JP2011062655A - Method of operating denitrification reactor - Google Patents

Method of operating denitrification reactor Download PDF

Info

Publication number
JP2011062655A
JP2011062655A JP2009216479A JP2009216479A JP2011062655A JP 2011062655 A JP2011062655 A JP 2011062655A JP 2009216479 A JP2009216479 A JP 2009216479A JP 2009216479 A JP2009216479 A JP 2009216479A JP 2011062655 A JP2011062655 A JP 2011062655A
Authority
JP
Japan
Prior art keywords
denitrification
methanol
reactor
nitrogen
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009216479A
Other languages
Japanese (ja)
Other versions
JP5391010B2 (en
Inventor
Hideki Morisaki
英樹 盛崎
Kenji Tokumasa
賢治 徳政
Takashi Yamaguchi
隆司 山口
Katsuji Nishikawa
克治 西川
Akiyo Ohira
明代 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Chuden Kankyo Technos Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Chuden Kankyo Technos Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Chuden Kankyo Technos Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2009216479A priority Critical patent/JP5391010B2/en
Publication of JP2011062655A publication Critical patent/JP2011062655A/en
Application granted granted Critical
Publication of JP5391010B2 publication Critical patent/JP5391010B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of operating a denitrification reactor which recovers the denitrification performance of the denitrification reactor, reducing nitrate nitrogen or nitrite nitrogen in wastewater to nitrogen using methanol as a hydrogen donor by denitrifying bacteria, in a short period of time when the activity of various germs are increased and the denitrification performance of the denitrification reactor is decreased. <P>SOLUTION: In the denitrification reactor which reduces nitrate nitrogen or nitrite nitrogen in wastewater to nitrogen using methanol as a hydrogen donor by denitrifying bacteria, when the activity of various germs are increased and the denitrification performance of the denitrification reactor is decreased, a part of methanol is substituted by acetic acid, and a mixture of the methanol and acetic acid is subjected to pH adjustment, and then supplied to the denitrification reactor as a hydrogen donor. As the acetic acid decreases the activity of the various germs, the activity of the denitrifying bacteria is increased to recover the denitrification performance in a short period of time. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、窒素含有排水を脱窒処理する脱窒リアクタに関し、特に雑菌の活性が高くなり脱窒リアクタの脱窒性能が低下したとき、これを回復させる脱窒リアクタの運転方法に関する。   The present invention relates to a denitrification reactor that denitrifies nitrogen-containing wastewater, and more particularly to a method for operating a denitrification reactor that recovers when the activity of various bacteria is increased and the denitrification performance of the denitrification reactor is reduced.

排水中に含まれる窒素は、富栄養化現象の原因とされ、排水中の窒素を除去する技術が多く開発されている。この一つである微生物を利用して排水中の窒素を除去する生物学的窒素処理方法も、従来からよく使用されており、順送法、AO(Anaerobic−Oxic)法、A2O(Anaerobic−Anoxic−Oxic)及びUASB(Upflow Anaerobic Sludge Blanket)−DHS(Downflow Hanging Sponge Cube)法などの循環法を含め多くのプロセスが提案さている。生物学的窒素処理方法は、好気性細菌である硝化菌により排水中のアンモニア性窒素を、亜硝酸性窒素又は硝酸性窒素にまで酸化する硝化工程と、嫌気性細菌である脱窒菌を用いて硝酸性、亜硝酸性窒素を窒素に還元する脱窒工程とからなり、排水の性状等に応じた処理プロセス、リアクタが開発されている。   Nitrogen contained in wastewater is a cause of eutrophication, and many techniques for removing nitrogen in wastewater have been developed. Biological nitrogen treatment methods that remove nitrogen in wastewater using microorganisms, which are one of these, have also been widely used in the past. Progressive feeding methods, AO (anaerobic-oxic) methods, A2O (anaerobic-anoxic) methods. Many processes have been proposed, including cyclic methods such as -Oxic) and UASB (Upflow Analytic Sliding Blanket) -DHS (Downflow Hanging Sponge Cube) method. The biological nitrogen treatment method uses a nitrification process in which ammonia nitrogen in wastewater is oxidized to nitrite nitrogen or nitrate nitrogen by nitrifying bacteria, which are aerobic bacteria, and denitrifying bacteria, which are anaerobic bacteria. A denitrification process that reduces nitrate and nitrite nitrogen to nitrogen has been developed, and treatment processes and reactors have been developed in accordance with the properties of waste water.

窒素含有排水は、下水のように有機物を多く含む排水から、工場から排出される排水で有機物を殆ど含まない排水まで幅広い。一般的に比較的有機物を多く含む窒素含有排水を生物学的窒素処理方法で処理する場合には、上流側に脱窒槽を下流側に硝化槽を配置する場合が多く、例えば、循環法の一つである循環UASB−DHS法は、前段のUASBリアクタで脱窒反応、後段のDHSリアクタで硝化反応を行い、後段の硝化反応の進んだ処理水の一部を前段の脱窒塔であるUASBリアクタへ循環させ、処理水中の有機物を脱窒反応の水素供与体として利用する(例えば特許文献1参照)。一方、有機物を殆ど含まない窒素含有排水を生物学的窒素処理方法で処理する場合には、上流側に硝化槽を下流側に脱窒槽を配置するのが一般的である。このような生物学的硝化脱窒処理装置において、高い硝化性能及び脱窒性能を維持させるために植物から抽出した抽出物を脱窒塔又は硝化塔に添加する方法が提案されている(例えば特許文献2参照)。   Nitrogen-containing wastewater ranges from wastewater containing a large amount of organic matter, such as sewage, to wastewater discharged from factories and containing little organic matter. In general, when nitrogen-containing wastewater containing a relatively large amount of organic substances is treated by a biological nitrogen treatment method, a denitrification tank is often arranged upstream and a nitrification tank is arranged downstream. In the circulating UASB-DHS method, the denitrification reaction is performed in the preceding UASB reactor, the nitrification reaction is performed in the subsequent DHS reactor, and a part of the treated water in which the subsequent nitrification reaction has progressed is the UASB in the preceding denitrification tower. The organic substance in the treated water is used as a hydrogen donor for the denitrification reaction (see, for example, Patent Document 1). On the other hand, when nitrogen-containing wastewater containing almost no organic matter is treated by a biological nitrogen treatment method, a nitrification tank is generally disposed upstream and a denitrification tank is disposed downstream. In such a biological nitrification denitrification treatment apparatus, a method for adding an extract extracted from a plant to a denitrification tower or a nitrification tower in order to maintain high nitrification performance and denitrification performance has been proposed (for example, patents). Reference 2).

