JP4765308B2 - Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method - Google Patents

Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method Download PDF

Info

Publication number
JP4765308B2
JP4765308B2 JP2004361646A JP2004361646A JP4765308B2 JP 4765308 B2 JP4765308 B2 JP 4765308B2 JP 2004361646 A JP2004361646 A JP 2004361646A JP 2004361646 A JP2004361646 A JP 2004361646A JP 4765308 B2 JP4765308 B2 JP 4765308B2
Authority
JP
Japan
Prior art keywords
nitrification
inorganic ions
nitrification tank
inorganic
nitrogen compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004361646A
Other languages
Japanese (ja)
Other versions
JP2006167549A (en
Inventor
智弘 清川
倫明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004361646A priority Critical patent/JP4765308B2/en
Priority to TW94143032A priority patent/TWI449674B/en
Priority to CN201210254527.8A priority patent/CN102826708B/en
Priority to CN2005100034437A priority patent/CN1792869B/en
Priority to CN201010623270XA priority patent/CN102107996A/en
Priority to KR20050123157A priority patent/KR101201058B1/en
Publication of JP2006167549A publication Critical patent/JP2006167549A/en
Application granted granted Critical
Publication of JP4765308B2 publication Critical patent/JP4765308B2/en
Priority to KR1020120039045A priority patent/KR101299352B1/en
Priority to KR1020130015701A priority patent/KR101352247B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、窒素化合物と無機イオンを含有する排水の処理装置及び処理方法に係り、特に、亜硝酸型硝化を行って排水中の窒素化合物を処理するに当たり、硝化槽における無機イオンの不溶化によるスケール析出の問題を解決する窒素化合物及び無機イオン含有排水の処理装置及び処理方法に関する。   The present invention relates to a treatment apparatus and a treatment method for wastewater containing nitrogen compounds and inorganic ions, and in particular, when treating nitrogen compounds in wastewater by performing nitrite-type nitrification, a scale by insolubilization of inorganic ions in a nitrification tank The present invention relates to a treatment apparatus and treatment method for wastewater containing nitrogen compounds and inorganic ions that solve the problem of precipitation.

窒素含有排水を処理する方法として、アンモニア性窒素を含む有機性窒素を生物学的に亜硝酸性窒素又は硝酸性窒素に硝化し、この亜硝酸性窒素及び硝酸性窒素を生物学的に還元して脱窒する生物学的脱窒処理方法は周知である。この生物学的脱窒処理における硝化工程で排水を曝気して好気的に生物処理すると、排水中の有機性窒素はアンモニア性窒素となり、アンモニア性窒素はアンモニア酸化細菌により、亜硝酸性窒素となる。そして亜硝酸性窒素は、亜硝酸酸化細菌により硝酸性窒素となる。この硝化工程で、有機性窒素がアンモニア性窒素を経て亜硝酸性窒素に硝化され、亜硝酸性窒素が硝酸性窒素に酸化される前の段階で反応を止めることにより、硝化工程で必要となる酸素量が少なくて済む。また、得られた亜硝酸性窒素を、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性微生物を利用して、アンモニア性窒素と反応させて脱窒することにより、メタノール等の水素供与体の添加を不要とし、余剰汚泥発生量を抑えて工業的有利に処理を行えることが知られている。   As a method of treating nitrogen-containing wastewater, organic nitrogen including ammonia nitrogen is biologically nitrified to nitrite nitrogen or nitrate nitrogen, and the nitrite nitrogen and nitrate nitrogen are biologically reduced. Biological denitrification methods for denitrification are well known. When a wastewater is aerated in the nitrification process in this biological denitrification treatment, the organic nitrogen in the wastewater becomes ammoniacal nitrogen. The ammoniacal nitrogen is converted to nitrite nitrogen by ammonia-oxidizing bacteria. Become. Nitrite nitrogen is converted to nitrate nitrogen by nitrite oxidizing bacteria. In this nitrification process, organic nitrogen is nitrified to nitrite nitrogen via ammonia nitrogen and is required in the nitrification process by stopping the reaction before nitrite nitrogen is oxidized to nitrate nitrogen. Less oxygen is required. In addition, the obtained nitrite nitrogen can be denitrified by reacting with ammoniacal nitrogen using an autotrophic microorganism using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. Thus, it is known that the addition of a hydrogen donor such as methanol is unnecessary, and the amount of surplus sludge generated can be suppressed and the treatment can be industrially advantageous.

そして、このように硝化工程を亜硝酸型硝化に制御する方法として、硝化槽内に炭酸塩及び/又は重炭酸塩を添加して、硝化槽内の無機炭酸濃度を50mg−C/L以上に維持する方法が提案されている(特願2003−413509。以下「先願」という。)。また、硝化槽内の残留アンモニア性窒素濃度が50mg−N/L以上となるように調節することにより亜硝酸型硝化を行う方法も提案されている(特開2004−298841号公報)。   And as a method of controlling the nitrification step to nitrite type nitrification in this way, carbonate and / or bicarbonate is added in the nitrification tank, and the inorganic carbonate concentration in the nitrification tank is increased to 50 mg-C / L or more. A method for maintaining this has been proposed (Japanese Patent Application No. 2003-413509, hereinafter referred to as “prior application”). In addition, a method of performing nitrite-type nitrification by adjusting the residual ammonia nitrogen concentration in the nitrification tank to be 50 mg-N / L or more has been proposed (Japanese Patent Laid-Open No. 2004-298441).

