JP2007125484A - Nitrogen-containing wastewater treatment method - Google Patents

Nitrogen-containing wastewater treatment method Download PDF

Info

Publication number
JP2007125484A
JP2007125484A JP2005319602A JP2005319602A JP2007125484A JP 2007125484 A JP2007125484 A JP 2007125484A JP 2005319602 A JP2005319602 A JP 2005319602A JP 2005319602 A JP2005319602 A JP 2005319602A JP 2007125484 A JP2007125484 A JP 2007125484A
Authority
JP
Japan
Prior art keywords
nitrogen
wastewater
calcium
ions
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005319602A
Other languages
Japanese (ja)
Other versions
JP4703370B2 (en
Inventor
Yoshiaki Hasebe
吉昭 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2005319602A priority Critical patent/JP4703370B2/en
Publication of JP2007125484A publication Critical patent/JP2007125484A/en
Application granted granted Critical
Publication of JP4703370B2 publication Critical patent/JP4703370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitrogen-containing wastewater treatment method which enables a stable nitrogen treatment by removing problems due to calcium components remaining in wastewater containing calcium and nitrogen when treating the wastewater. <P>SOLUTION: In the nitrogen-containing wastewater treatment method, when the wastewater containing calcium and nitrogen is treated in a state of being supplied with inorganic carbon, nitrogen is treated after reducing the concentration of calcium in the wastewater. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、カルシウムおよび窒素を含有した排水の処理方法に関する。   The present invention relates to a method for treating waste water containing calcium and nitrogen.

カルシウムおよび窒素を含有した排水は、主にフッ化アンモニウム等の排水に対し、フッ素をフッ化カルシウムとして排水中より除去するため添加するカルシウムが残留することにより生じることが多い。   Wastewater containing calcium and nitrogen is often generated mainly by remaining calcium added to remove fluorine as calcium fluoride from wastewater such as ammonium fluoride.

近年、排水処理の分野においては、微生物の生理活性を利用して排水中の汚濁物質を無害な物質に変化させて処理を行う生物処理が多用されている。一般的なアンモニア性窒素含有排水の処理においては、排水を好気性条件下において独立栄養性のアンモニア酸化細菌および亜硝酸酸化細菌と接触させて亜硝酸イオンもしくは硝酸イオンにまで酸化し、その後無酸素条件下において従属栄養性の脱窒細菌と反応させて窒素ガスにまで還元して系外へ排出する。また近年では、新しい窒素処理プロセスとしてANAMMOX(ANaerobic AMMonium OXidation)法が提唱されている。本手法は排水中のアンモニウムイオンの半量を好気性条件下でアンモニア酸化細菌により亜硝酸イオンにまで酸化し、アンモニウムイオンと亜硝酸イオンをモル比で1:1に調整後、嫌気性条件下で独立栄養性のANAMMOX細菌群と接触させて窒素ガスに変化させて系外へ排出するものである。例えば、特許文献1には、カルシウムを積極的に添加する工程を含むANAMMOX法が記載されている。但し、この特許文献1に記載の方法は、グラニュール汚泥を形成させることを前提としている。これらの窒素処理においてはいずれも独立栄養性細菌を効率的に利用することが必要となる。
特開2005−238166号公報
In recent years, in the field of wastewater treatment, biological treatment is frequently used in which treatment is performed by changing the pollutant in wastewater to harmless substances using the physiological activity of microorganisms. In general treatment of wastewater containing ammonia nitrogen, the wastewater is contacted with autotrophic ammonia-oxidizing bacteria and nitrite-oxidizing bacteria under aerobic conditions to oxidize to nitrite ions or nitrate ions, and then oxygen-free Under conditions, it reacts with heterotrophic denitrifying bacteria to reduce it to nitrogen gas and discharge it out of the system. In recent years, the ANAMMOX (ANaerobic AMMonium OXidation) method has been proposed as a new nitrogen treatment process. In this method, half of the ammonium ions in the wastewater are oxidized to nitrite ions by ammonia-oxidizing bacteria under aerobic conditions, and the ammonium ions and nitrite ions are adjusted to a molar ratio of 1: 1, and then under anaerobic conditions. It is brought into contact with the autotrophic ANAMMOX bacteria group and converted into nitrogen gas and discharged out of the system. For example, Patent Document 1 describes an ANAMMOX method including a step of positively adding calcium. However, the method described in Patent Document 1 is premised on forming granular sludge. All of these nitrogen treatments require efficient use of autotrophic bacteria.
JP 2005-238166 A

上記のような独立栄養性細菌は有機物から菌体を合成することができないため、菌体の合成には炭酸イオン等の無機炭素が利用される。好気性条件下では空気を反応槽内に供給し、酸素と共に二酸化炭素を供給して無機炭素源とするが、嫌気性のANAMMOX処理においては酸素を含まない二酸化炭素ガス、もしくは炭酸イオンや炭酸水素イオンの形で無機炭素を供給する必要がある。   Since the autotrophic bacteria as described above cannot synthesize bacterial cells from organic matter, inorganic carbon such as carbonate ions is used for the synthesis of bacterial cells. Under aerobic conditions, air is supplied into the reaction tank, and carbon dioxide is supplied along with oxygen to produce an inorganic carbon source. However, in anaerobic ANAMMOX treatment, carbon dioxide gas that does not contain oxygen, or carbonate ions and hydrogen carbonate. It is necessary to supply inorganic carbon in the form of ions.

また、好気性のアンモニア酸化細菌がアンモニウムイオンを亜硝酸イオンに酸化する際、1kgの窒素の酸化に対し7.17kgCaCO3のアルカリ度を消費し、pHを調整するためにアルカリ剤の添加を行う。このアルカリ剤としては、水酸化ナトリウムのほか、炭酸水素ナトリウム、炭酸ナトリウム等が使用される。これらのアルカリ剤のうち、炭酸水素ナトリウムおよび炭酸ナトリウムは無機炭素の供給源ともなりうるため好適に使用される。 In addition, when aerobic ammonia-oxidizing bacteria oxidize ammonium ions to nitrite ions, the alkalinity of 7.17 kg CaCO 3 is consumed for the oxidation of 1 kg of nitrogen, and an alkaline agent is added to adjust the pH. As this alkali agent, sodium hydrogen carbonate, sodium carbonate, and the like are used in addition to sodium hydroxide. Of these alkaline agents, sodium hydrogen carbonate and sodium carbonate are preferably used because they can also be a source of inorganic carbon.

一方、特に半導体工場等の排水においては、フッ化アンモニウム等の使用により、フッ化物イオンとアンモニウムイオンは同系列の排水として混合して排出されてくる場合が多い。窒素、フッ素とも排水基準が定められており、排水中から除去する必要があるが、フッ化物イオンは微生物反応の阻害物質となるため、窒素の生物処理の前にフッ化物イオンを除去する必要がある。   On the other hand, especially in wastewater from semiconductor factories, fluoride ions and ammonium ions are often mixed and discharged as wastewater of the same series by using ammonium fluoride or the like. Drainage standards for both nitrogen and fluorine are established, and it is necessary to remove them from the wastewater. However, since fluoride ions are an inhibitor of microbial reactions, it is necessary to remove fluoride ions before biological treatment of nitrogen. is there.

フッ化物イオンの処理方法としては、一般的にカルシウムイオンを添加することにより、難溶解性のフッ化カルシウムを形成させて除去する手法が採用されることが多い。フッ素の排水基準である8mg/L以下を達成するためには、通常、過剰にカルシウムイオンを投入することが必要であり、そのためフッ素処理後の排水中には窒素のほか、100〜1000mg/L程度のカルシウムイオンが存在することとなる。このような排水に対し炭酸水素ナトリウムや炭酸ナトリウムを添加すると、難溶解性の炭酸カルシウムを生成し、無機炭素を消費するばかりでなく、反応槽内に炭酸カルシウムが蓄積し、配管等の閉塞や汚泥中菌体比の低下など深刻な問題を引き起こす。   As a treatment method of fluoride ions, generally, a method of forming and removing hardly soluble calcium fluoride by adding calcium ions is often employed. In order to achieve the fluorine drainage standard of 8 mg / L or less, it is usually necessary to add excessive calcium ions. Therefore, in addition to nitrogen in the wastewater after fluorine treatment, 100 to 1000 mg / L A certain amount of calcium ions will be present. When sodium hydrogen carbonate or sodium carbonate is added to such wastewater, not only does it produce poorly soluble calcium carbonate, it consumes inorganic carbon, but also calcium carbonate accumulates in the reaction tank, blocking pipes, etc. Causes serious problems such as a decrease in the bacterial cell ratio in sludge.

そこで本発明の課題は、上記のようなカルシウムおよび窒素を含有した排水を処理するに際し、排水中に残留しているカルシウム成分による不具合を除去し、安定した窒素処理を行うことができるようにした、窒素含有排水の処理方法を提供することにある。   Therefore, the problem of the present invention is that when treating wastewater containing calcium and nitrogen as described above, it is possible to remove defects caused by calcium components remaining in the wastewater and perform stable nitrogen treatment. An object of the present invention is to provide a method for treating nitrogen-containing wastewater.

上記課題を解決するために、本発明に係る窒素含有排水の処理方法は、窒素およびカルシウムを含有する排水を無機炭素を供給した状態で処理するに際し、排水中のカルシウム濃度を低減させた後に窒素の処理を行うことを特徴とする方法からなる。   In order to solve the above-mentioned problems, the nitrogen-containing wastewater treatment method according to the present invention reduces nitrogen concentration after reducing the calcium concentration in wastewater when treating wastewater containing nitrogen and calcium with inorganic carbon supplied. It consists of the method characterized by performing the process.

すなわち、本発明では、カルシウムと窒素を含有する排水の生物化学的窒素処理を行う前に、カルシウムイオンを所定濃度以下にまで低減させ、それによってカルシウム塩によるスケールの発生等の問題を引き起こすことなく、安定的に処理を行うことができることを見出したものである。   That is, in the present invention, before performing biochemical nitrogen treatment of waste water containing calcium and nitrogen, calcium ions are reduced to a predetermined concentration or less, thereby causing no problems such as generation of scale due to calcium salts. The present inventors have found that processing can be performed stably.

この本発明に係る窒素含有排水の処理方法においては、窒素の処理方法としては、生物処理を採用できる。   In the nitrogen-containing wastewater treatment method according to the present invention, biological treatment can be adopted as the nitrogen treatment method.

また、窒素の処理としては、好気性条件下で独立栄養性細菌と接触させて少なくとも排水中のアンモニウムイオンの一部を亜硝酸イオンまで酸化するアンモニア酸化工程およびアンモニウムイオンと亜硝酸イオンを含む排水を嫌気性条件下で独立栄養性細菌と接触させて脱窒を行う脱窒工程を含む処理とすることができる。   Nitrogen treatment includes an ammonia oxidation process in which at least a part of ammonium ions in waste water is oxidized to nitrite ions by contacting with autotrophic bacteria under aerobic conditions and waste water containing ammonium ions and nitrite ions. It can be set as the process including the denitrification process which contacts with autotrophic bacteria under anaerobic conditions, and denitrifies.

このアンモニウムイオンを好気性条件下で独立栄養性細菌により亜硝酸もしくは硝酸イオンに硝化する際には、pH調整のために炭酸イオンもしくは炭酸水素イオンを供給することができる。   When this ammonium ion is nitrified to nitrous acid or nitrate ion by autotrophic bacteria under aerobic conditions, carbonate ion or bicarbonate ion can be supplied for pH adjustment.

排水中のカルシウム濃度低減は、例えば、イオン交換、電気脱塩、凝集沈殿、晶析、電気泳動、凝集−膜分離から選ばれる方法により行うことができる。   The calcium concentration in the waste water can be reduced by, for example, a method selected from ion exchange, electrodeionization, aggregation precipitation, crystallization, electrophoresis, and aggregation-membrane separation.

排水中のカルシウム濃度は、例えば100mg/L以下まで低減されることが好ましい。   It is preferable that the calcium concentration in the waste water is reduced to, for example, 100 mg / L or less.

このように、本発明を用いることによりこれまで適用が困難であったカルシウムを含有する排水に対して望ましい脱窒処理を、とくに独立栄養性細菌を用いた脱窒処理を、安定的に行うことが可能となる。   Thus, it is desirable to stably carry out desirable denitrification treatment for wastewater containing calcium, which has been difficult to apply by using the present invention, particularly denitrification treatment using autotrophic bacteria. Is possible.

以下に、本発明の望ましい実施の形態について、とくに、カルシウムおよびアンモニウムイオンを含有した排水の処理をANAMMOXプロセスを用いて行う場合について、図1に例示したフローを参照しつつ、詳細に説明する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the flow illustrated in FIG. 1, particularly in the case where wastewater containing calcium and ammonium ions is treated using the ANAMMOX process.

<カルシウムの除去>
カルシウムおよび窒素を含有した排水は、カルシウム(Ca)除去装置1において予めカルシウム濃度を低減される。本発明においてカルシウム除去装置1は、たとえばイオン交換樹脂と接触させる方法、電気脱塩による方法(より詳しくは、電気再生式連続イオン交換装置(EDI)を用いた脱塩)、炭酸イオンと接触させるとことにより炭酸カルシウムを形成させて凝集沈殿させる方法、炭酸イオンを添加して晶析させる方法、電気泳動、炭酸イオンを添加して炭酸カルシウムを形成させた後、膜分離装置により固液分離を行う方法等より選択することができる。このカルシウム除去装置1により排水中のカルシウム濃度は100mg/L以下程度まで低減されることが望ましい。
<Removal of calcium>
The wastewater containing calcium and nitrogen is previously reduced in calcium concentration in the calcium (Ca) removing device 1. In the present invention, the calcium removal apparatus 1 is brought into contact with, for example, a method of contacting with an ion exchange resin, a method of electrical desalting (more specifically, desalting using an electric regenerative continuous ion exchange device (EDI)), or carbonate ions. To form and precipitate calcium carbonate, to add crystallization by adding carbonate ions, electrophoresis, to form calcium carbonate by adding carbonate ions, and then to separate the solid and liquid using a membrane separator It can be selected according to the method to be performed. It is desirable that the calcium concentration in the waste water is reduced to about 100 mg / L or less by the calcium removing device 1.

ここで、カルシウム濃度を100mg/L以下とすることの有効性は、例えば以下のようにランゲリア指数を介して認められる。すなわち、ランゲリア指数を例えば以下の条件において計算したとする。
(a)Ca濃度:500mg/L
pH:7.5
水温:30℃(通常、ANAMMOX処理が行われる温度)
Mアルカリ度:80mgCaCO3/L(亜硝酸化槽からの持込相当分)
この場合、ランゲリア指数=0.8となる。
(b)Ca濃度:100mg/L
pH:7.5
水温:30℃(通常、ANAMMOX処理が行われる温度)
Mアルカリ度:80mgCaCO3/L(亜硝酸化槽からの持込相当分)
この場合、ランゲリア指数=0.1となる。
Here, the effectiveness of setting the calcium concentration to 100 mg / L or less is recognized, for example, through the Langeria index as follows. That is, assume that the Langeria index is calculated under the following conditions, for example.
(A) Ca concentration: 500mg / L
pH: 7.5
Water temperature: 30 ° C (normally the temperature at which ANAMMOX treatment is performed)
M alkalinity: 80mgCaCO 3 / L (equivalent to bringing in from nitritation tank)
In this case, the Langeria index = 0.8.
(B) Ca concentration: 100mg / L
pH: 7.5
Water temperature: 30 ° C (normally the temperature at which ANAMMOX treatment is performed)
M alkalinity: 80mgCaCO 3 / L (equivalent to bringing in from nitritation tank)
In this case, the Langeria index = 0.1.

ランゲリア指数がプラスの値の場合にはプラスの値が大きくなるほど、炭酸カルシウムをはじめとする固形分の析出が加速される。ランゲリア指数がマイナスの値の場合には、炭酸カルシウムの析出は起こらない。したがって、Ca濃度を100mg/L以下にすることによって、ランゲリア指数をほぼ0近傍の値にすることができ、炭酸カルシウムの析出を防止することができることになる。   When the Langeria index is a positive value, the larger the positive value, the faster the precipitation of solids including calcium carbonate. When the Langeria index is negative, calcium carbonate does not precipitate. Therefore, by setting the Ca concentration to 100 mg / L or less, the Langeria index can be brought to a value close to 0, and precipitation of calcium carbonate can be prevented.

なお、ランゲリア指数とは、水の侵食性に関する指数で、pH値が低いと鉄管のような金属類、コンクリートなどの施設を腐食溶解することが多いが、水が侵食性かどうか知るにはランゲリア指数を求め、その値が負であるならその水は侵食性である。ランゲリア指数の求め方としては、例えば、水のpH値、カルシウムイオン量、総アルカリ度、溶解性物質量から次式によって求めることができる。
ランゲリア指数=水のpH値-pHs
pHs=8.313-log(Ca2+)-log(A)+S
Ca2+:meq/L・・・Ca2+mg/L÷(40.1÷2)
A:総アルカリ度meq/L・・・総アルカリ度mg/L÷(100÷2)
S:2√μ/(1+√μ) , μ:2.5×10-5sd, sd :溶解性物質(mg/L)
(ただし、上記式は25℃の値であって、温度1℃上昇に対してランゲリア指数は1.5×10-2増加する。)
The Langeria index is an index related to water erosion. When the pH value is low, facilities such as iron pipes such as metals and concrete are often corroded and dissolved. An index is determined, and if the value is negative, the water is erodible. As a method for obtaining the Langeria index, for example, it can be obtained from the pH value of water, the amount of calcium ions, the total alkalinity, and the amount of soluble substance by the following equation.
Langeria index = pH value of water-pHs
pHs = 8.313-log (Ca 2+ ) -log (A) + S
Ca 2+ : meq / L ・ ・ ・ Ca 2+ mg / L ÷ (40.1 ÷ 2)
A: Total alkalinity meq / L ... Total alkalinity mg / L ÷ (100 ÷ 2)
S: 2√μ / (1 + √μ), μ: 2.5 × 10-5sd, sd: soluble substance (mg / L)
(However, the above formula is a value of 25 ° C., and the Langeria index increases by 1.5 × 10 −2 for a temperature increase of 1 ° C.)

<窒素の処理>
窒素の処理方法としては、一般的な生物化学的処理方法が利用できるが、本発明は特に独立栄養性の脱窒菌を用い、以下の反応で表されるANAMMOX反応を利用した脱窒装置に好適に使用できる。
1.0NH4 + + 1.32NO2 - + 0.066HCO3 - + 0.13H+
→1.02N2+ 0.26NO3- + 0.066CH2O0.5N0.15+ 2.03H2O
<Nitrogen treatment>
As a method for treating nitrogen, a general biochemical treatment method can be used, but the present invention is particularly suitable for a denitrification apparatus using an autotrophic denitrifying bacterium and utilizing the ANAMMOX reaction represented by the following reaction. Can be used for
1.0NH 4 + + 1.32NO 2 - + 0.066HCO 3 - + 0.13H +
→ 1.02N 2 + 0.26NO 3- + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O

ANAMMOX反応は上記のように、独立栄養性の菌群により無酸素条件下でアンモニア性窒素と亜硝酸性窒素とから窒素ガスを生成する反応であり、通常は原水中のアンモニア性窒素の一部を好気性条件下で独立栄養性細菌であるアンモニア酸化細菌と接触させて亜硝酸イオンにまで変換した後に、ANAMMOX反応に供される。   As described above, the ANAMMOX reaction is a reaction that produces nitrogen gas from ammonia nitrogen and nitrite nitrogen under anoxic conditions by an autotrophic fungus group, and usually a part of ammonia nitrogen in raw water Is converted to nitrite ion by contacting with ammonia-oxidizing bacteria, which are autotrophic bacteria under aerobic conditions, and then subjected to ANAMMOX reaction.

カルシウム濃度を低減したアンモニア性窒素含有排水は、酸素供給手段を備えた好気性反応槽(例えば、図1に示す亜硝酸化反応槽2)に供給され、好気性条件下で独立栄養性細菌であるアンモニア酸化細菌と接触されて、アンモニウムイオンの一部が亜硝酸イオンにまで酸化される。酸化する割合はアンモニア性窒素の1/2程度とすることが望ましい。なお、排水の全量を好気性反応槽2に流入し、アンモニア性窒素の一部を亜硝酸性窒素にまで酸化する方法のほか、触媒等を用いて物理化学的に酸化する方法や、分岐ライン7のように排水の一部を分岐させて一部を好気性反応槽に通水してアンモニア性窒素の大部分を亜硝酸性窒素にまで酸化し、それを分岐させた排水と混合することによってアンモニア性窒素と亜硝酸性窒素を含む排水を得る手法も好適に使用できる。アンモニウムイオンの酸化に伴いアルカリ度が消費されるため、好気性反応槽2には無機炭素源供給手段およびpH調節剤の供給手段8が付加される。pH調整剤としては一般的なアルカリ性物質が使用でき、水酸化ナトリウム、水酸化カリウム等のほか、炭酸塩である炭酸ナトリウム、炭酸水素ナトリウム等が好適に使用できる。   Ammonia nitrogen-containing wastewater with reduced calcium concentration is supplied to an aerobic reaction tank (for example, nitritation reaction tank 2 shown in FIG. 1) equipped with oxygen supply means, and is an autotrophic bacterium under aerobic conditions. In contact with an ammonia-oxidizing bacterium, some of the ammonium ions are oxidized to nitrite ions. The rate of oxidation is preferably about half that of ammoniacal nitrogen. In addition to the method of flowing the entire amount of wastewater into the aerobic reaction tank 2 and oxidizing a part of ammonia nitrogen to nitrite nitrogen, a method of physicochemical oxidation using a catalyst or the like, a branch line Divide a part of the wastewater as shown in 7 and pass a part through the aerobic reaction tank to oxidize most of the ammonia nitrogen to nitrite nitrogen and mix it with the branched waste water. A method for obtaining waste water containing ammonia nitrogen and nitrite nitrogen can be suitably used. Since alkalinity is consumed with the oxidation of ammonium ions, an aerobic reaction tank 2 is provided with an inorganic carbon source supply means and a pH regulator supply means 8. As the pH adjusting agent, a general alkaline substance can be used, and sodium carbonate, sodium hydrogen carbonate and the like, which are carbonates, can be suitably used in addition to sodium hydroxide and potassium hydroxide.

好気性反応槽2にて酸化処理され、アンモニア性窒素と亜硝酸性窒素を含む排水はANAMMOX反応槽3へと送られる。本反応槽3では無酸素条件下で、ANAMMOX反応を担う微生物群との接触が行われる。ANAMMOX反応では水素イオンを消費するため、溶液のpHが上昇する。そのため、本反応槽3においてはpH調整剤の供給手段9が付加される。pH調整剤としては一般的な酸性物質が使用でき、硫酸、塩酸等が使用できる。pH調整用のガスとして二酸化炭素等も好適に使用することができる。ANAMMOX反応の主反応を担う微生物は独立栄養性細菌であるため、菌体の増殖には無機炭素源を必要とする。ANAMMOX反応槽流入水中に十分な無機炭素量が確保できない場合は、無機炭素供給手段10により無機炭素の供給を行う。無機炭素源としては炭酸水素ナトリウム、炭酸ナトリウムのほか、二酸化炭素等も好適に使用できる。   The waste water containing ammonia nitrogen and nitrite nitrogen is sent to the ANAMMOX reactor 3 after being oxidized in the aerobic reactor 2. In the present reaction tank 3, contact with the microorganism group responsible for the ANAMMOX reaction is performed under anoxic conditions. The ANAMMOX reaction consumes hydrogen ions, which increases the pH of the solution. Therefore, a pH adjusting agent supply means 9 is added to the reaction tank 3. A general acidic substance can be used as the pH adjuster, and sulfuric acid, hydrochloric acid, and the like can be used. Carbon dioxide or the like can also be suitably used as the pH adjusting gas. Since the microorganism responsible for the main reaction of the ANAMMOX reaction is an autotrophic bacterium, an inorganic carbon source is required for cell growth. If a sufficient amount of inorganic carbon cannot be secured in the inflow water of the ANAMMOX reactor, inorganic carbon is supplied by the inorganic carbon supply means 10. As the inorganic carbon source, sodium hydrogen carbonate, sodium carbonate, carbon dioxide and the like can be suitably used.

このようにして排水中の窒素濃度は低減されるが、ANAMMOX反応の原理上、一部の硝酸イオンが残存する。また、処理条件によってはアンモニウムイオンや亜硝酸が残存することもあり、これらの窒素成分は必要に応じて通常の硝化脱窒システム等を用いて処理を行う。例えば図1に示すように、pH調整剤供給手段9が付加された硝化反応槽4、pH調整剤供給手段9および水素供与体供給手段11が付加された脱窒槽5、再酸化槽6を有する硝化脱窒システムを用いて処理を行うことができる。   In this way, the concentration of nitrogen in the wastewater is reduced, but some nitrate ions remain due to the ANAMMOX reaction principle. In addition, ammonium ions and nitrous acid may remain depending on processing conditions, and these nitrogen components are processed using a normal nitrification denitrification system or the like as necessary. For example, as shown in FIG. 1, a nitrification reaction tank 4 to which a pH adjuster supply means 9 is added, a denitrification tank 5 to which a pH adjuster supply means 9 and a hydrogen donor supply means 11 are added, and a reoxidation tank 6 are provided. Processing can be performed using a nitrification denitrification system.

以下に、本発明の効果を確認するために行った試験を示す。なお、この試験は本発明の範囲を限定するものではない。   Below, the test done in order to confirm the effect of this invention is shown. This test does not limit the scope of the present invention.

試験1
容量2Lの密閉可能な完全混合槽にANAMMOX活性を有する菌群を付着させた5mm角のポリエチレン製スポンジ担体を投入し、攪拌機を用いて攪拌しつつ窒素負荷として0.5kgN/m3/dayとなるように下記表1に示した組成の原水を連続的に通水した。なお、槽内にpHセンサーを設置し、pHが7.5となるように二酸化炭素ガスの添加を行った。
Test 1
Put a 5mm square polyethylene sponge carrier with a fungus group with ANAMMOX activity into a 2L sealable complete mixing tank and stir it with a stirrer, and it will become 0.5kgN / m 3 / day as a nitrogen load Thus, raw water having the composition shown in Table 1 below was continuously passed. A pH sensor was installed in the tank, and carbon dioxide gas was added so that the pH was 7.5.

比較試験1
試験1と同様の条件下で原水に対し塩化カルシウムをカルシウムイオンとして500mg/LになるようにCaCl2 を添加した原水を通水した。なお、通水前の炭酸カルシウム生成を防ぐため、原水の炭酸水素ナトリウムは別系統で槽内に添加を行った。
Comparative test 1
Under the same conditions as in Test 1, raw water to which CaCl 2 was added was added to the raw water so that calcium chloride was 500 mg / L as calcium ions. In addition, in order to prevent calcium carbonate formation before water flow, sodium hydrogen carbonate of raw water was added to the tank as a separate system.

Figure 2007125484
Figure 2007125484

結果、比較試験1の試験期間中、原水中に500mg/L程度入っていたカルシウムは約70%が処理水中に確認され、残りの30%は槽内に蓄積していると考えられた。約30日経過後には槽内壁面および下部に炭酸カルシウムと考えられる固着物が付着、蓄積し、安定的に処理を行うことができなくなった。CaCl2 を添加しなかった試験1では、このような事態は発生せず、結果的に、ANAMMOX処理前でカルシウム濃度を低減させることの有効性を確認することができた。 As a result, during the test period of Comparative Test 1, about 70% of the calcium contained in the raw water was found to be in the treated water, and the remaining 30% was considered to have accumulated in the tank. After about 30 days, the fixed matter considered to be calcium carbonate adhered and accumulated on the inner wall surface and the lower part of the tank, and the treatment could not be performed stably. In Test 1 in which CaCl 2 was not added, such a situation did not occur, and as a result, the effectiveness of reducing the calcium concentration before ANAMMOX treatment could be confirmed.

本発明の一実施態様に係る窒素含有排水の処理方法を例示する工程フロー図である。It is a process flow figure which illustrates the processing method of the nitrogen content drainage concerning one embodiment of the present invention.

符号の説明Explanation of symbols

1 Ca除去装置
2 亜硝酸化反応槽
3 ANAMMOX反応槽
4 硝化反応槽
5 脱窒槽
6 再酸化槽
7 分岐ライン
8 無機炭素源およびpH調整剤供給手段
9 pH調整剤供給手段
10 無機炭素供給手段
11 水素供与体供給手段
DESCRIPTION OF SYMBOLS 1 Ca removal apparatus 2 Nitrite reaction tank 3 ANAMMOX reaction tank 4 Nitrification reaction tank 5 Denitrification tank 6 Reoxidation tank 7 Branch line 8 Inorganic carbon source and pH adjuster supply means 9 pH adjuster supply means 10 Inorganic carbon supply means 11 Hydrogen donor supply means

Claims (6)

窒素およびカルシウムを含有する排水を無機炭素を供給した状態で処理するに際し、排水中のカルシウム濃度を低減させた後に窒素の処理を行うことを特徴とする、窒素含有排水の処理方法。   A method for treating nitrogen-containing wastewater, characterized in that when treating wastewater containing nitrogen and calcium in a state where inorganic carbon is supplied, nitrogen treatment is performed after reducing the calcium concentration in the wastewater. 窒素の処理方法が生物処理であることを特徴とする、請求項1に記載の窒素含有排水の処理方法。   The method for treating nitrogen-containing wastewater according to claim 1, wherein the method for treating nitrogen is biological treatment. 窒素の処理が、好気性条件下で独立栄養性細菌と接触させて少なくとも排水中のアンモニウムイオンの一部を亜硝酸イオンまで酸化するアンモニア酸化工程およびアンモニウムイオンと亜硝酸イオンを含む排水を嫌気性条件下で独立栄養性細菌と接触させて脱窒を行う脱窒工程を含むことを特徴とする、請求項1または2に記載の窒素含有排水の処理方法。   Nitrogen treatment is anaerobic with an ammonia oxidation process in which at least some ammonium ions in the wastewater are oxidized to nitrite ions by contacting with autotrophic bacteria under aerobic conditions and wastewater containing ammonium ions and nitrite ions The method for treating nitrogen-containing wastewater according to claim 1 or 2, further comprising a denitrification step in which denitrification is performed by contact with autotrophic bacteria under conditions. アンモニウムイオンを好気性条件下で独立栄養性細菌により亜硝酸もしくは硝酸イオンに硝化する際に、pH調整のために炭酸イオンもしくは炭酸水素イオンを供給することを特徴とする、請求項3に記載の窒素含有排水の処理方法。   The carbonate ion or the bicarbonate ion is supplied for adjusting pH when the ammonium ion is nitrified to nitrite or nitrate ion by autotrophic bacteria under aerobic condition. Nitrogen-containing wastewater treatment method. 排水中のカルシウム濃度低減を、イオン交換、電気脱塩、凝集沈殿、晶析、電気泳動、凝集−膜分離から選ばれる方法により行うことを特徴とする、請求項1〜4のいずれかに記載の窒素含有排水の処理方法。   The calcium concentration in the waste water is reduced by a method selected from ion exchange, electrodeionization, aggregation precipitation, crystallization, electrophoresis, and aggregation-membrane separation. Of treating wastewater containing nitrogen. 排水中のカルシウム濃度を100mg/L以下まで低減させることを特徴とする、請求項1〜5のいずれかに記載の窒素含有排水の処理方法。   The method for treating nitrogen-containing wastewater according to any one of claims 1 to 5, wherein the calcium concentration in the wastewater is reduced to 100 mg / L or less.
JP2005319602A 2005-11-02 2005-11-02 Nitrogen-containing wastewater treatment method Active JP4703370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005319602A JP4703370B2 (en) 2005-11-02 2005-11-02 Nitrogen-containing wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005319602A JP4703370B2 (en) 2005-11-02 2005-11-02 Nitrogen-containing wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2007125484A true JP2007125484A (en) 2007-05-24
JP4703370B2 JP4703370B2 (en) 2011-06-15

Family

ID=38148593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319602A Active JP4703370B2 (en) 2005-11-02 2005-11-02 Nitrogen-containing wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4703370B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023485A (en) * 2006-07-24 2008-02-07 Japan Organo Co Ltd Biological denitrification method and apparatus therefor
JP2010000479A (en) * 2008-06-23 2010-01-07 Osaka City Organic raw water denitrification method including scale prevention
JP2011183247A (en) * 2010-03-04 2011-09-22 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and water treatment method
JP2012024723A (en) * 2010-07-26 2012-02-09 Swing Corp Wastewater treating apparatus and wastewater treating method
JP2012236122A (en) * 2011-05-10 2012-12-06 Swing Corp Method for denitrification treatment of ammonium nitrogen and calcium-containing wastewater, and treatment apparatus for the same
WO2013021475A1 (en) * 2011-08-10 2013-02-14 太平洋セメント株式会社 Method for preventing calcium scale
JP2015058398A (en) * 2013-09-19 2015-03-30 ダイキン工業株式会社 Method and apparatus for treating waste water containing organofluorine surfactant
JP2021133298A (en) * 2020-02-26 2021-09-13 水ing株式会社 Treatment method of ammoniac nitrogen-containing waste water and treatment apparatus
CN114149077A (en) * 2021-11-27 2022-03-08 浙江沃乐环境科技有限公司 Integrated wastewater synchronous denitrification and defluorination reactor device and use method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189994A (en) * 1998-12-30 2000-07-11 Soc Natl Poudres Explosifs Method for biologically cleaning water containing ammonium perchlorate
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2001276851A (en) * 2000-03-29 2001-10-09 Japan Organo Co Ltd Drain treatment equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189994A (en) * 1998-12-30 2000-07-11 Soc Natl Poudres Explosifs Method for biologically cleaning water containing ammonium perchlorate
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2001276851A (en) * 2000-03-29 2001-10-09 Japan Organo Co Ltd Drain treatment equipment

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023485A (en) * 2006-07-24 2008-02-07 Japan Organo Co Ltd Biological denitrification method and apparatus therefor
JP2010000479A (en) * 2008-06-23 2010-01-07 Osaka City Organic raw water denitrification method including scale prevention
JP2011183247A (en) * 2010-03-04 2011-09-22 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and water treatment method
JP2012024723A (en) * 2010-07-26 2012-02-09 Swing Corp Wastewater treating apparatus and wastewater treating method
JP2012236122A (en) * 2011-05-10 2012-12-06 Swing Corp Method for denitrification treatment of ammonium nitrogen and calcium-containing wastewater, and treatment apparatus for the same
CN103702949A (en) * 2011-08-10 2014-04-02 太平洋水泥株式会社 Method for preventing calcium scale
WO2013021475A1 (en) * 2011-08-10 2013-02-14 太平洋セメント株式会社 Method for preventing calcium scale
KR101851387B1 (en) 2011-08-10 2018-04-23 다이헤이요 세멘토 가부시키가이샤 Method for preventing calcium scale
JP2015058398A (en) * 2013-09-19 2015-03-30 ダイキン工業株式会社 Method and apparatus for treating waste water containing organofluorine surfactant
JP2021133298A (en) * 2020-02-26 2021-09-13 水ing株式会社 Treatment method of ammoniac nitrogen-containing waste water and treatment apparatus
JP7332501B2 (en) 2020-02-26 2023-08-23 水ing株式会社 Ammonia nitrogen-containing wastewater treatment method and treatment apparatus
JP7332501B6 (en) 2020-02-26 2024-02-26 水ing株式会社 Treatment method and equipment for ammoniacal nitrogen-containing wastewater
CN114149077A (en) * 2021-11-27 2022-03-08 浙江沃乐环境科技有限公司 Integrated wastewater synchronous denitrification and defluorination reactor device and use method thereof
CN114149077B (en) * 2021-11-27 2023-02-14 浙江沃乐环境科技有限公司 Integrated wastewater synchronous denitrification and defluorination reactor device and use method thereof

Also Published As

Publication number Publication date
JP4703370B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4703370B2 (en) Nitrogen-containing wastewater treatment method
WO2011118808A1 (en) Treatment method of wastewater containing persistent substances
JP5211675B2 (en) Method for removing ammoniacal nitrogen and COD components from ammonia water
TWI568683B (en) Water treatment method and method for producing ultrapure water
JP2005074253A (en) Biological treatment method for wastewater containing bod and nitrogen
JP4882175B2 (en) Nitrification method
JP4106203B2 (en) How to remove nitrogen from water
JP2005246135A (en) Method for biologically removing nitrogen
JP6789779B2 (en) Wastewater treatment method, wastewater treatment system and coal gasification combined cycle equipment equipped with it
JP4837706B2 (en) Ammonia nitrogen removal equipment
JP2005211832A (en) Method for removing ammonia nitrogen from waste water
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP3202510B2 (en) Equipment for treating wastewater containing nitrogen and fluorine
JP2000308900A (en) Treatment of ammonia-containing waste water
JP2011062653A (en) Nitrogen-containing wastewater treatment method
JP2011062656A (en) Nitrogen-containing wastewater treatment method
JP2005329399A (en) Method and apparatus for removing nitrogen
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JP2003071490A (en) Method for removing nitrogen from wastewater
JP3358388B2 (en) Treatment method for selenium-containing water
JP4765308B2 (en) Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method
JP4865211B2 (en) Waste water treatment apparatus and biological treatment method of waste water
JP2001212592A (en) Method for removing nitrogen from wastewater
JP2006088057A (en) Method for treating ammonia-containing water
JP3837757B2 (en) Method for treating selenium-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

R150 Certificate of patent or registration of utility model

Ref document number: 4703370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250