特開平11−285696号公報JP-A-11-285696 特開2007−275748号公報JP 2007-275748 A

ところで有機物を殆ど含まない窒素含有排水を生物学的硝化脱窒装置で処理する場合、メタノールを水素供与体とし脱窒処理を行う脱窒塔内で雑菌の活性が高くなると、脱窒菌の活性が低下又は脱窒菌が失活し脱窒性能が低下する。脱窒菌が失活すると再生させることは困難であり、従来、脱窒塔内の汚泥を抜き取り、新しい活性汚泥を挿入して育成していたが、この育成には時間がかかることから対策が求められている。特許文献2に記載の技術は、脱窒槽を高性能に維持するためのものであり、脱窒菌の活性が低下又は脱窒菌が失活し脱窒性能が低下した脱窒槽を再生させるものではない。   By the way, when nitrogen-containing wastewater containing almost no organic matter is treated with a biological nitrification denitrification device, the activity of denitrifying bacteria increases when the activity of various bacteria increases in the denitrification tower where methanol is used as a hydrogen donor and denitrification treatment is performed. Decrease or denitrifying bacteria are inactivated and denitrification performance is reduced. When denitrifying bacteria are inactivated, it is difficult to regenerate them. Conventionally, the sludge in the denitrifying tower was extracted and inserted with new activated sludge. It has been. The technique described in Patent Document 2 is for maintaining the denitrification tank at high performance, and does not regenerate the denitrification tank in which the activity of the denitrifying bacteria is reduced or the denitrifying bacteria are deactivated and the denitrifying performance is reduced. .

アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒微生物を利用した脱窒方法において、脱窒微生物の活性が低下したとき、ヒドラジン及びヒドロキシアミンを添加し活性を復活させる方法が、特開2003−33791号公報に開示されているが、メタノールを水素供与体とし硝酸性、亜硝酸性窒素を窒素に還元する脱窒菌とは、菌種等が異なりそのまま適用することはできない。現在までのところ、メタノールを水素供与体とし脱窒処理を行う脱窒塔内で雑菌の活性が高くなり、脱窒菌の活性が低下し脱窒性能が低下したとき、これを短期間内に回復させる方法は開発されていない。   In the denitrification method using denitrifying microorganisms using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, hydrazine and hydroxyamine are added to restore the activity when the activity of the denitrifying microorganism decreases. Although the method to make is disclosed in Japanese Patent Application Laid-Open No. 2003-33791, it is different from the denitrifying bacterium in which methanol is a hydrogen donor and nitrate and nitrite nitrogen is reduced to nitrogen, and the method is applied as it is. I can't. So far, when the activity of miscellaneous bacteria increases in the denitrification tower that performs denitrification treatment using methanol as a hydrogen donor, the denitrification activity decreases and the denitrification performance deteriorates, and this is recovered within a short period of time. No method has been developed.

本発明の目的は、メタノールを水素供与体とし、排水中の硝酸性窒素又は亜硝酸性窒素を脱窒菌により窒素に還元する脱窒リアクタにおいて、雑菌の活性が高くなり脱窒リアクタの脱窒性能が低下したとき、短期間内に脱窒性能を回復させる脱窒リアクタの運転方法を提供することである。   The object of the present invention is to improve the activity of various bacteria in a denitrification reactor in which methanol is a hydrogen donor and nitrate nitrogen or nitrite nitrogen in waste water is reduced to nitrogen by denitrifying bacteria. It is intended to provide a method of operating a denitrification reactor that recovers the denitrification performance within a short period of time when the temperature decreases.

請求項1に記載の本発明は、メタノールを水素供与体とし、排水中の硝酸性窒素又は亜硝酸性窒素を脱窒菌により窒素に還元する脱窒リアクタにおいて、雑菌の活性が高くなり脱窒リアクタの脱窒性能が低下したとき、雑菌の活性を低下させることが可能で前記メタノールの代替水素供与体となる有機物を注入し、脱窒菌の活性を高め脱窒リアクタの脱窒性能を回復させることを特徴とする脱窒リアクタの運転方法である。   The present invention according to claim 1 is a denitrification reactor in which methanol is used as a hydrogen donor and nitrate nitrogen or nitrite nitrogen in waste water is reduced to nitrogen by denitrifying bacteria, so that the activity of various bacteria increases and the denitrifying reactor When the denitrification performance of the denitrifier is reduced, it is possible to reduce the activity of miscellaneous bacteria and inject an organic substance as an alternative hydrogen donor for the methanol to increase the activity of the denitrification bacteria and restore the denitrification performance of the denitrification reactor Is a method of operating a denitrification reactor.

請求項2に記載の本発明は、請求項1に記載の脱窒リアクタの運転方法において、前記有機物は、酢酸であり、前記メタノールの注入量を減少させ、メタノール減少量に相当する酢酸を、PHを調節し前記脱窒リアクタに注入することを特徴とする。   The present invention according to claim 2 is the operation method of the denitrification reactor according to claim 1, wherein the organic substance is acetic acid, the methanol injection amount is reduced, and acetic acid corresponding to the methanol reduction amount is reduced. The pH is adjusted and injected into the denitrification reactor.

請求項3に記載の本発明は、請求項2に記載の脱窒リアクタの運転方法において、前記酢酸の注入量は、メタノールに対しモル比で0.75以下であることを特徴とする。   According to a third aspect of the present invention, in the method for operating a denitrification reactor according to the second aspect, the injection amount of the acetic acid is 0.75 or less in molar ratio to methanol.

請求項4に記載の本発明は、請求項1から3のいずれか1項に記載の脱窒リアクタの運転方法において、前記脱窒リアクタは、グラニュール汚泥を保有するUASBリアクタであることを特徴とする。   According to a fourth aspect of the present invention, in the method for operating a denitrification reactor according to any one of the first to third aspects, the denitrification reactor is a UASB reactor having granular sludge. And

請求項5に記載の本発明は、請求項1から4のいずれか1項に記載の脱窒リアクタの運転方法において、前記排水は、低有機物含有排水又は無機排水であることを特徴とする。   According to a fifth aspect of the present invention, in the method for operating a denitrification reactor according to any one of the first to fourth aspects, the waste water is low organic matter-containing waste water or inorganic waste water.

本発明に係る脱窒リアクタの運転方法は、雑菌の活性が高くなり脱窒リアクタの脱窒性能が低下したとき、雑菌の活性を低下させることが可能な有機物を注入するので、雑菌の活性を低下させることができる。これにより脱窒菌の活性が高まり、脱窒リアクタの脱窒性能を短期間内に回復させることができる。また注入する有機物は、メタノールの代替水素供与体となるので、メタノールの一部をこの有機物に置き換えることで排水中のCODを上昇させることなく、脱窒リアクタの性能を回復させることができる。   The operation method of the denitrification reactor according to the present invention injects organic matter that can reduce the activity of germs when the activity of the germs increases and the denitrification performance of the denitrification reactor decreases, Can be reduced. Thereby, the activity of the denitrifying bacteria is enhanced, and the denitrification performance of the denitrification reactor can be recovered within a short period of time. In addition, since the injected organic substance serves as an alternative hydrogen donor for methanol, the performance of the denitrification reactor can be recovered without increasing the COD in the wastewater by replacing a part of the methanol with the organic substance.

また本発明によれば、前記有機物は酢酸であるので、殺菌作用が高く雑菌の活性を低下させ、脱窒リアクタの脱窒性能を短期間内に回復させることができる。また酢酸は、入手が容易で安価であるので脱窒リアクタの性能を回復させる薬剤として好ましい。   Further, according to the present invention, since the organic substance is acetic acid, the bactericidal action is high, the activity of various germs is reduced, and the denitrification performance of the denitrification reactor can be recovered within a short period of time. Acetic acid is preferred as a chemical that restores the performance of the denitrification reactor because it is readily available and inexpensive.

また本発明によれば、酢酸はメタノールと共に脱窒リアクタに注入され、その注入量は、メタノールに対しモル比で0.75以下であるので、酢酸の濃度が極端に高くならない。このため脱窒菌の活性を低下させることなく雑菌の活性を低下させることが可能となり、脱窒リアクタの性能を回復させることができる。   According to the present invention, acetic acid is injected into the denitrification reactor together with methanol, and the injection amount is 0.75 or less in molar ratio to methanol, so that the concentration of acetic acid does not become extremely high. For this reason, it becomes possible to reduce the activity of various bacteria without reducing the activity of the denitrifying bacteria, and the performance of the denitrifying reactor can be recovered.

また本発明によれば、本発明に係る脱窒リアクタの運転方法は、グラニュール汚泥を保有するUASBリアクタの活性が低下したとき好適に使用することができる。   Moreover, according to this invention, the operating method of the denitrification reactor which concerns on this invention can be used suitably, when the activity of the UASB reactor holding granule sludge falls.

また本発明によれば、本発明に係る脱窒リアクタの運転方法は、アンモニア排水などの低有機物含有排水又は無機排水を対象とする脱窒リアクタの脱窒性能が低下したとき好適に使用することができる。   Also, according to the present invention, the denitrification reactor operating method according to the present invention is preferably used when the denitrification performance of a denitrification reactor targeting low organic matter-containing wastewater such as ammonia wastewater or inorganic wastewater is reduced. Can do.

本発明の脱窒リアクタの運転方法を説明するための図であって、代表的な生物学的硝化脱窒装置1のプロセスフロー図である。It is a figure for demonstrating the operating method of the denitrification reactor of this invention, Comprising: It is a process flow figure of the typical biological nitrification denitrification apparatus 1. FIG. 本発明の実施例1の実験結果を示す図である。It is a figure which shows the experimental result of Example 1 of this invention.

本発明に係る脱窒リアクタの運転方法は、メタノールを水素供与体とし、排水中の硝酸性窒素又は亜硝酸性窒素を脱窒菌により窒素に還元する脱窒リアクタにおいて、雑菌の活性が高くなり脱窒リアクタの脱窒性能が低下したとき、雑菌の活性を低下させることが可能でメタノールの代替水素供与体となる有機物を注入し、雑菌の活性を低下させることで脱窒菌の活性を高め、脱窒リアクタの脱窒性能を短期間内に回復させる方法である。   The denitrification reactor according to the present invention operates in a denitrification reactor in which methanol is used as a hydrogen donor and nitrate nitrogen or nitrite nitrogen in the waste water is reduced to nitrogen by denitrifying bacteria. When the denitrification performance of the nitrogen reactor is reduced, it is possible to reduce the activity of various bacteria and inject organic substances that serve as an alternative hydrogen donor for methanol, thereby increasing the activity of the denitrifying bacteria by reducing the activity of the various bacteria. This is a method for recovering the denitrification performance of the nitrogenation reactor within a short period of time.

以下、有機物を殆ど含まない窒素含有排水を生物学的硝化脱窒装置1で処理する場合を例として、本発明に係る脱窒リアクタの再生方法を説明する。図1は有機物を殆ど含まない窒素含有排水を処理する生物学的硝化脱窒装置1の代表的なプロセスフロー図である。   Hereinafter, a method for regenerating a denitrification reactor according to the present invention will be described by taking as an example a case where nitrogen-containing wastewater containing almost no organic matter is treated by the biological nitrification denitrification apparatus 1. FIG. 1 is a typical process flow diagram of a biological nitrification denitrification apparatus 1 for treating nitrogen-containing wastewater containing almost no organic matter.

排水貯槽内の窒素含有排水(以下単に排水と記す場合もある)は、排水供給ライン3を通じて混合槽5へ送られる。排水中の全窒素濃度は、供給ライン3に設けられたサンプリングポイト7で測定される。混合槽5へ送られた排水は、排水中の全窒素濃度が500mg/L以下となるように、処理水貯槽23から送られる処理水と混合される。さらに混合槽5には栄養塩供給装置9から無機炭素源である二酸化炭素を供給することを主目的とし、表1に示す栄養塩が供給され、さらにpH調整剤供給装置11から塩酸、硫酸などのpH調整剤が供給される。   The nitrogen-containing wastewater in the wastewater storage tank (hereinafter sometimes simply referred to as wastewater) is sent to the mixing tank 5 through the wastewater supply line 3. The total nitrogen concentration in the waste water is measured by a sampling dropper 7 provided in the supply line 3. The waste water sent to the mixing tank 5 is mixed with the treated water sent from the treated water storage tank 23 so that the total nitrogen concentration in the waste water is 500 mg / L or less. Further, the main purpose is to supply carbon dioxide, which is an inorganic carbon source, from the nutrient salt supply device 9 to the mixing tank 5, and the nutrient salts shown in Table 1 are supplied. Further, hydrochloric acid, sulfuric acid, etc. from the pH adjuster supply device 11 PH adjuster is supplied.

Figure 2011062655
Figure 2011062655

混合槽5で調整された排水は、DHS硝化塔13へ送られる。DHS硝化塔13内には、複数の微生物固定化担体(図示省略)が充填されており、DHS硝化塔13には下方から空気が供給される。排水は、DHS硝化塔13の上部から散水され、微生物固定化担体を通過するとき、微生物固定化担体に付着する硝化菌の作用により空気中の酸素で酸化され、排水中のアンモニア性窒素は、硝酸性窒素又は亜硝酸性窒素となる。硝化反応の反応式は下記の式(1)で示される。
NH +0.103CO+1.86O→0.0182CNO+0.00245CNO+0.979NO +1.98H+0.938HO・・・(1)
The waste water adjusted in the mixing tank 5 is sent to the DHS nitrification tower 13. The DHS nitrification tower 13 is filled with a plurality of microorganism immobilization carriers (not shown), and air is supplied to the DHS nitrification tower 13 from below. The waste water is sprinkled from the upper part of the DHS nitrification tower 13, and when passing through the microorganism-immobilized carrier, it is oxidized with oxygen in the air by the action of nitrifying bacteria adhering to the microorganism-immobilized carrier, and the ammonia nitrogen in the waste water is It becomes nitrate nitrogen or nitrite nitrogen. The reaction formula of the nitrification reaction is represented by the following formula (1).
NH 4 + + 0.103CO 2 + 1.86O 2 → 0.0182C 2 H 5 NO 2 + 0.00245C 5 H 7 NO 2 + 0.979NO 3 - + 1.98H + + 0.938H 2 O ··· (1)

硝化処理された排水は、ライン15を通じてUASB脱窒塔17へ送られる。ライン15の途中には、メタノール供給装置19が接続し、所定量のメタノールが供給され、排水はメタノールと共にUASB脱窒塔17へ送られる。メタノールは脱窒反応に必要な水素供与体として与えられるものであり、DHS硝化塔13の入口の全窒素量に対応した量が供給される。   The nitrified waste water is sent to the UASB denitrification tower 17 through the line 15. In the middle of the line 15, a methanol supply device 19 is connected to supply a predetermined amount of methanol, and the waste water is sent to the UASB denitrification tower 17 together with methanol. Methanol is provided as a hydrogen donor necessary for the denitrification reaction, and an amount corresponding to the total nitrogen amount at the inlet of the DHS nitrification tower 13 is supplied.

UASB脱窒塔17は、内部にグラニュール汚泥を保持し、UASB脱窒塔17に送られた排水中の硝酸性窒素又は亜硝酸性窒素は、グラニュール汚泥中の脱窒菌の作用により、メタノールと反応し窒素ガスと炭酸ガスに分解される。脱窒反応は式(2)で示される。これらの工程により排水中のアンモニア性窒素が窒素ガスに分解される。
6NO +5CHOH→3N+5CO+7HO+6OH・・・(2)
The UASB denitrification tower 17 holds granule sludge inside, and nitrate nitrogen or nitrite nitrogen in the waste water sent to the UASB denitrification tower 17 is methanol by the action of denitrifying bacteria in the granule sludge. Reacts with nitrogen gas and carbon dioxide gas. The denitrification reaction is represented by the formula (2). By these steps, ammonia nitrogen in the waste water is decomposed into nitrogen gas.
6NO 3 - + 5CH 3 OH → 3N 2 + 5CO 2 + 7H 2 O + 6OH - ··· (2)

処理水は、ライン21を通り処理水貯槽23に送られる。ライン21の途中には、処理水中の全窒素濃度及びCOD濃度を測定するためのサンプリングポイト25が設けられている。処理水中の全窒素濃度及びCOD濃度が共に規制値以下であることが確認された後、処理水貯槽23の処理水は、処理水排出ライン27を通じて河川又は海域へ排出される。処理水の一部は、循環ライン29を通り混合槽5に戻される。   The treated water passes through the line 21 and is sent to the treated water storage tank 23. A sampling point 25 for measuring the total nitrogen concentration and the COD concentration in the treated water is provided in the middle of the line 21. After it is confirmed that the total nitrogen concentration and COD concentration in the treated water are both below the regulation value, the treated water in the treated water storage tank 23 is discharged to the river or the sea area through the treated water discharge line 27. A part of the treated water is returned to the mixing tank 5 through the circulation line 29.

上記図1に示す生物学的硝化脱窒装置1において、脱窒菌が正常に機能している間は、UASB脱窒塔17の脱窒性能は十分に高く、処理水中の全窒素濃度を規制値以下とすることができる。UASB脱窒塔17の環境、運転条件、排水の性状等が安定していれば、UASB脱窒塔17の脱窒性能も安定しているけれども、UASB脱窒塔17の環境等が変化すると、例えば、UASB脱窒塔17に送られる排水に多くの酸素が含まれると、UASB脱窒塔17の脱窒性能が大きく低下する場合がある。   In the biological nitrification denitrification apparatus 1 shown in FIG. 1 above, while the denitrifying bacteria are functioning normally, the denitrification performance of the UASB denitrification tower 17 is sufficiently high, and the total nitrogen concentration in the treated water is regulated. It can be as follows. If the environment, operating conditions, drainage properties, etc. of the UASB denitrification tower 17 are stable, the denitrification performance of the UASB denitrification tower 17 is stable, but if the environment of the UASB denitrification tower 17 changes, For example, if a large amount of oxygen is contained in the wastewater sent to the UASB denitrification tower 17, the denitrification performance of the UASB denitrification tower 17 may be greatly reduced.

UASB脱窒塔17内のグラニュール汚泥は、脱窒菌のみならずメタン生成菌、好気性細菌など多くの種類の細菌を含有しているので、UASB脱窒塔17内の環境が変化すると脱窒菌以外の細菌(以下、雑菌と記す)の活性が高まり、脱窒菌の活性が低下し脱窒性能が低下する。グラニュール汚泥中の雑菌の活性が高まるケースとしては、上記以外に排水中のpHが変化した場合、硝化塔の性能が低下した場合などがある。   Granule sludge in the UASB denitrification tower 17 contains not only denitrifying bacteria but also many types of bacteria such as methanogens and aerobic bacteria, so if the environment in the UASB denitrifying tower 17 changes, the denitrifying bacteria The activity of other bacteria (hereinafter referred to as miscellaneous bacteria) increases, the activity of denitrifying bacteria decreases, and the denitrifying performance decreases. Cases in which the activity of germs in the granular sludge is increased include cases where the pH in the wastewater has changed and the performance of the nitrification tower has been lowered.

UASB脱窒塔17において、雑菌の活性が高くなり脱窒性能が低下したことは、次ぎのように確認することができる。表2は、DHS硝化塔13が正常に機能している場合における、UASB脱窒塔17の状況と処理水中のCOD濃度、全窒素濃度との関係を示したものである。

Figure 2011062655
In the UASB denitrification tower 17, it can be confirmed as follows that the activity of various bacteria is increased and the denitrification performance is lowered. Table 2 shows the relationship between the situation of the UASB denitrification tower 17, the COD concentration in the treated water, and the total nitrogen concentration when the DHS nitrification tower 13 is functioning normally.
Figure 2011062655

表2に示すようにDHS硝化塔13が正常に機能している場合、処理水中のCOD濃度が低く、全窒素濃度が高いケースは、UASB脱窒塔17内において、雑菌の活性が高くなり脱窒性能が低下したケース及びメタノール注入量不足のケースである。雑菌の活性が高く脱窒菌の活性が低い場合に処理水中のCOD濃度が低くなるのは、メタノールは脱窒反応には使用されないけども、雑菌がメタノールを分解させるため結果としてCOD濃度は低くなる。よって、メタノール注入量が正常であって、処理水中のCOD濃度が低く、全窒素濃度が高い場合は、雑菌の活性が高くなり脱窒性能が低下した推定される。このような場合のUASB脱窒塔17の脱窒性能を正常に回復させる方法を示す。   As shown in Table 2, when the DHS nitrification tower 13 is functioning normally, the COD concentration in the treated water is low and the total nitrogen concentration is high. This is the case where the nitrogen performance deteriorates and the case where the methanol injection amount is insufficient. When the activity of miscellaneous bacteria is high and the activity of denitrifying bacteria is low, the COD concentration in the treated water becomes low. Although methanol is not used for the denitrification reaction, the miscellaneous bacteria decompose the methanol, resulting in a low COD concentration. Therefore, when the methanol injection amount is normal, the COD concentration in the treated water is low, and the total nitrogen concentration is high, it is presumed that the activity of various bacteria increases and the denitrification performance decreases. A method for recovering the denitrification performance of the UASB denitrification tower 17 in such a case to normal will be described.

UASB脱窒塔17の脱窒性能を正常に回復させるため、脱窒反応に必要な水素供与体とて注入しているメタノールに代え、メタノールの一部を酢酸に置換し、メタノールと酢酸とをUASB脱窒塔17に注入する。具体的には、メタノールと酢酸との混合液を、メタノール供給装置19を介してUASB脱窒塔17に送る。ここで、メタノールの一部を酢酸に置換し、メタノール減少量に相当する量の酢酸を注入することが必要であり、メタノールの注入量を減少させることなく従来のままの注入量とし、これに酢酸を加算する形で酢酸を注入するのは、水素供与体が過剰となり好ましくない。   In order to restore the denitrification performance of the UASB denitrification tower 17 to normal, it replaces with methanol injected as a hydrogen donor necessary for the denitrification reaction, and a part of the methanol is replaced with acetic acid. Inject into the UASB denitrification tower 17. Specifically, a mixed liquid of methanol and acetic acid is sent to the UASB denitrification tower 17 via the methanol supply device 19. Here, it is necessary to replace a part of the methanol with acetic acid and inject an amount of acetic acid corresponding to the amount of methanol decrease. Injecting acetic acid in the form of adding acetic acid is not preferable because the hydrogen donor becomes excessive.

酢酸は式(3)で示される脱窒反応を生じさせることは公知であるが、本ケースの場合、酢酸は水素供与体として機能するのみならず、殺菌作用を有することからUASB脱窒塔17内の雑菌の活性を低下させるように機能する。
8NO +5CHCOOH→4N+10CO+6HO+8OH・・・(3)
メタノール供給装置19を介してUASB脱窒塔17にメタノールと酢酸との混合液を注入する場合には、正常時のUASB脱窒塔17内のpHと同一となるように、水酸化ナトリウムなどでpHを調節し注入する。なお、メタノールと酢酸とを別々の装置で注入してもよいことは言うまでもない。
Although acetic acid is known to cause the denitrification reaction represented by the formula (3), in this case, acetic acid not only functions as a hydrogen donor but also has a bactericidal action, so the UASB denitrification tower 17 It functions to reduce the activity of various germs.
8NO 3 - + 5CH 3 COOH → 4N 2 + 10CO 2 + 6H 2 O + 8OH - ··· (3)
When a mixed solution of methanol and acetic acid is injected into the UASB denitrification tower 17 via the methanol supply device 19, sodium hydroxide or the like is used so that the pH in the UASB denitrification tower 17 is normal. Adjust and inject pH. Needless to say, methanol and acetic acid may be injected by separate apparatuses.

酢酸の注入量が少ない場合には、雑菌の活性を低下させる能力が低く、逆に酢酸の注入量が多すぎると雑菌のみならず、脱窒菌の活性も低下させてしまうので、適切な注入量とすることが必要である。具体的には、酢酸の注入量をメタノールに対しモル比で0.75以下とし、処理水の性状を確認しながら注入することが好ましい。メタノールに対しモル比で0.75の酢酸の注入量は、脱窒反応に必要な水素供与体の量の50%に相当する。これによりUASB脱窒塔17の脱窒性能を短期間内に回復せることができる。なお、排水の性状、グラニュール汚泥の性状によっては、雑菌の活性を低下させることが可能な酢酸以外の有機物を用いることもできる。このような有機物としては、ギ酸、エタノール、プロパノールなどが例示される。   When the amount of acetic acid injected is small, the ability to reduce the activity of various bacteria is low. Conversely, when the amount of acetic acid injected is too large, not only the bacteria but also the activity of denitrifying bacteria is reduced. Is necessary. Specifically, it is preferable that the amount of acetic acid injected is 0.75 or less in terms of molar ratio with respect to methanol, and is injected while confirming the properties of the treated water. The injection amount of acetic acid at a molar ratio of 0.75 to methanol corresponds to 50% of the amount of hydrogen donor required for the denitrification reaction. Thereby, the denitrification performance of the UASB denitrification tower 17 can be recovered within a short period of time. Depending on the properties of the waste water and the properties of the granular sludge, organic substances other than acetic acid that can reduce the activity of various bacteria can be used. Examples of such organic substances include formic acid, ethanol, propanol and the like.

本発明に係る脱窒リアクタの運転方法は、上記実施形態に示すように脱窒塔内で雑菌の活性が高くなり脱窒性能が低下したとき、酢酸に代表される、雑菌の活性を低下させることが可能でメタノールの代替水素供与体となる有機物を注入し、脱窒菌の活性を高め脱窒リアクタの脱窒性能を回復させるので、グラニュール汚泥の交換作業等が不要であり、簡単に行うことができる。このような脱窒リアクタの運転方法は、広く窒素含有排水に適用することが可能であり、中でも排水に含まれる有機物の量が少ない排水又は無機排水に好適に使用することができる。このような排水としては、石炭火力発電所から排出される復水脱塩装置から排出される排水、電気集じん機の洗浄排水、脱硫排水又はこれらが混合した排水などが例示される。なお、上記実施形態では、UASB脱窒塔を用いた例を示したけれども脱窒塔がこれらリアクタに限定されないことは言うまでもない。   The operation method of the denitrification reactor according to the present invention reduces the activity of bacteria, represented by acetic acid, when the activity of the bacteria increases in the denitrification tower and the denitrification performance decreases as shown in the above embodiment. It is possible to inject an organic substance that can be used as an alternative hydrogen donor for methanol to increase the activity of denitrifying bacteria and restore the denitrification performance of the denitrification reactor, so there is no need to replace granular sludge, etc. be able to. Such an operation method of the denitrification reactor can be widely applied to nitrogen-containing wastewater, and among them, it can be suitably used for wastewater or inorganic wastewater in which the amount of organic matter contained in the wastewater is small. Examples of such wastewater include wastewater discharged from a condensate demineralizer discharged from a coal-fired power plant, washing wastewater from an electric dust collector, desulfurization wastewater, or wastewater mixed with these. In the above embodiment, an example using the UASB denitrification tower is shown, but it goes without saying that the denitrification tower is not limited to these reactors.

図2は、脱窒性能が低下したUASB脱窒塔において、メタノール及び酢酸を注入した場合の経過日数に対する脱窒率の測定結果を示す図である。図2中、脱窒率は、UASB脱窒塔入口の排水中の硝酸性窒素及び亜硝酸性窒素に対するUASB脱窒塔出口の排水中の硝酸性窒素及び亜硝酸性窒素の除去率である。また経過日数のうちマイナスの日は、メタノールのみを注入し、経過日数0日以降の日は、メタノールの一部を酢酸に置換し、メタノールと酢酸とのモル比が1:0.75の混合液を、pHを調節し注入した。この結果、50%以下の脱窒性能であったUASB脱窒塔が、メタノールと酢酸との混合液注入開始から6日間で90%近い脱窒率となった。   FIG. 2 is a diagram showing the measurement results of the denitrification rate with respect to the number of days elapsed when methanol and acetic acid are injected in the UASB denitrification tower with reduced denitrification performance. In FIG. 2, the denitrification rate is the removal rate of nitrate nitrogen and nitrite nitrogen in the waste water at the outlet of the UASB denitrification tower with respect to nitrate nitrogen and nitrite nitrogen in the waste water at the inlet of the UASB denitrification tower. On the negative day of the elapsed days, only methanol is injected, and on days after the elapsed day 0, a part of the methanol is replaced with acetic acid, and the molar ratio of methanol and acetic acid is 1: 0.75. The solution was injected with pH adjusted. As a result, the UASB denitrification tower, which had a denitrification performance of 50% or less, had a denitrification rate of nearly 90% in 6 days from the start of the mixture injection of methanol and acetic acid.

1 生物学的硝化脱窒装置
3 排水供給ライン
5 混合槽
7 サンプリングポイント
9 栄養塩供給装置
11 pH調整剤供給装置
13 DHS硝化塔
15 ライン
17 UASB脱窒塔
19 メタノール供給装置
21 ライン
23 処理水貯槽
25 サンプリングポイント
27 処理水排出ライン
29 循環ライン
DESCRIPTION OF SYMBOLS 1 Biological nitrification denitrification apparatus 3 Waste water supply line 5 Mixing tank 7 Sampling point 9 Nutrient supply apparatus 11 pH adjuster supply apparatus 13 DHS nitrification tower 15 Line 17 UASB denitrification tower 19 Methanol supply apparatus 21 Line 23 Treated water storage tank 25 Sampling point 27 Treated water discharge line 29 Circulation line

Claims (5)

メタノールを水素供与体とし、排水中の硝酸性窒素又は亜硝酸性窒素を脱窒菌により窒素に還元する脱窒リアクタにおいて、雑菌の活性が高くなり脱窒リアクタの脱窒性能が低下したとき、雑菌の活性を低下させることが可能で前記メタノールの代替水素供与体となる有機物を注入し、脱窒菌の活性を高め脱窒リアクタの脱窒性能を回復させることを特徴とする脱窒リアクタの運転方法。   In a denitrification reactor in which methanol is a hydrogen donor and nitrate nitrogen or nitrite nitrogen in the wastewater is reduced to nitrogen by denitrifying bacteria, when the activity of various bacteria increases and the denitrification performance of the denitrifying reactor decreases, The denitrification reactor operating method is characterized by injecting an organic substance that can reduce the activity of the methanol and serving as an alternative hydrogen donor for the methanol to increase the activity of the denitrification bacteria and restore the denitrification performance of the denitrification reactor . 前記有機物は、酢酸であり、前記メタノールの注入量を減少させ、メタノール減少量に相当する酢酸を、PHを調節し前記脱窒リアクタに注入することを特徴とする請求項1に記載の脱窒リアクタの運転方法。   2. The denitrification according to claim 1, wherein the organic substance is acetic acid, the injection amount of the methanol is decreased, and acetic acid corresponding to the methanol decrease amount is injected into the denitrification reactor by adjusting PH. Reactor operation method. 前記酢酸の注入量は、メタノールに対しモル比で0.75以下であることを特徴とする請求項2に記載の脱窒リアクタの運転方法。   The method of operating a denitrification reactor according to claim 2, wherein the amount of acetic acid injected is 0.75 or less in molar ratio to methanol. 前記脱窒リアクタは、グラニュール汚泥を保有するUASBリアクタであることを特徴とする請求項1から3のいずれか1項に記載の脱窒リアクタの運転方法。   The method for operating a denitrification reactor according to any one of claims 1 to 3, wherein the denitrification reactor is a UASB reactor that holds granular sludge. 前記排水は、低有機物含有排水又は無機排水であることを特徴とする請求項1から4のいずれか1項に記載の脱窒リアクタの運転方法。   The method for operating a denitrification reactor according to any one of claims 1 to 4, wherein the waste water is waste water containing low organic matter or inorganic waste water.
JP2009216479A 2009-09-18 2009-09-18 Operation method of denitrification reactor Expired - Fee Related JP5391010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009216479A JP5391010B2 (en) 2009-09-18 2009-09-18 Operation method of denitrification reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009216479A JP5391010B2 (en) 2009-09-18 2009-09-18 Operation method of denitrification reactor

Publications (2)

Publication Number Publication Date
JP2011062655A true JP2011062655A (en) 2011-03-31
JP5391010B2 JP5391010B2 (en) 2014-01-15

Family

ID=43949498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216479A Expired - Fee Related JP5391010B2 (en) 2009-09-18 2009-09-18 Operation method of denitrification reactor

Country Status (1)

Country Link
JP (1) JP5391010B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104891651A (en) * 2015-05-08 2015-09-09 杭州师范大学 Method for operating anaerobic ammoxidation reactor capable of rapidly restarting heavy metal pollution
JP2015186779A (en) * 2014-03-26 2015-10-29 パナソニック株式会社 Denitrification device and operation method of denitrification device
CN105036324A (en) * 2015-08-07 2015-11-11 杭州师范大学 Running method for improving copper-containing wastewater denitrification processing performance of anaerobic ammonia oxidation reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105060623B (en) * 2015-07-29 2017-04-05 吉林建筑大学 Double dirt method for treating water based on hydrogenesis and acetogenesis/hydrogen autotrophic denitrification coupling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190485A (en) * 1997-09-22 1999-04-06 Chubu Electric Power Co Inc Biological denitrification method
JP2001058197A (en) * 1999-08-24 2001-03-06 Mitsubishi Heavy Ind Ltd Treatment of wastewater
JP2001276890A (en) * 2000-03-29 2001-10-09 Japan Organo Co Ltd Drain treating device
JP2009186438A (en) * 2008-02-08 2009-08-20 Mitsubishi Heavy Ind Ltd Method and apparatus for treating nitrate waste liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190485A (en) * 1997-09-22 1999-04-06 Chubu Electric Power Co Inc Biological denitrification method
JP2001058197A (en) * 1999-08-24 2001-03-06 Mitsubishi Heavy Ind Ltd Treatment of wastewater
JP2001276890A (en) * 2000-03-29 2001-10-09 Japan Organo Co Ltd Drain treating device
JP2009186438A (en) * 2008-02-08 2009-08-20 Mitsubishi Heavy Ind Ltd Method and apparatus for treating nitrate waste liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015186779A (en) * 2014-03-26 2015-10-29 パナソニック株式会社 Denitrification device and operation method of denitrification device
CN104891651A (en) * 2015-05-08 2015-09-09 杭州师范大学 Method for operating anaerobic ammoxidation reactor capable of rapidly restarting heavy metal pollution
CN104891651B (en) * 2015-05-08 2017-01-04 杭州师范大学 Quickly restart the operation method of the anaerobic ammonia oxidation reactor of heavy metal pollution
CN105036324A (en) * 2015-08-07 2015-11-11 杭州师范大学 Running method for improving copper-containing wastewater denitrification processing performance of anaerobic ammonia oxidation reactor
CN105036324B (en) * 2015-08-07 2018-04-10 杭州师范大学 Lift the operation method of anaerobic ammonia oxidation reactor Treatment of Copper denitrogenation of waste water performance

Also Published As

Publication number Publication date
JP5391010B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
KR101875024B1 (en) Apparatus and Method for Parial Nitrification of Ammonia from Ammonia Containing Sewage and Wastewater
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
JP2005238166A (en) Anaerobic ammonoxidation treatment method
KR100719434B1 (en) Method for removing high concentration of nitrogen from anaerobict-treated wastewater and apparatus for implementing the method
JP5355314B2 (en) Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
TWI568683B (en) Water treatment method and method for producing ultrapure water
KR101654936B1 (en) Nitrite type nitrification-reactive sludge, production method therefor, production apparatus therefor, and waste water treatment method and waste water treatment apparatus
CN104787889B (en) The method for recovering municipal sewage short distance Anammox using the micro- exposure of hypoxemia and anoxia stirring
JP4872171B2 (en) Biological denitrification equipment
CN113845273B (en) Method for efficiently denitrifying and decarbonizing anaerobic effluent of pig wastewater
JP5391010B2 (en) Operation method of denitrification reactor
JP2007125484A (en) Nitrogen-containing wastewater treatment method
JP5149717B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP5451283B2 (en) Nitrogen-containing wastewater treatment method
KR101063828B1 (en) Method of wastewater treatment using an anaerobic reactor having a biological nitrification process connected a cation exchange membrane
JP5391011B2 (en) Nitrogen-containing wastewater treatment method
Udert et al. Biological nitrogen conversion processes
JP5149728B2 (en) Denitrification treatment method and denitrification treatment apparatus
CN103408140B (en) Control method realizing CANON process high-efficiency stable operation
JP4529277B2 (en) Method for collecting autotrophic denitrifying microorganisms and method for biological nitrogen removal
CN109650543B (en) SPNA integrated denitrification method for treating low-matrix wastewater under continuous flow condition
KR101345642B1 (en) Method for removing nitrogen in waste water
KR20100046936A (en) Combined sulfur autotrophic denitrification and bioelectrochemical denitrification system
JP2004255269A (en) Denitrification method and denitrification apparatus
KR100321680B1 (en) Advance wastewater treatment method by wastewater passage alternation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5391010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees