JP5685902B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method Download PDF

Info

Publication number
JP5685902B2
JP5685902B2 JP2010261353A JP2010261353A JP5685902B2 JP 5685902 B2 JP5685902 B2 JP 5685902B2 JP 2010261353 A JP2010261353 A JP 2010261353A JP 2010261353 A JP2010261353 A JP 2010261353A JP 5685902 B2 JP5685902 B2 JP 5685902B2
Authority
JP
Japan
Prior art keywords
carrier
reaction tank
granules
organic
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010261353A
Other languages
Japanese (ja)
Other versions
JP2012110821A (en
Inventor
孝明 徳富
孝明 徳富
秀彰 進藤
秀彰 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010261353A priority Critical patent/JP5685902B2/en
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to CN201410163549.2A priority patent/CN103936147B/en
Priority to SG10201401598RA priority patent/SG10201401598RA/en
Priority to SG2013038872A priority patent/SG190348A1/en
Priority to US13/885,946 priority patent/US9096448B2/en
Priority to CN201180056761.3A priority patent/CN103228580B/en
Priority to KR1020187028721A priority patent/KR20180113635A/en
Priority to KR20137011868A priority patent/KR20130132796A/en
Priority to PCT/JP2011/076488 priority patent/WO2012070459A1/en
Priority to MYPI2013001872A priority patent/MY158496A/en
Priority to TW100142898A priority patent/TWI585047B/en
Publication of JP2012110821A publication Critical patent/JP2012110821A/en
Application granted granted Critical
Publication of JP5685902B2 publication Critical patent/JP5685902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は有機性排水の処理方法に係り、詳しくは、有機物を含有する廃水を、非生物担体を保持する反応槽に通水して該担体に付着した嫌気性微生物により生物学的に処理する方法において、運転開始に際して担体への微生物の付着を促進して担体表面に活性の高い生物膜を早期に形成させることにより、装置の立ち上げに要する時間を大幅に短縮すると共に、装置の立ち上げ後においても効率的な処理を行う有機性排水の処理方法に関する。   The present invention relates to a method for treating organic wastewater, and more specifically, wastewater containing organic matter is passed through a reaction tank holding a non-biological carrier and biologically treated by anaerobic microorganisms attached to the carrier. In the method, the start-up time of the apparatus is greatly reduced by promoting the attachment of microorganisms to the support at the start of operation and forming a highly active biofilm on the support surface at an early stage. The present invention also relates to a method for treating organic wastewater that performs efficient treatment later.

有機物を含有する廃水(有機性廃水)の処理方法として、メタンガスの回収、再利用が可能な嫌気処理法は、広く産業廃水の処理方法として用いられている。中でも、高密度で沈降性の大きいグラニュール汚泥を形成し、溶解性BODを含む有機性廃水を上向流通液して、スラッジブランケットを形成した状態で接触させて高負荷高速処理を行うUASB(Upflow Anaerobic Sludge Blanket:上向流嫌気性スラッジブランケット)法は、特に中〜高濃度廃水を処理する方法として発展してきた。また、このUASB法を発展させたものとして、高さの高い反応槽を用いてさらに高流速で通液し、スラッジブランケットを高展開率で展開させて、さらに高負荷で嫌気性処理を行うEGSB(Expanded Granule Sludge Blanket)法も実用化されている。   Anaerobic treatment methods capable of recovering and reusing methane gas are widely used as methods for treating industrial wastewater as methods for treating wastewater containing organic matter (organic wastewater). Above all, UASB which forms high-density and sludge granular sludge, organic waste water containing soluble BOD is circulated upward, and in contact with sludge blanket to perform high load high speed processing. The Upflow Anaerobic Sludge Blanket method has been developed as a method for treating medium to high concentration wastewater. In addition, as a further development of this UASB method, EGSB is used to conduct an anaerobic treatment at a higher load by passing a liquid at a higher flow rate using a reaction vessel with a higher height, developing a sludge blanket at a higher expansion rate. The (Expanded Granule Sludge Blanket) method has also been put into practical use.

これらのグラニュールを用いた処理方法は、主に高濃度廃水に適用されており、通常、CODCr濃度として2000mg/L以下程度の低濃度廃水には適用されていない。これは、グラニュールを用いた反応槽では、グラニュールが反応槽から流出してしまう可能性があり、低濃度廃水ではグラニュールの流出量が槽内での増殖量を上回る場合が多く、グラニュールを反応槽内に長期間維持することが難しいためである。 Treatment method using these granules is mainly applied to a high concentration wastewater, usually in low concentrations wastewater degree 2000 mg / L or less as COD Cr concentration not applied. This is because granule may flow out of the reaction tank in the reaction tank, and in low-concentration wastewater, the amount of granule outflow often exceeds the amount of growth in the tank. This is because it is difficult to maintain the catalyst in the reaction tank for a long period of time.

従来、低濃度廃水に対しては、グラニュールではなく、固定床や流動床担体を使用する方法が適用されてきた。固定床担体は生物膜を保持する支持床を反応槽内部に固定し、その表面に生育する微生物を利用するものであり、流動床担体は比重や大きさを調整した担体を反応槽内部で流動させて、担体表面に形成される生物膜を用いて処理を行うものである。   Conventionally, a method using a fixed bed or a fluidized bed carrier instead of granules has been applied to low-concentration wastewater. The fixed bed carrier uses a microorganism that grows on the surface of the reaction bed that holds the biofilm on the inside of the reaction vessel. The fluidized bed carrier allows a carrier with adjusted specific gravity and size to flow inside the reaction vessel. Then, the treatment is performed using the biofilm formed on the surface of the carrier.

固定床担体、流動床担体を問わず、非生物担体を用いる場合には、担体への微生物の付着に時間がかかり、結果として装置の立ち上げに多大な時間を要するという大きな欠点があった。従来、装置の立ち上げに際しては、分散状態の種汚泥を担体を保持する反応槽内に投入して種汚泥が流出しないように通水量を抑えた条件で立ち上げ運転を行い、生物膜が担体表面に形成されるのを待って通常運転を行う方法が取られてきたが、この方法では、例えば後掲の比較例1に示されるように、装置の立ち上げに90日もの長い時間を必要とする。   When a non-biological carrier is used regardless of whether it is a fixed bed carrier or a fluidized bed carrier, it takes a long time to attach microorganisms to the carrier, and as a result, there is a great drawback that it takes a lot of time to start up the apparatus. Conventionally, when starting up an apparatus, the seed sludge in a dispersed state is put into a reaction tank holding a carrier and the operation is started under a condition that the water flow rate is suppressed so that the seed sludge does not flow out. A method of performing normal operation after waiting for formation on the surface has been taken. In this method, for example, as shown in Comparative Example 1 described later, it takes 90 days to start up the apparatus. And

特許文献1には、担体とグラニュールとが混在したミックスベッド式の反応槽が提案されているが、この特許文献1に記載される反応槽は、常に反応槽内に担体とグラニュールとが混在したミックスベッドを形成するものであり、反応槽内のグラニュールが解体、分散化しないような制約された条件で運転を行う必要がある。   Patent Document 1 proposes a mixed-bed type reaction tank in which a carrier and granules are mixed. However, the reaction tank described in Patent Document 1 always has a carrier and granules in the reaction tank. The mixed bed is formed, and it is necessary to operate under restricted conditions so that the granules in the reaction tank are not disassembled or dispersed.

特許文献2には、UASB法による処理において、装置立ち上げ時に反応槽から流出した汚泥を反応槽に返送するために、反応槽の後段に設置した担体カラム槽内の担体に流出汚泥を付着させて反応槽に返送することが記載されているが、装置立ち上げ時の反応槽内の担体への微生物の付着を促進するものではない。   In Patent Document 2, in the treatment by the UASB method, in order to return the sludge flowing out from the reaction tank to the reaction tank when the apparatus is started up, the outflow sludge is attached to the carrier in the carrier column tank installed at the rear stage of the reaction tank. However, it does not promote the adhesion of microorganisms to the carrier in the reaction tank when the apparatus is started up.

また、特許文献3には、UASB法による処理において、ブランケット部に高吸水性高分子ヒドロゲル粒子を存在させておくことにより、立ち上げ時のグラニュールの形成を促進することが記載されているが、この方法も、固定床や流動床担体を使用する方法において、担体への微生物の付着を促進するものではない。   Patent Document 3 describes that in the treatment by the UASB method, the formation of granules at the time of startup is promoted by allowing superabsorbent polymer hydrogel particles to be present in the blanket part. This method also does not promote adhesion of microorganisms to the carrier in a method using a fixed bed or a fluidized bed carrier.

なお、特許文献4の実施例に記載されるように、UASB法において、反応槽の立ち上げ時に他系統のUASB反応槽から得られたグラニュール汚泥を種汚泥として投入することは行われているが、固定床や流動床担体を使用する方法において、反応槽の立ち上げ時にグラニュール汚泥を投入することは行われていない。   In addition, as described in the Examples of Patent Document 4, in the UASB method, it is performed that the granular sludge obtained from the UASB reaction tank of another system is used as seed sludge when the reaction tank is started up. However, in the method using a fixed bed or a fluidized bed carrier, granule sludge is not introduced when the reaction tank is started up.

特開平9−75982号公報Japanese Patent Laid-Open No. 9-75982 特開平3−109998号公報JP-A-3-109998 特開平7−39896号公報Japanese Patent Laid-Open No. 7-39896 特開2002−172399号公報JP 2002-172399 A

本発明は、有機物を含有する廃水を、非生物担体を保持する反応槽に通水して該担体に付着した嫌気性微生物により生物学的に処理する方法において、運転開始に際して担体への微生物の付着を促進して担体表面に活性の高い生物膜を早期に形成させることにより、装置の立ち上げに要する時間を大幅に短縮すると共に、装置の立ち上げ後においても効率的な処理を行うことができる有機性排水の処理方法を提供することを課題とする。   The present invention relates to a method of biologically treating wastewater containing organic matter through an anaerobic microorganism adhering to a non-biological carrier holding a non-biological carrier and starting the operation, By promoting adhesion and forming a highly active biofilm on the surface of the carrier at an early stage, the time required to start up the device can be greatly reduced, and efficient processing can be performed even after the device is started up. It is an object to provide a method for treating organic wastewater.