なお、ここで亜硝酸型硝化とは、硝化工程で生成する酸化態窒素(亜硝酸性窒素と硝酸性窒素)のうち、亜硝酸性窒素が50%以上を占めるものをいう。このような亜硝酸型硝化の好適pH条件は7.5〜8.5であり、アンモニア性窒素を硝酸性窒素にまで酸化する硝酸型硝化を行う場合の好適pH条件である6.5〜7.5に比べて高い。
特願2003−413509 特開2004−298841号公報
In addition, nitrite type nitrification means here that nitrite nitrogen occupies 50% or more of oxidized nitrogen (nitrite nitrogen and nitrate nitrogen) generated in the nitrification step. The preferable pH conditions for such nitrite type nitrification are 7.5 to 8.5, and 6.5 to 7 which are preferable pH conditions for performing nitric acid type nitrification in which ammoniacal nitrogen is oxidized to nitrate nitrogen. Higher than .5.
Japanese Patent Application No. 2003-413509 Japanese Patent Laid-Open No. 2004-298441

先願の方法では、硝化槽のpH調整剤として、硝酸型硝化において一般的に使用される水酸化ナトリウムではなく、炭酸塩及び/又は重炭酸塩を使用しており、更に、硝化槽内の無機炭酸濃度を50mg−C/L以上に維持するために、pH調整に必要とされるアルカリ分よりも過剰の炭酸塩及び/又は重炭酸塩が硝化槽へ添加されることとなる。しかも、硝化槽内は亜硝酸型硝化に好適なpH7.5〜8.5の比較的高いpHとなっている。このため、処理対象とする原水中に溶解性の低い2価や3価といった無機イオンが含有されている場合、これらが硝化槽内で炭酸カルシウムや炭酸マグネシウム等の無機炭酸化合物の固形物(スケール)として析出してしまう。そして、硝化槽内での固形物の析出によって、生物汚泥中の無機汚泥量が増加したり、空気供給管の目詰まりで硝化槽への供給空気量が減少して、安定した処理ができず、処理効率(処理負荷)が低下し、また処理水質が低下してしまうという問題がある。   In the method of the prior application, as a pH adjusting agent for the nitrification tank, carbonate and / or bicarbonate is used instead of sodium hydroxide generally used in nitric acid type nitrification. In order to maintain the inorganic carbonate concentration at 50 mg-C / L or more, an excess of carbonate and / or bicarbonate more than the alkali content required for pH adjustment is added to the nitrification tank. Moreover, the nitrification tank has a relatively high pH of 7.5 to 8.5 suitable for nitrite type nitrification. For this reason, when the raw water to be treated contains inorganic ions such as divalent or trivalent ions having low solubility, these are solids of inorganic carbonate compounds such as calcium carbonate and magnesium carbonate (scale) in the nitrification tank. ). In addition, due to precipitation of solids in the nitrification tank, the amount of inorganic sludge in biological sludge increases, or the amount of air supplied to the nitrification tank decreases due to clogging of the air supply pipe, making it impossible to perform stable treatment. There is a problem that the processing efficiency (processing load) decreases and the quality of the processing water decreases.

この無機イオンによるスケール析出の問題は、先願のように、硝化槽内の無機炭酸濃度を50mg−C/L以上に維持する場合に限らず、亜硝酸型硝化を行う場合には、起こりえる。即ち、硝化によりアンモニア性窒素が酸性の亜硝酸性窒素となることにより、硝化槽内のpHは低下することとなるが、アンモニア酸化細菌はpHが6.5以下になると活性が著しく低下して亜硝酸への酸化が進みにくくなる。このため、通常、pHを中性以上に維持するようにpH調整剤(アルカリ)を添加することが行われるが、処理対象の原水中に、溶解性の無機イオンが含有されていると、このpH調整によって、やはり無機イオンが水酸化物や炭酸塩として不溶化することで、スケール析出の問題が起こる。特に排水のpHが低い場合には、このpH調整により、排水中に溶解していた無機炭酸化合物や水酸化化合物もスケール化してくる。特に、pH調整剤として炭酸塩及び/又は重炭酸塩を添加する場合は、上記先願の場合と同様に、無機イオンが炭酸塩となって析出し易い状況となる。   The problem of scale precipitation due to inorganic ions is not limited to the case where the inorganic carbonic acid concentration in the nitrification tank is maintained at 50 mg-C / L or more as in the prior application, but may occur when nitrite type nitrification is performed. . That is, when ammonia nitrogen is converted to acidic nitrite nitrogen by nitrification, the pH in the nitrification tank is lowered. However, the activity of ammonia oxidizing bacteria is remarkably lowered when the pH is 6.5 or lower. Oxidation to nitrous acid is difficult to proceed. For this reason, a pH adjusting agent (alkali) is usually added so as to maintain the pH to be neutral or higher. However, when soluble inorganic ions are contained in the raw water to be treated, As a result of the pH adjustment, inorganic ions are insolubilized as hydroxides or carbonates, which causes a problem of scale precipitation. In particular, when the pH of the wastewater is low, this pH adjustment also scales inorganic carbonate compounds and hydroxide compounds dissolved in the wastewater. In particular, when carbonate and / or bicarbonate is added as a pH adjuster, as in the case of the prior application, the inorganic ions are likely to precipitate as carbonate.

本発明は、上記従来の問題点を解決し、窒素化合物と無機イオンを含有する排水を亜硝酸型硝化するに当たり、無機イオンによるスケール析出の問題を解決する窒素化合物及び無機イオン含有排水の処理装置及び処理方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and in treating wastewater containing nitrogen compounds and inorganic ions to nitrite-type nitrification, the nitrogen compound and inorganic ion-containing wastewater treatment apparatus solves the problem of scale precipitation due to inorganic ions. And a processing method.

本発明(請求項1)の窒素化合物及び無機イオン含有排水の処理装置は、窒素化合物及び無機イオンを含有する排水を好気的に生物処理して該窒素化合物を亜硝酸性窒素に酸化して亜硝酸型硝化を行う硝化槽と、該無機イオンのスケール化を抑制するためのスケール防止手段と、前記硝化槽内のpHを中性ないしアルカリ性に維持するためのpH調整剤添加手段と、前記硝化槽の流出液を膜分離処理する膜分離装置とを備えた窒素化合物及び無機イオン含有排水の処理装置であって、前記スケール防止手段が、前記排水中の無機イオンを除去する手段或いは、スケール防止剤を前記硝化槽及び/又は前記排水に添加する手段であることを特徴とする。 Processor nitrogen compounds and inorganic ion-containing waste water of the present invention (claim 1), by oxidizing a nitrogen compound to nitrite nitrogen wastewater containing nitrogen compounds and inorganic ions is treated aerobically organism a nitrification tank for performing nitrite type nitrification, and pH adjusting agent adding means in order to maintain and scale preventing means for preventing the scaling of the inorganic ions, the pH of the nitrification tank to the neutral or alkaline, the Nitrogen compound and inorganic ion-containing wastewater treatment device comprising a membrane separation device for membrane separation treatment of the effluent of a nitrification tank , wherein the scale prevention means removes inorganic ions in the wastewater or a scale It is a means for adding an inhibitor to the nitrification tank and / or the waste water .

請求項2の窒素化合物及び無機イオン含有排水の処理装置は、請求項1において、前記pH調整剤添加手段は、炭酸塩及び/又は重炭酸塩を前記硝化槽及び/又は前記排水に添加する手段であることを特徴とする。   The apparatus for treating wastewater containing nitrogen compounds and inorganic ions according to claim 2 is characterized in that in claim 1, the pH adjuster adding means is means for adding carbonate and / or bicarbonate to the nitrification tank and / or the wastewater. It is characterized by being.

請求項の窒素化合物及び無機イオン含有排水の処理装置は、請求項1又は2において、前記硝化槽内に生物担体が存在することを特徴とする。 Processor nitrogen compounds and inorganic ion-containing waste water according to claim 3, in claim 1 or 2, characterized in that there are biological carriers into the nitrification tank.

本発明(請求項)の窒素化合物及び無機イオン含有排水の処理方法は、窒素化合物及び無機イオンを含有する排水を好気的に生物処理して該窒素化合物を亜硝酸性窒素に酸化して亜硝酸型硝化を行う硝化工程と、該無機イオンのスケール化を抑制するためのスケール防止工程と、前記硝化工程におけるpHを中性ないしアルカリ性に維持するためのpH調整工程と、前記硝化工程の処理液を膜分離処理する膜分離工程とを備えた窒素化合物及び無機イオン含有排水の処理方法であって、前記スケール防止工程が、前記排水中の無機イオンを除去する工程或いは、スケール防止剤を前記硝化工程の水及び/又は前記排水に添加する工程であることを特徴とする。 Treatment method of nitrogen compounds, and inorganic ion-containing waste water of the present invention (Claim 4), by oxidizing a nitrogen compound to nitrite nitrogen wastewater containing nitrogen compounds and inorganic ions is treated aerobically organism A nitrification step for performing nitrite type nitrification, a scale prevention step for suppressing scaling of the inorganic ions, a pH adjustment step for maintaining the pH in the nitrification step neutral or alkaline, and the nitrification step A method for treating wastewater containing nitrogen compounds and inorganic ions, comprising a membrane separation step for membrane separation treatment of a treatment liquid , wherein the scale prevention step removes inorganic ions in the wastewater, or a scale inhibitor. It is a process of adding to the water of the said nitrification process and / or the said waste_water | drain .

本発明では、pHを中性ないしアルカリ性に維持して亜硝酸型硝化を行うに当たり、無機イオンのスケール化を抑制して、硝化槽における無機イオンのスケール化による処理効率(処理負荷)の低下、処理水質の低下、更には発生汚泥量の増加の問題を解決することができ、窒素化合物及び無機イオン含有排水を安定かつ効率的に処理することができる(請求項1,)。 In the present invention, when carrying out nitrite type nitrification while maintaining the pH neutral or alkaline, the scaling of inorganic ions is suppressed and the processing efficiency (processing load) is reduced due to the scaling of inorganic ions in the nitrification tank. The problem of deterioration of treated water quality and further increase in the amount of generated sludge can be solved, and nitrogen compound and inorganic ion-containing wastewater can be treated stably and efficiently (claims 1, 4 ).

ところで、硝化槽における亜硝酸型硝化で、アンモニア性窒素の大半を亜硝酸性窒素に変換した後は、硝化槽流出液を通常は脱窒槽に導入し、脱窒細菌によって、亜硝酸性窒素を窒素ガスにまで還元処理するが、この際、原水の窒素化合物濃度が低い場合は、硝化処理液を一旦濃縮してから脱窒処理するのが好ましい。従って、この場合には、硝化槽の後段に膜分離装置(例えば、逆浸透(RO)膜分離装置)を配置し、亜硝酸性窒素を含む硝化槽流出液を膜分離装置に導き、透過水と濃縮水とに分離し、濃縮水を脱窒処理することが行われる。このような硝化処理液の濃縮によって、亜硝酸性窒素の濃度を高めて効率的に生物脱窒処理することが可能となり、また、濃縮によって脱窒槽に導入する水量を低減できるので、脱窒槽を小型化できるという効果も奏される。   By the way, after converting most of the ammonia nitrogen to nitrite nitrogen by nitrite type nitrification in the nitrification tank, the nitrification tank effluent is usually introduced into the denitrification tank, and nitrite nitrogen is removed by denitrifying bacteria. In this case, when the concentration of the nitrogen compound in the raw water is low, it is preferable that the nitrification solution is once concentrated and then denitrified. Therefore, in this case, a membrane separation device (for example, a reverse osmosis (RO) membrane separation device) is disposed at the subsequent stage of the nitrification tank, and the nitrification tank effluent containing nitrite nitrogen is guided to the membrane separation apparatus. And concentrated water, and the concentrated water is denitrified. Concentration of such a nitrification solution makes it possible to increase the concentration of nitrite nitrogen and efficiently perform biological denitrification treatment, and also to reduce the amount of water introduced into the denitrification tank by concentration. There is also an effect that the size can be reduced.

このようにして、硝化槽の後段で膜分離処理を行う場合、従来法では、膜面において無機イオンが濃縮されることにより、スケール化し易く、スケール化による膜の透過流束の低下の問題もあったが、本発明によれば、前段でスケールの防止処理を行うことにより、後段の膜分離装置でのスケール化をも防止して、膜性能を高く維持することが可能となる。   In this way, when membrane separation treatment is performed at the latter stage of the nitrification tank, the conventional method concentrates inorganic ions on the membrane surface, so that it is easy to scale, and there is a problem of reduction in the membrane permeation flux due to scaling. However, according to the present invention, by performing the scale prevention treatment in the former stage, it is possible to prevent the scale formation in the latter stage membrane separation apparatus and maintain the membrane performance high.

このような本発明による上記効果は、特に硝化槽のpH調整剤として、炭酸塩及び/又は重炭酸塩を添加する場合に有効に発揮される(請求項2) Such an effect of the present invention is effectively exhibited particularly when a carbonate and / or bicarbonate is added as a pH adjuster for a nitrification tank (Claim 2) .

発明において、硝化槽は菌体を保持するための担体を用いたものであることが、処理効率の面から好ましい(請求項)。 In the present invention, the nitrification tank is preferably one using a carrier for holding the bacterial cells from the viewpoint of treatment efficiency (Claim 3 ).

