JP2011056383A - Treatment method of nitrogen containing water and treatment apparatus of nitrogen containing water - Google Patents

Treatment method of nitrogen containing water and treatment apparatus of nitrogen containing water Download PDF

Info

Publication number
JP2011056383A
JP2011056383A JP2009208168A JP2009208168A JP2011056383A JP 2011056383 A JP2011056383 A JP 2011056383A JP 2009208168 A JP2009208168 A JP 2009208168A JP 2009208168 A JP2009208168 A JP 2009208168A JP 2011056383 A JP2011056383 A JP 2011056383A
Authority
JP
Japan
Prior art keywords
denitrification
hydrogen donor
water
unit
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009208168A
Other languages
Japanese (ja)
Other versions
JP5355314B2 (en
Inventor
Yoshiaki Hasebe
吉昭 長谷部
Hiroaki Meguro
裕章 目黒
Masahiro Eguchi
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2009208168A priority Critical patent/JP5355314B2/en
Publication of JP2011056383A publication Critical patent/JP2011056383A/en
Application granted granted Critical
Publication of JP5355314B2 publication Critical patent/JP5355314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method and treatment apparatus of nitrogen containing water, capable of granulating a microorganism group containing nitrifying bacteria and denitrifying bacteria in a complete mixing type tank and in a system for continuously making water to be treated flow in. <P>SOLUTION: The biological treatment method of the nitrogen containing water includes: a nitrifying process of supplying the water to be treated to a nitrifying part and oxidizing ammonium ions in the water to be treated to nitric acid or nitrous acid; and a denitrifying process of supplying the water to be treated to the denitrifying part of a complete mixing type, supplying a hydrogen donor and reducing the nitric acid or the nitrous acid in the water to be treated to a nitrogen gas. In the denitrifying process, the addition amount of the hydrogen donor is changed with time so as to change the concentration of the hydrogen donor inside the denitrifying part with time. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被処理水中に含まれるアンモニウムイオン、有機体窒素等を生物学的に窒素ガスにまで酸化・還元する窒素含有水の処理方法及び窒素含有水の処理装置に関する。   The present invention relates to a nitrogen-containing water treatment method and a nitrogen-containing water treatment apparatus for biologically oxidizing and reducing ammonium ions, organic nitrogen, and the like contained in water to be treated to nitrogen gas.

近年、排水処理の分野においては、微生物の生理活性を利用して排水中の汚濁物質を無害な物質に変化させて処理を行う生物化学的な水処理が多用されている。一般的な生物処理法として活性汚泥法が主流であるが、通常の活性汚泥法においては、系内の微生物濃度の高濃度化が困難であり負荷を高く取ることができないため、大きな敷地面積が必要であること、生物の管理が難しくバルキング等の処理性能悪化を生じやすいこと、大規模な沈殿設備が必要であること、余剰汚泥等の廃棄物発生量が多いことなどが問題視されてきた。これらの問題を解決する技術として、活性汚泥の固液分離を膜により行う方法、スポンジや高分子担体等の微生物を付着させて処理を行う方法、微生物が自己造粒した、いわゆるグラニュールを利用して処理を行う方法等が開発されてきた。中でもグラニュールを使用する方法は槽内に多量の微生物を保持しうるため、単位体積当たりの反応速度が速く、固液分離も容易なため注目されてきている。   In recent years, in the field of wastewater treatment, biochemical water treatment has been frequently used in which treatment is performed by changing the pollutants in wastewater to harmless substances using the physiological activity of microorganisms. The activated sludge method is the mainstream as a general biological treatment method. However, in the normal activated sludge method, it is difficult to increase the concentration of microorganisms in the system and the load cannot be increased. It has been regarded as a problem that it is necessary, the management of organisms is difficult and processing performance such as bulking is likely to deteriorate, the need for large-scale sedimentation facilities, and the generation of waste such as excess sludge . As a technology to solve these problems, a method that performs solid-liquid separation of activated sludge using a membrane, a method that performs treatment by attaching microorganisms such as sponges and polymer carriers, and so-called granules that self-granulate microorganisms are used. A method for performing the processing has been developed. Among them, the method using granules has been attracting attention because it can retain a large amount of microorganisms in the tank, and thus has a high reaction rate per unit volume and easy solid-liquid separation.

窒素を含有した排水の処理においても同様に、生物化学的処理が適用される場合が多く、例えば、アンモニウムイオン、有機体窒素を含んだ排水の処理において、(1)有機物を好気的酸化処理若しくは嫌気性メタン発酵処理し、(2)好気性条件下においてアンモニア酸化細菌及び亜硝酸酸化細菌等により、アンモニウムイオンを亜硝酸イオン、硝酸イオンにまで酸化し、(3)無酸素条件下、水素供与体の存在下で、亜硝酸イオン、硝酸イオンを窒素ガスにまで還元し、(4)余剰の水素供与体を好気性条件下で二酸化炭素に酸化する、という工程により処理を行うことがある。水素供与体としては処理対象原水に含まれている有機物等を利用することができるが、水素供与体が不足する場合には外部から供給することが必要となる。このとき水素供与体は排水中の窒素濃度を元に供給量が決定され、その供給量に基づいて、水素供与体が連続的に添加される。   Similarly, in the treatment of wastewater containing nitrogen, biochemical treatment is often applied. For example, in the treatment of wastewater containing ammonium ions and organic nitrogen, (1) aerobic oxidation treatment of organic matter Or anaerobic methane fermentation treatment, (2) Ammonia oxidizing bacteria and nitrite oxidizing bacteria, etc. under aerobic conditions oxidize ammonium ions to nitrite ions and nitrate ions, and (3) hydrogen under anaerobic conditions In the presence of the donor, the nitrite ions and nitrate ions may be reduced to nitrogen gas, and (4) the excess hydrogen donor may be oxidized to carbon dioxide under aerobic conditions. . As the hydrogen donor, an organic substance or the like contained in the raw water to be treated can be used. However, when the hydrogen donor is insufficient, it is necessary to supply from the outside. At this time, the supply amount of the hydrogen donor is determined based on the nitrogen concentration in the waste water, and the hydrogen donor is continuously added based on the supply amount.

また、生物処理法としては活性汚泥法の他、微生物濃度を高めると共に固液分離を容易にするためスポンジやゲル状の担体を添加した処理方法が多用されている。しかし、担体を添加した方法における処理速度は、硝化速度として0.3〜0.5kgN/m3/day程度であり、また担体コストが非常に高い。そのため、高速化、低コスト化が望まれている。   In addition to the activated sludge method, as a biological treatment method, a treatment method in which a sponge or a gel-like carrier is added to increase the microorganism concentration and facilitate solid-liquid separation is frequently used. However, the processing speed in the method in which the carrier is added is about 0.3 to 0.5 kgN / m 3 / day as the nitrification rate, and the carrier cost is very high. Therefore, speeding up and cost reduction are desired.

一方、溶存酸素を必要としない嫌気性処理においては、単位微生物当たりの処理速度が遅いため、微生物自体を自己造粒させて比重の高い塊、グラニュールを形成することにより、槽内の微生物濃度を飛躍的に高める方法が使用されている。グラニュール化した微生物を使用する方法においては、高濃度の微生物を槽内に保持することができるため、槽当たりの処理速度は担体を使用した方法と比較しても速く、担体が不要であり、さらに、グラニュールの比重が高く沈降速度が速いため、固液分離が容易である等の利点を有している。このようなグラニュールを形成する微生物群は、嫌気性メタン発酵、上向流式スラッジブランケットリアクター(USB)、半回分式リアクター(SBR)で確認されている(例えば、特許文献1〜3参照)。   On the other hand, in the anaerobic treatment that does not require dissolved oxygen, the treatment rate per unit microorganism is slow, so the microorganism concentration in the tank can be increased by self-granulating the microorganism itself to form a high specific gravity lump or granule. A method of dramatically increasing the value is used. In the method using granulated microorganisms, since a high concentration of microorganisms can be retained in the tank, the processing speed per tank is faster than that using a carrier, and no carrier is required. Furthermore, since the specific gravity of the granules is high and the sedimentation speed is high, there are advantages such as easy solid-liquid separation. Microorganisms forming such granules have been confirmed in anaerobic methane fermentation, an upflow sludge blanket reactor (USB), and a semi-batch reactor (SBR) (see, for example, Patent Documents 1 to 3). .

特開昭63−258695号公報JP 63-258695 A 特開平1−262996号公報JP-A-1-262996 特開2000−51893号公報JP 2000-51893 A

半回分式リアクターにおいては、1つの反応槽において(1)被処理水の流入、(2)酸素供給及び被処理水と微生物との接触、(3)微生物の沈降、(4)処理水の排出、といった4つの工程を経ることによって処理が行われるが、被処理水の流入と処理水の排出が共に短時間で行われるため、処理流量の変動が大きくなり、実施設においては大きな流量調整槽が必要となる。そのため、小規模の装置においては簡便で有利な装置となり得るが、中〜大規模の装置に適用することは困難である場合が多い。また、上向流式スラッジブランケットリアクター(USBリアクター)を用いた場合には、非常に高い処理速度が得られるものの、特殊な形状の反応槽を用いるため、設備コストが高くなる。また、装置の構成上、脱窒槽内部の攪拌を十分に行うことができないため、被処理水のpHコントロールが困難となり、カルシウム等を含んだ被処理水においてはスケールの発生やグラニュール中に無機物が蓄積するなどの問題点を有している。   In a semi-batch reactor, (1) inflow of treated water, (2) oxygen supply and contact between treated water and microorganisms, (3) sedimentation of microorganisms, (4) discharge of treated water in one reaction tank However, since both the inflow of treated water and the discharge of treated water are performed in a short time, the fluctuation in the treatment flow rate becomes large, and a large flow rate adjustment tank in the implementation facility Is required. Therefore, although it can be a simple and advantageous device in a small-scale device, it is often difficult to apply to a medium-to-large device. In addition, when an upward flow type sludge blanket reactor (USB reactor) is used, a very high processing speed can be obtained, but a specially shaped reaction tank is used, resulting in an increase in equipment cost. In addition, due to the configuration of the apparatus, the inside of the denitrification tank cannot be sufficiently stirred, making it difficult to control the pH of the water to be treated. In the water to be treated containing calcium, etc., the generation of scales and inorganic substances in the granule Have problems such as accumulation.

こういった問題を解決するためには従来から多くの装置で利用されている完全混合型の反応槽を利用し、被処理水を連続流入(及び連続排出)させる装置構成とすることが望ましいが、このような装置構成における脱窒菌のグラニュール形成に関する報告はこれまでにない。   In order to solve these problems, it is desirable to use a completely mixed reaction tank that has been used in many devices in the past, and to have a device configuration that allows continuous flow (and continuous discharge) of water to be treated. There has never been a report on the formation of granules of denitrifying bacteria in such a device configuration.

そこで、本発明は、完全混合型の槽で、且つ被処理水を連続流入させる系で、硝化菌及び脱窒菌を含有する微生物群をグラニュール化させることができる窒素含有水の処理方法及び処理装置を提供することを目的とする。   Accordingly, the present invention provides a method and a method for treating nitrogen-containing water capable of granulating a group of microorganisms containing nitrifying bacteria and denitrifying bacteria in a completely mixed type tank and a system in which treated water is continuously introduced. An object is to provide an apparatus.

(1)本発明は、硝化部に被処理水を供給して、前記被処理水中のアンモニウムイオンを硝酸若しくは亜硝酸にまで酸化する硝化工程と、完全混合型の脱窒部に前記被処理水を供給すると共に、水素供与体を供給し、前記被処理水中の前記硝酸若しくは前記亜硝酸を窒素ガスに還元する脱窒工程と、を含む窒素含有水の生物処理方法であって、前記脱窒工程では、前記脱窒部内での水素供与体の濃度が経時的に変化するように、前記水素供与体の添加量に時間的変動を与える。   (1) The present invention provides a nitrification step of supplying water to be treated to a nitrification unit to oxidize ammonium ions in the water to be treated to nitric acid or nitrous acid, and the water to be treated in a complete mixing type denitrification unit. And a denitrification step of supplying a hydrogen donor and reducing the nitric acid or nitrous acid in the water to be treated into nitrogen gas, wherein the denitrification process comprises: In the process, the amount of the hydrogen donor added is varied with time so that the concentration of the hydrogen donor in the denitrification section changes with time.

(2)また、本発明は、硝化部に被処理水を供給して、前記被処理水中のアンモニウムイオンを硝酸若しくは亜硝酸にまで酸化する硝化工程と、完全混合型の脱窒部に前記被処理水を供給すると共に、水素供与体を供給し、前記被処理水中の前記硝酸若しくは前記亜硝酸を窒素ガスに還元する脱窒工程と、を含む窒素含有水の生物処理方法であって、前記脱窒部は、少なくとも第1脱窒部と第2脱窒部とを備え、前記脱窒工程では、前記第1脱窒部内と前記第2脱窒部内との間で、水素供与体の濃度差が形成されるように、少なくとも前記第1脱窒部に水素供与体を供給する。   (2) The present invention also provides a nitrification step of supplying water to be treated to a nitrification unit to oxidize ammonium ions in the water to be treated to nitric acid or nitrous acid, and a complete mixing type denitrification unit. A denitrification step of supplying treated water, supplying a hydrogen donor, and reducing the nitric acid or nitrous acid in the treated water to nitrogen gas, and a biological treatment method of nitrogen-containing water, The denitrification unit includes at least a first denitrification unit and a second denitrification unit, and in the denitrification step, a concentration of a hydrogen donor between the first denitrification unit and the second denitrification unit. A hydrogen donor is supplied to at least the first denitrification unit so that a difference is formed.

(3)また、上記(2)記載の窒素含有水の処理方法において、前記第1脱窒部の容積が、前記脱窒部の総容積の1/3以下であることが好ましい。   (3) In the method for treating nitrogen-containing water described in (2) above, the volume of the first denitrification unit is preferably 1/3 or less of the total volume of the denitrification unit.

(4)また、上記(1)記載の窒素含有水の処理方法において、前記脱窒部内の水素供与体の最大濃度と最小濃度との差は、50mgTOC/L以上であることが好ましい。   (4) In the method for treating nitrogen-containing water described in (1) above, the difference between the maximum concentration and the minimum concentration of the hydrogen donor in the denitrification part is preferably 50 mg TOC / L or more.

(5)また、上記(2)又は(3)記載の窒素含有水の処理方法において、前記第1脱窒部内での水素供与体の最大濃度と、前記第2脱窒部内での水素供与体の最小濃度との差が、50mgTOC/L以上となるように、少なくとも前記第1脱窒部に水素供与体を供給することが好ましい。   (5) In the method for treating nitrogen-containing water described in (2) or (3) above, the maximum concentration of the hydrogen donor in the first denitrification part and the hydrogen donor in the second denitrification part It is preferable to supply the hydrogen donor to at least the first denitrification unit so that the difference from the minimum concentration of the compound becomes 50 mg TOC / L or more.

(6)また、上記(2)、(3)又は(5)記載の窒素含有水の処理方法において、前記第1脱窒部へ添加する前記水素供与体の添加量に時間的変動を与えることが好ましい。   (6) In addition, in the method for treating nitrogen-containing water according to (2), (3) or (5), the amount of the hydrogen donor added to the first denitrification unit is changed with time. Is preferred.

(7)また、上記(1)〜(6)のいずれか1つに記載の窒素含有水の処理方法において、前記脱窒工程後の汚泥を前記硝化工程に返送することが好ましい。   (7) Moreover, in the processing method of nitrogen-containing water as described in any one of (1) to (6) above, it is preferable to return the sludge after the denitrification step to the nitrification step.

(8)また、上記(1)〜(6)のいずれか1つに記載の窒素含有水の処理方法において、前記硝化工程の前に、被処理水の有機物処理又は脱窒処理を行う処理工程を含み、前記脱窒工程後の汚泥を前記硝化工程、前記処理工程のうち少なくともいずれか一方に返送することが好ましい。   (8) Further, in the method for treating nitrogen-containing water according to any one of (1) to (6) above, a treatment step of performing an organic matter treatment or a denitrification treatment of water to be treated before the nitrification step. The sludge after the denitrification step is preferably returned to at least one of the nitrification step and the treatment step.

(9)また、本発明は、被処理水中のアンモニウムイオンを硝酸若しくは亜硝酸にまで酸化する硝化部と、前記被処理水中の前記硝酸若しくは前記亜硝酸を窒素ガスに還元する完全混合型の脱窒部と、前記脱窒部に水素供与体を供給する水素供与体供給手段と、を備える窒素含有水の処理装置であって、前記水素供与体供給手段は、前記脱窒部内での水素供与体の濃度が経時的に変化するように、前記水素供与体の添加量に時間的変動を与える。   (9) The present invention also includes a nitrification unit that oxidizes ammonium ions in the water to be treated to nitric acid or nitrous acid, and a fully mixed type denitrification that reduces the nitric acid or nitrous acid in the water to be treated to nitrogen gas. A nitrogen-containing water treatment apparatus comprising: a nitriding unit; and a hydrogen donor supplying unit that supplies a hydrogen donor to the denitrifying unit, wherein the hydrogen donor supplying unit supplies hydrogen in the denitrifying unit. The amount of the hydrogen donor added is varied with time so that the concentration of the body changes with time.

(10)また、本発明は、被処理水中のアンモニウムイオンを硝酸若しくは亜硝酸にまで酸化する硝化部と、前記被処理水中の前記硝酸若しくは前記亜硝酸を窒素ガスに還元する完全混合型の脱窒部と、前記脱窒部に水素供与体を供給する水素供与体供給手段と、を備える窒素含有水の処理装置であって、前記脱窒部は、少なくとも第1脱窒部と第2脱窒部とを備え、前記水素供与体供給手段は、前記第1脱窒部内と前記第2脱窒部内との間で、水素供与体の濃度差が形成されるように、少なくとも前記第1脱窒部に水素供与体を供給する。   (10) The present invention also includes a nitrification unit that oxidizes ammonium ions in the water to be treated to nitric acid or nitrous acid, and a fully mixed type denitrification that reduces the nitric acid or nitrous acid in the water to be treated to nitrogen gas. A nitrogen-containing water treatment apparatus comprising: a nitriding unit; and a hydrogen donor supplying means for supplying a hydrogen donor to the denitrifying unit, wherein the denitrifying unit includes at least a first denitrifying unit and a second denitrifying unit. The hydrogen donor supply means includes at least the first denitrification unit so that a difference in hydrogen donor concentration is formed between the first denitrification unit and the second denitrification unit. Supply a hydrogen donor to the nitrogen section.

(11)また、上記(10)記載の窒素含有水の処理装置において、前記第1脱窒部の容積が、前記脱窒部の総容積の1/3以下であることが好ましい。   (11) In the nitrogen-containing water treatment apparatus according to (10), it is preferable that a volume of the first denitrification unit is 1/3 or less of a total volume of the denitrification unit.

(12)また、上記(9)記載の窒素含有水の処理装置において、前記脱窒部内の水素供与体の最大濃度と最小濃度との差は、50mgTOC/L以上であることが好ましい。   (12) Moreover, in the nitrogen-containing water treatment apparatus as described in (9) above, the difference between the maximum concentration and the minimum concentration of the hydrogen donor in the denitrification part is preferably 50 mg TOC / L or more.

(13)また、上記(10)又は(11)記載の窒素含有水の処理装置において、前記水素供与体供給手段は、前記第1脱窒部内での水素供与体の最大濃度と、前記第2脱窒部内での水素供与体の最小濃度との差が、50mgTOC/L以上となるように、少なくとも前記第1脱窒部に水素供与体を供給することが好ましい。   (13) In the nitrogen-containing water treatment apparatus according to the above (10) or (11), the hydrogen donor supply means includes a maximum concentration of the hydrogen donor in the first denitrification unit, and the second It is preferable to supply the hydrogen donor to at least the first denitrification unit so that the difference from the minimum concentration of the hydrogen donor in the denitrification unit is 50 mg TOC / L or more.

(14)また、上記(10)、(11)又は(13)記載の窒素含有水の処理装置において、前記水素供与体供給手段は、前記第1脱窒部へ添加する前記水素供与体の添加量に時間的変動を与えることが好ましい。   (14) In the nitrogen-containing water treatment apparatus according to (10), (11), or (13), the hydrogen donor supply means adds the hydrogen donor to be added to the first denitrification unit. It is preferable to vary the amount with time.

(15)また、上記(9)〜(14)のいずれか1つに記載の窒素含有水の処理装置において、前記脱窒部から排出される汚泥を前記硝化部に返送する返送手段を備えることが好ましい。   (15) The nitrogen-containing water treatment apparatus according to any one of (9) to (14), further including a return unit that returns the sludge discharged from the denitrification unit to the nitrification unit. Is preferred.

(16)また、上記(9)〜(14)のいずれか1つに記載の窒素含有水の処理装置において、前記硝化部の前段に、被処理水の有機物処理又は脱窒処理を行う処理部を含み、 前記脱窒部から排出される汚泥を前記硝化部、前記処理部のうち少なくともいずれか一方に返送する返送手段を備えることが好ましい。   (16) Moreover, in the nitrogen-containing water treatment apparatus according to any one of the above (9) to (14), a treatment unit that performs an organic matter treatment or a denitrification treatment of water to be treated before the nitrification unit. It is preferable to provide a return means for returning the sludge discharged from the denitrification unit to at least one of the nitrification unit and the treatment unit.

本発明によれば、完全混合型の槽で、且つ被処理水を連続流入させる系で、硝化菌及び脱窒菌を含有する微生物群をグラニュール化させることができ、装置の小型化又は低コスト化が可能となる。   According to the present invention, a group of microorganisms containing nitrifying bacteria and denitrifying bacteria can be granulated in a completely mixed tank and a system in which water to be treated is continuously flowed, and the apparatus can be downsized or reduced in cost. Can be realized.

本実施形態に係る窒素含有水の処理方法の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the processing method of nitrogen-containing water which concerns on this embodiment. 本実施形態に係る窒素含有水の処理方法の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the processing method of nitrogen-containing water which concerns on this embodiment. 本実施形態に係る窒素含有水の処理方法の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the processing method of nitrogen-containing water which concerns on this embodiment. 本実施形態に係る窒素含有水の処理方法の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the processing method of nitrogen-containing water which concerns on this embodiment. 本実施形態に係る窒素含有水の処理方法の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the processing method of nitrogen-containing water which concerns on this embodiment. 本実施形態に係る窒素含有水の処理方法の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the processing method of nitrogen-containing water which concerns on this embodiment. 実施例及び比較例の試験経過日数に対する硝化速度の変化を示す図である。It is a figure which shows the change of the nitrification rate with respect to the test elapsed days of an Example and a comparative example. 実施例及び比較例の試験経過日数に対する脱窒速度の変化を示す図である。It is a figure which shows the change of the denitrification speed with respect to the test elapsed days of an Example and a comparative example. 実施例及び比較例の試験経過日数に対するMLSS濃度の変化を示す図である。It is a figure which shows the change of the MLSS density | concentration with respect to the test elapsed days of an Example and a comparative example. 実施例の第1脱窒槽内の水質の変化を示す図である。It is a figure which shows the change of the water quality in the 1st denitrification tank of an Example. 実施例の第2脱窒槽内の水質の変化を示す図である。It is a figure which shows the change of the water quality in the 2nd denitrification tank of an Example.

本発明者らは、脱窒反応において添加を行う水素供与体の濃度に変動を与えることにより、脱窒菌が自己造粒したグラニュールが容易に形成可能であることを見出した。さらに、このグラニュールを硝化、脱窒を行う窒素含有水の処理システム内で循環させることにより、硝化菌等のすべての菌群をグラニュール化し、窒素含有水の処理システム全体を実質的に同一のグラニュールで処理することが可能であることを見出した。以下、本発明の実施の形態について説明する。なお、本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   The present inventors have found that granules obtained by self-granulation of denitrifying bacteria can be easily formed by varying the concentration of the hydrogen donor added in the denitrifying reaction. Furthermore, by circulating this granule in the nitrogen-containing water treatment system that performs nitrification and denitrification, all fungal groups such as nitrifying bacteria are granulated, and the entire treatment system for nitrogen-containing water is substantially the same. It was found that it was possible to process with granule. Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1〜6は、本実施形態に係る窒素含有水の処理方法の一例を示す概略構成図である。図1(A),(B)は、硝化工程、脱窒工程A又はB、沈殿処理工程の順に処理を行う窒素含有水の処理方法を示している。   FIGS. 1-6 is a schematic block diagram which shows an example of the processing method of nitrogen-containing water which concerns on this embodiment. 1A and 1B show a method for treating nitrogen-containing water in which treatment is performed in the order of a nitrification step, a denitrification step A or B, and a precipitation treatment step.

ここで、本実施形態において、処理対象となる排水は、アンモニア態窒素化合物若しくは有機態窒素化合物を含んだ被処理水であり、特に生活排水、食品工場排水、発電所排水、電子産業排水等の産業排水である。ここで、電子産業排水は、様々な薬品が含まれており、また製造する製品によっても排水中の成分は大きく異なるが、窒素含有排水としては、例えばウェハー洗浄排水等が挙げられる。この排水中には、アンモニアの他、TMAH(水酸化テトラメチルアンモニウム)、過酸化水素、フッ素イオン、IPA(イソプロピルアルコール)等を含むことが多い。   Here, in this embodiment, the wastewater to be treated is treated water containing ammonia nitrogen compounds or organic nitrogen compounds, particularly domestic wastewater, food factory wastewater, power plant wastewater, electronic industry wastewater, etc. Industrial wastewater. Here, the electronic industrial wastewater contains various chemicals, and the components in the wastewater vary greatly depending on the product to be manufactured, but examples of the nitrogen-containing wastewater include wafer cleaning wastewater. This waste water often contains TMAH (tetramethylammonium hydroxide), hydrogen peroxide, fluorine ions, IPA (isopropyl alcohol) and the like in addition to ammonia.

このような排水を生物学的に処理するにあたり、過酸化水素やフッ素イオンは生物に対し阻害性を有するため、予め除去することが好ましい。これらの阻害性物質の処理方法としては、既存の技術を使用することができ、過酸化水素の処理においては、酵素を添加する方法、還元剤を注入する方法、活性炭に接触させる方法等が挙げられる。また、フッ素イオンの処理においては、カルシウムを添加してフッ化カルシウムとして除去する方法、イオン交換樹脂にて処理する方法等が挙げられる。   In biological treatment of such waste water, it is preferable to remove hydrogen peroxide and fluorine ions in advance because they have an inhibitory effect on living organisms. As a method for treating these inhibitory substances, existing techniques can be used, and in the treatment of hydrogen peroxide, a method of adding an enzyme, a method of injecting a reducing agent, a method of contacting with activated carbon and the like can be mentioned. It is done. Further, in the treatment of fluoride ions, a method of adding calcium and removing it as calcium fluoride, a method of treating with ion exchange resin, and the like can be mentioned.

そして、過酸化水素やフッ素イオンを除去した窒素含有排水は、硝化工程、脱窒工程等による処理が行われる前に、一旦水槽に貯められ、後段の硝化工程等にかかる流量や水質を安定させると共に、適切なpHに調整されることが好ましい。そして、流量、水質、pH等が調整された窒素含有排水(以下、被処理水と呼ぶ場合がある)が硝化工程等に送られることとなる。   The nitrogen-containing wastewater from which hydrogen peroxide and fluorine ions have been removed is temporarily stored in the water tank before being treated by the nitrification process, denitrification process, etc., and the flow rate and water quality required for the subsequent nitrification process are stabilized. At the same time, it is preferably adjusted to an appropriate pH. And the nitrogen-containing waste water (henceforth a to-be-processed water may be called) from which the flow volume, water quality, pH, etc. were adjusted will be sent to a nitrification process etc.

硝化工程は、硝化部(例えば、硝化槽)に被処理水を供給して、主に被処理水中のアンモニムイオンを好気的(酸素の存在下で)に硝酸若しくは亜硝酸に酸化する工程である。硝化部には、担体に硝化菌を含む微生物膜を担持させてなる微生物担持担体が充填されている。また、硝化部には、空気導入管(不図示)が接続されており、硝化部内の被処理水に空気を供給することができる構造になっている。そして、硝化部で、微生物担持担体の硝化菌の働きにより、被処理水中のアンモニウムイオンを硝酸、亜硝酸に硝化させる。ここで、硝化菌は、被処理水中に含まれるアンモニウムイオンを亜硝酸に硝化する独立栄養性細菌のアンモニア酸化細菌、アンモニウムイオンを硝酸に硝化する独立栄養性細菌の亜硝酸酸化細菌等である。   The nitrification process is a process in which water to be treated is supplied to a nitrification unit (for example, a nitrification tank), and mainly ammonium ions in the water to be treated are aerobically (in the presence of oxygen) oxidized to nitric acid or nitrous acid. is there. The nitrification part is filled with a microorganism-supporting carrier formed by supporting a microorganism film containing nitrifying bacteria on a carrier. In addition, an air introduction pipe (not shown) is connected to the nitrification unit so that air can be supplied to the water to be treated in the nitrification unit. Then, in the nitrification unit, ammonium ions in the water to be treated are nitrified into nitric acid and nitrous acid by the action of the nitrifying bacteria of the microorganism-supporting carrier. Here, the nitrifying bacteria are ammonia-oxidizing bacteria that are autotrophic bacteria that nitrify ammonium ions contained in the water to be treated into nitrite, nitrite-oxidizing bacteria that are autotrophic bacteria that nitrify ammonium ions to nitric acid, and the like.

硝化菌が担持される担体は、特に制限されるものではないが、例えば、スポンジ、ゲル、プラスチック成型品等を利用することができる。具体的には、親水性のポリウレタンスポンジ、ポリビニルアルコールゲル等を利用することが好ましい。なお、後述するように、脱窒グラニュールを返送する場合、硝化菌が担持される担体は必ずしも必要でない。   The carrier on which nitrifying bacteria are supported is not particularly limited, and for example, sponges, gels, plastic molded products, and the like can be used. Specifically, it is preferable to use hydrophilic polyurethane sponge, polyvinyl alcohol gel, or the like. As will be described later, when returning the denitrification granules, a carrier on which nitrifying bacteria are supported is not necessarily required.

脱窒工程A,Bは、完全混合型の脱窒部に水素供与体を供給し、被処理水中の硝酸若しくは亜硝酸を無酸素条件下にて窒素ガスに還元する工程である。脱窒工程Aの場合、脱窒部(例えば、脱窒槽)には、脱窒菌を含む汚泥が収容されており、脱窒部内では、脱窒菌の働きによって、硝酸若しくは亜硝酸が窒素ガスに還元されることとなる。脱窒工程Bの場合、第1脱窒部(及び第2脱窒部)には、脱窒菌を含む汚泥が収容されており、第1脱窒部(例えば、第1脱窒槽)で、被処理水を脱窒菌に接触させた後、被処理水、脱窒菌、水素供与体を第2脱窒部(例えば、第2脱窒槽)に送液する。そして、第1脱窒部及び第2脱窒部内では、脱窒菌の働きによって、被処理水中の硝酸若しくは亜硝酸が窒素ガスに還元される。   The denitrification steps A and B are steps in which a hydrogen donor is supplied to a complete mixing type denitrification section and nitric acid or nitrous acid in the water to be treated is reduced to nitrogen gas under oxygen-free conditions. In the case of the denitrification step A, sludge containing denitrifying bacteria is accommodated in the denitrifying part (for example, a denitrifying tank), and in the denitrifying part, nitric acid or nitrous acid is reduced to nitrogen gas by the action of the denitrifying bacteria. Will be. In the case of the denitrification step B, the first denitrification unit (and the second denitrification unit) contains sludge containing denitrification bacteria, and the first denitrification unit (for example, the first denitrification tank) After making treated water contact denitrifying bacteria, treated water, denitrifying bacteria, and a hydrogen donor are sent to the 2nd denitrification part (for example, the 2nd denitrification tank). And in a 1st denitrification part and a 2nd denitrification part, nitric acid or nitrous acid in to-be-processed water is reduce | restored to nitrogen gas by the effect | action of denitrifying bacteria.

脱窒工程において、水素供与体としてメタノールを使用した場合、被処理水中の硝酸(硝酸イオン)、亜硝酸(亜硝酸イオン)は、下記反応式に示す反応により、窒素ガスに還元される。   When methanol is used as the hydrogen donor in the denitrification step, nitric acid (nitrate ions) and nitrous acid (nitrite ions) in the water to be treated are reduced to nitrogen gas by the reaction shown in the following reaction formula.

2NO + CHOH → N + CO + HO + 2OH
6NO + 5CHOH → 3N + 5CO + 7HO + 6OH
2NO 2 + CH 3 OH → N 2 + CO 2 + H 2 O + 2OH
6NO 3 - + 5CH 3 OH → 3N 2 + 5CO 2 + 7H 2 O + 6OH -

また、脱窒工程Aでは、脱窒部内の水素供与体の濃度が経時的に変化するように、水素供与体の添加量に時間的変動を与える。また、脱窒工程Bでは、少なくとも第1脱窒部及び第2脱窒部を設け、第1脱窒部内と第2脱窒部内との間で、所定の水素供与体の濃度差が形成されるように、少なくとも第1脱窒槽に水素供与体を供給する。なお、本実施形態における水素供与体の添加は、脱窒部に接続されている水素供与体添加ライン10から行われるようになっている。   In addition, in the denitrification step A, the amount of hydrogen donor added is changed over time so that the concentration of the hydrogen donor in the denitrification part changes with time. Further, in the denitrification step B, at least a first denitrification unit and a second denitrification unit are provided, and a predetermined hydrogen donor concentration difference is formed between the first denitrification unit and the second denitrification unit. As such, at least the first denitrification tank is fed with a hydrogen donor. In addition, the addition of the hydrogen donor in this embodiment is performed from the hydrogen donor addition line 10 connected to the denitrification part.

以下に、脱窒工程Aにおける、水素供与体の供給方法について詳述する。   Below, the supply method of the hydrogen donor in the denitrification process A will be described in detail.

通常、水素供与体は、脱窒部に供給される被処理水中の硝酸イオン、亜硝酸イオンの濃度から、脱窒処理に必要な水素供与体の供給量を算出し、その量を変化させることなく連続的に脱窒部に供給する。そのため、脱窒部内の水素供与体の濃度は、低濃度でほぼ一定である。なお、通常は、脱窒処理を効率的に行うために、脱窒部内の硝酸イオン及び亜硝酸イオンの脱窒処理に必要な水素供与体の供給量(水素供与体必要理論量)の1.2倍前後を脱窒部に供給する。   Normally, the hydrogen donor calculates the supply amount of the hydrogen donor required for the denitrification treatment from the concentration of nitrate ion and nitrite ion in the water to be treated supplied to the denitrification section, and changes the amount. Continuously supplied to the denitrification section. Therefore, the concentration of the hydrogen donor in the denitrification part is almost constant at a low concentration. In general, in order to efficiently perform the denitrification treatment, the hydrogen donor supply amount (the hydrogen donor necessary theoretical amount) necessary for the denitrification treatment of nitrate ions and nitrite ions in the denitrification portion is 1. About twice as much is supplied to the denitrification section.

しかし、脱窒工程Aでは、脱窒部内での水素供与体の濃度が経時的に変化するように、水素供与体の供給−停止(間欠添加)、水素供与体の多量供給−少量供給等を行う。このように、水素供与体の濃度に変動を与えることにより、脱窒菌を含む汚泥が自己造粒したグラニュールを形成させることができる。   However, in the denitrification step A, hydrogen donor supply-stop (intermittent addition), hydrogen donor large-volume supply-small-volume supply, etc. are performed so that the hydrogen donor concentration in the denitrification section changes with time. Do. Thus, the granule which the sludge containing denitrifying bacteria self-granulated can be formed by giving a fluctuation | variation to the density | concentration of a hydrogen donor.

ここで、(例えば、脱窒槽部内での被処理水の水理学的滞留時間における)脱窒部内での水素供与体の最大濃度と最小濃度との差は、50mgTOC/L以上となるように、脱窒部内に水素供与体を供給することが好ましく、100mgTOC/L以上となるように、脱窒部内に水素供与体を供給することがより好ましい。脱窒部内での水素供与体の最大濃度と最小濃度との差が、50mgTOC/Lより小さいと、脱窒菌の自己造粒化を充分に誘導することができない場合がある。   Here, the difference between the maximum concentration and the minimum concentration of the hydrogen donor in the denitrification part (for example, in the hydraulic retention time of the water to be treated in the denitrification tank part) is 50 mg TOC / L or more. It is preferable to supply a hydrogen donor into the denitrification part, and it is more preferable to supply a hydrogen donor into the denitrification part so as to be 100 mg TOC / L or more. If the difference between the maximum concentration and the minimum concentration of the hydrogen donor in the denitrification part is smaller than 50 mg TOC / L, self-granulation of the denitrifying bacteria may not be sufficiently induced.

ここで、脱窒部内での水素供与体の最小濃度は、最大濃度に対して1/2以下(0より大きく、最大濃度に対して1/2以下の範囲)であることが好ましい。上記最小濃度が最大濃度に対して1/2を超えると、脱窒菌の自己造粒化の誘導が困難となる場合がある。   Here, it is preferable that the minimum concentration of the hydrogen donor in the denitrification part is ½ or less (greater than 0 and ½ or less of the maximum concentration) with respect to the maximum concentration. If the minimum concentration exceeds 1/2 with respect to the maximum concentration, it may be difficult to induce self-granulation of denitrifying bacteria.

本実施形態では、水素供与体を間欠的に脱窒部に供給することにより、脱窒部内での水素供与体の濃度を経時的に変化させることができる。具体的には、水素供与体の供給時では、脱窒部内に存在する脱窒菌の処理速度を超える速度で、水素供与体を供給することにより脱窒部内の水素供与体の濃度を増加させ、その後、水素供与体の供給を停止することにより、脱窒部内の水素供与体の濃度を低下させる。   In this embodiment, the concentration of the hydrogen donor in the denitrification unit can be changed over time by intermittently supplying the hydrogen donor to the denitrification unit. Specifically, at the time of supplying the hydrogen donor, the concentration of the hydrogen donor in the denitrification unit is increased by supplying the hydrogen donor at a rate exceeding the processing rate of the denitrifying bacteria present in the denitrification unit, Thereafter, the concentration of the hydrogen donor in the denitrification unit is lowered by stopping the supply of the hydrogen donor.

水素供与体の供給停止時間は、水素供与体の供給時間の50%より長いことが好ましい。水素供与体の供給停止時間が、水素供与体の供給時間の50%以下であると、水素供与体の最大濃度と最小濃度との差が、例えば50mgTOC/L以上であっても、脱窒菌を含む汚泥の自己造粒化を充分に誘導することが困難となる場合がある。   The supply stop time of the hydrogen donor is preferably longer than 50% of the supply time of the hydrogen donor. If the supply stop time of the hydrogen donor is 50% or less of the supply time of the hydrogen donor, even if the difference between the maximum concentration and the minimum concentration of the hydrogen donor is, for example, 50 mg TOC / L or more, It may be difficult to sufficiently induce self-granulation of the sludge contained.

水素供与体の供給及び停止のサイクルを複数行う場合、1サイクル(供給−停止)の時間は、水理学的滞留時間の50%より短いこと、すなわち水理学的滞留時間に対して2サイクル以上行うことが好ましい。水理学的滞留時間に対して1サイクルしか行わないと、水素供与体の最大濃度と最小濃度との差は大きくなるが、水素供与体の濃度の高い処理水が脱窒部外へ排出されるため、処理水から水素供与体を除去するために設置される酸化槽等の負荷が高くなると共に、処理水の水質を悪化させる場合がある。また、脱窒処理において有効に使用されない水素供与体が多くなるため、水素供与体供給量を増加させる必要があり、脱室処理のコストが高くなる場合がある。   When a plurality of hydrogen donor supply and stop cycles are performed, the time of one cycle (feed-stop) is shorter than 50% of the hydraulic residence time, that is, two cycles or more with respect to the hydraulic residence time. It is preferable. If only one cycle is performed for the hydraulic residence time, the difference between the maximum concentration and the minimum concentration of the hydrogen donor increases, but treated water having a high hydrogen donor concentration is discharged outside the denitrification section. For this reason, the load of the oxidation tank or the like installed for removing the hydrogen donor from the treated water is increased, and the quality of the treated water may be deteriorated. In addition, since the number of hydrogen donors that are not effectively used in the denitrification treatment increases, it is necessary to increase the supply amount of the hydrogen donor, which may increase the cost of the dechambering treatment.

また、本実施形態では、脱窒部内の硝酸及び亜硝酸の濃度に対して、脱窒処理に必要な水素供与体の供給量(水素供与体必要理論量)を基準として、基準値より少ない量の水素供与体を脱窒部に供給する第1供給工程と、前記基準値より多い量の水素供与体を脱窒部に供給する第2供給工程とを組み合わせて、脱窒部に水素供与体を供給することによっても、脱窒部内での水素供与体の濃度を経時的に変化させることができる。   In this embodiment, the amount of nitric acid and nitrous acid in the denitrification part is smaller than the reference value based on the supply amount of hydrogen donor (necessary theoretical amount of hydrogen donor) required for the denitrification treatment. A hydrogen donor is supplied to the denitrification unit by combining a first supply step for supplying the hydrogen donor to the denitrification unit and a second supply step for supplying a hydrogen donor in an amount greater than the reference value to the denitrification unit. The hydrogen donor concentration in the denitrification part can also be changed over time by supplying.

第1供給工程における水素供与体の供給時間は、第2供給工程における水素供与体の供給時間の50%より長いことが好ましい。第1供給工程における水素供与体の供給時間が、第2供給工程における水素供与体の供給時間の50%以下であると、水素供与体の最大濃度と最小濃度との差が、例えば50mgTOC/L以上であっても、脱窒菌の自己造粒化を充分に誘導することが困難となる場合がある。   The supply time of the hydrogen donor in the first supply step is preferably longer than 50% of the supply time of the hydrogen donor in the second supply step. When the supply time of the hydrogen donor in the first supply step is 50% or less of the supply time of the hydrogen donor in the second supply step, the difference between the maximum concentration and the minimum concentration of the hydrogen donor is, for example, 50 mg TOC / L Even in this case, it may be difficult to sufficiently induce self-granulation of denitrifying bacteria.

第1供給工程及び第2供給工程のサイクルを複数行う場合、1サイクル(第1供給工程−第2供給工程)の時間は、水理学的滞留時間の50%より短いこと、すなわち水理学的滞留時間に対して2サイクル以上行うことが好ましい。水理学的滞留時間に対して1サイクルしか行わないと、水素供与体の最大濃度と最小濃度との差は大きくなるが、水素供与体の濃度の高い処理水が脱窒部外へ排出されるため、処理水から水素供与体を除去するために設置される酸化槽等の負荷が高くなると共に、処理水の水質を悪化させる場合がある。また、脱窒処理において有効に使用されない水素供与体が多くなるため、水素供与体供給量を増加させる必要があり、脱室処理のコストが高くなる場合がある。   When a plurality of cycles of the first supply step and the second supply step are performed, the time of one cycle (first supply step-second supply step) is shorter than 50% of the hydraulic residence time, that is, the hydraulic residence It is preferable to perform two or more cycles with respect to time. If only one cycle is performed for the hydraulic residence time, the difference between the maximum concentration and the minimum concentration of the hydrogen donor increases, but treated water having a high hydrogen donor concentration is discharged outside the denitrification section. For this reason, the load of the oxidation tank or the like installed for removing the hydrogen donor from the treated water is increased, and the quality of the treated water may be deteriorated. In addition, since the number of hydrogen donors that are not effectively used in the denitrification treatment increases, it is necessary to increase the supply amount of the hydrogen donor, which may increase the cost of the dechambering treatment.

また、本実施形態では、脱窒部内での水素供与体の最小濃度は、100mgTOC/L以下であることが好ましく、2mgTOC/L〜100mgTOC/Lの範囲であることがより好ましい。水素供与体の最小濃度が100mgTOC/Lより大きいと、脱窒菌の自己造粒化を充分に誘導することが困難となる場合がある。また、水素供与体の最小濃度が2mgTOC/Lより小さいと、脱窒処理を効率的に行うことができず、処理水の水質を悪化させる場合がある。   Moreover, in this embodiment, it is preferable that the minimum concentration of the hydrogen donor in a denitrification part is 100 mgTOC / L or less, and it is more preferable that it is the range of 2 mgTOC / L-100 mgTOC / L. If the minimum concentration of the hydrogen donor is greater than 100 mg TOC / L, it may be difficult to sufficiently induce self-granulation of denitrifying bacteria. Moreover, when the minimum concentration of the hydrogen donor is smaller than 2 mg TOC / L, the denitrification treatment cannot be performed efficiently, and the quality of the treated water may be deteriorated.

次に、脱窒工程Bにおける水素供与体の濃度差の形成方法について説明する。   Next, a method for forming a hydrogen donor concentration difference in the denitrification step B will be described.

脱窒工程Bでは、第1脱窒部内と第2脱窒部内との間で、水素供与体の濃度差が形成されるように、少なくとも第1脱窒部に水素供与体を供給する。脱窒工程Bでは、脱窒部を2つ以上備えていればよく、例えば、第1脱窒部と第2脱窒部との間等に、さらに(複数の)脱窒部(例えば、脱窒槽)を設置してもよい。そして、本明細書では、水素供与体濃度が最も高くなる脱窒部を第1脱窒部とし、水素供与体濃度が最も低くなる脱窒部を第2脱窒部とする。   In the denitrification step B, the hydrogen donor is supplied to at least the first denitrification unit so that a concentration difference of the hydrogen donor is formed between the first denitrification unit and the second denitrification unit. In the denitrification step B, it is sufficient that two or more denitrification units are provided, for example, between the first denitrification unit and the second denitrification unit, etc. Nitrogen tank) may be installed. And in this specification, the denitrification part with the highest hydrogen donor concentration is defined as a first denitrification part, and the denitrification part with the lowest hydrogen donor concentration is defined as a second denitrification part.

本実施形態において、脱窒部は槽型であることが望ましいが、必ずしもこれに制限されるものではなく、特に第1脱窒部においては、被処理水と水素供与体との接触機会を確保することができるものであれば、必ずしも槽型である必要はなく、所定の長さを有するライン(管)等であってもよい。   In the present embodiment, the denitrification unit is desirably a tank type, but is not necessarily limited to this, and particularly in the first denitrification unit, a contact opportunity between the water to be treated and the hydrogen donor is ensured. If it can do, it does not necessarily need to be a tank type, and may be a line (tube) having a predetermined length.

第1脱窒部の容積は、第2脱窒部との水素供与体の濃度差を大きくするため、脱窒部全体の容積の1/3以下であることが好ましく、さらに、脱窒部全体の容積の1/5以下であることが好ましい。また、第1脱窒部のHRT(水理学的滞留時間)が短くなりすぎると、流入してくる被処理水中の溶存酸素の消費が追いつかず、第1脱窒部が好気性条件となる場合がある。したがって、被処理水中の硝酸イオンや亜硝酸イオン濃度や溶存酸素濃度にもよるが、第1脱窒部は数分以上のHRTを確保することができる大きさとすることが好ましく、第1脱窒部の容積の下限値は、脱窒部全体の容積の1/30以上であることが好ましく、さらに、脱窒部全体の容積の1/20以上であることがより好ましい。   The volume of the first denitrification unit is preferably 1/3 or less of the total volume of the denitrification unit in order to increase the concentration difference of the hydrogen donor with the second denitrification unit, and further, the entire denitrification unit It is preferable that it is 1/5 or less of the volume. In addition, when the HRT (hydraulic residence time) of the first denitrification unit becomes too short, the consumption of dissolved oxygen in the inflowing treated water cannot catch up and the first denitrification unit becomes an aerobic condition. There is. Therefore, although depending on the nitrate ion, nitrite ion concentration, and dissolved oxygen concentration in the water to be treated, the first denitrification unit is preferably of a size that can secure an HRT of several minutes or more. The lower limit of the volume of the part is preferably 1/30 or more of the volume of the entire denitrification part, and more preferably 1/20 or more of the volume of the whole denitrification part.

ここで、(例えば、第2脱窒部内の被処理水の水理学的滞留時間(HRT)における)第1脱窒部内での水素供与体の最大濃度と、(例えば、第2脱窒部内の被処理水の水理学的滞留時間における)第2脱窒部内での水素供与体の最小濃度との差は、50mgTOC/L以上となるように、少なくとも第1脱窒部内に水素供与体を供給することが好ましく、100mgTOC/L以上となるように、少なくとも第1脱窒部内に水素供与体を供給することがより好ましい。第1脱窒部内での水素供与体の最大濃度と第2脱窒部内での水素供与体の最小濃度との差が、50mgTOC/Lより小さいと、脱窒菌を含む汚泥の自己造粒化を充分に誘導することができない場合がある。   Here, the maximum concentration of the hydrogen donor in the first denitrification unit (for example, in the hydraulic residence time (HRT) of the treated water in the second denitrification unit), and (for example, in the second denitrification unit) Supply the hydrogen donor in at least the first denitrification part so that the difference from the minimum concentration of hydrogen donor in the second denitrification part (in the hydraulic residence time of the treated water) is 50 mg TOC / L or more. It is preferable to supply a hydrogen donor into at least the first denitrification unit so that the concentration is 100 mg TOC / L or more. If the difference between the maximum hydrogen donor concentration in the first denitrification section and the minimum hydrogen donor concentration in the second denitrification section is less than 50 mg TOC / L, self-granulation of sludge containing denitrifying bacteria will occur. There are cases where it cannot be sufficiently guided.

水素供与体の添加量は被処理水中の硝酸イオン若しくは亜硝酸イオン濃度より計算される。通常は、上記計算値に被処理水中の溶存酸素の消費に使われる量を加えた上で、一定の安全率を掛けた値が水素供与体の添加量として決定される。そして、脱窒工程Bでは、決定された量の水素供与体を第1脱窒部に連続的に供給してもよい(第2脱窒部にも供給してよい)が、被処理水中の硝酸イオン、亜硝酸イオンの濃度が低い場合には、脱窒処理に必要な水素供与体の濃度も低くなるため、第1脱窒部と第2脱窒部との間で、水素供与体の濃度差を形成することが困難となる。   The amount of hydrogen donor added is calculated from the nitrate ion or nitrite ion concentration in the water to be treated. Usually, a value obtained by adding the amount used for consumption of dissolved oxygen in the water to be treated to the above calculated value and multiplying by a certain safety factor is determined as the addition amount of the hydrogen donor. In the denitrification step B, the determined amount of hydrogen donor may be continuously supplied to the first denitrification unit (may also be supplied to the second denitrification unit). When the concentration of nitrate ion and nitrite ion is low, the concentration of the hydrogen donor necessary for the denitrification treatment is also low. Therefore, between the first denitrification part and the second denitrification part, It becomes difficult to form a density difference.

このような場合には、第1脱窒部に添加する水素供与体の添加量を多くするか、上記説明したような水素供与体の供給−停止(間欠添加)、水素供与体の多量供給−少量供給を行う等のような水素供与体の添加量に時間的変動を与えることで、第1脱窒部と第2脱窒部との間で、容易に水素供与体の濃度差を形成することができる。水素供与体の供給及び停止時間及び水素供与体の多量供給−少量供給時間等は、第1脱窒部内での水素供与体の最大濃度と第2脱窒部内での水素供与体の最小濃度との差が、例えば50mgTOC/L以上となるように設定されることが好ましい。   In such a case, the amount of hydrogen donor added to the first denitrification part is increased, or supply of hydrogen donor as described above-stop (intermittent addition), supply of a large amount of hydrogen donor- By providing a temporal variation in the amount of hydrogen donor added, such as by supplying a small amount, a difference in hydrogen donor concentration is easily formed between the first denitrification unit and the second denitrification unit. be able to. The hydrogen donor supply and stop time and the hydrogen donor large amount supply-small amount supply time are determined by the maximum concentration of the hydrogen donor in the first denitrification part and the minimum concentration of the hydrogen donor in the second denitrification part. It is preferable that the difference is set to be 50 mg TOC / L or more, for example.

第1脱窒部での水素供与体の供給及び停止のサイクルを複数行う場合、水素供与体の多量供給−少量供給のサイクルを複数行う場合、後段の第2脱窒部内での水素供与体の濃度を平均化することができる点で、1サイクルの時間は、脱窒部全体における水理学的滞留時間の50%より短いこと、すなわち脱窒部全体における水理学的滞留時間に対して2サイクル以上行うことが好ましい。   When multiple hydrogen donor supply and stop cycles are performed in the first denitrification section, when multiple hydrogen donor supply-small supply cycles are performed, the hydrogen donor in the second denitrification section at the subsequent stage One cycle time is shorter than 50% of the hydraulic detention time in the entire denitrification section, that is, two cycles with respect to the hydraulic residence time in the entire denitrification section in that the concentration can be averaged. It is preferable to perform the above.

本実施形態では、少なくとも第1脱窒部に水素供与体を供給すればよいが、第1脱窒部内と第2脱窒部内との間で、水素供与体の濃度差が形成されるように、第2脱窒部にも水素供与体を供給(供給−停止の間欠供給、多量供給−少量供給等も含む)してよい。   In the present embodiment, it is sufficient to supply the hydrogen donor to at least the first denitrification unit. However, a concentration difference of the hydrogen donor is formed between the first denitrification unit and the second denitrification unit. The hydrogen donor may also be supplied to the second denitrification unit (including supply-stop intermittent supply, large amount supply-small amount supply, etc.).

なお、脱窒菌をグラニュール化させる際には、一部の金属類の添加が良好な結果をもたらす場合がある。これらは、一般的にグラニュール化促進物質として位置付けられ、イオン類としてカルシウムイオン、鉄イオン、化合物類としてフライアッシュ、酸化鉄、炭酸カルシウム等が挙げられる。このうちイオン類に関しては、脱窒処理期間に渡って、もしくは装置の立ち上げ期に連続又は間欠的に添加されることが好ましい。また、化合物類に関しては、装置立ち上げ時に汚泥の添加と共に添加されることが好ましい。   In addition, when granulating denitrifying bacteria, addition of some metals may give a favorable result. These are generally positioned as granulation accelerators, and examples of ions include calcium ions and iron ions, examples of compounds include fly ash, iron oxide, and calcium carbonate. Among these, ions are preferably added continuously or intermittently over the denitrification treatment period or at the start-up period of the apparatus. Further, regarding the compounds, it is preferable to add them together with the addition of sludge when the apparatus is started up.

本実施形態で用いられる水素供与体は、例えば、メタノール、エタノール、イソプロパノール、酢酸、水素ガス、アセトン、グルコース、エチルメチルケトン、テトラメチルアンモニウムハイドロオキサイド(TMAH)等が挙げられるが、これに制限されるものではなく、水素供与体として従来公知のもの全てを使用することができる。   Examples of the hydrogen donor used in the present embodiment include methanol, ethanol, isopropanol, acetic acid, hydrogen gas, acetone, glucose, ethyl methyl ketone, tetramethyl ammonium hydroxide (TMAH), and the like, but are not limited thereto. However, any conventionally known hydrogen donor can be used.

硝酸イオン、亜硝酸イオンから窒素ガスへの還元反応は、水素供与体の種類により若干異なるが、いずれにしても硝酸イオン、亜硝酸イオンと等モルの水酸化物イオンが生成するため、脱窒部内の被処理水pHは上昇する。一般的に、脱窒処理における被処理水のpHは8〜9の範囲に調整することが好適である。但し、水素供与体由来の炭酸イオン濃度が高くなって、被処理水中に含まれるカルシウムイオン等によるスケール発生が懸念される場合には、脱窒部内の被処理水pHは6〜7.5の範囲に調整することが好ましく、6.3〜7.0の範囲に調整することがより好ましい。例えば、脱窒部にpHセンサを設置して、脱窒部内の被処理水のpHを検出し、検出したpH値に基づいて、脱窒部内の被処理水のpHが上記範囲となるように、酸剤又はアルカリ剤を脱窒部に供給し、脱窒部内の被処理水のpHを調整する。   The reduction reaction from nitrate ion or nitrite ion to nitrogen gas is slightly different depending on the type of hydrogen donor, but in any case, nitrate ion and equimolar hydroxide ion are formed, so denitrification The treated water pH in the section rises. In general, it is preferable to adjust the pH of water to be treated in the denitrification treatment to a range of 8-9. However, when the carbonate ion concentration derived from the hydrogen donor is high and there is a concern about the generation of scale due to calcium ions or the like contained in the water to be treated, the pH of the water to be treated in the denitrification section is 6 to 7.5. It is preferable to adjust to a range, and it is more preferable to adjust to the range of 6.3-7.0. For example, a pH sensor is installed in the denitrification unit to detect the pH of the water to be treated in the denitrification unit, and based on the detected pH value, the pH of the water to be treated in the denitrification unit is in the above range. Then, an acid agent or an alkali agent is supplied to the denitrification unit, and the pH of the water to be treated in the denitrification unit is adjusted.

次に、沈殿処理工程により、脱窒工程A,B等から排出される処理水から、汚泥を分離する。図1(A),(B)では、沈殿処理工程により処理水から分離した汚泥を硝化工程に返送する返送ライン12を備えており、本実施形態の脱窒工程A又はBにより得られるグラニュール汚泥を循環させることができる。これにより、硝化菌を含んだグラニュールが形成されるため、硝化工程等も同一のグラニュールによって処理することが可能となる。   Next, the sludge is separated from the treated water discharged from the denitrification steps A, B, etc. by the precipitation treatment step. 1 (A) and 1 (B) are provided with a return line 12 for returning the sludge separated from the treated water in the precipitation process to the nitrification process, and the granules obtained by the denitrification process A or B of the present embodiment. Sludge can be circulated. As a result, granules containing nitrifying bacteria are formed, so that the nitrification process and the like can be processed with the same granules.

図2(A),(B)は、有機物処理工程、硝化工程、脱窒工程A又はB、沈殿処理工程の順に処理を行う窒素含有水の処理方法を示している。有機物処理工程は、被処理水中の有機態窒素やその他の有機物を好気若しくは嫌気条件下にて処理を行い、有機物(例えばIPA、TMAH等)の除去と共に有機態窒素をアンモニア態窒素に変換等をする工程である。また、図2(A),(B)に示す窒素含有水の処理には、沈殿処理工程により処理水から分離した汚泥を有機物処理工程に返送する返送ライン14を備えており、本実施形態の脱窒工程A又はBにより得られるグラニュール汚泥を循環させることができる。これにより、硝化菌を含んだグラニュールが形成されるため、硝化工程等も同一のグラニュールによって処理することが可能となる。   2A and 2B show a method for treating nitrogen-containing water in which treatment is performed in the order of an organic matter treatment step, a nitrification step, a denitrification step A or B, and a precipitation treatment step. The organic matter treatment process treats organic nitrogen and other organic matter in the water to be treated under aerobic or anaerobic conditions, and converts organic nitrogen to ammonia nitrogen along with removal of organic matter (eg IPA, TMAH, etc.) It is the process of doing. Further, the treatment of nitrogen-containing water shown in FIGS. 2 (A) and 2 (B) includes a return line 14 for returning sludge separated from the treated water in the precipitation treatment step to the organic matter treatment step. Granule sludge obtained by the denitrification step A or B can be circulated. As a result, granules containing nitrifying bacteria are formed, so that the nitrification process and the like can be processed with the same granules.

図3(A),(B)は、硝化工程、脱窒工程A又はB、酸化工程、沈殿処理工程の順に処理を行う窒素含有水の処理方法を示している。酸化工程は、脱窒にて添加した水素供与体の余剰分を好気的に処理する工程である。図3(A),(B)に示す窒素含有水の処理も同様に、沈殿処理工程により処理水から分離した汚泥を硝化工程に返送する返送ライン12を備えており、本実施形態の脱窒工程A又はBにより得られるグラニュール汚泥を循環させることができる。これにより、硝化菌を含んだグラニュールが形成されるため、硝化工程等も同一のグラニュールによって処理することが可能となる。   3A and 3B show a method for treating nitrogen-containing water in which treatment is performed in the order of the nitrification step, the denitrification step A or B, the oxidation step, and the precipitation treatment step. An oxidation process is a process of aerobically processing the surplus of the hydrogen donor added by denitrification. Similarly, the treatment of the nitrogen-containing water shown in FIGS. 3A and 3B includes a return line 12 for returning the sludge separated from the treated water by the precipitation treatment step to the nitrification step. Granule sludge obtained by the process A or B can be circulated. As a result, granules containing nitrifying bacteria are formed, so that the nitrification process and the like can be processed with the same granules.

図4(A),(B)は、脱窒工程A又はB、硝化工程、脱窒工程C、酸化工程、沈殿処理工程の順に処理を行う窒素含有水の処理方法を示している。図5(A),(B)は、脱窒工程C、硝化工程、脱窒工程A又はB、酸化工程、沈殿処理工程の順に処理を行う窒素含有水の処理方法を示している。脱窒工程Cは、脱窒部に水素供与体を間欠的又は多量供給−少量供給することや第1脱窒部と第2脱窒部との間で所定の濃度差となるように水素供与体を供給することを行わずに、硝酸若しくは亜硝酸性窒素を無酸素条件下にて窒素ガスに還元する従来の脱窒工程である。なお、図4(A),(B)又は図5(A),(B)の窒素含有水の処理方法では、処理性能を向上させるため、硝化工程により得られる処理水の一部を、前段に配置した脱窒工程A、B、又は脱窒工程Cに返送している。図4(A),(B)及び図5(A),(B)に示す窒素含有水の処理も同様に、沈殿処理工程により処理水から分離した汚泥を脱窒工程に返送する返送ライン16を備えており、本実施形態の脱窒工程A又はBにより得られるグラニュール汚泥を循環させている。この場合、硝化菌を含んだグラニュールが形成されるため、硝化工程等も同一のグラニュールによって処理することが可能となる。   4A and 4B show a treatment method for nitrogen-containing water in which the denitrification step A or B, the nitrification step, the denitrification step C, the oxidation step, and the precipitation treatment step are performed in this order. 5A and 5B show a treatment method for nitrogen-containing water in which treatment is performed in the order of denitrification step C, nitrification step, denitrification step A or B, oxidation step, and precipitation treatment step. In the denitrification step C, hydrogen is supplied to the denitrification unit intermittently or in a large amount—a small amount is supplied, or a predetermined concentration difference is provided between the first denitrification unit and the second denitrification unit. This is a conventional denitrification process in which nitric acid or nitrite nitrogen is reduced to nitrogen gas under oxygen-free conditions without supplying a body. In addition, in the processing method of nitrogen-containing water of FIG. 4 (A), (B) or FIG. 5 (A), (B), in order to improve processing performance, a part of the processing water obtained by a nitrification process is changed to the former stage. Are returned to the denitrification step A, B or denitrification step C. Similarly, in the treatment of the nitrogen-containing water shown in FIGS. 4 (A), 4 (B) and FIGS. 5 (A), 5 (B), the return line 16 returns the sludge separated from the treated water in the precipitation treatment step to the denitrification step. The granular sludge obtained by the denitrification process A or B of this embodiment is circulated. In this case, since granules containing nitrifying bacteria are formed, the nitrification process and the like can be processed with the same granules.

図6(A),(B)は、有機物処理工程、硝化工程、脱窒工程A又はB、酸化工程、沈殿処理工程の順に処理を行う窒素含有水の処理方法を示している。図6(A),(B)に示す窒素含有水の処理も同様に、沈殿処理工程により処理水から分離した汚泥を有機物処理工程に返送する返送ライン12を備えており、本実施形態の脱窒工程A又はBにより得られるグラニュール汚泥を循環させている。これにより、硝化菌を含んだグラニュールが形成されるため、硝化工程等も同一のグラニュールによって処理することが可能となる。   FIGS. 6A and 6B show a method for treating nitrogen-containing water in which treatment is performed in the order of an organic matter treatment step, a nitrification step, a denitrification step A or B, an oxidation step, and a precipitation treatment step. Similarly, the treatment of the nitrogen-containing water shown in FIGS. 6A and 6B includes a return line 12 for returning the sludge separated from the treated water in the precipitation treatment step to the organic matter treatment step. Granule sludge obtained by the nitriding step A or B is circulated. As a result, granules containing nitrifying bacteria are formed, so that the nitrification process and the like can be processed with the same granules.

上記これらの本実施形態において、有機物処理、硝化処理、酸化処理等はそれぞれ既存の方法を用いることができる。そして、沈殿処理に関しても従来の技術を適用することが可能であるが、グラニュール化において、ある程度の水面積負荷をかけて密度の高い汚泥を選別して、系内に保持することを好ましい。通常の活性汚泥システムにおいては、水面積負荷を0.6m/hr以下程度として設計されるのが一般的であるが、本実施形態においては、0.8m/hr以上とすることが好ましく、1.0m/hr以上とすることがより好ましい。   In these embodiments, existing methods can be used for organic matter treatment, nitrification treatment, oxidation treatment, and the like. The conventional technique can also be applied to the precipitation treatment, but in granulation, it is preferable to screen sludge having a high density by applying a certain amount of water area load and hold it in the system. In an ordinary activated sludge system, the water area load is generally designed to be about 0.6 m / hr or less, but in this embodiment, it is preferably 0.8 m / hr or more. More preferably, it is 0.0 m / hr or more.

また、沈殿処理により分離された汚泥が有機物処理工程、硝化工程等に返送される場合、返送率は被処理水流量に対して、10%〜200%程度とすることが好ましい。返送には、返送ライン(12,14,16)に設置された通常のポンプ(不図示)により行うことができるが、通常の渦巻きポンプではグラニュールが破砕される場合があるため、回転容積式ポンプ、チューブポンプ、エアーリフトポンプ等で返送を行うことが好ましい。   Moreover, when the sludge separated by the precipitation treatment is returned to the organic matter treatment step, the nitrification step, etc., the return rate is preferably about 10% to 200% with respect to the flow rate of the water to be treated. The return can be performed by a normal pump (not shown) installed in the return line (12, 14, 16). However, the granule may be crushed by a normal spiral pump, so that the rotary displacement type is used. It is preferable to perform the return using a pump, a tube pump, an air lift pump or the like.

また、沈殿処理工程では、沈殿槽を設置する代わりに、脱窒部もしくは酸化槽の一部を仕切って沈降部を設けたり、脱窒部もしくは酸化槽にGSSを設けたり、膜分離装置等を設けてもよい。   In addition, in the precipitation treatment step, instead of installing a precipitation tank, a denitrification part or a part of the oxidation tank is partitioned to provide a sedimentation part, a GSS is provided in the denitrification part or the oxidation tank, a membrane separation device, etc. It may be provided.

また、処理対象となる被処理水は基本的に連続流入されるが、流量調整槽等を設置して、流量調整槽のレベル制御により、被処理水の流入のON−OFF制御を行ってもよい。この場合にも、本実施形態では、グラニュールの形成が良好に行われる。そして、被処理水の流入に合わせて、水素供与体の添加時間、タイミング等を制御することが望ましい。   In addition, the water to be treated, which is to be treated, is basically continuously flowed in. However, even if a flow rate adjustment tank or the like is installed and the level control of the flow rate adjustment tank is used, ON / OFF control of the inflow of treated water is performed. Good. Also in this case, in this embodiment, the granule is formed satisfactorily. It is desirable to control the addition time and timing of the hydrogen donor in accordance with the inflow of the water to be treated.

脱窒部内のMLSS濃度としては特に制限されるものではないが、十分な処理速度を達成することができる点で、MLSS濃度は5000〜100000mgMLSS/L程度とすることが好ましい。   Although it does not restrict | limit especially as MLSS density | concentration in a denitrification part, It is preferable that MLSS density | concentration shall be about 5000-100000 mgMLSS / L at the point which can achieve sufficient processing speed.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

実施例においては、図3(B)に示した処理方法により試験を行った。硝化工程では容積36Lの硝化槽を用い、脱窒工程Bでは容積4Lの第1脱窒槽、容積36Lの第2脱窒槽を用い、酸化処理工程では容積20Lの酸化槽を用いた。   In the example, the test was performed by the processing method shown in FIG. A nitrification tank having a volume of 36 L was used in the nitrification process, a first denitrification tank having a volume of 4 L and a second denitrification tank having a volume of 36 L were used in the denitrification process B, and an oxidation tank having a volume of 20 L was used in the oxidation treatment process.

下記表1に示す水質の被処理水を連続通水した。また、硝化槽及び酸化槽では空気を曝気し、DOを2mgO/L以上に維持した。第1脱窒槽及び第2脱窒槽には攪拌機を設置して攪拌を行った。水素供与体としてメタノールを使用し、第1脱窒槽に間欠的に添加した。水素供与体の添加−停止の1サイクルは、被処理水流量と第2脱窒槽の容積から計算された第2脱窒槽HRTの1/4とした。また、水素供与体の添加と停止の時間比を1:19とした。実施例1では、沈殿槽から排出される処理水中の全窒素濃度が10mgN/L以下となるように段階的に被処理水量を増加させて、負荷を上昇させた。なお、メタノールの添加量は、流入窒素量に対して3kgメタノール/kgNとした。また、試験開始時には約500mgMLSS/Lとなるように脱窒を行っている活性汚泥を第1脱窒槽及び第2脱窒槽に供給した。また、硝化槽及び第2脱窒槽にはpHコントローラーを設置し、塩酸若しくは水酸化ナトリウムを用いて、被処理水のpHを7.0〜7.5となるように調整した。また、脱窒部後段に設置した沈殿槽に溜まった汚泥は、エアーリフトポンプを用いて硝化槽に返送した。   Water to be treated shown in Table 1 below was continuously passed. Moreover, air was aerated in the nitrification tank and the oxidation tank, and DO was maintained at 2 mgO / L or more. A stirrer was installed in the first denitrification tank and the second denitrification tank to perform stirring. Methanol was used as a hydrogen donor and added intermittently to the first denitrification tank. One cycle of addition and stop of the hydrogen donor was 1/4 of the second denitrification tank HRT calculated from the flow rate of the water to be treated and the volume of the second denitrification tank. The time ratio of addition and termination of the hydrogen donor was 1:19. In Example 1, the amount of water to be treated was increased stepwise so that the total nitrogen concentration in the treated water discharged from the sedimentation tank was 10 mgN / L or less, and the load was increased. The amount of methanol added was 3 kg methanol / kgN with respect to the inflow nitrogen amount. Moreover, the activated sludge which is performing denitrification so that it may become about 500 mgMLSS / L at the time of a test start was supplied to the 1st denitrification tank and the 2nd denitrification tank. Moreover, pH controllers were installed in the nitrification tank and the second denitrification tank, and the pH of the water to be treated was adjusted to 7.0 to 7.5 using hydrochloric acid or sodium hydroxide. Moreover, the sludge collected in the sedimentation tank installed in the latter stage of the denitrification part was returned to the nitrification tank using an air lift pump.

比較例においては、第1脱窒槽を設置しないこと、水素供与体を第2脱窒槽に連続的に添加すること以外は実施例1と同様の条件で試験を行った。   In the comparative example, the test was performed under the same conditions as in Example 1 except that the first denitrification tank was not installed and the hydrogen donor was continuously added to the second denitrification tank.

図7は、実施例及び比較例の試験経過日数に対する硝化速度の変化を示す図である。図8は、実施例及び比較例の試験経過日数に対する脱窒速度の変化を示す図である。図9は、実施例及び比較例の試験経過日数に対するMLSS濃度の変化を示す図である。比較例では、一時硝化速度で0.3kgN/m/day、脱窒速度で0.4kgN/m/day付近まで上昇したが、沈殿槽からの汚泥の流出が激しく、十分な汚泥濃度を維持することができなかった。このため、MLSS濃度も低下し、結果として、硝化速度は0.15kgN/m/day、脱窒速度は0.18kgN/m/day付近で安定した。また、汚泥の状態もほとんどグラニュール化することはなかった。実施例では、MLSS濃度の増加が確認され、これに伴い硝化速度及び脱窒速度も上昇し、試験開始後2ヶ月後には、硝化速度及び脱窒速度いずれも0.6kgN/m/day程度まで上昇し、比較例の3倍程度の速度が得られた。また汚泥状態は自己造粒化が見られ、直径200μmほどのグラニュールを形成した。 FIG. 7 is a graph showing changes in the nitrification rate with respect to the number of days elapsed from the test in Examples and Comparative Examples. FIG. 8 is a graph showing changes in the denitrification rate with respect to the number of days elapsed in the tests of the examples and comparative examples. FIG. 9 is a diagram showing a change in the MLSS concentration with respect to the number of days elapsed from the test in the examples and the comparative examples. In the comparative example, the temporary nitrification rate increased to 0.3 kg N / m 3 / day and the denitrification rate increased to around 0.4 kg N / m 3 / day, but the sludge flowed out from the settling tank, and the sludge concentration was sufficient. Could not be maintained. For this reason, the MLSS concentration also decreased, and as a result, the nitrification rate was stabilized at 0.15 kgN / m 3 / day and the denitrification rate was stabilized at around 0.18 kgN / m 3 / day. In addition, the sludge was hardly granulated. In the examples, an increase in the MLSS concentration was confirmed, and the nitrification rate and the denitrification rate increased accordingly, and after 2 months from the start of the test, both the nitrification rate and the denitrification rate were about 0.6 kgN / m 3 / day. The speed was about 3 times that of the comparative example. The sludge was self-granulated and formed granules with a diameter of about 200 μm.

図10は、実施例の第1脱窒槽内の水質の変化を示す図であり、図11は、実施例の第2脱窒槽内の水質の変化を示す図である。実施例の第1脱窒槽内ではTOC濃度として0〜200mgTOC/L程度(最大濃度は約200mgTOC/L)の水素供与体濃度の変動が与えられ、第2脱窒槽内ではTOC濃度として2〜18mgTOC/L程度(最小濃度は約2mgTOC/L)の水素供与体濃度の変動が与えられていることを確認した。   FIG. 10 is a diagram showing a change in water quality in the first denitrification tank of the example, and FIG. 11 is a diagram showing a change in water quality in the second denitrification tank of the example. In the 1st denitrification tank of an Example, the fluctuation | variation of the hydrogen donor density | concentration of about 0-200 mgTOC / L (maximum concentration is about 200 mgTOC / L) is given as a TOC density | concentration, and 2-18 mgTOC as a TOC density | concentration in a 2nd denitrification tank. It was confirmed that a variation in hydrogen donor concentration of about / L (minimum concentration was about 2 mg TOC / L) was given.

10 水素供与体添加ライン、12,14,16 返送ライン。   10 Hydrogen donor addition line, 12, 14, 16 Return line.

Claims (16)

硝化部に被処理水を供給して、前記被処理水中のアンモニウムイオンを硝酸若しくは亜硝酸にまで酸化する硝化工程と、
完全混合型の脱窒部に前記被処理水を供給すると共に、水素供与体を供給し、前記被処理水中の前記硝酸若しくは前記亜硝酸を窒素ガスに還元する脱窒工程と、を含む窒素含有水の生物処理方法であって、
前記脱窒工程では、前記脱窒部内での水素供与体の濃度が経時的に変化するように、前記水素供与体の添加量に時間的変動を与えることを特徴とする窒素含有水の処理方法。
A nitrification step of supplying treated water to the nitrification unit and oxidizing ammonium ions in the treated water to nitric acid or nitrous acid;
A denitrification step of supplying the water to be treated to a fully mixed denitrification section, supplying a hydrogen donor, and reducing the nitric acid or nitrous acid in the water to be treated to nitrogen gas. A biological treatment method for water,
In the denitrification step, a method for treating nitrogen-containing water is characterized in that the amount of hydrogen donor added is changed over time so that the concentration of the hydrogen donor in the denitrification section changes with time. .
硝化部に被処理水を供給して、前記被処理水中のアンモニウムイオンを硝酸若しくは亜硝酸にまで酸化する硝化工程と、
完全混合型の脱窒部に前記被処理水を供給すると共に、水素供与体を供給し、前記被処理水中の前記硝酸若しくは前記亜硝酸を窒素ガスに還元する脱窒工程と、を含む窒素含有水の生物処理方法であって、
前記脱窒部は、少なくとも第1脱窒部と第2脱窒部とを備え、
前記脱窒工程では、前記第1脱窒部内と前記第2脱窒部内との間で、水素供与体の濃度差が形成されるように、少なくとも前記第1脱窒部に水素供与体を供給することを特徴とする窒素含有水の処理方法。
A nitrification step of supplying treated water to the nitrification unit and oxidizing ammonium ions in the treated water to nitric acid or nitrous acid;
A denitrification step of supplying the water to be treated to a fully mixed denitrification section, supplying a hydrogen donor, and reducing the nitric acid or nitrous acid in the water to be treated to nitrogen gas. A biological treatment method for water,
The denitrification unit includes at least a first denitrification unit and a second denitrification unit,
In the denitrification step, a hydrogen donor is supplied to at least the first denitrification unit so that a concentration difference of the hydrogen donor is formed between the first denitrification unit and the second denitrification unit. A method for treating nitrogen-containing water, comprising:
請求項2記載の窒素含有水の処理方法であって、前記第1脱窒部の容積が、前記脱窒部の総容積の1/3以下であることを特徴とする窒素含有水の処理方法。   The method for treating nitrogen-containing water according to claim 2, wherein the volume of the first denitrification unit is 1/3 or less of the total volume of the denitrification unit. . 請求項1記載の窒素含有水の処理方法であって、前記脱窒部内の水素供与体の最大濃度と最小濃度との差は、50mgTOC/L以上であることを特徴とする窒素含有水の処理方法。   The method for treating nitrogen-containing water according to claim 1, wherein the difference between the maximum concentration and the minimum concentration of the hydrogen donor in the denitrification part is 50 mg TOC / L or more. Method. 請求項2又は3記載の窒素含有水の処理方法であって、前記第1脱窒部内での水素供与体の最大濃度と、前記第2脱窒部内での水素供与体の最小濃度との差が、50mgTOC/L以上となるように、少なくとも前記第1脱窒部に水素供与体を供給することを特徴とする窒素含有水の処理方法。   The method for treating nitrogen-containing water according to claim 2 or 3, wherein the difference between the maximum hydrogen donor concentration in the first denitrification part and the minimum hydrogen donor concentration in the second denitrification part. However, the hydrogen-containing water is supplied to at least the first denitrification unit so as to be 50 mg TOC / L or more. 請求項2、3又は5記載の窒素含有水の処理方法であって、前記第1脱窒部へ添加する前記水素供与体の添加量に時間的変動を与えることを特徴とする窒素含有水の処理方法。   The method for treating nitrogen-containing water according to claim 2, 3 or 5, wherein the amount of the hydrogen donor added to the first denitrification part is temporally varied. Processing method. 請求項1〜6のいずれか1項に記載の窒素含有水の処理方法であって、前記脱窒工程後の汚泥を前記硝化工程に返送することを特徴とする窒素含有水の処理方法。   It is a processing method of nitrogen-containing water of any one of Claims 1-6, Comprising: The sludge after the said denitrification process is returned to the said nitrification process, The processing method of nitrogen-containing water characterized by the above-mentioned. 請求項1〜6のいずれか1項に記載の窒素含有水の処理方法であって、前記硝化工程の前に、被処理水の有機物処理又は脱窒処理を行う処理工程を含み、
前記脱窒工程後の汚泥を前記硝化工程、前記処理工程のうち少なくともいずれか一方に返送することを特徴とする窒素含有水の処理方法。
It is a processing method of nitrogen content water given in any 1 paragraph of Claims 1-6, Comprising: The processing process which performs organic matter processing or denitrification processing of to-be-processed water before the nitrification process,
A method for treating nitrogen-containing water, wherein the sludge after the denitrification step is returned to at least one of the nitrification step and the treatment step.
被処理水中のアンモニウムイオンを硝酸若しくは亜硝酸にまで酸化する硝化部と、
前記被処理水中の前記硝酸若しくは前記亜硝酸を窒素ガスに還元する完全混合型の脱窒部と、
前記脱窒部に水素供与体を供給する水素供与体供給手段と、を備える窒素含有水の処理装置であって、
前記水素供与体供給手段は、前記脱窒部内での水素供与体の濃度が経時的に変化するように、前記水素供与体の添加量に時間的変動を与えることを特徴とする窒素含有水の処理装置。
A nitrification part that oxidizes ammonium ions in the water to be treated to nitric acid or nitrous acid;
A fully mixed denitrification section for reducing the nitric acid or nitrous acid in the treated water to nitrogen gas;
A hydrogen donor supply means for supplying a hydrogen donor to the denitrification unit, and a nitrogen-containing water treatment apparatus comprising:
The hydrogen donor supply means is characterized in that the amount of hydrogen donor added varies with time so that the concentration of the hydrogen donor in the denitrification section changes over time. Processing equipment.
被処理水中のアンモニウムイオンを硝酸若しくは亜硝酸にまで酸化する硝化部と、
前記被処理水中の前記硝酸若しくは前記亜硝酸を窒素ガスに還元する完全混合型の脱窒部と、
前記脱窒部に水素供与体を供給する水素供与体供給手段と、を備える窒素含有水の処理装置であって、
前記脱窒部は、少なくとも第1脱窒部と第2脱窒部とを備え、
前記水素供与体供給手段は、前記第1脱窒部内と前記第2脱窒部内との間で、水素供与体の濃度差が形成されるように、少なくとも前記第1脱窒部に水素供与体を供給することを特徴とする窒素含有水の処理装置。
A nitrification part that oxidizes ammonium ions in the water to be treated to nitric acid or nitrous acid;
A fully mixed denitrification section for reducing the nitric acid or nitrous acid in the treated water to nitrogen gas;
A hydrogen donor supply means for supplying a hydrogen donor to the denitrification unit, and a nitrogen-containing water treatment apparatus comprising:
The denitrification unit includes at least a first denitrification unit and a second denitrification unit,
The hydrogen donor supply means includes at least a hydrogen donor in the first denitrification unit so that a difference in hydrogen donor concentration is formed between the first denitrification unit and the second denitrification unit. An apparatus for treating nitrogen-containing water.
請求項10記載の窒素含有水の処理装置であって、前記第1脱窒部の容積が、前記脱窒部の総容積の1/3以下であることを特徴とする窒素含有水の処理装置。   The apparatus for treating nitrogen-containing water according to claim 10, wherein the volume of the first denitrification unit is 1/3 or less of the total volume of the denitrification unit. . 請求項9記載の窒素含有水の処理装置であって、前記脱窒部内の水素供与体の最大濃度と最小濃度との差は、50mgTOC/L以上であることを特徴とする窒素含有水の処理装置。   The apparatus for treating nitrogen-containing water according to claim 9, wherein the difference between the maximum concentration and the minimum concentration of the hydrogen donor in the denitrification part is 50 mg TOC / L or more. apparatus. 請求項10又は11記載の窒素含有水の処理装置であって、前記水素供与体供給手段は、前記第1脱窒部内での水素供与体の最大濃度と、前記第2脱窒部内での水素供与体の最小濃度との差が、50mgTOC/L以上となるように、少なくとも前記第1脱窒部に水素供与体を供給することを特徴とする窒素含有水の処理装置。   12. The apparatus for treating nitrogen-containing water according to claim 10, wherein the hydrogen donor supply means includes a maximum concentration of the hydrogen donor in the first denitrification unit and a hydrogen in the second denitrification unit. An apparatus for treating nitrogen-containing water, wherein a hydrogen donor is supplied to at least the first denitrification unit so that a difference from the minimum concentration of the donor is 50 mg TOC / L or more. 請求項10、11又は13記載の窒素含有水の処理装置であって、前記水素供与体供給手段は、前記第1脱窒部へ添加する前記水素供与体の添加量に時間的変動を与えることを特徴とする窒素含有水の処理装置。   14. The apparatus for treating nitrogen-containing water according to claim 10, 11 or 13, wherein the hydrogen donor supply means gives a temporal variation to the addition amount of the hydrogen donor added to the first denitrification section. An apparatus for treating nitrogen-containing water. 請求項9〜14のいずれか1項に記載の窒素含有水の処理装置であって、前記脱窒部から排出される汚泥を前記硝化部に返送する返送手段を備えることを特徴とする窒素含有水の処理装置。   It is a processing apparatus of nitrogen content water given in any 1 paragraph of Claims 9-14, Comprising: It has a return means which returns sludge discharged from said denitrification part to said nitrification part, It contains nitrogen Water treatment equipment. 請求項9〜14のいずれか1項に記載の窒素含有水の処理装置であって、前記硝化部の前段に、被処理水の有機物処理又は脱窒処理を行う処理部を含み、
前記脱窒部から排出される汚泥を前記硝化部、前記処理部のうち少なくともいずれか一方に返送する返送手段を備えることを特徴とする窒素含有水の処理装置。
The nitrogen-containing water treatment apparatus according to any one of claims 9 to 14, further comprising a treatment unit that performs an organic matter treatment or a denitrification treatment of water to be treated in a stage preceding the nitrification unit,
An apparatus for treating nitrogen-containing water, comprising a return means for returning sludge discharged from the denitrification section to at least one of the nitrification section and the treatment section.
JP2009208168A 2009-09-09 2009-09-09 Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus Active JP5355314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009208168A JP5355314B2 (en) 2009-09-09 2009-09-09 Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009208168A JP5355314B2 (en) 2009-09-09 2009-09-09 Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2011056383A true JP2011056383A (en) 2011-03-24
JP5355314B2 JP5355314B2 (en) 2013-11-27

Family

ID=43944671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009208168A Active JP5355314B2 (en) 2009-09-09 2009-09-09 Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus

Country Status (1)

Country Link
JP (1) JP5355314B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183247A (en) * 2010-03-04 2011-09-22 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and water treatment method
JP2012024723A (en) * 2010-07-26 2012-02-09 Swing Corp Wastewater treating apparatus and wastewater treating method
CN102616940A (en) * 2012-01-18 2012-08-01 太原理工大学 Purification treatment method for nickel plating wastewater
JP2016174993A (en) * 2015-03-18 2016-10-06 三菱レイヨンアクア・ソリューションズ株式会社 Apparatus and method for treating water to be treated
JP2018083137A (en) * 2016-11-21 2018-05-31 株式会社クラレ Method of treating nitrogen-containing wastewater
JP2019217481A (en) * 2018-06-22 2019-12-26 オルガノ株式会社 Water treatment method
WO2019244964A1 (en) * 2018-06-22 2019-12-26 オルガノ株式会社 Water treatment method and water treatment device
JP2020001033A (en) * 2019-04-19 2020-01-09 オルガノ株式会社 Water treatment method
JP2020175342A (en) * 2019-04-19 2020-10-29 オルガノ株式会社 Water treatment apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626592A (en) * 1979-08-08 1981-03-14 Ebara Infilco Co Ltd Biological denitrifying method for waste water
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP2007098279A (en) * 2005-10-04 2007-04-19 Mitsubishi Heavy Ind Ltd Apparatus and method for treating waste water by using microbe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626592A (en) * 1979-08-08 1981-03-14 Ebara Infilco Co Ltd Biological denitrifying method for waste water
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP2007098279A (en) * 2005-10-04 2007-04-19 Mitsubishi Heavy Ind Ltd Apparatus and method for treating waste water by using microbe

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183247A (en) * 2010-03-04 2011-09-22 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and water treatment method
JP2012024723A (en) * 2010-07-26 2012-02-09 Swing Corp Wastewater treating apparatus and wastewater treating method
CN102616940A (en) * 2012-01-18 2012-08-01 太原理工大学 Purification treatment method for nickel plating wastewater
JP2016174993A (en) * 2015-03-18 2016-10-06 三菱レイヨンアクア・ソリューションズ株式会社 Apparatus and method for treating water to be treated
JP2018083137A (en) * 2016-11-21 2018-05-31 株式会社クラレ Method of treating nitrogen-containing wastewater
WO2019244964A1 (en) * 2018-06-22 2019-12-26 オルガノ株式会社 Water treatment method and water treatment device
JP2019217481A (en) * 2018-06-22 2019-12-26 オルガノ株式会社 Water treatment method
CN112292355A (en) * 2018-06-22 2021-01-29 奥加诺株式会社 Water treatment method and water treatment apparatus
US20210261449A1 (en) * 2018-06-22 2021-08-26 Organo Corporation Water treatment method and water treatment device
US11603327B2 (en) 2018-06-22 2023-03-14 Organo Corporation Water treatment method and water treatment device
CN112292355B (en) * 2018-06-22 2023-04-07 奥加诺株式会社 Water treatment method and water treatment apparatus
JP2020001033A (en) * 2019-04-19 2020-01-09 オルガノ株式会社 Water treatment method
JP2020175342A (en) * 2019-04-19 2020-10-29 オルガノ株式会社 Water treatment apparatus

Also Published As

Publication number Publication date
JP5355314B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5355314B2 (en) Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
JP2016512169A5 (en)
JP2005238166A (en) Anaerobic ammonoxidation treatment method
JP6720100B2 (en) Water treatment method and water treatment device
JP4872171B2 (en) Biological denitrification equipment
JP5149717B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP4409415B2 (en) Method for removing phosphorus and / or nitrogen from sewage
JP2005246135A (en) Method for biologically removing nitrogen
JP2003285096A (en) Simultaneous denitrification and dephosphorization type treatment method for wastewater
JP5149728B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
KR20180117340A (en) The Sewage Disposal Systems
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP5391011B2 (en) Nitrogen-containing wastewater treatment method
JP5325124B2 (en) Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
JP5149736B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP4867099B2 (en) Biological denitrification method
JP2011062655A (en) Method of operating denitrification reactor
JP2006346536A (en) Method and apparatus for treating waste water
CN105330015B (en) The method of maximum nitrite accumulation in denitrification process
JP2003326297A (en) Nitrification method for waste water
JP5199794B2 (en) Nitrogen-containing organic wastewater treatment method
KR100306206B1 (en) Method and equipment for the treatment of wastewater containing nitrate-nitrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

R150 Certificate of patent or registration of utility model

Ref document number: 5355314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250