本発明者らは、上記課題を解決すべく検討を重ねた結果、非生物担体を保持する反応槽の立ち上げに際して、該反応槽に、種汚泥としてメタン菌グラニュールを非生物担体に対して所定の割合で添加し、運転開始初期のみ反応槽内にメタン菌グラニュールを存在させ、その後はメタン菌グラニュールを解体、分散化させるような運転条件を採用することにより、上記課題を解決することができることを見出した。   As a result of repeated investigations to solve the above problems, the present inventors have established a reaction tank for holding a non-biological support, in which the methanogenic granules as seed sludge are added to the non-biological support. The above problem is solved by adding operation at a predetermined ratio, allowing methane bacteria granules to be present in the reaction tank only at the beginning of operation, and then disassembling and dispersing the methane bacteria granules. I found that I can do it.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] 有機物を含有する廃水を、非生物担体を保持する反応槽に通水して該担体に付着した嫌気性微生物により生物学的に処理する有機性排水の処理方法において、該反応槽の立ち上げに際して、該反応槽に非生物担体とメタン菌グラニュールとを、非生物担体とメタン菌グラニュールの体積比が100:5〜100:500の範囲で存在させた状態で該有機性廃水の通水を開始し、その後、有機性廃水の通水を継続することにより、該反応槽内のメタン菌グラニュールの少なくとも一部を解体、分散化させる方法であって、該非生物担体が樹脂製担体であり、該メタン菌グラニュールの平均粒径が0.5〜3.0mmであることを特徴とする有機性排水の処理方法。 [1] An organic wastewater treatment method in which wastewater containing organic matter is passed through a reaction vessel holding a non-biological carrier and biologically treated by anaerobic microorganisms attached to the carrier. At the time of start-up, the organic wastewater in a state where the non-biological carrier and the methane bacterium granules are present in the reaction tank in a volume ratio of 100: 5 to 100: 500. And then discontinuing at least a part of the Methane granules in the reaction tank by continuing the flow of organic waste water, wherein the non-biological carrier is a resin. A method for treating organic waste water, which is a carrier made from the methane bacterium granule and has an average particle diameter of 0.5 to 3.0 mm .

[2] [1]において、前記有機性排水の有機物濃度が2000mg−CODCr/L以下であることを特徴とする有機性排水の処理方法。 [2] The organic wastewater treatment method according to [1], wherein the organic wastewater has an organic substance concentration of 2000 mg-COD Cr / L or less.

[3] [1]又は[2]において、前記反応槽は流動床式反応槽であり、前記有機性排水は該反応槽に上向流で通水されることを特徴とする有機性排水の処理方法。 [3] In [1] or [2], the reaction tank is a fluidized bed type reaction tank, and the organic waste water is passed through the reaction tank in an upward flow. Processing method.

[4] [1]ないし[3]のいずれかにおいて、該反応槽の汚泥負荷が0.8〜3.0kg−CODCr/kg−VSS/dayであることを特徴とする有機性排水の処理方法。 [4] In any one of [1] to [3], the sludge load of the reaction tank is 0.8 to 3.0 kg-COD Cr / kg-VSS / day, Method.

本発明によれば、有機物を含有する廃水を、非生物担体を保持する反応槽に通水して該担体に付着した嫌気性微生物により生物学的に処理する方法において、運転開始に際して担体への微生物の付着を促進して担体表面に活性の高い生物膜を早期に形成させることにより、装置の立ち上げに要する時間を大幅に短縮すると共に、装置の立ち上げ後においても効率的な処理を行うことができる。   According to the present invention, in a method in which wastewater containing organic matter is passed through a reaction tank holding a non-biological carrier and biologically treated with anaerobic microorganisms attached to the carrier, By facilitating the attachment of microorganisms and forming a highly active biofilm on the surface of the carrier at an early stage, the time required for starting up the device is greatly reduced and efficient processing is performed even after the device is started up. be able to.

即ち、反応槽の立ち上げに際して反応槽に投入されたメタン菌グラニュールは、有機性排水の通水を継続することにより徐々に肥大化ないし解体し、浮上、分散、分解等により反応槽から流出して消失するが、運転開始初期においては、有機性排水のCOD成分の分解に寄与すると同時に種汚泥として担体表面への微生物の付着を促進する。   In other words, the methane bacteria granules introduced into the reaction tank at the start-up of the reaction tank are gradually enlarged or dismantled by continuing the flow of organic waste water, and flow out of the reaction tank by floating, dispersion, decomposition, etc. However, at the initial stage of operation, it contributes to the decomposition of the COD component of the organic waste water, and at the same time promotes the adhesion of microorganisms to the carrier surface as seed sludge.

このため、担体表面への微生物の付着が十分でない運転開始初期においては、メタン菌グラニュール自体の作用で有機性排水のCOD成分の分解が行われると共に、担体表面への微生物の付着が促進され、担体表面に十分量の微生物が担持された後は、メタン菌グラニュールの解体、分散化でメタン菌グラニュールが反応槽から流出しても、この微生物担持担体によりCOD成分の分解が行われるようになる。   For this reason, in the initial stage of operation where the microorganisms are not sufficiently adhered to the carrier surface, the COD component of the organic waste water is decomposed by the action of the methane bacteria granules themselves, and the adhesion of microorganisms to the carrier surface is promoted. After a sufficient amount of microorganisms are supported on the surface of the carrier, even if the methane bacteria granules flow out of the reaction vessel due to disassembly and dispersion of the methane bacteria granules, the microorganism-supported carrier decomposes the COD components. It becomes like this.

本発明の処理自体は、グラニュールによるものではなく、担体を使用する方法であるため、反応槽内のメタン菌グラニュールが経時により解体、分散化して流出しないような条件で運転を行う必要はなく、高負荷運転を行うことができる。   The treatment itself of the present invention is not based on granules, but is a method that uses a carrier, and therefore it is necessary to operate under conditions such that the methane bacteria granules in the reaction tank are disassembled and dispersed over time and do not flow out. And high load operation can be performed.

このようなことから、本発明によれば、装置の立ち上げに要する時間を大幅に短縮すると共に、装置の立ち上げ後においては効率的な処理を行うことが可能となる。   For this reason, according to the present invention, it is possible to significantly reduce the time required for starting up the apparatus and to perform efficient processing after the apparatus is started up.

実施例で用いた生物処理装置の構成を示す系統図である。It is a systematic diagram which shows the structure of the biological treatment apparatus used in the Example. 実施例1及び比較例1における処理能力の経時変化を示すグラフである。6 is a graph showing changes in processing capacity with time in Example 1 and Comparative Example 1.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の有機性排水の処理方法は、有機物を含有する廃水を、非生物担体を保持する反応槽に通水して該担体に付着した嫌気性微生物により生物学的に処理する有機性排水の処理方法において、該反応槽の立ち上げに際して、該反応槽に非生物担体とメタン菌グラニュールとを、非生物担体とメタン菌グラニュールの体積比が100:5〜100:500の範囲で存在させた状態で該有機性廃水の通水を開始し、その後、有機性廃水の通水を継続することにより、該反応槽内のメタン菌グラニュールの少なくとも一部を解体、分散化させることを特徴とする。   The organic wastewater treatment method of the present invention is an organic wastewater treatment method in which wastewater containing organic matter is passed through a reaction tank holding a non-biological carrier and biologically treated by anaerobic microorganisms attached to the carrier. In the treatment method, when the reaction vessel is started up, the non-biological carrier and the methane bacterium granule are present in the reaction vessel, and the volume ratio of the non-biological carrier and the methane bacterium granule is in the range of 100: 5 to 100: 500. The organic waste water is started to flow in a state of being allowed to flow, and then the organic waste water is continuously passed to disassemble and disperse at least a part of the methane bacteria granules in the reaction tank. Features.

本発明では非生物担体を充填した反応槽内に、種汚泥としてメタン菌グラニュールを投入し、反応槽の立ち上げを行うことを特徴としている。
投入されたメタン菌グラニュールは、運転を継続することにより徐々に肥大化、或いは解体し、浮上、分散、分解等により反応槽から流出して消失する。しかし、運転開始初期においては、有機性排水内のCOD成分の分解を行い、同時に種汚泥として担体表面への微生物の付着を促進して活性の高い生物膜を形成する効果を奏する。
The present invention is characterized in that methane bacteria granules are introduced as seed sludge into a reaction tank filled with a non-biological carrier and the reaction tank is started up.
The charged methane bacteria granule gradually enlarges or dismantles by continuing operation, and flows out from the reaction tank and disappears due to floating, dispersion, decomposition, and the like. However, at the initial stage of operation, the COD component in the organic waste water is decomposed, and at the same time, the effect of forming a highly active biofilm by promoting the adhesion of microorganisms to the carrier surface as seed sludge is achieved.

本発明において、処理対象とする有機性排水は、嫌気性微生物により処理可能な有機物を含むものであればよく、そのCOD濃度に特に規定はないが、高濃度排水(CODCr濃度2000mg/L程度超過)では、反応槽の滞留時間を長くとることができるため、ある程度の分散菌を反応槽内部に保持することが可能であり、メタン菌グラニュールを種汚泥としての添加することによる担体への生物膜付着促進効果は少ない。 In the present invention, the organic wastewater to be treated is not particularly limited as long as it contains an organic substance that can be treated by anaerobic microorganisms, and the COD concentration is not particularly specified, but high-concentration wastewater (COD Cr concentration of about 2000 mg / L). In the case of excess), since the residence time of the reaction tank can be increased, it is possible to retain a certain amount of dispersal bacteria inside the reaction tank, and to the carrier by adding methane bacteria granules as seed sludge Biofilm adhesion promoting effect is small.

これに対して、低濃度排水(CODCr濃度2000mg/L程度以下)においては、高負荷処理を行うためには反応槽の滞留時間を短くする必要があり、反応槽内に分散状態の菌を保持することができない。この場合には、本発明に従って、種汚泥としてメタン菌グラニュールを使用することによる立上げ期間の短縮効果を顕著に得ることができる。 On the other hand, in low-concentration wastewater (COD Cr concentration of about 2000 mg / L or less), it is necessary to shorten the residence time of the reaction tank in order to perform high-load treatment, and disperse bacteria in the reaction tank. I can't hold it. In this case, according to the present invention, the effect of shortening the start-up period by using methane bacteria granules as seed sludge can be significantly obtained.

従って、本発明は、CODCr濃度が2000mg/L以下、例えば500〜2000mg/L程度の低濃度排水の処理に有効である。
このような排水としては、食品工場等の製造排水、化学工場等の有機性排水、一般下水等が含まれるが、何らこれらに限定されるものではない。
Accordingly, the present invention is, COD Cr concentration of 2000 mg / L or less, for example it is effective in the treatment of low-concentration wastewater of about 500 to 2000 / L.
Such wastewater includes, but is not limited to, manufacturing wastewater from food factories, organic wastewater from chemical factories, general sewage, and the like.