以下に図面を参照して本発明の窒素化合物及び無機イオン含有排水の処理装置及び処理方法の実施の形態を詳細に説明する。   Embodiments of a nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method of the present invention will be described below in detail with reference to the drawings.

図1は本発明の窒素化合物及び無機イオン含有排水の処理装置の実施の形態を示す系統図である。   FIG. 1 is a system diagram showing an embodiment of a treatment apparatus for wastewater containing nitrogen compounds and inorganic ions of the present invention.

本発明において、処理対象排水中に含まれる無機イオンとは、水系で不溶化してスケール化し易いイオンであり、代表的には2価ないし3価のカチオンであり、例えば、Ca2+、Mg2+、Fe3+、Al3+などのイオンが挙げられる。これらの無機イオンは、水酸イオン、炭酸イオン、リン酸イオン、フッ素イオンなどの不溶化し易い対イオンが存在するとスケール化する。 In the present invention, the inorganic ions contained in the waste water to be treated are ions that are insolubilized in water and easily scaled, and are typically divalent to trivalent cations, such as Ca 2+ , Mg 2+ , Ions such as Fe 3+ and Al 3+ can be mentioned. These inorganic ions are scaled in the presence of counter ions that are easily insolubilized, such as hydroxide ions, carbonate ions, phosphate ions, and fluorine ions.

また、本発明において、処理対象排水に含まれる窒素化合物とは、アンモニアやアンモニウム系化合物やアミン系化合物、例えばTMAH(テトラメチルアンモニウムハイドロオキサイド)、MEA(モノエタノールアミン)、その他アミノ酸等の有機性窒素であり、これらの有機性窒素は硝化工程においてアンモニア性窒素を経て亜硝酸性窒素に酸化される。   In the present invention, the nitrogen compounds contained in the wastewater to be treated are organic substances such as ammonia, ammonium compounds and amine compounds such as TMAH (tetramethylammonium hydroxide), MEA (monoethanolamine), and other amino acids. Nitrogen, and these organic nitrogens are oxidized to nitrite nitrogen via ammoniacal nitrogen in the nitrification process.

このような無機イオンと窒素化合物を含む、本発明の処理対象排水としては特に制限はないが、例えば液晶工場排水、半導体工場排水等が挙げられる。   Although there is no restriction | limiting in particular as wastewater for treatment of this invention containing such an inorganic ion and a nitrogen compound, For example, liquid crystal factory wastewater, semiconductor factory wastewater, etc. are mentioned.

本発明においては、このような窒素化合物及び無機イオン含有排水を原水として配管11より硝化槽1に導入し、曝気等により好気的生物処理して亜硝酸型硝化を行うが、この硝化槽1における無機イオンのスケール化を抑制するためのスケール防止手段を設ける。なお、1Aは散気管である。   In the present invention, such nitrogen compound and inorganic ion-containing wastewater is introduced into the nitrification tank 1 from the pipe 11 as raw water, and subjected to aerobic biological treatment by aeration or the like to perform nitrite type nitrification. A scale preventing means is provided for suppressing the scaling of inorganic ions. In addition, 1A is an air diffuser.

このスケール防止手段としては、硝化槽1における無機イオンのスケール化を有効に防止することができるものであり、図1(a)に示すようなスケール防止剤添加手段2や、図1(b)に示すような、硝化槽1の前段に設けられた無機イオン除去手段3が挙げられる。なお、スケール防止手段としてスケール防止剤添加手段と無機イオン除去手段との両方を採用することもできる。 As the scale preventing means state, and are not capable of effectively preventing scale of inorganic ions in the nitrification tank 1, and scale inhibitor addition means 2 shown in FIG. 1 (a), FIG. 1 (b Inorganic ion removing means 3 provided in the previous stage of the nitrification tank 1 as shown in FIG. Note that both the scale inhibitor addition means and the inorganic ion removal means can be employed as the scale prevention means.

図1(a)に示す如く、スケール防止手段としてスケール防止剤を添加する場合、原水にスケール防止剤を添加することにより、硝化系内での無機イオンのスケール化を抑制する。スケール防止剤の添加場所は、図1(a)に示す如く、硝化槽1への原水導入配管11であっても良く、硝化槽1であっても良く、また、その両方であっても良い。   As shown in FIG. 1A, when a scale inhibitor is added as a scale prevention means, the scaling of inorganic ions in the nitrification system is suppressed by adding the scale inhibitor to the raw water. As shown in FIG. 1 (a), the addition site of the scale inhibitor may be the raw water introduction pipe 11 to the nitrification tank 1, the nitrification tank 1, or both. .

添加するスケール防止剤としては特に制限はなく、通常用いられている難生物分解性のスケール防止剤、例えば、ポリアクリル酸、ポリ無水マレイン酸、ポリアクリルアミド加水分解物、スルホン酸系重合体などの高分子分散剤、ホスホン酸塩、無機ポリリン酸塩、EDTA(エチレンジアミン四酢酸)などのキレート系防止剤など既知のスケール防止剤が使用できる。これらのスケール防止剤は1種を単独で用いても良く、2種以上を混合して用いても良い。   There is no particular limitation on the scale inhibitor to be added, and generally used biodegradable scale inhibitors such as polyacrylic acid, polymaleic anhydride, polyacrylamide hydrolysates, sulfonic acid polymers, etc. Known scale inhibitors such as polymer dispersants, phosphonates, inorganic polyphosphates, and chelate inhibitors such as EDTA (ethylenediaminetetraacetic acid) can be used. These scale inhibitors may be used alone or in combination of two or more.

スケール防止剤の添加量は、無機イオンのスケール化を抑制できる程度であれば良く、原水の無機イオン濃度や硝化槽の処理条件(調整pH値、添加するアルカリ剤の種類等)に応じて適宜決定されるが、通常の場合、5〜500mg/L程度である。   The addition amount of the scale inhibitor is only required to be able to suppress the scaling of inorganic ions, and is appropriately determined according to the inorganic ion concentration of raw water and the treatment conditions of the nitrification tank (adjusted pH value, type of alkali agent to be added, etc.) Although it is determined, it is usually about 5 to 500 mg / L.

無機イオン除去手段3としては、イオン交換装置、晶析装置、凝集分離装置などを用いることができる。   As the inorganic ion removing means 3, an ion exchange device, a crystallization device, a coagulation separation device, or the like can be used.

このうち、イオン交換装置は、強酸性カチオン交換樹脂又は弱酸性カチオン交換樹脂を充填したイオン交換塔であり、例えば軟化塔が使用できる。原水をイオン交換塔に通水することにより、無機イオン(カチオン)を吸着除去することができる。   Among these, the ion exchange device is an ion exchange tower filled with a strong acid cation exchange resin or a weak acid cation exchange resin, and for example, a softening tower can be used. By passing raw water through an ion exchange tower, inorganic ions (cations) can be adsorbed and removed.

晶析装置としては、種晶物質(例えば、炭酸カルシウム、リン酸カルシウムなど)を充填した晶析塔が使用できる。原水に無機イオンと反応して不溶性物を生成する不溶化剤(例えば、炭酸塩、リン酸塩など)を添加してこのような晶析塔に通水することにより、無機イオンを種晶上に結晶化させて除去することができる。   As a crystallization apparatus, a crystallization tower filled with a seed crystal material (for example, calcium carbonate, calcium phosphate, etc.) can be used. By adding an insolubilizing agent (for example, carbonate, phosphate, etc.) that reacts with inorganic ions to the raw water to pass through such a crystallization tower, the inorganic ions are put on the seed crystals. It can be removed by crystallization.

また、凝集分離装置としては、排水に不溶化剤(例えば、消石灰などのアルカリ)や凝集剤を添加して無機イオンを凝集フロックとし、凝集フロックを沈殿、浮上、濾過などの固液分離によって除去するものを用いることができる。   In addition, as a flocculating / separating apparatus, an insolubilizing agent (for example, alkali such as slaked lime) or a flocculating agent is added to waste water to make inorganic ions flocculated floc, and the flocculated floc is removed by solid-liquid separation such as precipitation, flotation, and filtration. Things can be used.

本発明では、このようなスケール防止手段により、好ましくは原水中の無機イオンをその飽和濃度の1/10000〜1/1、好ましくは1/10000〜9/10に除去するか、或いは無機イオンを分散させて、硝化槽1におけるスケール析出を防止する。   In the present invention, the inorganic ions in the raw water are preferably removed to 1/1000 to 1/1, preferably 1/10000 to 9/10 of the saturation concentration, or inorganic ions are removed by such scale preventing means. Disperse to prevent scale precipitation in the nitrification tank 1.

また、硝化槽の後段に膜分離装置を配置し、硝化槽流出液を濃縮する場合は、その濃縮倍率に応じて、無機イオンの除去率を調整することが好ましい。   In addition, when a membrane separation device is arranged at the subsequent stage of the nitrification tank to concentrate the nitrification tank effluent, it is preferable to adjust the removal rate of inorganic ions according to the concentration ratio.

硝化槽1では、pH調整手段4により、pH調整剤(アルカリ)が添加され、槽内pHが亜硝酸型硝化に好適なpH、即ち、pH7.5〜8.5に維持されることにより、亜硝酸型硝化が行われる。ここでpH調整手段4で添加されるアルカリとしては、水酸化ナトリウム(NaOH)等の強アルカリも挙げられるが、本発明では、炭酸ナトリウム等の炭酸塩や重炭酸ナトリウム等の重炭酸塩を用い、炭酸塩や重炭酸塩のpH緩衝能によって生物膜内でのpHの低下を防止して、亜硝酸型硝化を維持することが好ましい。また、炭酸塩や重炭酸塩は無機イオンとの反応でスケール化し易く、本発明による効果が有効に発揮される点においても、本発明に好適である。   In the nitrification tank 1, a pH adjusting agent (alkali) is added by the pH adjusting means 4, and the pH in the tank is maintained at a pH suitable for nitrite type nitrification, that is, pH 7.5 to 8.5, Nitrite type nitrification is performed. Examples of the alkali added by the pH adjusting means 4 include strong alkalis such as sodium hydroxide (NaOH). In the present invention, carbonates such as sodium carbonate and bicarbonates such as sodium bicarbonate are used. It is preferable to maintain the nitrite type nitrification by preventing the pH drop in the biofilm by the pH buffering ability of carbonate or bicarbonate. Further, carbonates and bicarbonates are suitable for the present invention in that they are easily scaled by reaction with inorganic ions and the effects of the present invention are effectively exhibited.

なお、先願に記載されるように、炭酸ソーダ、重炭酸ソーダや重炭酸カリなどの試薬は苛性ソーダに比べて高価であり、また、工業製品は粉末状であるため取り扱い作業性も悪い。これに対して、ボイラ排ガス等の炭酸ガスを含む排ガス中の炭酸ガスを苛性ソーダのようなアルカリ薬剤に吸収させて用いることにより、排ガスの有効利用が図れると共に液状での添加が可能となり、取り扱い上有利であるので、本発明においても、炭酸塩及び/又は重炭酸塩として、燃焼排ガスのアルカリ吸収液を添加しても良い。   As described in the prior application, reagents such as sodium carbonate, sodium bicarbonate and potassium bicarbonate are more expensive than caustic soda, and industrial products are in powder form, and handling workability is poor. In contrast, by using carbon dioxide in the exhaust gas containing carbon dioxide gas such as boiler exhaust gas in an alkaline agent such as caustic soda, the exhaust gas can be effectively used and added in liquid form. Since it is advantageous, in the present invention, an alkali absorbing liquid of combustion exhaust gas may be added as carbonate and / or bicarbonate.

この硝化槽1では、pH7.5〜8.5という中性〜アルカリ性のpH条件で亜硝酸型硝化が行われるが、本発明によれば、原水の中の無機イオンのスケール化が抑制されているため、この硝化槽1におけるスケール化は防止される。   In this nitrification tank 1, nitrite type nitrification is performed under neutral to alkaline pH conditions of pH 7.5 to 8.5, but according to the present invention, scaling of inorganic ions in raw water is suppressed. Therefore, the nitrification tank 1 is prevented from being scaled.

なお、硝化槽1には、菌体を保持させるための担体5を添加しても良く、担体の添加により、硝化槽1内に菌体を高濃度に維持して、より一層効率的な処理を行えるようになる。添加する担体としては、スポンジ状で比表面積が大きいものが好ましいが、担体流出防止スクリーンによる分離性を考慮すれば、2〜20mm程度の大きさのものが好ましい。担体の形状は特に限定されず、例えば球状、立方体状のものなどが使用できる。また、スポンジの素材にも特に限定されず、例えばエステル系ポリウレタンなどが挙げられる。担体は見かけの容積で硝化槽1の容積の20〜80容量%程度添加することが好ましい。   In addition, the support | carrier 5 for hold | maintaining a microbial cell may be added to the nitrification tank 1, and by adding a support | carrier, a microbial cell is maintained in high concentration in the nitrification tank 1, and a more efficient process is carried out. Can be done. The carrier to be added is preferably a sponge and has a large specific surface area. However, considering the separability by the carrier outflow prevention screen, a carrier having a size of about 2 to 20 mm is preferable. The shape of the carrier is not particularly limited, and for example, a spherical shape or a cubic shape can be used. Moreover, it is not specifically limited also to the raw material of sponge, For example, ester polyurethane etc. are mentioned. The carrier is preferably added in an apparent volume of about 20 to 80% by volume of the volume of the nitrification tank 1.

このように、硝化槽1に担体5を添加する場合、後述の比較例1に示すように、従来法では、担体にスケールが付着することによる処理効率の低下の問題があったが、本発明によれば、このような問題も防止することができる。   Thus, when adding the support | carrier 5 to the nitrification tank 1, as shown in the comparative example 1 mentioned later, in the conventional method, there existed a problem of the fall of the processing efficiency by a scale adhering to a support | carrier, but this invention According to this, such a problem can also be prevented.

このようにして亜硝酸型硝化を行った硝化槽1の流出液は次いで配管12より膜分離装置6に導入されて濃縮された後、濃縮水は配管13より膜窒槽(図示せず)に送給され生物脱窒処理される。また、膜分離装置6の透過水は、配管14より系外へ排出される。   The effluent from the nitrification tank 1 thus subjected to nitrite type nitrification is then introduced into the membrane separation device 6 through the pipe 12 and concentrated, and then the concentrated water is sent from the pipe 13 to a membrane nitriding tank (not shown). To be denitrified. Further, the permeated water of the membrane separation device 6 is discharged out of the system through the pipe 14.

このように硝化処理液を膜分離処理する場合においても、本発明では前段のスケール化防止処理により、膜分離濃縮によるスケール障害を防止することができる。   As described above, even when the nitrification solution is subjected to membrane separation, in the present invention, scale failure due to membrane separation and concentration can be prevented by the previous scale-inhibiting treatment.

膜分離装置6としては、特に制限はないが、例えばマイクロフィルタ膜とRO膜の2段階処理装置や、RO膜分離装置等を用いることができる。   Although there is no restriction | limiting in particular as the membrane separator 6, For example, the two-stage processing apparatus of a micro filter membrane and RO membrane, RO membrane separator, etc. can be used.

なお、本発明において、亜硝酸型硝化を行うためにアンモニア酸化細菌を優性にするための条件としては特に制限はなく、先願のように硝化槽内の無機炭素濃度を50mg−C/L以上に維持する方法や、特開2004−298841号公報のように、硝化槽内の残留アンモニア性窒素濃度を50mg−N/L以上に調節する方法(アンモニア性窒素の阻害作用を利用する方法)、その他、阻害剤を注入する方法、設定温度による菌体の増殖速度の違いを利用した方法、溶存酸素(DO)濃度を調節する方法などを採用することができる。   In the present invention, the conditions for making ammonia oxidizing bacteria dominant for performing nitrite type nitrification are not particularly limited, and the inorganic carbon concentration in the nitrification tank is 50 mg-C / L or more as in the prior application. Or a method of adjusting the residual ammonia nitrogen concentration in the nitrification tank to 50 mg-N / L or more (method using the inhibitory action of ammonia nitrogen), as disclosed in JP-A-2004-298841, In addition, a method of injecting an inhibitor, a method using a difference in the growth rate of bacterial cells depending on a set temperature, a method of adjusting a dissolved oxygen (DO) concentration, and the like can be employed.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
図1(a)に示す装置に、Caイオン45mg/L、K−N(ケルダール窒素)100mg/Lの排水を原水として、1000L/dの流量で通水して処理を行った。なお、対象排水での運転は、各工程の装置を立ち上げてから、処理能力が定常状態となった時点で開始した。各工程の運転条件は以下の通りである。
スケール防止剤添加手段:ポリアクリル酸ナトリウムを300mg/L添加
硝化槽:容積 100L
pH 7.5
温度 30℃
担体として3mm角スポンジを30容量%添加
pH調整剤 炭酸ナトリウム
槽内無機炭酸濃度(設定値) 60mg/L
膜分離装置:RO膜 日東電工社製「NTR759 HR−S2」
(前処理:二層濾過(LV=1m/h)、スライムコントロール剤添加)
RO膜入口圧 1.3MPa
RO膜出口圧 1.25MPa
循環水量 6L/min
設定透過水量 0.7L/min
設定濃縮水量 0.3L/min
RO給水pH 6.0
このときの硝化槽内のスポンジ担体の無機汚泥含有率と、硝化槽の処理水の水質と膜分離装置のRO膜フラックス(透過流束)低下率の経時変化を調べ、結果を表1に示した。
Example 1
Treatment was performed by passing water at a flow rate of 1000 L / d through the apparatus shown in FIG. 1A using Ca ion 45 mg / L and KN (Kjeldahl nitrogen) 100 mg / L wastewater as raw water. In addition, the operation with the target wastewater was started when the processing capacity became a steady state after the apparatus of each process was started up. The operating conditions of each process are as follows.
Scale inhibitor addition means: 300 mg / L of sodium polyacrylate added Nitrification tank: Volume 100 L
pH 7.5
Temperature 30 ° C
Add 30 volume% of 3mm square sponge as carrier
pH adjuster Sodium carbonate
Inorganic carbonate concentration in tank (set value) 60mg / L
Membrane separator: RO membrane “NTR759 HR-S2” manufactured by Nitto Denko Corporation
(Pretreatment: Two-layer filtration (LV = 1 m / h), addition of slime control agent)
RO membrane inlet pressure 1.3 MPa
RO membrane outlet pressure 1.25MPa
Circulating water volume 6L / min
Set permeate flow rate 0.7L / min
Set amount of concentrated water 0.3L / min
RO water supply pH 6.0
At this time, the inorganic sludge content of the sponge carrier in the nitrification tank, the quality of the treated water in the nitrification tank, and the RO membrane flux (permeation flux) decrease rate of the membrane separator were examined over time, and the results are shown in Table 1. It was.

Figure 0004765308
Figure 0004765308

表1より明らかなように、硝化槽におけるスポンジ担体中の無機汚泥の比率は上昇せず、硝化処理を10日間安定に継続して実施することができた。また、RO膜分離装置では運転開始から3日目でも運転開始時と比較して5%以下のフラックスの低下しか観測されず、運転開始から10日目でも運転開始時の5%以下のフラックス低下で継続して処理することができていた。   As is apparent from Table 1, the ratio of inorganic sludge in the sponge carrier in the nitrification tank did not increase, and the nitrification treatment could be carried out stably for 10 days. Moreover, in the RO membrane separator, only a decrease in flux of 5% or less was observed even on the third day from the start of operation compared to the start of operation, and a flux decrease of 5% or less at the start of operation even on the tenth day from the start of operation. Was able to be processed continuously.

比較例1
実施例1において、スケール防止剤の添加を行わなかったこと以外は同様にして処理を行い、硝化槽内のスポンジ担体の無機汚泥含有率と、硝化槽の処理水の水質と膜分離装置のRO膜フラックス(透過流束)低下率の経時変化を調べ、結果を表2に示した。
Comparative Example 1
In Example 1, the treatment was performed in the same manner except that the scale inhibitor was not added, the content of inorganic sludge in the sponge carrier in the nitrification tank, the quality of the treated water in the nitrification tank, and the RO of the membrane separation device. The time course of the decrease rate of the membrane flux (permeation flux) was examined, and the results are shown in Table 2.

Figure 0004765308
Figure 0004765308

表2からも明らかなように、本比較例では、硝化槽において、運転開始から3日目でスポンジ担体中の無機汚泥の比率が高くなったため、担体の比重が大きくなって槽内に沈殿するようになった。このため、スポンジ担体に付着した菌体に酸素が十分に供給できなくなり、硝化処理能力が低下した。また、RO膜分離装置においても、運転開始後から膜面にスケールが徐々に付着し、運転開始から3日目にはフラックスが40%低下した。   As is apparent from Table 2, in this comparative example, in the nitrification tank, the ratio of inorganic sludge in the sponge carrier was increased on the third day from the start of operation, so that the specific gravity of the carrier increased and settled in the tank. It became so. For this reason, oxygen could not be sufficiently supplied to the bacterial cells adhering to the sponge carrier, and the nitrification treatment ability was lowered. In the RO membrane separator, scale gradually adhered to the membrane surface after the start of operation, and the flux decreased by 40% on the third day from the start of operation.

本発明の窒素化合物及び無機イオン含有排水の処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing apparatus of the nitrogen compound and inorganic ion containing waste_water | drain of this invention.

1 硝化槽
2 スケール防止剤添加手段
3 無機イオン除去手段
4 pH調整手段
5 担体
6 膜分離装置
DESCRIPTION OF SYMBOLS 1 Nitrification tank 2 Scale inhibitor addition means 3 Inorganic ion removal means 4 pH adjustment means 5 Carrier 6 Membrane separation device

Claims (4)

窒素化合物及び無機イオンを含有する排水を好気的に生物処理して該窒素化合物を亜硝酸性窒素に酸化して亜硝酸型硝化を行う硝化槽と、
該無機イオンのスケール化を抑制するためのスケール防止手段と、
前記硝化槽内のpHを中性ないしアルカリ性に維持するためのpH調整剤添加手段と
前記硝化槽の流出液を膜分離処理する膜分離装置と
を備えた窒素化合物及び無機イオン含有排水の処理装置であって、
前記スケール防止手段が、
前記排水中の無機イオンを除去する手段
或いは、
スケール防止剤を前記硝化槽及び/又は前記排水に添加する手段
であることを特徴とする窒素化合物及び無機イオン含有排水の処理装置。
A nitrification tank that aerobically biotreats wastewater containing nitrogen compounds and inorganic ions to oxidize the nitrogen compounds to nitrite nitrogen and perform nitrite type nitrification ;
Scale preventing means for suppressing scaling of the inorganic ions;
A pH adjuster addition means for maintaining the pH in the nitrification tank neutral or alkaline ;
A treatment apparatus for wastewater containing nitrogen compounds and inorganic ions, comprising a membrane separation device for membrane separation treatment of the effluent of the nitrification tank ,
The scale preventing means is
Means for removing inorganic ions in the waste water
Or
Means for adding a scale inhibitor to the nitrification tank and / or the waste water
An apparatus for treating wastewater containing nitrogen compounds and inorganic ions,
請求項1において、前記pH調整剤添加手段は、炭酸塩及び/又は重炭酸塩を前記硝化槽及び/又は前記排水に添加する手段であることを特徴とする窒素化合物及び無機イオン含有排水の処理装置。   In Claim 1, the said pH adjuster addition means is a means to add carbonate and / or bicarbonate to the said nitrification tank and / or the said waste_water | drain, The treatment of the nitrogen compound and inorganic ion containing waste_water | drain characterized by the above-mentioned apparatus. 請求項1又は2において、前記硝化槽内に生物担体が存在することを特徴とする窒素化合物及び無機イオン含有排水の処理装置。 The apparatus for treating wastewater containing nitrogen compounds and inorganic ions according to claim 1 or 2 , wherein a biological carrier is present in the nitrification tank. 窒素化合物及び無機イオンを含有する排水を好気的に生物処理して該窒素化合物を亜硝酸性窒素に酸化して亜硝酸型硝化を行う硝化工程と、
該無機イオンのスケール化を抑制するためのスケール防止工程と、
前記硝化工程におけるpHを中性ないしアルカリ性に維持するためのpH調整工程と
前記硝化工程の処理液を膜分離処理する膜分離工程と
を備えた窒素化合物及び無機イオン含有排水の処理方法であって、
前記スケール防止工程が、
前記排水中の無機イオンを除去する工程
或いは、
スケール防止剤を前記硝化工程の水及び/又は前記排水に添加する工程
であることを特徴とする窒素化合物及び無機イオン含有排水の処理方法。
A nitrification step for aerobically biologically treating wastewater containing nitrogen compounds and inorganic ions to oxidize the nitrogen compounds to nitrite nitrogen and performing nitrite type nitrification ;
A scale prevention step for suppressing scaling of the inorganic ions;
A pH adjustment step for maintaining the pH in the nitrification step neutral or alkaline ;
A membrane separation step of membrane separation treatment of the treatment liquid of the nitrification step, and a treatment method of waste water containing nitrogen compounds and inorganic ions,
The scale prevention step includes
Removing inorganic ions in the waste water
Or
A step of adding a scale inhibitor to the water of the nitrification step and / or the waste water
A method for treating wastewater containing nitrogen compounds and inorganic ions, wherein
JP2004361646A 2004-12-14 2004-12-14 Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method Expired - Fee Related JP4765308B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004361646A JP4765308B2 (en) 2004-12-14 2004-12-14 Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method
TW94143032A TWI449674B (en) 2004-12-14 2005-12-06 Drainage treatment device and treatment method
CN2005100034437A CN1792869B (en) 2004-12-14 2005-12-14 Waste water treating device and method
CN201010623270XA CN102107996A (en) 2004-12-14 2005-12-14 Apparatus and method for treating waste water
CN201210254527.8A CN102826708B (en) 2004-12-14 2005-12-14 Apparatus for treating waste water and treating method
KR20050123157A KR101201058B1 (en) 2004-12-14 2005-12-14 Apparatus for treating waste water
KR1020120039045A KR101299352B1 (en) 2004-12-14 2012-04-16 Apparatus for treating waste water
KR1020130015701A KR101352247B1 (en) 2004-12-14 2013-02-14 Apparatus for treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361646A JP4765308B2 (en) 2004-12-14 2004-12-14 Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method

