Co Ltd Method for methane-fermenting kraft pulp waste water
JPH06154785A (en) * 1992-11-16 1994-06-03 Kurita Water Ind Ltd High temperature anaerobic processing method and device
JPH06228896A (en) * 1993-02-04 1994-08-16 Mitsubishi Paper Mills Ltd Treatment of stripping gas
JPH10314787A (en) * 1997-05-16 1998-12-02 Mitsubishi Heavy Ind Ltd Method for treatment of waste water containing ethanolamine
JP2001121158A (en) * 1999-10-29 2001-05-08 Ebara Corp Flocculation auxiliary for water purification treatment and production thereof and coagulation treatment and treatment apparatus thereof
JP2001137889A (en) * 1999-11-18 2001-05-22 Kurita Water Ind Ltd Method and device for anaerobic treatment
JP2002273453A (en) * 2001-03-16 2002-09-24 Ebara Corp Method and device for removing phosphor in water
JP2003094096A (en) * 2001-09-26 2003-04-02 Mitsubishi Heavy Ind Ltd Method for treating organic waste, apparatus therefor, and sludge
JP2003145168A (en) * 2001-11-07 2003-05-20 Ebara Corp Flocculation and solid-liquid separation method for aqueous suspension and apparatus adapted thereto
JP2003213584A (en) * 2002-01-15 2003-07-30 Masahiro Izutsu Method for using lignocellulose-based biomass
JP2004000955A (en) * 2002-04-22 2004-01-08 Kurita Water Ind Ltd Method for anaerobic treatment
JP2008086862A (en) * 2006-09-29 2008-04-17 Nippon Paper Industries Co Ltd Anaerobic treatment method and arrangement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012065107; 飯島夕子: '「紙パルプ産業におけるメタン発酵の利用」' 紙パルプ技術タイムス , 200406, p.25〜p.29 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255067A (en) * 2008-03-26 2009-11-05 Kobelco Eco-Solutions Co Ltd Method for processing waste water
JP2010274207A (en) * 2009-05-29 2010-12-09 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2011011171A (en) * 2009-07-03 2011-01-20 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP2013056321A (en) * 2011-09-09 2013-03-28 Japan Organo Co Ltd Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP2013059729A (en) * 2011-09-14 2013-04-04 Swing Corp Device for anaerobic treatment of organic waste water
JP2012183539A (en) * 2012-06-01 2012-09-27 Kobelco Eco-Solutions Co Ltd Wastewater treatment method
JP2014133211A (en) * 2013-01-10 2014-07-24 Swing Corp Anaerobic treatment method and anaerobic treatment apparatus
WO2023158160A1 (en) * 2022-02-17 2023-08-24 주식회사 부강테크 Apparatus and method for accelerating sludge granulation
CN115259367A (en) * 2022-07-26 2022-11-01 上海净豚环保科技有限公司 Method for proliferating and culturing anaerobic granular sludge for food wastewater
CN115259367B (en) * 2022-07-26 2023-11-17 上海净豚环保科技有限公司 Proliferation and bacteria cultivation method of anaerobic granular sludge for food wastewater

Also Published As

Publication number Publication date
JP5261977B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5261977B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
Yellezuome et al. Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: A review
Show et al. Anaerobic granulation: A review of granulation hypotheses, bioreactor designs and emerging green applications
US7972511B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
US5853589A (en) Advanced biological phosphorus removal using a series of sequencing batch reactors
JP5303862B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
JP2008036529A (en) Method and apparatus for treating wastewater by methane fermentation
Wang et al. A hybrid two-phase system for anaerobic digestion of food waste
JP5685902B2 (en) Organic wastewater treatment method
WO2019214839A1 (en) Method for operating a wastewater treatment plant for phosphorus treatment of effluent
Roibás-Rozas et al. Strategies for the valorisation of a protein-rich saline waste stream into polyhydroxyalkanoates (PHA)
JP2012210584A (en) Method for treating kraft pulp wastewater
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
Deng et al. Energy-neutral municipal wastewater treatment based on partial denitrification-anammox driven by side-stream sulphide
Li et al. Nitrogen removal of thermal hydrolysis-anaerobic digestion liquid: A review
JP2007196095A (en) Organic waste treatment method and apparatus
JP4193310B2 (en) Anaerobic treatment method
JP2012000557A (en) Anaerobic treatment method and anaerobic treatment apparatus
JP2006255538A (en) Method and apparatus for treatment of food waste
JP2006281035A (en) Apparatus and method for treating organic waste
JP4893647B2 (en) Method and apparatus for treating water containing organic matter
JP7150899B2 (en) Anaerobic treatment apparatus and anaerobic treatment method
JP2008279384A (en) Anaerobic treatment apparatus for paper industry sewage
NL1025346C2 (en) A method for treating organic sludge.
JP4596533B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5261977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250