種汚泥として反応槽に投入するメタン菌グラニュールは、嫌気性微生物を含む汚泥が微生物の自己造粒作用により粒状化して沈降性のグラニュールとなった汚泥であり、通常のUASB、EGSB法において形成されるグラニュールを使用することができる。メタン菌グラニュールは高分子化合物から有機酸を生成する酸生成菌、酢酸や水素からメタンガスを生成するメタン生成細菌を高濃度に含んでおり、汚泥濃度として50〜100g−VSS/Lと分散状態の汚泥と比較して菌体濃度が高く、移送等に必要な設備、費用が少なくてすむ点においても有利である。
種汚泥として使用するメタン菌グラニュールの平均粒径は0.5〜3.0mm、特に0.8〜2.5mm程度で、例えば、担体として後述の流動性担体を用いる場合、その担体の平均粒径の0.1〜0.6倍程度の大きさであることが好ましい。
The methane fungus granule to be introduced into the reaction tank as seed sludge is sludge in which sludge containing anaerobic microorganisms is granulated by the self-granulating action of microorganisms into sedimentary granules, and in the usual UASB and EGSB methods The granules that are formed can be used. Methane granule contains acid-producing bacteria that produce organic acids from polymer compounds and methanogens that produce methane gas from acetic acid and hydrogen at high concentrations, with a sludge concentration of 50-100 g-VSS / L and dispersed state This is advantageous in that the concentration of bacterial cells is higher than that of sludge and the equipment and cost required for transportation are reduced.
The average particle diameter of methane bacteria granules used as seed sludge is 0.5 to 3.0 mm, particularly about 0.8 to 2.5 mm. For example, when using a fluid carrier described later as a carrier, the average of the carrier The size is preferably about 0.1 to 0.6 times the particle size.

本発明においては、このようなメタン菌グラニュールを、非生物担体:メタン菌グラニュールの体積比として100:5〜100:500、好ましくは非生物担体の体積に対して、メタン菌グラニュールの体積が0.05〜2.0倍、特に0.1〜1.0倍となるように用いる。この範囲よりもメタン菌グラニュールの投入量が少な過ぎるとメタン菌グラニュールを用いることによる本発明の効果を十分に得ることができず、多過ぎると反応槽内の充填率が高くなってグラニュールが流出し易くなり、また、グラニュールの流出を防止するためには大容量の反応槽が必要となり、好ましくない。   In the present invention, such a methane bacterium granule is used as a volume ratio of non-biological carrier: methane bacterium granule of 100: 5 to 100: 500, preferably the volume of methane bacterium granule with respect to the volume of the non-biological carrier. The volume is 0.05 to 2.0 times, particularly 0.1 to 1.0 times. If the input amount of methane bacteria granules is less than this range, the effect of the present invention due to the use of methane bacteria granules cannot be sufficiently obtained, and if it is too much, the filling rate in the reaction vessel becomes high and the granules are increased. In order to prevent the flow of granules, and to prevent the outflow of granules, a large capacity reaction tank is required, which is not preferable.

本発明では、運転開始に際して、反応槽に非生物担体とメタン菌グラニュールを保持して反応槽に有機性排水(原水)を通水し、有機性排水をメタン菌グラニュール及び担体と接触させて嫌気性処理を行う。その処理方式としては特に制限はないが、UASB法、EGSB法と同様に反応槽に原水を上向流で通水し、非生物担体とメタン菌グラニュールを展開させてスラッジブランケットを形成する方式であると、原水とメタン菌グラニュール及び担体との接触効率が高くなるので好ましい。   In the present invention, at the start of operation, a non-biological carrier and methane bacteria granules are held in the reaction tank, organic waste water (raw water) is passed through the reaction tank, and the organic waste water is brought into contact with the methane bacteria granules and the carrier. Anaerobic treatment. The treatment method is not particularly limited, but as in the UASB method and EGSB method, raw water is passed upward through the reaction tank, and a non-biological carrier and methane bacteria granules are developed to form a sludge blanket. It is preferable because the contact efficiency between the raw water, the methane bacteria granules and the carrier is increased.

反応槽内のメタン菌グラニュールは、運転開始時の短期間の間、反応槽内でCOD成分の分解に寄与できれば良く、従って、通常のグラニュール法と比べて高い負荷をかけた運転が可能となる。例えば、汚泥負荷として、0.8〜3.0kg−CODCr/kg−VSS/dayといった高負荷をかけることができる。一般に、このような高負荷条件では、グラニュールの解体、分散化が進行し、反応槽内にグラニュールを維持できないことが知られているが、本発明においては、グラニュールの解体、分散化が進行している間に担体への生物膜の形成が促進され、この間に活性の高い分散菌が担体表面に行きわたるようになり、以降は活性の高い生物膜が形成された微生物担持担体により、効率的な処理が行われるので、グラニュールの解体、分散化を防止する必要はない。 The methane bacteria granules in the reaction tank need only contribute to the decomposition of COD components in the reaction tank for a short period of time at the start of operation, and therefore can be operated with a higher load than the ordinary granule method. It becomes. For example, as a sludge load, a high load of 0.8 to 3.0 kg-COD Cr / kg-VSS / day can be applied. In general, it is known that granule disintegration and dispersion proceed under such high load conditions and the granule cannot be maintained in the reaction vessel. In the present invention, granule disassembly and dispersion are known. The formation of a biofilm on the carrier is promoted during the progress of the process. During this time, highly active dispersal bacteria spread on the surface of the carrier, and thereafter, the microorganism-supported carrier on which the highly active biofilm is formed is used. Since efficient processing is performed, it is not necessary to prevent the disassembly and dispersion of granules.

この場合、使用する流動性担体としては、特に制限は無いが、発泡により表面積を大きくすることができ、比重の制御が容易であることから樹脂製担体、例えばポリオレフィン系樹脂製担体、ポリウレタン樹脂製担体が好ましく、担体の平均粒径は1〜5mm、特に2〜4mmであることが好ましい。   In this case, the fluid carrier to be used is not particularly limited. However, since the surface area can be increased by foaming and the specific gravity can be easily controlled, a resin carrier such as a polyolefin resin carrier, a polyurethane resin A carrier is preferable, and the average particle size of the carrier is preferably 1 to 5 mm, particularly preferably 2 to 4 mm.

なお、ここで担体の粒径とは、例えば、立方体形状の担体であればその一辺に相当し、直方体形状の担体であればその最も長い辺に相当し、円柱形状の担体であれば円柱の高さ又は直径のうちの長い方に相当する。また、その他の異形形状の担体であれば担体を2枚の平行な板で挟んだ場合にその板の間隔が最も大きくなるときの板の間隔に相当する。   Here, the particle size of the carrier corresponds to, for example, one side of a cubic carrier, the longest side of a rectangular carrier, and a cylindrical shape of a cylindrical carrier. Corresponds to the longer of height or diameter. In the case of another irregularly shaped carrier, when the carrier is sandwiched between two parallel plates, it corresponds to the interval between the plates when the interval between the plates becomes the largest.

また、反応槽への原水の上向流速は3〜20m/hr、特に2〜5m/hrであることが、処理効率、CODの分解効率の面で好ましい。   The upward flow rate of the raw water into the reaction tank is preferably 3 to 20 m / hr, particularly 2 to 5 m / hr, from the viewpoint of treatment efficiency and COD decomposition efficiency.

前述の如く、原水の有機物濃度としては、好ましくはCODCr500〜2000mg/Lであるが、反応槽の負荷は5〜30kg−CODCr/m/day、特に8〜20kg−CODCr/m/dayであることが好ましい。また、反応槽内の温度は25〜40℃、特に30〜38℃とすることが好ましい。また、反応槽の流入水のpHは6.5〜7.5程度であることが好ましく、従って、原水は必要に応じてpH調整を行ってから反応槽に通水することが好ましい。 As described above, the organic matter concentration of the raw water is preferably 500 to 2000 mg / L of COD Cr , but the load of the reaction tank is 5 to 30 kg-COD Cr / m 3 / day, particularly 8 to 20 kg-COD Cr / m. 3 / day is preferred. Moreover, it is preferable that the temperature in a reaction tank shall be 25-40 degreeC, especially 30-38 degreeC. Moreover, it is preferable that the pH of the inflow water of a reaction tank is about 6.5-7.5, Therefore, it is preferable to flow raw water into a reaction tank, after adjusting pH as needed.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

[実施例1]
図1に示す生物処理装置により、糖主体の合成排水(CODCr濃度1000mg/L(COD成分の内訳:糖60重量%、タンパク20重量%、エタノール20重量%)、pH6.8)を原水として処理を行った。
この生物処理装置は、原水をpH調整槽1に導入してpH調整した後、ポンプPにより反応槽2に上向流で通水し、反応槽2の流出水の一部を循環水としてpH調整槽1に循環すると共に、残部を処理水として系外へ排出するものである。1AはpH計、2A,2Bはスクリーンである。
[Example 1]
By using the biological treatment apparatus shown in FIG. 1, sugar-based synthetic wastewater (COD Cr concentration 1000 mg / L (COD component breakdown: sugar 60 wt%, protein 20 wt%, ethanol 20 wt%), pH 6.8) is used as raw water. Processed.
In this biological treatment apparatus, raw water is introduced into the pH adjustment tank 1 to adjust the pH, and then the pump P is passed through the reaction tank 2 in an upward flow, and a part of the effluent water from the reaction tank 2 is circulated as pH. While circulating to the adjustment tank 1, the remainder is discharged out of the system as treated water. 1A is a pH meter, and 2A and 2B are screens.

運転開始時に、反応槽(容量10L、直径15cm、高さ約65cm)2に、ポリオレフィン系樹脂製担体(円柱形、直径2mm、長さ3〜4mm)4Lと種汚泥としてメタン菌グラニュール(汚泥濃度60g−VSS/L、平均粒径2.3mm)0.5Lを加え、原水はpH調整槽1でアルカリ剤として水酸化ナトリウムを添加してpH7.0に調整した後、ポンプPにより反応槽2に以下の条件で上向流通水した。   At the start of operation, a reaction tank (capacity: 10 L, diameter: 15 cm, height: about 65 cm) 2, polyolefin resin carrier (column shape, diameter: 2 mm, length: 3 to 4 mm) 4 L and methane bacteria granules (sludge) as seed sludge After adding 0.5 L (concentration 60 g-VSS / L, average particle size 2.3 mm), the raw water was adjusted to pH 7.0 by adding sodium hydroxide as an alkaline agent in the pH adjusting tank 1, and then the reaction tank by pump P The upward circulated water was supplied to 2 under the following conditions.

<通水条件>
HRT:2hr
上昇流速(LV):3m/hr
循環水流量:890mL/min
温度:30℃
<Water flow conditions>
HRT: 2 hr
Ascending flow velocity (LV): 3 m / hr
Circulating water flow rate: 890 mL / min
Temperature: 30 ° C

その結果、運転開始後数日で処理能力(負荷)は10kg−CODCr/m/day(汚泥負荷として1.3kg−CODCr/kg−VSS/day)に到達した。このとき、反応槽2内の担体にはまだ生物膜が形成されていないため、投入した種汚泥が処理を行っていることになる。その後、60日程度の運転で種汚泥として添加したメタン菌グラニュールは徐々に解体、分散化して反応槽から流出していき、その代わりに担体表面に生物膜が形成され、処理を行うようになった。
この実施例1における処理能力の経時変化を図2(a)に示す。
As a result, the processing capacity (load) reached 10 kg-COD Cr / m 3 / day (1.3 kg-COD Cr / kg-VSS / day as a sludge load) several days after the start of operation. At this time, since the biofilm is not yet formed on the carrier in the reaction tank 2, the introduced seed sludge is being treated. After that, the methane fungus granules added as seed sludge in operation for about 60 days gradually dismantle and disperse and flow out of the reaction tank. Instead, a biofilm is formed on the surface of the carrier so that it can be treated. became.
FIG. 2 (a) shows the change with time of the processing capability in Example 1. FIG.

[比較例1]
実施例1において、運転開始時に、種汚泥として、メタン菌グラニュールの代りに分散嫌気汚泥(下水の消化汚泥、汚泥濃度40g−VSS/L)6Lを加えたこと以外は同様にして処理を行った。
その結果、運転開始後数日で種汚泥として投入した分散汚泥は全て流出してしまい、わずかに付着した微生物により担体表面に生物膜が形成されていったが、処理能力(負荷)が10kg−CODCr/m/dayに到達するためには約90日の運転が必要であった。
この比較例1における処理能力の経時変化を図2(b)に示す。
[Comparative Example 1]
In Example 1, treatment was performed in the same manner except that 6 L of dispersed anaerobic sludge (sewage digested sludge, sludge concentration 40 g-VSS / L) was added as seed sludge instead of methane bacteria granules at the start of operation. It was.
As a result, all of the dispersed sludge introduced as seed sludge within a few days after the start of operation flowed out, and a biofilm was formed on the surface of the carrier due to the slightly attached microorganisms, but the treatment capacity (load) was 10 kg- About 90 days of operation were required to reach COD Cr / m 3 / day.
FIG. 2B shows the change with time of the processing capability in Comparative Example 1.

実施例1及び比較例1の結果より、非生物担体を用いた嫌気性処理において、種汚泥として従来の分散汚泥に代えてメタン菌グラニュールを用いる本発明によれば、低濃度廃水の処理であっても、通水開始後早期に処理能力を発揮させることができ、また、その後の運転で活性の高い生物膜を担体表面に形成させることにより、安定な高負荷運転を行えることが分かる。   From the results of Example 1 and Comparative Example 1, in the anaerobic treatment using a non-biological carrier, according to the present invention using methane bacteria granules as seed sludge instead of the conventional dispersed sludge, Even in such a case, it can be seen that the treatment capacity can be exhibited early after the start of water flow, and a stable and high-load operation can be performed by forming a highly active biofilm on the surface of the carrier in the subsequent operation.

1 pH調整槽
2 反応槽
3 流動性非生物担体
4 メタン菌グラニュール
1 pH adjustment tank 2 Reaction tank 3 Fluid non-biological carrier 4 Methane granule

Claims (5)

有機物を含有する廃水を、非生物担体を保持する反応槽に通水して該担体に付着した嫌気性微生物により生物学的に処理する有機性排水の処理方法において、該反応槽の立ち上げに際して、該反応槽に非生物担体とメタン菌グラニュールとを、非生物担体とメタン菌グラニュールの体積比が100:5〜100:500の範囲で存在させた状態で該有機性廃水の通水を開始し、その後、有機性廃水の通水を継続することにより、該反応槽内のメタン菌グラニュールの少なくとも一部を解体、分散化させる方法であって、該非生物担体が樹脂製担体であり、該メタン菌グラニュールの平均粒径が0.5〜3.0mmであることを特徴とする有機性排水の処理方法。 In a method for treating organic wastewater, in which wastewater containing organic matter is passed through a reaction vessel holding a non-biological carrier and biologically treated with anaerobic microorganisms attached to the carrier, the startup of the reaction vessel The organic wastewater is passed in a state where the non-biological carrier and the methane bacterium granule are present in the reaction tank in a volume ratio of 100: 5 to 100: 500. Then, by continuing the flow of organic waste water, at least a part of the methanogen granules in the reaction vessel is disassembled and dispersed, wherein the non-biological carrier is a resin carrier. A method for treating organic wastewater , wherein the methanogenic granules have an average particle size of 0.5 to 3.0 mm . 請求項1において、前記有機性排水の有機物濃度が2000mg−CODCr/L以下であることを特徴とする有機性排水の処理方法。 The organic wastewater treatment method according to claim 1, wherein an organic matter concentration of the organic wastewater is 2000 mg-COD Cr / L or less. 請求項1又は2において、前記反応槽は流動床式反応槽であり、前記有機性排水は該反応槽に上向流で通水されることを特徴とする有機性排水の処理方法。   The method for treating organic waste water according to claim 1 or 2, wherein the reaction tank is a fluidized bed reaction tank, and the organic waste water is passed through the reaction tank in an upward flow. 請求項1ないし3のいずれか1項において、該反応槽の汚泥負荷が0.8〜3.0kg−CODCr/kg−VSS/dayであることを特徴とする有機性排水の処理方法。 In any one of claims 1 to 3, the method of treating organic waste water, wherein a sludge load of the reaction vessel is 0.8~3.0kg-COD Cr / kg-VSS / day. 請求項1ないし4のいずれか1項において、前記非生物担体の平均粒径が1〜5mmであり、前記メタン菌グラニュールの平均粒径は該非生物担体の平均粒径の0.1〜0.6倍であることを特徴とする有機性排水の処理方法。The average particle diameter of the non-biological carrier according to any one of claims 1 to 4 is 1 to 5 mm, and the average particle diameter of the methane bacteria granules is 0.1 to 0 of the average particle diameter of the non-biological carrier. Organic wastewater treatment method characterized by being 6 times larger.
JP2010261353A 2010-11-24 2010-11-24 Organic wastewater treatment method Active JP5685902B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2010261353A JP5685902B2 (en) 2010-11-24 2010-11-24 Organic wastewater treatment method
PCT/JP2011/076488 WO2012070459A1 (en) 2010-11-24 2011-11-17 Method and apparatus for anaerobic treatment
SG2013038872A SG190348A1 (en) 2010-11-24 2011-11-17 Anaerobic treatment method and apparatus
US13/885,946 US9096448B2 (en) 2010-11-24 2011-11-17 Anaerobic treatment method and apparatus
CN201180056761.3A CN103228580B (en) 2010-11-24 2011-11-17 Method and apparatus for anaerobic treatment
KR1020187028721A KR20180113635A (en) 2010-11-24 2011-11-17 Method and apparatus for anaerobic treatment
CN201410163549.2A CN103936147B (en) 2010-11-24 2011-11-17 The processing method of organic drainage
SG10201401598RA SG10201401598RA (en) 2010-11-24 2011-11-17 Anaerobic treatment method and apparatus
MYPI2013001872A MY158496A (en) 2010-11-24 2011-11-17 Anaerobic treatment method and apparatus
KR20137011868A KR20130132796A (en) 2010-11-24 2011-11-17 Method and apparatus for anaerobic treatment
TW100142898A TWI585047B (en) 2010-11-24 2011-11-23 Anaerobic treatment method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261353A JP5685902B2 (en) 2010-11-24 2010-11-24 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2012110821A JP2012110821A (en) 2012-06-14
JP5685902B2 true JP5685902B2 (en) 2015-03-18

Family

ID=46495628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261353A Active JP5685902B2 (en) 2010-11-24 2010-11-24 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP5685902B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046991B2 (en) * 2012-11-21 2016-12-21 株式会社クラレ Anaerobic wastewater treatment method using carrier
JP6196767B2 (en) * 2012-11-21 2017-09-13 株式会社クラレ Anaerobic wastewater treatment method using carrier
JP6241187B2 (en) * 2013-10-15 2017-12-06 栗田工業株式会社 Anaerobic treatment method and anaerobic treatment apparatus
JP6761245B2 (en) * 2015-12-28 2020-09-23 オルガノ株式会社 How to treat organic wastewater
JP6644586B2 (en) * 2016-03-04 2020-02-12 株式会社クラレ Anaerobic wastewater treatment method using carrier
JP6675283B2 (en) * 2016-07-26 2020-04-01 水ing株式会社 Anaerobic treatment of organic wastewater
JP7130552B2 (en) * 2018-12-27 2022-09-05 住友重機械工業株式会社 Wastewater treatment equipment and wastewater treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203993A (en) * 1989-01-31 1990-08-13 Shinko Pantec Co Ltd Anaerobic waste water treating method
JP2006082053A (en) * 2004-09-17 2006-03-30 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing drainage
JP4428188B2 (en) * 2004-10-13 2010-03-10 荏原エンジニアリングサービス株式会社 Organic wastewater treatment method and treatment apparatus

Also Published As

Publication number Publication date
JP2012110821A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
Corsino et al. Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater
JP5685902B2 (en) Organic wastewater treatment method
Gu et al. Anammox bacteria enrichment and denitrification in moving bed biofilm reactors packed with different buoyant carriers: Performances and mechanisms
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
JP6491406B2 (en) Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP6448382B2 (en) Nitrogen-containing wastewater denitrification method and denitrification apparatus
JP6241187B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
WO2012070459A1 (en) Method and apparatus for anaerobic treatment
JP2006289311A (en) Method for treating drainage
JP5303862B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
JP2011056383A (en) Treatment method of nitrogen containing water and treatment apparatus of nitrogen containing water
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP4915036B2 (en) Denitrification method and denitrification apparatus
Hosseini et al. Continuous nitrifying granular sludge bioreactor: influence of aeration and ammonium loading rate
TW201002629A (en) Denitrifying method and denitrifying device
JP2014100680A (en) Anaerobic wastewater treatment method using carrier
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
JP6654981B2 (en) Anaerobic treatment of organic wastewater
TWI526403B (en) Wastewater treating apparatus
JP2010029749A (en) Denitrification method and denitrification apparatus
Tay et al. A comparative study of aerobic granulation in pilot-and laboratory-scale SBRs
CN205035223U (en) System for organic waste water is handled in little electrolysis combination of application anaerobism - good oxygen -
JP6675283B2 (en) Anaerobic treatment of organic wastewater
JP4596533B2 (en) Wastewater treatment method
JP6612195B2 (en) Organic wastewater treatment facility and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5685902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250