Publications (2)

Publication Number Publication Date
JP2006167549A JP2006167549A (en) 2006-06-29
JP4765308B2 true JP4765308B2 (en) 2011-09-07

Family

ID=36668851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361646A Expired - Fee Related JP4765308B2 (en) 2004-12-14 2004-12-14 Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method

Country Status (2)

Country Link
JP (1) JP4765308B2 (en)
CN (1) CN1792869B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865211B2 (en) * 2004-12-15 2012-02-01 オルガノ株式会社 Waste water treatment apparatus and biological treatment method of waste water
US8980101B2 (en) * 2008-09-04 2015-03-17 Nalco Company Method for inhibiting scale formation and deposition in membrane systems via the use of an AA-AMPS copolymer
CN103373783B (en) * 2012-04-17 2015-07-22 上海晶宇环境工程有限公司 Zero discharging process for nitrogenous wastewater generated by photovoltaic industry and dedicated system of zero discharging process
CN104086048B (en) * 2014-07-24 2016-07-06 江苏贝斯特水处理科技有限公司 A kind of steel industry nitrogenous effluent treatment method
CN105668848B (en) * 2016-01-19 2018-11-23 青岛大学 A kind of synchronous decoloration of printing waste water and nitrogen recovery method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3870445B2 (en) * 1996-05-31 2007-01-17 栗田工業株式会社 Biological treatment equipment
JP4101348B2 (en) * 1998-03-24 2008-06-18 オルガノ株式会社 Biological nitrogen removal method
JP2001037467A (en) * 1999-07-27 2001-02-13 Meidensha Corp Method and arrangement for treating wastewater containing both ammonia and phosphorus
JP2001276851A (en) * 2000-03-29 2001-10-09 Japan Organo Co Ltd Drain treatment equipment
JP4685224B2 (en) * 2000-09-12 2011-05-18 オルガノ株式会社 Waste water treatment method and waste water treatment equipment
JP2002292399A (en) * 2001-03-30 2002-10-08 Sumitomo Heavy Ind Ltd Organic wastewater disposal equipment
JP4320515B2 (en) * 2001-07-26 2009-08-26 栗田工業株式会社 Method for treating raw water containing phosphorus and ammonia nitrogen
JP4104845B2 (en) * 2001-10-26 2008-06-18 株式会社荏原製作所 Method and apparatus for treatment of water containing phosphorus / ammonia

Also Published As

Publication number Publication date
JP2006167549A (en) 2006-06-29
CN1792869A (en) 2006-06-28
CN1792869B (en) 2011-02-23

Similar Documents

Publication Publication Date Title
KR101352247B1 (en) Apparatus for treating waste water
JP4632356B2 (en) Biological nitrogen removal method and system
JP5194783B2 (en) Biological treatment method and apparatus for water containing organic matter
US8323487B2 (en) Waste water treatment apparatus
JP2011189249A (en) Biological nitrogen treatment method for ammonia-containing waste water
JP2007152236A (en) Ammonia-containing wastewater treatment method
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
JP4703370B2 (en) Nitrogen-containing wastewater treatment method
JP2011173040A (en) Waste water treatment method and apparatus
JP5702221B2 (en) Method and apparatus for treating wastewater containing ethanolamine and hydrazine
JP2001276851A (en) Drain treatment equipment
JP4834993B2 (en) Waste water treatment apparatus and treatment method
JP4765308B2 (en) Nitrogen compound and inorganic ion-containing wastewater treatment apparatus and treatment method
JP3202510B2 (en) Equipment for treating wastewater containing nitrogen and fluorine
KR100969220B1 (en) A advanced waste-water treatment system comprising a internal filtering screen device
JPS6117559B2 (en)
JP2011212585A (en) Method and apparatus for treating organic matter-containing wastewater
TWI411584B (en) Method and apparatus for biologically treating organic matter-containing water
JP4604708B2 (en) (Sub-) Nitrate nitrogen and polyvalent inorganic ion-containing wastewater treatment equipment
JP2003126888A (en) Method and device for treating wastewater containing nitrogen and phosphorus
JP2006088057A (en) Method for treating ammonia-containing water
KR100416693B1 (en) Method for removing nutrients of domestic sewage using 2 step aeration and an apparatus used therefor
KR100748596B1 (en) Waste water treatment apparatus using high concentrated organic compound comprising waste water and waste water treatment method using the apparatus
JP2001276890A (en) Drain treating device
JPH0929282A (en) Method for biological denitrification of wastewater, and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Ref document number: 4765308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees