JP2021133298A - Treatment method of ammoniac nitrogen-containing waste water and treatment apparatus - Google Patents

Treatment method of ammoniac nitrogen-containing waste water and treatment apparatus Download PDF

Info

Publication number
JP2021133298A
JP2021133298A JP2020030971A JP2020030971A JP2021133298A JP 2021133298 A JP2021133298 A JP 2021133298A JP 2020030971 A JP2020030971 A JP 2020030971A JP 2020030971 A JP2020030971 A JP 2020030971A JP 2021133298 A JP2021133298 A JP 2021133298A
Authority
JP
Japan
Prior art keywords
nitrite
tank
nitrogen
treatment
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020030971A
Other languages
Japanese (ja)
Other versions
JP7332501B6 (en
JP7332501B2 (en
Inventor
惇太 高橋
Atsuta Takahashi
惇太 高橋
甬生 葛
Yosei Katsu
甬生 葛
隆司 西村
Takashi Nishimura
隆司 西村
勝子 楠本
Katsuko Kusumoto
勝子 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2020030971A priority Critical patent/JP7332501B6/en
Publication of JP2021133298A publication Critical patent/JP2021133298A/en
Application granted granted Critical
Publication of JP7332501B2 publication Critical patent/JP7332501B2/en
Publication of JP7332501B6 publication Critical patent/JP7332501B6/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

To provide a treatment method of ammoniac nitrogen-containing waste water capable of stably performing nitrite treatment and hydrophobic ammonia oxidation treatment while suppressing generation of scale, and a treatment apparatus.SOLUTION: In a treatment method of ammoniac nitrogen-containing waste water, a treatment step of ammoniac nitrogen-containing waste water comprises: a calcium removing step for removing calcium in the ammoniac nitrogen-containing waste water containing calcium; a nitrite step for nitrite treating part of ammoniac nitrogen in the ammoniac nitrogen-containing waste water after the calcium removing step to nitrite nitrogen; and a nitrification step including an anaerobic ammonia oxidation step for anaerobic ammonia oxidation treating the treated water of the nitrite treatment using anaerobic ammonia oxidation bacteria. Carbonate for removing calcium and carbonate for refilling inorganic carbon necessary in the nitrite step are added in the calcium removing step.SELECTED DRAWING: Figure 1

Description

本発明は、アンモニア性窒素含有排水の処理方法及び処理装置に関する。 The present invention relates to a method and an apparatus for treating ammoniacal nitrogen-containing wastewater.

浸出水は、NH4−Nが高く、BOD等の有機物濃度が低いことが知られている。このような浸出水の窒素除去方式としては、一般的に生物学的硝化脱窒法がよく用いられる。生物学的硝化脱窒法は、通常、硝化プロセス及び脱窒プロセスより構成される。硝化プロセスでは、原水中のアンモニア性窒素を好気状態の反応槽、通称硝化槽において先ずアンモニア酸化菌により亜硝酸性窒素に酸化し、続いて亜硝酸酸化菌により亜硝酸性窒素を硝酸性窒素に酸化する。硝化プロセス後段の脱窒プロセスではこの硝化槽からの処理液(硝化液)を嫌気状態の反応槽、通称脱窒槽に導入して、硝化液中の硝酸性窒素及び亜硝酸性窒素を従属栄養性の脱窒菌により、無害の窒素ガスに還元される。この脱窒反応における電子供与体は、通常処理対象液中の有機物が利用される。有機物の少ない場合、外部からメタノールを電子供与体として添加する必要がある。 It is known that leachate has a high NH 4- N and a low concentration of organic substances such as BOD. As a nitrogen removal method for such leachate, a biological nitrification denitrification method is generally often used. Biological nitrification denitrification methods usually consist of a nitrification process and a denitrification process. In the nitrification process, ammonia nitrogen in raw water is first oxidized to nitrite nitrogen by ammonia-oxidizing bacteria in an aerobic reaction tank, commonly known as nitrification tank, and then nitrite nitrogen is converted to nitrate nitrogen by nitrite-oxidizing bacteria. Oxidizes in. In the denitrification process after the nitrification process, the treatment liquid (nitrification liquid) from this nitrification tank is introduced into an anaerobic reaction tank, commonly known as a denitrification tank, to make nitrate nitrogen and nitrite nitrogen in the nitrification liquid dependent nutrients. It is reduced to harmless nitrogen gas by the denitrifying bacteria. As the electron donor in this denitrification reaction, an organic substance in the liquid to be treated is usually used. When the amount of organic matter is small, it is necessary to add methanol as an electron donor from the outside.

この生物学的硝化脱窒処理では、流入原水中のアンモニア性窒素を硝化槽に対し、亜硝酸性窒素を経て最終的に硝酸性窒素に酸化する。このため、硝化槽にアンモニア性窒素酸化に必要な酸素を供給する必要がある。酸素必要量は原水アンモニア性窒素の4.57倍と高く、その供給動力が無視できない。また、脱窒槽では、硝酸性窒素が電子受容体となる従属脱窒反応において、電子供与体となる有機物が必要となる。原水中に有機物が少ない場合、脱窒に必要な電子供与体となるメタノールを添加することが必要となる。安定した脱窒性能を得るため、メタノール添加量は通常、脱窒槽に流入する硝酸性窒素量の2.5〜3倍程度必要となる。このように硝化プロセスの曝気動力及び脱窒プロセスのメタノール添加量は莫大であり、ランニングコストが高い。これらの低減が硝化脱窒プロセスを普及させるために解決しなければいけない大きな課題となっている。 In this biological nitrification denitrification treatment, ammoniacal nitrogen in the inflow raw water is finally oxidized to nitrate nitrogen through the nitrite nitrogen in the nitrification tank. Therefore, it is necessary to supply oxygen necessary for ammoniacal nitrogen oxidation to the nitrification tank. The oxygen requirement is 4.57 times higher than that of raw water ammoniacal nitrogen, and its supply power cannot be ignored. Further, in the denitrification tank, an organic substance as an electron donor is required in the dependent denitrification reaction in which nitrate nitrogen becomes an electron acceptor. When the raw water is low in organic matter, it is necessary to add methanol, which is an electron donor required for denitrification. In order to obtain stable denitrification performance, the amount of methanol added is usually about 2.5 to 3 times the amount of nitrate nitrogen flowing into the denitrification tank. As described above, the aeration power of the nitrification process and the amount of methanol added in the denitrification process are enormous, and the running cost is high. These reductions are major issues that must be resolved in order to popularize the nitrification denitrification process.

近年、上記従属栄養脱窒菌による従来の脱窒機構と全く異なる独立栄養脱窒菌による脱窒処理法が開示されている。これはアンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性微生物を利用し、アンモニア性窒素と亜硝酸性窒素を嫌気状態において反応させて窒素ガスに変換する嫌気性アンモニア酸化処理法(Anaerobic Ammonium Oxidation Process)、所謂ANAMMOX反応による窒素除去方法である。 In recent years, a denitrification treatment method using an autotrophic denitrifying bacterium, which is completely different from the conventional denitrification mechanism by the heterotrophic denitrifying bacterium, has been disclosed. It uses an autotrophic microorganism that uses ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, and reacts ammoniacal nitrogen and nitrite nitrogen in an anaerobic state to convert them into nitrogen gas. This is a method for removing nitrogen by a so-called ANAMMOX reaction, which is an anammonia oxidation process.

下記式(1)は嫌気性アンモニア酸化の反応式を示す。式(1)に示すように、アンモニア性窒素と亜硝酸性窒素が直接反応するため、メタノール等の有機物添加が不要であり、薬品代が大きく低下する。また、脱窒反応ではNH4−Nが1モルに対し、NO2−Nが1.32モルの比率で反応するため、処理対象原水中アンモニア性窒素を従来の硝化プロセスのように全部亜硝酸性及び硝酸性窒素に酸化する必要が無く、その一部を亜硝酸性窒素に酸化すればよいこととなる。嫌気性アンモニア酸化反応から、原水NH4−Nの57%を亜硝酸性窒素に酸化すれば、アンモニア脱窒原水のNO2−N/NH4−N比が1.32となり、式(1)に示すような反応が得られ、処理水のNH4−N及びNO2−Nをともに除去することが可能である。
1NH4 ++1.32NO2 -+0.066HCO3 -+0.13H+
→1.02N2+0.26NO3 -+0.066CH20.50.15+2.03H2O (1)
The following formula (1) shows the reaction formula of anaerobic ammonia oxidation. As shown in the formula (1), since the ammoniacal nitrogen and the nitrite nitrogen react directly with each other, it is not necessary to add an organic substance such as methanol, and the chemical cost is greatly reduced. In the denitrification reaction, NH 4- N reacts at a ratio of 1 mol to NO 2- N at a ratio of 1.32 mol. Therefore, all the ammoniacal nitrogen in the raw water to be treated is nitrite as in the conventional nitrification process. It is not necessary to oxidize to sex and nitrate nitrogen, and a part of it may be oxidized to nitrite nitrogen. If 57% of the raw water NH 4- N is oxidized to nitrite nitrogen from the anammoxic ammonia oxidation reaction, the NO 2- N / NH 4- N ratio of the ammonia denitrified raw water becomes 1.32, and the formula (1) The reaction shown in is obtained, and both NH 4- N and NO 2- N of the treated water can be removed.
1NH 4 + + 1.32NO 2 - + 0.066HCO 3 - + 0.13H +
→ 1.02N 2 + 0.26NO 3 - + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O (1)

上記のような嫌気性アンモニア酸化を用いた脱窒処理のためには、先ず流入原水中のアンモニア性窒素の一部を硝化プロセスにおいて亜硝酸性窒素に酸化する必要がある。この際、嫌気性アンモニア酸化反応で高率な脱窒性能を得るために、原水NH4−Nの57%をNO2−Nにし、43%のNH4−Nを残留させておくことが望まれる。その結果、亜硝酸化処理水のNO2−N/NH4−N比が1.32となり、式(1)に示す嫌気性アンモニア酸化反応に必要なNO2−N/NH4−N比に一致する。 For the denitrification treatment using anaerobic ammonia oxidation as described above, it is first necessary to oxidize a part of ammonia nitrogen in the inflow raw water to nitrite nitrogen in the nitrification process. At this time, in order to obtain a high rate of denitrification performance in the anaerobic ammonia oxidation reaction, it is desirable to change 57% of the raw water NH 4- N to NO 2- N and leave 43% NH 4-N. Is done. As a result, nitrous acid treatment water NO 2 -N / NH 4 -N ratio 1.32, and the in NO 2 -N / NH 4 -N ratio required anaerobic ammonium oxidation shown in equation (1) Match.

また、一般的に、硝化プロセスは、以下の式(2)、(3)に示すように、原水中のNH4−Nが、好気条件において、アンモニア酸化反応及び亜硝酸化反応を経て、最終的には硝酸性窒素(NO3−N)となる。両者の反応はほぼ同時に起こるので、アンモニア酸化のみを進行させることは通常困難とされており、前述のように必要なNO2−N/NH4−N比に一致するよう硝化量を制御することに加え、硝化反応自体が亜硝酸性窒素で止まるような制御上の工夫が必要になる。
NH4 ++1.5O2 →NO2 -+H2O+2H+ (2)
NO2 -+0.5O2→NO3 - (3)
In general, in the nitrification process, as shown in the following formulas (2) and (3), NH 4- N in raw water undergoes an ammonia oxidation reaction and a nitrite reaction under aerobic conditions. Eventually it becomes nitrate nitrogen (NO 3- N). Since both reactions occur almost at the same time, it is usually difficult to proceed only with ammonia oxidation, and the amount of nitrification should be controlled so as to match the required NO 2- N / NH 4-N ratio as described above. In addition, it is necessary to devise a control so that the nitrification reaction itself stops at nitrite nitrogen.
NH 4 + + 1.5O 2 → NO 2 - + H 2 O + 2H + (2)
NO 2 - + 0.5O 2 → NO 3 - (3)

近年、埋立処分場に埋め立てられる廃棄物の焼却灰や焼却残渣の比率が高くなっている。これに伴い、浸出水中のカルシウム濃度(Ca濃度)が増加している。Ca濃度が高いと、浸出水中の炭酸イオン(CO3 2-)との反応により不溶性のCaCO3が析出する。水処理施設では、この不溶性CaCO3析出により、処理水配管の閉塞や散気装置の目詰まり等を引起し、装置トラブルの大きな要因となる。 In recent years, the ratio of incineration ash and incineration residue of wastes landfilled in landfills has increased. Along with this, the calcium concentration (Ca concentration) in the leachate water is increasing. When the Ca concentration is high, insoluble CaCO 3 is precipitated by the reaction with carbonate ions (CO 3 2-) in the leachate. In water treatment facilities, this insoluble CaCO 3 precipitation causes clogging of treated water pipes and clogging of air diffusers, which is a major cause of equipment troubles.

これに対応するため、Ca濃度の高い浸出水に対し、一般的に予めCaを除去する軟化処理装置を設けている。Ca除去の軟化処理方法は一般的に被処理水に炭酸ナトリウム(Na2CO3)を添加し、アルカリ添加により、pHを約10以上に高くすることで被処理水中のCaイオンを不溶性のCaCO3汚泥として除去するものである。この軟化処理においてNa2CO3の添加量は、理論的には被処理液Ca濃度に対し、2.65倍のNa2CO3が必要となる。一般的に処理水Ca濃度が100mg/L以下となれば、Caスケール析出が抑制されるので、軟化処理の処理水Ca濃度目標値を100mg/L以下とすることが多い。 In order to deal with this, a softening treatment device for removing Ca in advance is generally provided for leachate having a high Ca concentration. Generally, the softening treatment method for removing Ca is to add sodium carbonate (Na 2 CO 3 ) to the water to be treated and raise the pH to about 10 or more by adding alkali to make Ca ions in the water to be treated insoluble CaCO. 3 It is removed as sludge. Amount of Na 2 CO 3 in the softening process is theoretically to-be-treated liquid Ca concentration, it is necessary to 2.65 times the Na 2 CO 3. Generally, when the Ca concentration of the treated water is 100 mg / L or less, Ca scale precipitation is suppressed, so that the target value of the Ca concentration of the treated water for the softening treatment is often set to 100 mg / L or less.

例えば、特許第4703370号公報には、窒素およびカルシウムを含有する排水を、排水中のカルシウム濃度を100mg/L以下まで低減させ、アンモニア酸化工程においてpH調整のために炭酸イオンもしくは炭酸水素イオンを供給し、後段の嫌気槽にてANAMMOX反応により脱窒を行う窒素含有排水の処理方法が記載されている。 For example, in Japanese Patent No. 4703370, wastewater containing nitrogen and calcium is reduced to 100 mg / L or less in calcium concentration in the wastewater, and carbonate ion or hydrogen carbonate ion is supplied for pH adjustment in the ammonia oxidation step. However, a method for treating nitrogen-containing wastewater, which is denitrified by the ANAMMOX reaction in the anammox tank in the subsequent stage, is described.

また、特許第5727291号公報には、廃水中のカルシウム濃度、M−アルカリ濃度、及びアンモニア性窒素濃度を測定し、所定の演算式に基づいて炭酸ナトリウムの添加量を算出し、算出された添加量の炭酸ナトリウムを廃水に添加して軟化処理水を得た後、この軟化処理水を嫌気性アンモニア酸化処理法により処理する方法が記載されている。 Further, in Japanese Patent No. 5727291, the calcium concentration, the M-alkali concentration, and the ammoniacal nitrogen concentration in the waste water are measured, the amount of sodium carbonate added is calculated based on a predetermined formula, and the calculated addition amount is calculated. A method is described in which an amount of sodium carbonate is added to waste water to obtain softened treated water, and then the softened treated water is treated by an anaerobic ammonia oxidation treatment method.

特許第4703370号公報Japanese Patent No. 4703370 特許第5727291号公報Japanese Patent No. 5727291

特許文献1に記載された発明では、窒素及びカルシウムを含有する排水中のカルシウム濃度を100m/L以下まで低減させた後に、アンモニア酸化工程において、pH調整のために炭酸イオンもしくは炭酸水素イオンを供給することが記載されている。しかしながら、pH調整を目的として炭酸イオンもしくは炭酸水素イオンを使用する場合、pH調整に必要な添加量が多くなり必ずしも効率の良い処理であるとはいえない。また、原水の水質が急激に変化した場合に、排水中のカルシウム濃度を低減しきれず、後段の部分亜硝酸化工程及びアンモニア酸化工程が不安定になる場合がある。 In the invention described in Patent Document 1, after reducing the calcium concentration in wastewater containing nitrogen and calcium to 100 m / L or less, carbonate ion or hydrogen carbonate ion is supplied for pH adjustment in the ammonia oxidation step. It is stated that it should be done. However, when carbonate ion or hydrogen carbonate ion is used for the purpose of pH adjustment, the amount of addition required for pH adjustment increases, and it cannot be said that the treatment is always efficient. In addition, when the quality of raw water changes abruptly, the calcium concentration in the wastewater cannot be completely reduced, and the subsequent partial nitrite step and ammonia oxidation step may become unstable.

特許文献2に記載された発明では、廃水中のカルシウム濃度、M−アルカリ度及びアンモニア性窒素濃度に基づいて、理論上最適となる炭酸ナトリウムの添加量を算出し、廃水中のカルシウム濃度を低減させた後に、亜硝酸化、脱窒処理によりアンモニア脱窒処理水を得ている。しかしながら、廃水が急激に変動した場合には、炭酸ナトリウムの添加量の制御が適切に行えない場合もある。その結果、高濃度カルシウム含有排液が亜硝酸化工程、脱窒処理工程に流れ込み、亜硝酸化及びアンモニア酸化処理の安定性を損ない、後段の処理槽にスケールが発生する原因にもなり得る。 In the invention described in Patent Document 2, the theoretically optimum amount of sodium carbonate added is calculated based on the calcium concentration, M-alkalinity and ammoniacal nitrogen concentration in the waste water, and the calcium concentration in the waste water is reduced. After that, ammonia denitrification treated water is obtained by nitrification and denitrification treatment. However, when the wastewater fluctuates abruptly, the amount of sodium carbonate added may not be properly controlled. As a result, the high-concentration calcium-containing effluent flows into the nitrite step and the denitrification step, impairs the stability of the nitrite and ammonia oxidation treatment, and may cause scale to be generated in the subsequent treatment tank.

上記課題を鑑み、本発明は、スケールの発生を抑制しながら、亜硝酸化処理及び嫌気性アンモニア酸化処理をより安定して行うことが可能なアンモニア性窒素含有排水の処理方法及び処理装置を提供する。 In view of the above problems, the present invention provides a method and a treatment apparatus for ammonia nitrogen-containing wastewater capable of more stably performing nitrite treatment and anaerobic ammonia oxidation treatment while suppressing the generation of scale. do.

上記課題を解決するために本発明者らが鋭意検討した結果、アンモニア性窒素含有排水に含まれるカルシウムを除去するカルシウム除去工程において、カルシウムを除去するための炭酸塩を添加するだけでなく、その後の硝化工程で必要な無機体炭素を補充するための炭酸塩をカルシウム除去工程で添加することが有効であるとの知見を得た。 As a result of diligent studies by the present inventors in order to solve the above problems, in the calcium removal step of removing calcium contained in ammonia nitrogen-containing wastewater, not only the carbonate for removing calcium is added but also thereafter. It was found that it is effective to add a carbonate for supplementing the inorganic carbon required in the nitrification step of the above in the calcium removal step.

以上の知見を基礎として完成した本発明の実施の形態は一側面において、カルシウムを含有するアンモニア性窒素含有排水中のカルシウムを除去するカルシウム除去工程と、カルシウム除去工程後のアンモニア性窒素含有排水中のアンモニア性窒素の一部を亜硝酸性窒素へ亜硝酸化処理する亜硝酸化工程及び亜硝酸化処理の処理水を嫌気性アンモニア酸化菌を用いて嫌気性アンモニア酸化処理する嫌気性アンモニア酸化工程を含む硝化工程と、を含むアンモニア性窒素含有排水の処理工程において、カルシウムを除去するための炭酸塩と、硝化工程で必要な無機体炭素を補充するための炭酸塩とを、カルシウム除去工程で添加することを含むアンモニア性窒素含有排水の処理方法である。 One aspect of the embodiment of the present invention completed based on the above findings is a calcium removing step of removing calcium in the ammoniacal nitrogen-containing wastewater containing calcium and an ammoniacal nitrogen-containing wastewater after the calcium removal step. An anaerobic ammonia oxidation step in which a part of the ammonia nitrogen in the nitrite is nitrite-treated to nitrite nitrogen and the treated water in the nitrite treatment is anaerobic ammonia oxidation treatment using anaerobic ammonia-oxidizing bacteria. In the nitration step including, and in the treatment step of the ammoniacal nitrogen-containing wastewater containing, the carbonate for removing calcium and the carbonate for supplementing the inorganic carbon required in the nitration step are added in the calcium removal step. It is a method for treating ammoniacal nitrogen-containing wastewater including addition.

本発明の実施の形態に係るアンモニア性窒素含有排水の処理方法は一実施態様において、亜硝酸化工程において、亜硝酸化処理のpH調整剤として苛性ソーダを添加することを含む。 In one embodiment, the method for treating ammoniacal nitrogen-containing wastewater according to the embodiment of the present invention includes adding caustic soda as a pH adjuster for the nitrite treatment in the nitrite treatment step.

本発明の実施の形態に係るアンモニア性窒素含有排水の処理方法は別の一実施態様において、カルシウム除去工程が、アンモニア性窒素含有排水中のカルシウム濃度、アルカリ度、及びアンモニア性窒素濃度と、亜硝酸化工程における目標アンモニア性窒素濃度との関係に基づいて、亜硝酸化工程で必要な無機体炭素を補充するための炭酸塩を添加することを含む。 In another embodiment of the method for treating ammoniacal nitrogen-containing wastewater according to the embodiment of the present invention, the calcium removal step includes the calcium concentration, alkalinity, and ammoniacal nitrogen concentration in the ammoniacal nitrogen-containing wastewater. It involves the addition of carbonates to replenish the inorganic carbon required in the nitrite step, based on the relationship with the target ammoniacal nitrogen concentration in the nitrite step.

本発明の実施の形態に係るアンモニア性窒素含有排水の処理方法は更に別の一実施態様において、亜硝酸化処理が、アンモニア性窒素含有排水を処理する亜硝酸化槽内にアンモニア酸化菌を付着固定させた担体を流動させることを含む。 In still another embodiment of the method for treating ammoniacal nitrogen-containing wastewater according to the embodiment of the present invention, the nitrite treatment adheres ammonia-oxidizing bacteria to the nitrite tank for treating the ammoniacal nitrogen-containing wastewater. It involves flowing the immobilized carrier.

本発明の実施の形態に係るアンモニア性窒素含有排水の処理方法は更に別の一実施態様において、亜硝酸化処理が、アンモニア性窒素含有排水を処理する亜硝酸化槽内に浮遊汚泥を共存させることを更に含む。 In still another embodiment of the method for treating ammoniacal nitrogen-containing wastewater according to the embodiment of the present invention, the nitrite treatment causes floating sludge to coexist in the nitrite tank for treating the ammoniacal nitrogen-containing wastewater. Including that further.

本発明の実施の形態に係るアンモニア性窒素含有排水の処理方法は更に別の一実施態様において、亜硝酸化処理が、アンモニア性窒素含有排水を処理する亜硝酸化槽内を間欠曝気することを含む。 In still another embodiment of the method for treating ammoniacal nitrogen-containing wastewater according to the embodiment of the present invention, the nitrite treatment performs intermittent aeration in the nitrite tank for treating the ammoniacal nitrogen-containing wastewater. include.

本発明の実施の形態は別の一側面において、カルシウムを含有するアンモニア性窒素含有排水を軟化処理してカルシウムを除去する軟化処理槽と、軟化処理後のアンモニア性窒素含有排水に含まれるアンモニア性窒素の一部を亜硝酸性窒素へ亜硝酸化処理する亜硝酸化槽と、亜硝酸化処理の処理水を、嫌気性アンモニア酸化菌を用いて嫌気性アンモニア酸化処理する嫌気性アンモニア酸化槽と、アンモニア性窒素含有排水中のカルシウム濃度及びアルカリ度に基づいて、亜硝酸化処理及び嫌気性アンモニア酸化処理に必要な炭酸塩を、軟化処理槽に添加する炭酸塩添加手段とを備えるアンモニア性窒素含有排水の処理装置である。 In another aspect, the embodiment of the present invention is a softening treatment tank for softening calcium-containing ammoniacal nitrogen-containing wastewater to remove calcium, and an ammoniacality contained in the softened ammoniacal nitrogen-containing wastewater. An nitrite tank that nitrites a part of nitrogen to nitrite nitrogen, and an anaerobic ammonia oxidation tank that anaerobic ammonia oxidation treatment of the treated water for nitrite treatment using anaerobic ammonia-oxidizing bacteria. Ammonia-nitrogen provided with a carbonate-adding means for adding the carbonate necessary for the nitrite treatment and the anaerobic ammonia oxidation treatment to the softening treatment tank based on the calcium concentration and alkalinity in the ammoniacal nitrogen-containing wastewater. It is a treatment device for contained wastewater.

本発明によれば、スケールの発生を抑制しながら、亜硝酸化処理及び嫌気性アンモニア酸化処理をより安定して行うことが可能なアンモニア性窒素含有排水の処理方法及び処理装置が提供できる。 According to the present invention, it is possible to provide a method and a treatment apparatus for ammonia nitrogen-containing wastewater capable of more stably performing nitrite treatment and anaerobic ammonia oxidation treatment while suppressing the generation of scale.

第1の実施の形態に係るアンモニア性窒素含有排水の処理装置の一例を示す概略図である。It is a schematic diagram which shows an example of the treatment apparatus of the ammoniacal nitrogen-containing wastewater which concerns on 1st Embodiment. 第2の実施の形態に係るアンモニア性窒素含有排水の処理装置の一例を示す概略図である。It is a schematic diagram which shows an example of the treatment apparatus of the ammoniacal nitrogen-containing wastewater which concerns on 2nd Embodiment. 間欠曝気による運転時間比率と必要硝化量との関係を表すグラフである。It is a graph which shows the relationship between the operation time ratio by intermittent aeration and the required nitrification amount. 部分亜硝酸化槽を間欠曝気した場合と連続曝気した場合の亜硝酸化槽内のNO2−N/NH4−N比の経時変化を表すグラフである。It is a graph which shows the time-dependent change of the NO 2- N / NH 4- N ratio in the nitrite tank when the partial aeration tank is intermittently aerated and when it is continuously aerated. 部分亜硝酸化槽内のNO2−N/NOx−N比の経時変化を表すグラフである。It is a graph which shows the time-dependent change of the NO 2- N / NO x- N ratio in a partial nitrite tank. 本実施例に係る間接曝気を行った場合と比較例に係る連続曝気を行った場合の嫌気性アンモニア酸化槽から得られる処理水の窒素除去率を表すグラフである。It is a graph showing the nitrogen removal rate of the treated water obtained from the anaerobic ammonia oxidation tank when the indirect aeration according to the present example and the continuous aeration according to the comparative example are performed.

以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention specifies the structure, arrangement, etc. of components as follows. It's not something to do.

(第1の実施の形態)
図1に示すように、本発明の第1の実施の形態に係るアンモニア性窒素含有排水の処理装置は、軟化処理槽1、沈殿槽13、中継槽14、亜硝酸化槽2、沈殿槽3、嫌気性アンモニア酸化槽4、沈殿槽5、水質測定手段11、21、24、炭酸塩添加手段12、曝気・pH調整手段22、流量調整手段23及び制御手段100を備える。
(First Embodiment)
As shown in FIG. 1, the ammoniacal nitrogen-containing wastewater treatment apparatus according to the first embodiment of the present invention includes a softening treatment tank 1, a settling tank 13, a relay tank 14, a nitrite tank 2, and a settling tank 3. The anaerobic ammonia oxidation tank 4, the settling tank 5, the water quality measuring means 11, 21, 24, the carbonate adding means 12, the aeration / pH adjusting means 22, the flow rate adjusting means 23, and the controlling means 100 are provided.

原水としては、カルシウムを含有するアンモニア性窒素含有排水が用いられる。以下に限定されるものではないが、アンモニア性窒素含有排水は、例えばごみ埋め立て地の浸出水等の有機物、カルシウム、アンモニア性窒素を含む排水を用いることができる。典型的には、原水の有機物濃度は、BODとして0〜1,000mg/L、望ましくは0〜500mg/L、より望ましくは0〜300mg/Lである。 As the raw water, calcium-containing ammoniacal nitrogen-containing wastewater is used. Although not limited to the following, as the ammoniacal nitrogen-containing wastewater, for example, wastewater containing organic matter such as leachate from a landfill, calcium, and ammoniacal nitrogen can be used. Typically, the organic matter concentration of the raw water is 0 to 1,000 mg / L as BOD, preferably 0 to 500 mg / L, and more preferably 0 to 300 mg / L.

原水のカルシウム濃度は、100〜3,000mg/L、典型的には100〜2,000mg/L、より典型的には150〜1,800mg/Lである。原水のアンモニア性窒素濃度は、50〜2,000mg/L、望ましくは100〜1,000mg/L、より望ましくは200〜500mg/Lである。 The calcium concentration of the raw water is 100 to 3,000 mg / L, typically 100 to 2,000 mg / L, and more typically 150 to 1,800 mg / L. The ammoniacal nitrogen concentration of the raw water is 50 to 2,000 mg / L, preferably 100 to 1,000 mg / L, and more preferably 200 to 500 mg / L.

軟化処理槽1では、原水となるアンモニア性窒素含有排水中に含まれる硬度分であるカルシウム(Ca)を除去するカルシウム除去工程(軟化処理)が行われる。軟化処理槽1には、原水の水質を測定するための水質測定手段11及び軟化処理槽1に炭酸塩を添加するための炭酸塩添加手段12が接続されている。軟化処理槽1を配置することにより、軟化処理槽1の後段の処理装置のスケールの発生を抑制できる。 In the softening treatment tank 1, a calcium removing step (softening treatment) is performed to remove calcium (Ca) which is a hardness component contained in the ammoniacal nitrogen-containing wastewater which is the raw water. The softening treatment tank 1 is connected to a water quality measuring means 11 for measuring the quality of raw water and a carbonate adding means 12 for adding carbonate to the softening treatment tank 1. By arranging the softening treatment tank 1, it is possible to suppress the generation of scale of the treatment apparatus in the subsequent stage of the softening treatment tank 1.

カルシウム除去工程としては、Ca濃度を低くすることができる方法であれば特に制限はなく、例えば、凝集沈殿、凝集−膜分離、晶析、イオン交換、電気脱塩、電気泳動等が利用できる。本実施形態では、軟化処理槽1へ炭酸塩を添加し、凝集沈殿処理を行うことにより、原水からカルシウムを除去することが好ましい。炭酸塩としては、炭酸ナトリウム(Na2CO3)、炭酸水素ナトリウム(NaHCO3)等を利用できる。カルシウム除去工程では、原水中のCa濃度を100mg/L以下、望ましくは50mg/L以下、より望ましくは30mg/L以下に低減させることが好ましい。 The calcium removal step is not particularly limited as long as it is a method capable of lowering the Ca concentration, and for example, aggregation precipitation, aggregation-membrane separation, crystallization, ion exchange, electrosalting, electrophoresis and the like can be used. In the present embodiment, it is preferable to remove calcium from the raw water by adding a carbonate to the softening treatment tank 1 and performing a coagulation precipitation treatment. As the carbonate, sodium carbonate (Na 2 CO 3 ), sodium hydrogen carbonate (Na HCO 3 ) and the like can be used. In the calcium removal step, it is preferable to reduce the Ca concentration in the raw water to 100 mg / L or less, preferably 50 mg / L or less, and more preferably 30 mg / L or less.

カルシウム除去工程においては、カルシウムの除去処理に必要な炭酸塩と、硝化を考慮した炭酸塩の添加、即ち、亜硝酸化工程及び嫌気性アンモニア酸化工程で必要な無機体炭素を補充するための炭酸塩とを軟化処理槽1に添加する。このように、軟化処理槽1に対して、原水のカルシウム除去の目的だけでなく、硝化に必要な無機体炭素量を考慮に入れた炭酸塩を予め添加すること、即ち、無機体炭素を等量よりも多く添加することにより、反応pHを上昇させたり、炭酸イオン濃度を高く維持できたりするため、反応効率が高くなり、結果として処理水中のCa濃度を通常よりも低減でき、亜硝酸化槽2において従来行っていた無機体炭素の添加作業を省略することができる。また、原水中のカルシウム濃度が急激に増加した場合においても、軟化処理槽1には既に炭酸塩が過剰に添加されているため、安定してカルシウム濃度を低減させることができる。更に、軟化処理槽1に過剰に炭酸塩が添加されることで、軟化処理槽1の後段の配管、散気装置、担体等へのスケール付着を抑制することもできる。 In the calcium removal step, addition of a carbonate necessary for the calcium removal treatment and a carbonate in consideration of nitrification, that is, carbonic acid for supplementing the inorganic carbon required in the nitrite formation step and the anaerobic ammonia oxidation step. Salt and salt are added to the softening treatment tank 1. In this way, to the softening treatment tank 1, a carbonate is added in advance in consideration of not only the purpose of removing calcium from the raw water but also the amount of inorganic carbon required for nitrite, that is, the inorganic carbon is added. By adding more than the amount, the reaction pH can be raised and the carbonate ion concentration can be maintained high, so that the reaction efficiency becomes high, and as a result, the Ca concentration in the treated water can be reduced more than usual, and nitrite formation. The conventional work of adding inorganic carbon in the tank 2 can be omitted. Further, even when the calcium concentration in the raw water suddenly increases, the calcium concentration can be stably reduced because the carbonate is already excessively added to the softening treatment tank 1. Further, by adding an excessive amount of carbonate to the softening treatment tank 1, it is possible to suppress scale adhesion to the piping, the air diffuser, the carrier, etc. in the subsequent stage of the softening treatment tank 1.

−カルシウムを除去するための炭酸塩の添加量−
アンモニア性窒素含有排水からカルシウムを除去するために必要な炭酸塩の添加量の算出方法として、例えば炭酸塩としてNa2CO3を用いる場合を例に以下に説明する。
-Amount of carbonate added to remove calcium-
As a method for calculating the amount of carbonate added to remove calcium from ammoniacal nitrogen-containing wastewater, for example, the case where Na 2 CO 3 is used as the carbonate will be described below.

本実施形態では、カルシウム除去のためのNa2CO3添加量C0(mg/L)を、以下の式(4)により算出し、算出結果に基づいて、Na2CO3を原水に添加して炭酸カルシウムの凝集沈殿を行い、Ca濃度を制御する。
0=(Cin−Cout)×a−CALK-in/1.06 (4)
(ここで、Cin(mg/L):原水のCa濃度、Cout(mg/L):軟化処理水の目標Ca濃度、a:係数、CALK-in:原水のアルカリ度(mg−CaCO3/L)を示す。)
In the present embodiment, the amount of Na 2 CO 3 added for calcium removal C 0 (mg / L) is calculated by the following formula (4), and Na 2 CO 3 is added to the raw water based on the calculation result. Calcium carbonate is aggregated and precipitated to control the Ca concentration.
C 0 = (C in- C out ) x a-C ALK-in /1.06 (4)
(Here, C in (mg / L): Ca concentration of raw water, C out (mg / L): Target Ca concentration of softened treated water, a: Coefficient, CALK-in : Alkaliity of raw water (mg-CaCO) 3 / L) is shown.)

係数aは軟化処理のpHによって若干異なるが、本実施形態におけるカルシウム除去処理に好適なpHは9〜10であり、より好ましくは9.0〜9.5である。係数aはpH9.0〜10.0においては2.6〜2.9とすることができ、pH9.0〜9.5においては2.8〜2.9とすることができる。目標カルシウム濃度Coutは100mg/L以下、望ましくは50mg/L以下、より望ましくは30mg/L以下となるように適宜設定できる。制御手段100は、水質測定手段21による原水のCa濃度及びアルカリ度の測定結果に基づいて、原水からのカルシウム除去のために炭酸塩添加手段12が添加すべき炭酸塩の量を制御する。水質測定手段21による水質測定及び炭酸塩添加手段12による炭酸塩添加制御は連続的に行ってもよいし、所定の時間が経過するごとに行ってもよい。 The coefficient a is slightly different depending on the pH of the softening treatment, but the pH suitable for the calcium removal treatment in the present embodiment is 9 to 10, and more preferably 9.0 to 9.5. The coefficient a can be 2.6 to 2.9 at pH 9.0 to 10.0 and 2.8 to 2.9 at pH 9.0 to 9.5. The target calcium concentration C out can be appropriately set to be 100 mg / L or less, preferably 50 mg / L or less, and more preferably 30 mg / L or less. The control means 100 controls the amount of carbonate to be added by the carbonate adding means 12 for removing calcium from the raw water based on the measurement result of the Ca concentration and the alkalinity of the raw water by the water quality measuring means 21. The water quality measurement by the water quality measuring means 21 and the carbonate addition control by the carbonate adding means 12 may be continuously performed or may be performed every time a predetermined time elapses.

(4)式に基づいて、カルシウムを除去するための炭酸塩の添加量を決定することにより、原水のCa濃度及びアルカリ度に基づいて、最適となるNa2CO3添加量を軟化処理槽1に供給することができるため、原水の水質に応じた安定したCa濃度制御を行うことができ、Na2CO3添加量を最適化しながら安定した目標水質が得られる。 By determining the amount of carbonate added to remove calcium based on the formula (4), the optimum amount of Na 2 CO 3 added is determined based on the Ca concentration and alkalinity of the raw water in the softening treatment tank 1 It is possible to control the Ca concentration in a stable manner according to the quality of the raw water, and a stable target water quality can be obtained while optimizing the amount of Na 2 CO 3 added.

−硝化を更に考慮にいれた炭酸塩の添加量(1)−
本実施形態は、原水の水質に応じた炭酸塩の添加量の最適化だけでなく、軟化処理槽1の後段にある後述する亜硝酸化槽2及び嫌気性アンモニア酸化槽4における硝化処理を更に考慮して、硝化工程で必要な無機体炭素を軟化処理槽1へ添加する際の炭酸塩の添加量を決定する。亜硝酸化槽2及び嫌気性アンモニア酸化槽4で用いられる硝化菌、嫌気性アンモニア細菌はともに独立栄養細菌であり、増殖には無機体炭素が必要である。この亜硝酸化槽2及び嫌気性アンモニア酸化槽4での処理に必要な無機体炭素量を踏まえて、無機体炭素を補充するために軟化処理槽1へ添加する軟化処理のNa2CO3添加量を算出することで、カルシウムの除去能を安定させ、且つ後段の生物処理を良好に保つことが可能になる。
-Amount of carbonate added in consideration of nitrification (1)-
In this embodiment, not only the amount of carbonate added according to the quality of the raw water is optimized, but also the nitrification treatment in the nitrite tank 2 and the anaerobic ammonia oxidation tank 4 described later after the softening treatment tank 1 is further performed. In consideration, the amount of carbonate added when the inorganic carbon required in the nitrification step is added to the softening treatment tank 1 is determined. Both the nitrifying bacteria and the anaerobic ammonia bacteria used in the nitrite tank 2 and the anaerobic ammonia oxidation tank 4 are autotrophic bacteria, and inorganic carbon is required for their growth. Based on the amount of inorganic carbon required for the treatment in the nitrite tank 2 and the anaerobic ammonia oxidation tank 4, the addition of Na 2 CO 3 for the softening treatment to be added to the softening treatment tank 1 to replenish the inorganic carbon. By calculating the amount, it becomes possible to stabilize the ability to remove calcium and maintain good biological treatment in the subsequent stage.

嫌気性アンモニア酸化菌による反応は式(1)に示した通りであるが、アンモニア酸化菌によるアンモニアから亜硝酸性窒素への硝化反応は、菌体合成を含めると以下の式(5)で表される。
1NH4 ++1.38O2+1.98HCO3 -
→0.018C572N+0.98NO2 -+1.04H2O+1.89H2CO3 (5)
The reaction by anaerobic ammonia-oxidizing bacteria is as shown in formula (1), but the nitrification reaction from ammonia to nitrite nitrogen by ammonia-oxidizing bacteria is represented by the following formula (5) including cell synthesis. Will be done.
1NH 4 + + 1.38O 2 + 1.98HCO 3 -
→ 0.018C 5 H 7 O 2 N + 0.98NO 2 - + 1.04H 2 O + 1.89H 2 CO 3 (5)

式(5)より、亜硝酸化工程では、アンモニア性窒素1mg−N/Lにつき0.077mg−C/Lの無機体炭素(=0.68mg−Na2CO3/L)が必要であり、また、(1)式より嫌気性アンモニア酸化工程ではアンモニア性窒素1mg−N/Lにつき0.057mg−C/Lの無機体炭素(0.50mg−Na2CO3/L)が必要であることがわかる。 From the formula (5), the nitrite step requires 0.077 mg-C / L of inorganic carbon (= 0.68 mg-Na 2 CO 3 / L) per 1 mg-N / L of ammoniacal nitrogen. Further, according to the formula (1), 0.057 mg-C / L of inorganic carbon (0.50 mg-Na 2 CO 3 / L) is required for 1 mg-N / L of ammoniacal nitrogen in the anaerobic ammonia oxidation step. I understand.

式(5)を式(4)に含めると、カルシウムを除去するための炭酸塩の添加量に加えて硝化に必要な炭酸塩の添加量を更に考慮にいれたNa2CO3添加量C0(mg/L)は下記式(6)により求めることができる。
0=(Cin−Cout)×a+(CN-in−CN-out)×1.18−CALK-in/1.06(6)
(ここで、CN-in:原水中のアンモニア性窒素濃度(mg−N/L)、CN-out:亜硝酸化処理槽内の目標アンモニア性窒素濃度(mg−N/L)を示す。)
When the formula (5) is included in the formula (4), the amount of Na 2 CO 3 added is C 0, which takes into consideration the amount of carbonate added for nitrification in addition to the amount of carbonate added for removing calcium. (Mg / L) can be calculated by the following formula (6).
C 0 = (C in- C out ) x a + (C N-in- C N-out ) x 1.18-C ALK-in / 1.06 (6)
(Here, C N-in : Ammonia nitrogen concentration in raw water (mg-N / L), C N-out : Target ammonia nitrogen concentration (mg-N / L) in the nitrite treatment tank. .)

このように、原水の水質及び亜硝酸化槽2及び嫌気性アンモニア酸化槽4内における硝化を考慮して、軟化処理槽1に対して、原水のカルシウム除去の目的だけでなく、硝化に必要な無機体炭素を考慮に入れた炭酸塩を軟化処理槽1に予め添加することにより、亜硝酸化槽2において従来必要であった無機体炭素の添加作業を省略することができるため、装置及び作業の簡略化が図れる上、原水変動が大きい場合においても安定してカルシウム濃度を低減させることができ、且つ軟化処理槽1の後段の配管、散気装置、担体等へのスケール付着を抑制することができる。また、(6)式の第2項:(CN-in−CN-out)×1.18の分だけCa除去工程において多めにNa2CO3が添加できるため、カルシウムと炭酸イオンの反応を効率よくすすめることができる。 In this way, considering the quality of the raw water and nitrification in the nitrite tank 2 and the anaerobic ammonia oxidation tank 4, the softening treatment tank 1 is required not only for the purpose of removing carbon from the raw water but also for nitrification. By adding a carbonate in consideration of inorganic carbon to the softening treatment tank 1 in advance, the work of adding inorganic carbon, which was conventionally required in the nitrite tank 2, can be omitted. In addition to being able to simplify the above, it is possible to stably reduce the calcium concentration even when the fluctuation of raw water is large, and to suppress scale adhesion to the piping, air diffuser, carrier, etc. in the subsequent stage of the softening treatment tank 1. Can be done. In addition, since a large amount of Na 2 CO 3 can be added in the Ca removal step by the amount of the second term: (CN -in −C N-out ) × 1.18 in the formula (6), the reaction between calcium and carbonate ions. Can be promoted efficiently.

−硝化を更に考慮にいれた炭酸塩の添加量(2)−
硝化を考慮に入れた炭酸塩の添加量として、硝化に必要なアルカリ度の観点から炭酸塩の添加量を決定することも可能である。硝化工程においてアンモニア性窒素1mg−N/Lの硝化に必要なアルカリ度は7.14mg−CaCO3/L(=7.57mg−Na2CO3/L)であり、これを(4)式に含めると、カルシウムを除去するための炭酸塩の添加量に加えて硝化に必要な炭酸塩の添加量を更に考慮にいれたNa2CO3添加量C0(mg/L)は、下記式(7)により求めることができる。
0=(Cin−Cout)×a+(CN-in−CN-out)×7.57−CALK-in/1.06+CALK-out/1.06 (7)
-Amount of carbonate added in consideration of nitrification (2)-
As the amount of carbonate added in consideration of nitrification, it is also possible to determine the amount of carbonate added from the viewpoint of the alkalinity required for nitrification. Alkalinity necessary for nitrification of ammonium nitrogen 1 mg-N / L in the nitrification step is 7.14mg-CaCO 3 /L(=7.57mg-Na 2 CO 3 / L), to which (4) Including, the Na 2 CO 3 addition amount C 0 (mg / L), which takes into consideration the addition amount of carbonate required for nitrification in addition to the addition amount of carbonate for removing calcium, is calculated by the following formula (1). It can be obtained by 7).
C 0 = (C in − C out ) × a + (CN -in −C N-out ) × 7.57-C ALK-in /1.06+C ALK-out /1.06 (7)

ALK-outは、亜硝酸化槽2の目標アルカリ度であり、亜硝酸化槽2のpHとアルカリ度の関係で決定される。例えば、亜硝酸化槽2内の亜硝酸化処理水の目標pHが7.8で、この時のアルカリ度が500mg/Lである場合は、CALK-outは500mg/Lとなる。亜硝酸化処理水のpHとアルカリ度の関係は、中和滴定曲線を引くことで求めることができる。 CALK-out is the target alkalinity of the nitrite tank 2, and is determined by the relationship between the pH and alkalinity of the nitrite tank 2. For example, when the target pH of the nitrite-treated water in the nitrite tank 2 is 7.8 and the alkalinity at this time is 500 mg / L, the CALK-out is 500 mg / L. The relationship between the pH and alkalinity of the nitrite-treated water can be obtained by drawing a neutralization titration curve.

(6)式、(7)式を比べると、(6)式の方が、Na2CO3添加量が少なくて済むが、(6)式に基づく炭酸塩の添加制御を行う場合、後段の亜硝酸化槽2において別途アルカリの添加が必要となる。この場合は、亜硝酸化槽2のアルカリを調整するためには、苛性ソーダを使用することで、炭酸塩等を使用する場合に比べてpH制御を容易にすることができ、より効率的な処理が行える。一方、(7)式に基づいて、軟化処理槽1にNa2CO3を添加する場合、後段の亜硝酸化槽2でのアルカリの添加が不要であるため、制御がより容易になる上、処理を簡略化できる。但し、生物処理へ流入する原水のpHが高くなる場合があるため、微生物が失活しないように留意することが好ましい。 Comparing Eqs. (6) and (7), Eq. (6) requires less Na 2 CO 3 addition, but when controlling the addition of carbonate based on Eq. (6), the latter stage It is necessary to add alkali separately in the nitrite tank 2. In this case, in order to adjust the alkalinity of the nitrite tank 2, by using caustic soda, pH control can be facilitated as compared with the case of using carbonate or the like, and more efficient treatment can be performed. Can be done. On the other hand, when Na 2 CO 3 is added to the softening treatment tank 1 based on the equation (7), it is not necessary to add alkali in the nitrite tank 2 in the subsequent stage, so that the control becomes easier and the control becomes easier. The process can be simplified. However, since the pH of the raw water flowing into the biological treatment may increase, it is preferable to take care not to inactivate the microorganisms.

本実施形態によれば、原水のカルシウム濃度、アンモニア性窒素濃度、アルカリ度、及び亜硝酸化槽2のアルカリ度又は目標アンモニア性窒素濃度に基づいて、軟化処理槽1に添加する炭酸塩の添加量を制御することができる。即ち、原水の水質及び亜硝酸化槽2内における硝化を考慮して、軟化処理槽1に対して、原水のカルシウム除去の目的だけでなく、亜硝酸化処理に必要な無機体炭素を予め添加することにより、亜硝酸化槽2において従来必要であった無機体炭素の添加作業を省略することができるため、装置及び処理の簡略化が図れる。また、原水中のカルシウム濃度が急激に増加した場合においても、炭酸塩が過剰に添加されているため、安定してカルシウム濃度を低減させることができる。軟化処理槽1の後段の配管、散気装置、担体等へのスケール付着を抑制することもできる。 According to the present embodiment, the addition of carbonate to be added to the softening treatment tank 1 based on the calcium concentration, ammoniacal nitrogen concentration, alkalinity, and alkalinity or target ammoniacal nitrogen concentration of the nitrite tank 2 of the raw water. The amount can be controlled. That is, in consideration of the water quality of the raw water and nitrification in the nitrite tank 2, not only the purpose of removing calcium from the raw water but also the inorganic carbon necessary for the nitrite treatment is added in advance to the softening treatment tank 1. By doing so, it is possible to omit the work of adding the inorganic carbon, which was conventionally required in the nitrite tank 2, so that the apparatus and the treatment can be simplified. Further, even when the calcium concentration in the raw water suddenly increases, the calcium concentration can be stably reduced because the carbonate is excessively added. It is also possible to suppress scale adhesion to the piping, the air diffuser, the carrier, etc. in the subsequent stage of the softening treatment tank 1.

なお、以下に詳しく説明するが、本実施形態では、後段の亜硝酸化槽2にて間欠曝気を行う場合がある。その際、原水中のカルシウム除去が不十分であると、亜硝酸化槽2の曝気停止期間中に、散気孔にスケールが生じる場合、あるいは担体にスケールが付着しやすくなる現象が顕著になり得る。軟化処理槽1における軟化処理を(6)式及び(7)式に基づいて適切に行うことで、散気装置や担体を長持ちさせることが可能となる。 As will be described in detail below, in the present embodiment, intermittent aeration may be performed in the nitrite tank 2 in the subsequent stage. At that time, if the calcium removal in the raw water is insufficient, the phenomenon that scale is generated in the air diffuser pores or the scale is likely to adhere to the carrier may become remarkable during the aeration stop period of the nitrite tank 2. .. By appropriately performing the softening treatment in the softening treatment tank 1 based on the equations (6) and (7), it is possible to prolong the life of the air diffuser and the carrier.

本実施形態において、Ca濃度は、(株)共立理化学研究所製カルシウム分析用パックテスト、電極式Ca濃度計、キレート滴定法、フレーム原子吸光法、ICP発光分光分析法のいずれかにより測定できる。なお、原水中のカルシウム濃度の測定値が軟化処理水の目標Ca濃度よりも低い場合は、軟化処理のための炭酸塩の添加は行わなくても良い。 In the present embodiment, the Ca concentration can be measured by any one of a calcium analysis pack test manufactured by Kyoritsu Institute of Physical and Chemical Research, an electrode type Ca concentration meter, a chelate titration method, a frame atomic absorption method, and an ICP emission spectroscopic analysis method. When the measured value of the calcium concentration in the raw water is lower than the target Ca concentration of the softened water, it is not necessary to add carbonate for the softening treatment.

軟化処理槽1の後段には、軟化処理で生成したCaCO3を沈殿分離する沈殿槽13及びCaCO3を沈殿分離した後のアンモニア性窒素含有排水を貯留する中継槽14が配置されている。中継槽14及び亜硝酸化槽2には、中継槽14及び亜硝酸化槽2内の処理水の水質を測定するための水質測定手段21が接続されている。通常の場合、カルシウム除去工程後に得られる軟化処理水はpH8.5〜9.5程度になるため、軟化処理槽1の後段にはpH調整工程を設け、生物処理への流入水をpH7.5〜8.5程度に中和を行う必要がある。第1の実施の形態に係る処理装置では、沈殿槽13及び中継槽14を備えることにより、亜硝酸化槽2の滞留時間を調整可能とするとともに、亜硝酸化槽2に流入させる排水を亜硝酸化槽2内に流入させる前に沈殿槽13及び中継槽14で所定の期間滞留させることができるため、中和工程を設けなくとも、後段の処理へ軟化処理水を流入させることが可能になる。このため、第1の実施の形態に係るアンモニア性窒素含有排水の処理方法によれば、中和に必要な酸、および硝化に必要なアルカリ、硝化、嫌気性アンモニア酸化に必要な無機体炭素の消費量を低減しながら、効率良く処理を行うことができる。なお、中継槽14は省略してもよい。 In the subsequent stage of the softening treatment tank 1, a settling tank 13 for precipitating and separating CaCO 3 produced in the softening treatment and a relay tank 14 for storing the ammoniacal nitrogen-containing wastewater after the CaCO 3 is settled and separated are arranged. A water quality measuring means 21 for measuring the quality of the treated water in the relay tank 14 and the nitrite tank 2 is connected to the relay tank 14 and the nitrite tank 2. Normally, the softened water obtained after the calcium removal step has a pH of about 8.5 to 9.5. Therefore, a pH adjusting step is provided after the softening treatment tank 1, and the inflow water to the biological treatment is pH 7.5. It is necessary to neutralize to about 8.5. In the treatment apparatus according to the first embodiment, the settling tank 13 and the relay tank 14 are provided so that the residence time of the nitrite tank 2 can be adjusted and the wastewater flowing into the nitrite tank 2 is sub-nitrite. Since it can be retained for a predetermined period in the settling tank 13 and the relay tank 14 before flowing into the nitrite tank 2, the softened treated water can be flowed into the subsequent treatment without providing a neutralization step. Become. Therefore, according to the method for treating ammoniacal nitrogen-containing wastewater according to the first embodiment, the acid required for neutralization and the alkali, nitrification, and inorganic carbon required for anaerobic ammonia oxidation are required. Processing can be performed efficiently while reducing consumption. The relay tank 14 may be omitted.

沈殿槽13及び中継槽14における原水の総滞留時間は、計画処理水量に対して2日以上とすることが好ましく、望ましくは5日以上、より望ましくは10日以上である。中継槽14は撹拌してもよい。中継槽14の撹拌は、曝気撹拌すると原水槽10内で硝化が進行する可能性があるため、機械撹拌を用いることが望ましい。 The total residence time of the raw water in the settling tank 13 and the relay tank 14 is preferably 2 days or more, preferably 5 days or more, and more preferably 10 days or more with respect to the planned treated water amount. The relay tank 14 may be agitated. As for the agitation of the relay tank 14, it is desirable to use mechanical agitation because nitrification may proceed in the raw water tank 10 if aeration agitation is performed.

亜硝酸化槽2は、アンモニア性窒素含有排水を収容し、アンモニア性窒素含有排水中に含まれるアンモニア性窒素の一部を亜硝酸性窒素へ亜硝酸化処理する処理槽である。亜硝酸化槽2には、亜硝酸化槽2内の遊離アンモニア濃度を適切に制御するとともに曝気運転時間及び曝気量を調整する曝気・pH調整手段22が接続されている。 The nitrite tank 2 is a treatment tank that accommodates ammonia nitrogen-containing wastewater and nitrites a part of ammonia nitrogen contained in the ammonia nitrogen-containing wastewater into nitrite nitrogen. The nitrite tank 2 is connected to an aeration / pH adjusting means 22 that appropriately controls the free ammonia concentration in the nitrite tank 2 and adjusts the aeration operation time and the amount of aeration.

亜硝酸化槽2では、微生物を用いて、原水中のアンモニア性窒素の約57%を亜硝酸性窒素まで硝化させる。微生物を用いた硝化としては、例えば、活性汚泥法、流動担体法、固定床法(接触酸化法)等が利用できる。アンモニア性窒素の硝化反応を亜硝酸性窒素の生成で止める部分亜硝酸化処理をより安定的に行うためには、亜硝酸化槽2内に、アンモニア酸化菌を付着固定させた担体を流動させる流動担体法を用いることがより好ましい。 In the nitrite tank 2, about 57% of the ammoniacal nitrogen in the raw water is nitrified to nitrite nitrogen using microorganisms. As the nitrification using microorganisms, for example, an activated sludge method, a fluidized carrier method, a fixed bed method (contact oxidation method) and the like can be used. In order to more stably perform the partial nitrite treatment that stops the nitrification reaction of ammoniacal nitrogen by the production of nitrite nitrogen, a carrier to which ammonia-oxidizing bacteria are adhered and fixed is flowed in the nitrite tank 2. It is more preferable to use the fluid carrier method.

亜硝酸化槽2内で使用される担体に特に制限はないが、高分子担体を充填することにより、アンモニア酸化菌を安定して付着できるため、亜硝酸化槽2においてより安定した亜硝酸化性能が得られる。亜硝酸化槽2に充填する高分子担体としては、ポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)、ポリアクリルアミド、光硬化性樹脂等の合成高分子担体、カラギーナン、アルギン酸ソーダ等の高分子を用いたゲル担体、ポリエチレンやポリウレタン、ポリポロピレン等からなる担体等が挙げられる。 The carrier used in the nitrite tank 2 is not particularly limited, but by filling the polymer carrier, ammonia-oxidizing bacteria can be stably attached, so that more stable nitrite formation in the nitrite tank 2 can be achieved. Performance is obtained. As the polymer carrier to be filled in the nitrite tank 2, a synthetic polymer carrier such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyacrylamide, or a photocurable resin, or a polymer such as carrageenan or sodium alginate is used. Examples thereof include a gel carrier that has been used, a carrier made of polyethylene, polyurethane, polyporopylene, and the like.

担体の形状としては球形、四角形、円筒形の何れも使用可能である。担体の有効径は、担体を分離するためのスクリーンよって安定的に分離できる3〜10mmとすることが好ましい。担体の比重は、亜硝酸化槽2の間欠曝気を行った場合においても、亜硝酸化槽2内で素早く均一に流動させることが可能となる1.00〜1.10g/cm3とすることが好ましく、更には1.01〜1.05g/cm3とすることが好ましい。担体の充填量は、亜硝酸化槽2内で担体が均一に混合流動可能となる5〜40容量%(V%)とすることが好ましく、更には10〜30容量%(V%)であることが好ましい。亜硝酸化槽2の窒素負荷は、例えば、0.01〜2.0kg−N/m3/dとすることにより、亜硝酸化処理を安定して行うことができる。 As the shape of the carrier, any of spherical, quadrangular, and cylindrical shapes can be used. The effective diameter of the carrier is preferably 3 to 10 mm, which can be stably separated by a screen for separating the carrier. The specific gravity of the carrier shall be 1.00 to 1.10 g / cm 3 which enables quick and uniform flow in the nitrite tank 2 even when intermittent aeration is performed in the nitrite tank 2. Is preferable, and more preferably 1.01 to 1.05 g / cm 3 . The filling amount of the carrier is preferably 5 to 40% by volume (V%) so that the carrier can be uniformly mixed and flowed in the nitrite tank 2, and further is 10 to 30% by volume (V%). Is preferable. By setting the nitrogen load of the nitrite tank 2 to, for example, 0.01 to 2.0 kg-N / m 3 / d, the nitrite treatment can be stably performed.

亜硝酸化処理では、原水中に含まれるアンモニア性窒素の硝化反応を亜硝酸性窒素の生成で止め、亜硝酸化槽2から嫌気性アンモニア酸化槽4へ流出する処理水のアンモニア性窒素濃度に対する亜硝酸性窒素濃度の比(NO2−N/NH4−N比)が、嫌気性アンモニア酸化槽4での処理に適切な目標比率である約1.32に近づくように制御する必要がある。 In the nitrite treatment, the nitrification reaction of ammonia nitrogen contained in the raw water is stopped by the production of nitrite nitrogen, and the concentration of ammonia nitrogen in the treated water flowing out from the nitrite tank 2 to the anaerobic ammonia oxidation tank 4 is dealt with. It is necessary to control the ratio of nitrite nitrogen concentration (NO 2- N / NH 4- N ratio) to approach about 1.32, which is an appropriate target ratio for treatment in the anaerobic ammonia oxidation tank 4. ..

嫌気性アンモニア酸化槽4での処理に適切な約1.32に近づくように制御するために、本実施形態では、原水の水質情報に基づいて、亜硝酸化槽2内の遊離アンモニア(FA)濃度が所定の目標濃度となるように、亜硝酸化槽2のpH制御及び間欠曝気制御を行うことが好ましい。 In this embodiment, the free ammonia (FA) in the nitrite tank 2 is based on the water quality information of the raw water in order to control it so as to approach about 1.32, which is suitable for the treatment in the anaerobic ammonia oxidation tank 4. It is preferable to control the pH and intermittent aeration of the nitrite tank 2 so that the concentration becomes a predetermined target concentration.

−pH制御−
本発明者らの検討によれば、亜硝酸化槽2内のアンモニア性窒素含有排水の遊離アンモニア濃度を1.0〜10mg/L、より好ましくは2.0〜10mg/Lに維持するようにpHを調整することで、亜硝酸化菌の増殖を抑制しながら、アンモニア酸化菌を担体に優先的に付着させることができ、これにより安定した亜硝酸化処理が得られることが分かった。
-PH control-
According to the study by the present inventors, the free ammonia concentration of the ammoniacal nitrogen-containing wastewater in the nitrite tank 2 should be maintained at 1.0 to 10 mg / L, more preferably 2.0 to 10 mg / L. It was found that by adjusting the pH, the ammonia-oxidizing bacteria could be preferentially attached to the carrier while suppressing the growth of the nitrite-forming bacteria, whereby a stable nitrite-forming treatment could be obtained.

遊離アンモニア濃度は、以下の式(8)に従って計算することができる。 The free ammonia concentration can be calculated according to the following formula (8).

Figure 2021133298
(8)式からわかるように、遊離アンモニア濃度は、pH、NH4−N濃度、水温の変化の影響を受ける。
Figure 2021133298
As can be seen from Eq. (8), the free ammonia concentration is affected by changes in pH, NH 4- N concentration, and water temperature.

本実施形態では、原水であるアンモニア性窒素含有排水のアンモニア性窒素濃度(以下「原水NH4−N」ともいう)から計算される目標アンモニア性窒素濃度(以下「目標NH4−N」ともいう)と、亜硝酸化槽2内の水温に基づいて、(8)式に従って、亜硝酸化槽2内の遊離アンモニア濃度が1.0〜10mg/Lとなるように、目標pHを決定する。目標NH4−Nは、以下の式(9)に従い、計算することができる。
目標NH4−N=原水NH4−N×(1/2.3) (9)
例えば、原水のアンモニア性窒素濃度が100mg−N/Lの場合、亜硝酸化槽2の目標アンモニア性窒素濃度は、約43mg−N/Lとなる。
In the present embodiment, the target ammonia nitrogen concentration calculated from the ammonia nitrogen concentration of the raw water ammonia-containing nitrogen-containing wastewater (hereinafter , also referred to as “raw water NH 4- N”) (hereinafter, also referred to as “target NH 4-N”). ) And the water temperature in the nitrite tank 2, the target pH is determined so that the free ammonia concentration in the nitrite tank 2 becomes 1.0 to 10 mg / L according to the formula (8). The target NH 4- N can be calculated according to the following equation (9).
Target NH 4- N = Raw water NH 4- N × (1 / 2.3) (9)
For example, when the ammoniacal nitrogen concentration of the raw water is 100 mg-N / L, the target ammoniacal nitrogen concentration of the nitrite tank 2 is about 43 mg-N / L.

次に、亜硝酸化槽2の水温、目標アンモニア性窒素濃度と遊離アンモニア濃度との関係に基づいて、亜硝酸化槽2内のpHを設定する。例えば、(8)式を利用して目標pHと目標アンモニア性窒素濃度と遊離アンモニア濃度との関係を計算した表を予め作製し、その表を用いて、ある目標アンモニア性窒素濃度に対して遊離アンモニア濃度が1.0〜10mg/Lを満たすようなpH範囲を決めることにより、亜硝酸化槽2内の目標pHを設定することができる。例えば、亜硝酸化槽2の目標アンモニア性窒素濃度が約43mg−N/L、水温30℃の場合、遊離アンモニア濃度が1.0〜10mg/LとなるpH範囲は、7.5〜8.4となる。 Next, the pH in the nitrite tank 2 is set based on the relationship between the water temperature of the nitrite tank 2, the target ammoniacal nitrogen concentration and the free ammonia concentration. For example, a table for calculating the relationship between the target pH, the target ammoniacal nitrogen concentration, and the free ammonia concentration is prepared in advance using Eq. The target pH in the nitrite tank 2 can be set by determining the pH range such that the ammonia concentration satisfies 1.0 to 10 mg / L. For example, when the target ammoniacal nitrogen concentration of the nitrite tank 2 is about 43 mg-N / L and the water temperature is 30 ° C., the pH range in which the free ammonia concentration is 1.0 to 10 mg / L is 7.5 to 8. It becomes 4.

pH範囲が設定されたら、亜硝酸化槽2内がそのpH範囲となるように、酸またはアルカリを添加する。亜硝酸化槽2に添加される酸としては、例えば、硫酸、塩酸等が利用できる。亜硝酸化槽2に添加されるアルカリとしては、苛性ソーダ、炭酸ソーダ、炭酸水素ナトリウム等が利用できる。特に本実施例では、アルカリとして、炭酸ソーダ、炭酸水素ナトリウムを使用するよりも、pHの調整が容易な強アルカリである苛性ソーダを使用することが好ましい。これにより、亜硝酸化槽2内のpHを少ない薬液量で早期に適正化でき、亜硝酸化槽2内の遊離アンモニア濃度を適正化することができる。また、苛性ソーダを利用することで、炭酸ソーダ、炭酸水素ナトリウムよりもランニングコストを抑えることができる、薬品注入配管内のスケール生成による閉塞が発生しにくい、という副次的な利点も発生する。 After the pH range is set, an acid or alkali is added so that the inside of the nitrite tank 2 is within the pH range. As the acid added to the nitrite tank 2, for example, sulfuric acid, hydrochloric acid and the like can be used. As the alkali added to the nitrite tank 2, caustic soda, sodium carbonate, sodium hydrogen carbonate and the like can be used. In particular, in this embodiment, it is preferable to use caustic soda, which is a strong alkali whose pH can be easily adjusted, rather than using sodium carbonate or sodium hydrogen carbonate as the alkali. As a result, the pH in the nitrite tank 2 can be optimized at an early stage with a small amount of chemical solution, and the free ammonia concentration in the nitrite tank 2 can be optimized. In addition, by using caustic soda, there are secondary advantages that the running cost can be suppressed as compared with sodium carbonate and sodium hydrogen carbonate, and clogging due to scale generation in the chemical injection pipe is less likely to occur.

−間欠曝気制御−
本発明者らが検討した結果、亜硝酸化槽2内のアンモニア性窒素から亜硝酸性窒素への硝化量は、曝気風量、および曝気運転時間と曝気停止時間との運転時間比率(On/(On+Off))に比例することが分かった。このため、ある時点における曝気風量、曝気運転時間における原水および亜硝酸化槽2で得られる亜硝酸化処理水のアンモニア濃度、もしくは硝酸、亜硝酸濃度のいずれかを分析し、硝化量を算出することにより、適切なNO2−N/NH4−N比を保つための曝気風量及び曝気運転時間を設定することが好ましい。
-Intermittent aeration control-
As a result of the examination by the present inventors, the amount of nitrification from ammonia nitrogen to nitrite nitrogen in the nitrite tank 2 is the aeration air volume and the aeration time ratio between the aeration operation time and the aeration stop time (On / ( It was found to be proportional to On + Off)). Therefore, the amount of nitrification is calculated by analyzing either the aeration air volume at a certain point in time, the ammonia concentration of the raw water and the nitrite-treated water obtained in the nitrite tank 2 during the aeration operation time, or the nitric acid or nitrite concentration. Therefore, it is preferable to set the aeration air volume and the aeration operation time for maintaining an appropriate NO 2- N / NH 4-N ratio.

本実施形態では、原水であるアンモニア性窒素含有排水の水温及びアンモニア性窒素濃度に基づいて、(9)式より目標アンモニア性窒素濃度を決定する。そして、目標アンモニア性窒素濃度に対する亜硝酸化槽2内で生成される亜硝酸性窒素濃度の比(NO2−N/NH4−N比)が目標比率となる必要硝化量を決定し、その必要硝化量に基づいて、亜硝酸化処理における曝気運転時間と曝気停止時間との運転時間比率を調整する。 In the present embodiment, the target ammonia nitrogen concentration is determined from the equation (9) based on the water temperature and the ammonia nitrogen concentration of the raw water ammonia-containing nitrogen-containing wastewater. Then, the required nitrification amount at which the ratio of the nitrite nitrogen concentration produced in the nitrite tank 2 to the target ammonia nitrogen concentration (NO 2- N / NH 4- N ratio) becomes the target ratio is determined. Based on the required nitrification amount, the operation time ratio between the aeration operation time and the aeration stop time in the nitrite treatment is adjusted.

例えば、原水のアンモニア性窒素濃度及び亜硝酸化槽2内に流入するアンモニア性窒素含有排水の水温から、式(8)、(9)に基づいて、目標アンモニア性窒素濃度と目標pHが決定される。そして、亜硝酸化槽2の処理水量および亜硝酸化槽2の槽容量に基づいて、NO2−N/NH4−N比が、目標比率となる1.32となる必要硝化量を決定する。運転時間比率と必要硝化量は上述の通り比例関係にあるため、運転時間比率と必要硝化量との関係を表す表(表3参照)または図(図3参照)を予め作製し、図又は表を用いて、運転時間比率と必要硝化量との関係に基づいて、ある必要硝化量を満足する運転時間比率を設定する。 For example, the target ammonia nitrogen concentration and the target pH are determined based on the formulas (8) and (9) from the ammonia nitrogen concentration of the raw water and the water temperature of the ammonia nitrogen-containing wastewater flowing into the nitrite tank 2. NS. Then, based on the amount of treated water in the nitrite tank 2 and the tank capacity of the nitrite tank 2, the required nitrification amount at which the NO 2- N / NH 4- N ratio becomes the target ratio of 1.32 is determined. .. Since the operating time ratio and the required vitrification amount are in a proportional relationship as described above, a table (see Table 3) or a figure (see Fig. 3) showing the relationship between the operating time ratio and the required vitrification amount is prepared in advance, and the figure or table is prepared. Is used to set an operating time ratio that satisfies a certain required vitrification amount based on the relationship between the operation time ratio and the required vitrification amount.

曝気風量制御を行う場合、インバータを用いた制御では、吐出圧の関係から制御下限値に限界がある場合、あるいは、担体や活性汚泥を流動させるために一定以上の風量が必要となる場合があることから、精密な制御が行えない場合がある。よって、本実施形態では、亜硝酸化槽2を曝気する曝気・pH調整手段22により、亜硝酸化槽2に接続された曝気ブロワにタイマを設けて間欠曝気を行うことが好ましく、これにより運転時間比率のより細かい調整が可能となる。 When controlling the aeration air volume, in the control using an inverter, there may be a limit to the lower limit of control due to the discharge pressure, or an air volume above a certain level may be required to flow the carrier or activated sludge. Therefore, precise control may not be possible. Therefore, in the present embodiment, it is preferable that the aeration / pH adjusting means 22 that aerates the nitrite tank 2 is used to provide an aeration blower connected to the nitrite tank 2 with a timer to perform intermittent aeration. Finer adjustment of the time ratio is possible.

タイマを用いて運転時間比率を調整する場合、オン(曝気運転)時間、オフ(曝気停止)時間ともに1分未満での設定では、ブロワに負担がかかり、長期間の安定した運転を行うことが難しい場合がある。亜硝酸化槽2を曝気するブロワの負担を小さくし、且つ、亜硝酸化処理で得られる処理水を嫌気性アンモニア酸化処理で好適な状態となるように安定して処理を行うためには、オフ時間を5分以上とすることが好ましい。 When adjusting the operation time ratio using a timer, if both the on (aeration operation) time and the off (aeration stop) time are set to less than 1 minute, the blower will be burdened and stable operation for a long period of time may be performed. It can be difficult. In order to reduce the burden on the blower that aerates the nitrite tank 2 and to stably treat the treated water obtained by the nitrite treatment so as to be in a suitable state by the anaerobic ammonia oxidation treatment. The off time is preferably 5 minutes or more.

オフ時間は、亜硝酸化槽2内の溶存酸素量(DO)を0.5mg/L以下とすることで、硝化の進行をより確実に停止できるような条件とすることが好ましい。例えば、ブロワの能力や亜硝酸化槽2の大きさにもよるが、オフ時間をより好ましくは10分以上、更に好ましくは15分以上とすることで、亜硝酸化槽2内のDOを0.5mg/L以下に下げ、硝化菌が活動しない期間を設けることが可能になる。 The off time is preferably set to a condition in which the progress of nitrification can be stopped more reliably by setting the dissolved oxygen amount (DO) in the nitrite tank 2 to 0.5 mg / L or less. For example, although it depends on the capacity of the blower and the size of the nitrite tank 2, the DO in the nitrite tank 2 is set to 0 by setting the off time more preferably 10 minutes or more, further preferably 15 minutes or more. It is possible to reduce the dose to 5.5 mg / L or less to provide a period during which nitrifying bacteria are inactive.

一方、オフ時間を長く設定しすぎると、曝気停止期間中に、亜硝酸化槽2内の散気装置、担体等にスケールが付着しやすくなる。亜硝酸化処理における曝気停止時間は、60分以下、より好ましくは45分以下、更に好ましくは30分以下である。 On the other hand, if the off time is set too long, scale tends to adhere to the air diffuser, the carrier, etc. in the nitrite tank 2 during the aeration stop period. The aeration stop time in the nitrite treatment is 60 minutes or less, more preferably 45 minutes or less, still more preferably 30 minutes or less.

オン時間は1分以上であれば特に制限はない。オン時間においては、DOを1mg/L以上とすることが好ましく、流動担体を使用する場合には2.5mg/L以上とすることが更に好ましい。なお、軟化処理槽1の滞留時間及び亜硝酸化槽2内のオフ時間を遵守する限りにおいては、オフ時間中の撹拌機による亜硝酸化槽2内の撹拌は行っても行わなくてもよい。 There is no particular limitation as long as the on-time is 1 minute or more. In the on-time, the DO is preferably 1 mg / L or more, and more preferably 2.5 mg / L or more when a fluidized carrier is used. As long as the residence time of the softening tank 1 and the off time in the nitrite tank 2 are observed, the inside of the nitrite tank 2 may or may not be agitated by the stirrer during the off time. ..

亜硝酸化槽2内のアルカリ度は、硝化処理の良好な進行のために、100mg/L以上であることが好ましく、より好ましくは150mg/L以上であり、更に好ましくは200mg/L以上である。スケール付着防止の観点からは、800mg/L以下であることが好ましく、より好ましくは700mg/L以下であり、更に好ましくは500mg/L以下である。水温は、15℃以上、より好ましくは20℃以上、更に好ましくは25℃以上であり、35℃以下であることが好ましい。アルカリ度は、塩酸、硫酸等の酸による滴定法のほか、(株)共立理化学研究所製パックテスト、HACH社の分析キット等により測定することができる。 The alkalinity in the nitrite tank 2 is preferably 100 mg / L or more, more preferably 150 mg / L or more, still more preferably 200 mg / L or more for the good progress of the nitrification treatment. .. From the viewpoint of preventing scale adhesion, it is preferably 800 mg / L or less, more preferably 700 mg / L or less, and further preferably 500 mg / L or less. The water temperature is 15 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 25 ° C. or higher, and preferably 35 ° C. or lower. Alkaliity can be measured by a titration method using an acid such as hydrochloric acid or sulfuric acid, a pack test manufactured by Kyoritsu Rikagaku Kenkyusho Co., Ltd., an analysis kit manufactured by HACH, or the like.

亜硝酸化槽2で得られる亜硝酸化処理水は沈殿槽3において浮遊汚泥(浮遊活性汚泥)の沈殿処理が行われ、沈殿した汚泥の一部が浮遊汚泥として再び亜硝酸化槽2へ返送され、残りの汚泥が余剰汚泥として処理される。沈殿槽3が設けられることにより、亜硝酸化槽2で得られる処理水中のSS性の異物を除去できるため、原水変動が生じた場合においても、嫌気性アンモニア酸化槽4へ流入する処理水の性状を常に安定した状態に維持できる。また、沈殿槽3内の浮遊汚泥が亜硝酸化槽2の前段へ返送されることにより、亜硝酸化槽2内では流動担体と浮遊汚泥とが共存する。この共存により、亜硝酸化槽2に流入する原水の水質が変動しても、活性汚泥処理による平均化が可能となるため、アンモニア酸化菌付着の担体への影響がほとんどなく、安定した亜硝酸化処理が行える。沈殿槽3は原水の水質に応じて省略することもできる。沈殿槽3は省略することもできる。 The nitrite treated water obtained in the nitrite tank 2 is subjected to the precipitation treatment of suspended sludge (suspended activated sludge) in the settling tank 3, and a part of the precipitated sludge is returned to the nitrite tank 2 as floating sludge. The remaining sludge is treated as excess sludge. By providing the settling tank 3, SS-like foreign substances in the treated water obtained in the nitrite tank 2 can be removed. Therefore, even if the raw water fluctuates, the treated water flowing into the anaerobic ammonia oxidation tank 4 can be removed. The properties can be maintained in a stable state at all times. Further, since the suspended sludge in the settling tank 3 is returned to the previous stage of the nitrite tank 2, the fluidized carrier and the suspended sludge coexist in the nitrite tank 2. Due to this coexistence, even if the quality of the raw water flowing into the nitrite tank 2 fluctuates, it can be averaged by activated sludge treatment, so that there is almost no effect on the carrier of ammonia-oxidizing bacteria adhesion, and stable nitrite. Can be processed. The settling tank 3 may be omitted depending on the quality of the raw water. The settling tank 3 may be omitted.

嫌気性アンモニア酸化槽4では、亜硝酸化槽2から流入する亜硝酸化処理液中に含まれるアンモニア性窒素と亜硝酸性窒素とを(1)式に従って反応させ、脱窒反応を進行させる槽である。嫌気性アンモニア酸化槽4には、嫌気性アンモニア酸化槽4へ流入する亜硝酸化処理水の流量を調整するための流量調整手段23が接続されている。また、嫌気性アンモニア酸化槽4内の水温、アンモニア性窒素濃度、アルカリ度、カルシウム濃度等を測定可能な水質測定手段24が嫌気性アンモニア酸化槽4に接続されている。 In the anaerobic ammonia oxidation tank 4, the ammonia nitrogen contained in the nitrite treatment liquid flowing from the nitrite tank 2 and the nitrite nitrogen are reacted according to the formula (1) to proceed the denitrification reaction. Is. The anaerobic ammonia oxidation tank 4 is connected to a flow rate adjusting means 23 for adjusting the flow rate of the nitrite-treated water flowing into the anaerobic ammonia oxidation tank 4. Further, a water quality measuring means 24 capable of measuring the water temperature, ammonia nitrogen concentration, alkalinity, calcium concentration and the like in the anaerobic ammonia oxidation tank 4 is connected to the anaerobic ammonia oxidation tank 4.

嫌気性アンモニア酸化槽4内に嫌気性アンモニア酸化菌を保持する方法としては、微生物の自己造粒機能を利用したグラニュール法、担体に嫌気性アンモニア酸化菌を固定化させる流動床法と固定床法がある。本実施形態では、特に流動床法を採用することで、嫌気性アンモニア酸化菌の流出を防ぎ、かつ嫌気性アンモニア酸化槽4内が閉塞しない適正な生物量を維持することができる。 As a method for retaining anaerobic ammonia-oxidizing bacteria in the anaerobic ammonia-oxidizing tank 4, a granule method using the self-granulation function of microorganisms, a fluid bed method for immobilizing anaerobic ammonia-oxidizing bacteria on a carrier, and a fixed bed. There is a law. In the present embodiment, particularly by adopting the fluidized bed method, it is possible to prevent the outflow of anaerobic ammonia-oxidizing bacteria and maintain an appropriate biomass amount in which the inside of the anaerobic ammonia-oxidizing tank 4 is not blocked.

担体には特に制限はないが、特に嫌気性アンモニア酸化菌を安定的に固定化できる担体として、上述の亜硝酸化工程に用いられるものと同様の高分子材料の流動担体が挙げられる。担体の形状としては球形、四角形、円筒形の何れも使用可能であり、有効径は嫌気性アンモニア酸化槽4の出口のスクリーンより安定して分離できる3〜10mmが好ましい。担体として表面に微細孔径を多く有するもの、内部中空であるスポンジ、表面に無数の凹凸を有するものが、嫌気性アンモニア酸化菌の付着固定が速く、短期間で高い脱窒性能が得られる。担体の比重は嫌気状態において撹拌より均一流動できる1.00〜1.10g/cm3、更には1.01〜1.05g/cm3とすることが好ましい。担体の充填量は、局部体積のないように5〜40容量%(V%)、更には10〜30容量%(V%)であることが望ましい。 The carrier is not particularly limited, and examples of a carrier capable of stably immobilizing anaerobic ammonia-oxidizing bacteria include a fluid carrier made of a polymer material similar to that used in the above-mentioned nitrite step. As the shape of the carrier, any of spherical, quadrangular, and cylindrical shapes can be used, and the effective diameter is preferably 3 to 10 mm, which can be stably separated from the screen at the outlet of the anaerobic ammonia oxidation tank 4. As a carrier, a carrier having many fine pore diameters on the surface, a sponge having a hollow inside, and a carrier having innumerable irregularities on the surface can quickly adhere and fix anaerobic ammonia-oxidizing bacteria, and high denitrification performance can be obtained in a short period of time. The specific gravity of the carrier 1.00~1.10g / cm 3 can be uniformly fluidized than stirred at anaerobic conditions, and more preferably to 1.01~1.05g / cm 3. The filling amount of the carrier is preferably 5 to 40% by volume (V%), more preferably 10 to 30% by volume (V%) so as not to have a local volume.

なお、嫌気性アンモニア酸化槽4の立ち上げ時は、嫌気性アンモニア酸化菌が集積した汚泥、もしくは付着した担体(種担体)を投入することで、立ち上げ期間を短縮することができる。特に、嫌気性アンモニア酸化槽4に流動床法を採用する場合は、投入担体と同じ担体を採用することで、種担体と微生物が付着していない新担体の接触効率が高くなるため、立ち上げ期間をさらに短縮することが可能となる。種担体の比率は、槽内の全担体の1〜30容量%(V%)、望ましくは5〜20容量%が効率的である。種担体は、水道水、工業用水、もしくは実際の排水をベースとして試薬にて亜硝酸、アンモニア濃度を調整した人工排水を用いて培養される。 When starting up the anaerobic ammonia oxidation tank 4, the start-up period can be shortened by adding sludge on which anaerobic ammonia-oxidizing bacteria have accumulated or a carrier (seed carrier) to which the anaerobic ammonia-oxidizing bacteria have adhered. In particular, when the fluidized bed method is adopted for the anaerobic ammonia oxidation tank 4, the contact efficiency between the seed carrier and the new carrier to which no microorganisms are attached is increased by adopting the same carrier as the input carrier. The period can be further shortened. The ratio of seed carriers is efficiently 1 to 30% by volume (V%), preferably 5 to 20% by volume of all carriers in the tank. The seed carrier is cultivated using tap water, industrial water, or artificial wastewater in which the concentrations of nitrite and ammonia are adjusted with reagents based on actual wastewater.

撹拌は担体の流動を維持するため、槽内の流速が0.03m/s以上、望ましくは0.07m/s以上、さらに望ましくは0.1m/s以上となるように撹拌翼の数、位置、形状、および回転数を決定することが望ましい。撹拌翼の数、位置等に特に制限はないが、例えば、上下2段に撹拌翼を設け、下段の撹拌翼を槽底から300〜700mm程度とすることで、少ない回転数で槽内流速を保つことができる。嫌気性アンモニア酸化菌の活性を維持するため、鉄、および亜鉛、コバルト、マンガン、銅、モリブデン、ニッケル、等の微量元素を嫌気性アンモニア酸化槽4内に添加することが望ましい。嫌気性アンモニア酸化槽4で得られる嫌気性アンモニア酸化処理水は、沈殿槽5で固液分離処理されて、処理水が得られる。 In order to maintain the flow of the carrier during stirring, the number and position of stirring blades so that the flow velocity in the tank is 0.03 m / s or more, preferably 0.07 m / s or more, and more preferably 0.1 m / s or more. , Shape, and rotation rate are desirable. The number and position of the stirring blades are not particularly limited. For example, by providing the stirring blades in the upper and lower two stages and setting the lower stage stirring blades to about 300 to 700 mm from the bottom of the tank, the flow velocity in the tank can be increased at a small rotation speed. Can be kept. In order to maintain the activity of anaerobic ammonia-oxidizing bacteria, it is desirable to add iron and trace elements such as zinc, cobalt, manganese, copper, molybdenum, and nickel into the anaerobic ammonia oxidizing tank 4. The anaerobic ammonia oxidation treated water obtained in the anaerobic ammonia oxidation tank 4 is subjected to solid-liquid separation treatment in the settling tank 5 to obtain treated water.

制御手段100としては、本実施形態に示す所定のアルゴリズムに基づいて各装置を制御するための汎用の計算機等を用いることができ、水質測定手段11、21、24、炭酸塩添加手段12、曝気・pH調整手段22、流量調整手段23に所定の制御信号を出力するように構成されることができる。 As the control means 100, a general-purpose computer or the like for controlling each device based on the predetermined algorithm shown in the present embodiment can be used, and the water quality measuring means 11, 21, 24, the carbonate adding means 12, and the aeration can be used. The pH adjusting means 22 and the flow rate adjusting means 23 can be configured to output a predetermined control signal.

図1に示すアンモニア性窒素含有排水の処理装置を用いてアンモニア性窒素含有排水を処理することができる。即ち、本発明の第1の実施の形態に係るアンモニア性窒素含有排水の処理方法は、カルシウムを含有するアンモニア性窒素含有排水中のカルシウムを除去するカルシウム除去工程と、カルシウム除去工程後のアンモニア性窒素含有排水中のアンモニア性窒素の一部を亜硝酸性窒素へ亜硝酸化処理する亜硝酸化工程及び亜硝酸化処理の処理水を嫌気性アンモニア酸化菌を用いて嫌気性アンモニア酸化処理する嫌気性アンモニア酸化工程を含む硝化工程と、を含むアンモニア性窒素含有排水の処理工程において、カルシウムを除去するための炭酸塩と、硝化工程で必要な無機体炭素を補充するための炭酸塩とを、カルシウム除去工程で添加することを含む。 Ammonia-nitrogen-containing wastewater can be treated using the ammonia-nitrogen-containing wastewater treatment apparatus shown in FIG. That is, the method for treating ammoniacal nitrogen-containing wastewater according to the first embodiment of the present invention includes a calcium removal step for removing calcium in calcium-containing ammoniacal nitrogen-containing wastewater and an ammoniacality after the calcium removal step. An anaerobic step of nitriding a part of ammoniacal nitrogen in nitrogen-containing wastewater to nitrite nitrogen and anaerobic ammonia oxidation treatment of treated water for nitrite treatment using anaerobic ammonia-oxidizing bacteria. In the nitrification step including the ammonia oxidation step and the treatment step of the ammonia nitrogen-containing wastewater including the ammonia nitrogen-containing wastewater, the carbonate for removing calcium and the carbonate for supplementing the inorganic carbon required in the nitrification step are provided. Includes addition in the calcium removal step.

本発明の第1の実施の形態に係るアンモニア性窒素含有排水の処理装置及び処理方法によれば、原水の水質及び亜硝酸化槽2及び嫌気性アンモニア酸化槽4内における硝化を考慮して、軟化処理槽1に対して、原水のカルシウム除去の目的だけでなく、硝化に必要な無機体炭素を考慮に入れた炭酸塩を予め添加する。これにより、亜硝酸化槽2において従来必要であった無機体炭素の添加作業を省略することができ、装置及び作業の簡略化が図れる。また、原水の変動が生じた場合においても、軟化処理槽1に過剰の炭酸塩が供給されているため、安定してカルシウム濃度を低減させることができ、軟化処理槽1の後段の配管、散気装置、担体等へのスケール付着を抑制することもできる。その結果、スケールの発生を抑制しながら、亜硝酸化処理及び嫌気性アンモニア酸化処理をより安定して行うことが可能なアンモニア性窒素含有排水の処理方法及び処理装置が提供できる。 According to the ammonia nitrogen-containing wastewater treatment apparatus and treatment method according to the first embodiment of the present invention, considering the water quality of raw water and nitrification in the nitrite tank 2 and the anaerobic ammonia oxidation tank 4, the nitrification is taken into consideration. A carbonate is added to the softening tank 1 in advance, taking into consideration not only the purpose of removing calcium from the raw water but also the inorganic carbon required for nitrification. As a result, the work of adding inorganic carbon, which was conventionally required in the nitrite tank 2, can be omitted, and the apparatus and work can be simplified. Further, even when the raw water fluctuates, the excess carbonate is supplied to the softening treatment tank 1, so that the calcium concentration can be stably reduced, and the piping and the powder in the subsequent stage of the softening treatment tank 1 can be dispersed. It is also possible to suppress scale adhesion to an air device, a carrier, or the like. As a result, it is possible to provide a method and a treatment apparatus for ammonia nitrogen-containing wastewater capable of more stably performing nitrite treatment and anaerobic ammonia oxidation treatment while suppressing the generation of scale.

(第2の実施の形態)
図2に示すように、本発明の第2の実施の形態に係るアンモニア性窒素含有排水の処理装置は、図1に示す亜硝酸化槽2の前段の中継槽14の代わりにBOD酸化槽15が設けられ、沈殿槽5の処理水を処理する好気槽6及び嫌気槽7を更に備える点が、図1に示す処理装置と異なる。他は、第1の実施の形態に係る処理装置と実質的に同様の構成を示すため、重複した記載を省略する。
(Second Embodiment)
As shown in FIG. 2, the ammoniacal nitrogen-containing wastewater treatment apparatus according to the second embodiment of the present invention is a BOD oxidation tank 15 instead of the relay tank 14 in the previous stage of the nitrite tank 2 shown in FIG. Is provided, and an aerobic tank 6 and an anaerobic tank 7 for treating the treated water of the settling tank 5 are further provided, which is different from the treatment apparatus shown in FIG. Others show substantially the same configuration as the processing apparatus according to the first embodiment, and thus duplicate description will be omitted.

BOD酸化槽15は、原水中に易分解性有機物が含まれる場合、カルシウム除去後の排水中の易分解性有機物を、微生物反応により酸化及び除去するための処理槽である。BOD酸化槽15を配置することにより、亜硝酸化槽2、嫌気性アンモニア酸化槽4に易分解性有機物が流入してBOD酸化菌が増殖し、処理が不安定化することを抑制できる。 The BOD oxidation tank 15 is a treatment tank for oxidizing and removing easily decomposable organic matter in wastewater after calcium removal by a microbial reaction when the raw water contains easily decomposable organic matter. By arranging the BOD oxidizing tank 15, it is possible to prevent the easily decomposable organic matter from flowing into the nitrite tank 2 and the anaerobic ammonia oxidizing tank 4 to proliferate the BOD oxidizing bacteria and destabilize the treatment.

BOD酸化槽15で行われる有機物除去処理としては、易分解性有機物濃度を低くする手段を用いるのであれば、特に制限はない。例えば、標準活性汚泥法、流動担体法、固定床法(接触酸化法)、回転円板法、散水ろ床法等が挙げられる。また、浸出水処理のように原水中の有機物濃度が変動することが予想される場合は、微生物が担体に固定化され、かつ曝気風量の調整が可能な流動担体法、固定床法を用いることが望ましい。 The organic substance removing treatment performed in the BOD oxidation tank 15 is not particularly limited as long as a means for lowering the concentration of easily decomposable organic substances is used. For example, the standard activated sludge method, the fluidized carrier method, the fixed bed method (contact oxidation method), the rotary disk method, the sprinkling filter method and the like can be mentioned. If the concentration of organic matter in the raw water is expected to fluctuate as in leachate treatment, use the fluidized carrier method or fixed bed method in which microorganisms are immobilized on the carrier and the aeration air volume can be adjusted. Is desirable.

BOD酸化工程では、原水中のアンモニアの硝化が進まないように制御することが望ましい。具体的には、原水及びBOD酸化槽15へ流入する軟化処理水中の易分解性有機物、アンモニア性窒素濃度、硝酸性窒素濃度、亜硝酸性窒素濃度を適宜測定し、硝化が進まない範囲で曝気風量の制御を行う。曝気風量の制御方法としては、インバータによる風量制御、ブロワのタイマによる運転時間の制御、等が挙げられる。 In the BOD oxidation step, it is desirable to control so that the nitrification of ammonia in the raw water does not proceed. Specifically, easily decomposable organic substances, ammoniacal nitrogen concentration, nitrate nitrogen concentration, and nitrite nitrogen concentration in the raw water and the softened water flowing into the BOD oxidation tank 15 are appropriately measured, and aeration is performed in a range where nitrification does not proceed. Control the air volume. Examples of the aeration air volume control method include air volume control by an inverter, operation time control by a blower timer, and the like.

易分解性有機物の指標としては、溶解性のTOC(全有機炭素)、CODMn、CODCr等を用いることができる。ここで、溶解性とは所定の孔径(通常は1μm)の膜でろ過したろ液の分析値を指す。また、処理水の有機物濃度は、軟化処理水を回分式の活性汚泥試験、担体試験で処理することで設定値を決めることができる。アンモニア性窒素濃度、硝酸性窒素濃度、亜硝酸性窒素濃度の分析方法に特に制限はないが、例えば、アンモニアセンサー、硝酸センサー、亜硝酸センサー等のセンサーを設けるほか、(株)共立理化学研究所製パックテスト、HACH社の分析キット等が簡便な分析手法として挙げられる。 Soluble TOC (total organic carbon), COD Mn , COD Cr and the like can be used as an index of easily decomposable organic matter. Here, the solubility refers to the analytical value of the filtrate filtered through a membrane having a predetermined pore size (usually 1 μm). The organic matter concentration of the treated water can be determined by treating the softened treated water with a batch type activated sludge test and a carrier test. There are no particular restrictions on the method of analyzing ammonia nitrogen concentration, nitrate nitrogen concentration, and nitrite nitrogen concentration, but for example, sensors such as an ammonia sensor, nitric acid sensor, and nitrite sensor are provided, and Kyoritsu Institute of Physical and Chemical Research Co., Ltd. Manufactured pack test, HACH analysis kit, etc. can be mentioned as simple analysis methods.

BOD酸化槽15における有機物除去工程以降の工程は生物反応に依存するものであり、特に、亜硝酸化槽2と嫌気性アンモニア酸化槽4での反応は、水温による影響を受けやすい。よって、BOD酸化槽15への流入水、BOD酸化槽15で得られる処理水を加温する設備を設けることが望ましい。加温の際は、嫌気性アンモニア酸化槽4での水温が20〜35℃、望ましくは25〜30℃となるように調整することが望ましい。 The steps after the organic matter removal step in the BOD oxidation tank 15 depend on the biological reaction, and in particular, the reaction between the nitrite tank 2 and the anaerobic ammonia oxidation tank 4 is easily affected by the water temperature. Therefore, it is desirable to provide equipment for heating the inflow water into the BOD oxidation tank 15 and the treated water obtained in the BOD oxidation tank 15. At the time of heating, it is desirable to adjust the water temperature in the anaerobic ammonia oxidation tank 4 to be 20 to 35 ° C, preferably 25 to 30 ° C.

嫌気性アンモニア酸化槽4では、式(1)に示したように反応した窒素の約11%がNO3−Nとして残留し、また、部分亜硝酸化槽でのNO2−N/NH4−N比が1.32よりずれた分だけNO2−N、もしくはNH4−Nが残留する。このため、放流基準によってはこれらの残留した窒素成分を除去するための後処理が必要になる場合がある。第3の実施の形態に係る処理装置では、嫌気性アンモニア酸化処理の後処理として、沈殿槽5の後段に好気槽6及び嫌気槽7を備えることにより、放流基準を満足する処理水を安定して得ることができる。 In the anaerobic ammonia oxidation tank 4, about 11% of the reacted nitrogen remains as NO 3- N as shown in the formula (1), and NO 2- N / NH 4 − in the partial nitrite tank. NO 2- N or NH 4- N remains as much as the N ratio deviates from 1.32. Therefore, depending on the discharge standard, post-treatment for removing these residual nitrogen components may be required. In the treatment apparatus according to the third embodiment, as the post-treatment of the anaerobic ammonia oxidation treatment, the aerobic tank 6 and the anaerobic tank 7 are provided after the settling tank 5, so that the treated water satisfying the discharge standard is stabilized. Can be obtained.

後処理の方式に特に制限はないが、例えば固定床担体、もしくは流動床担体を利用した硝化内生脱窒法(Wuhrmann法)、硝化−脱窒法(Bringmann法)、循環式硝化脱窒法等を用いることができる。また、原水中に易分解性有機物が含まれる場合、BOD酸化工程、亜硝酸化工程、嫌気性アンモニア酸化工程をバイパスし、直接、好気槽6及び7へ投入することで、脱窒に必要な有機物を削減できる。 The post-treatment method is not particularly limited, and for example, a nitrification endogenous denitrification method (Wuhrmann method) using a fixed bed carrier or a fluidized bed carrier, a nitrification-denitrification method (Bringmann method), a circulating nitrification denitrification method, or the like is used. be able to. If the raw water contains easily decomposable organic matter, it is necessary for denitrification by bypassing the BOD oxidation step, nitrite conversion step, and anaerobic ammonia oxidation step and directly charging the aerobic tanks 6 and 7. Organic matter can be reduced.

本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態及び運用技術が明らかとなろう。 Although the present invention has been described in accordance with the above embodiments, the statements and drawings that form part of this disclosure should not be understood to limit the invention. This disclosure will reveal to those skilled in the art various alternative embodiments and operational techniques.

例えば、上述の亜硝酸化工程及び嫌気性アンモニア酸化工程では、亜硝酸化槽2、嫌気性アンモニア酸化槽4においてPO4−P濃度が低すぎると、担体にアンモニア酸化菌、嫌気性アンモニア酸化菌の付着固定が困難になる場合がある。一方、PO4−Pが高すぎると、pHの高い領域で、CaとPO4−Pとが反応することにより、ハイドロキシルアパタイト(HAP)主体とされる不溶性固形物が析出し、これが担体に付着し、アンモニア酸化菌、嫌気性アンモニア酸化菌の安定付着を阻害する傾向にある。そのため、亜硝酸化工程及び嫌気性アンモニア酸化工程では、PO4−P濃度が0.1〜1.0mg/L、より好ましくは0.1〜0.5mg/Lとなるように制御することが更に好ましい。例えば、原水として浸出水や工場排水を用いる場合、原水中にリン含有量が少ない場合には、微生物増殖に必要となるリンを亜硝酸化槽2に添加することが好ましい。 For example, in the above-mentioned nitration step and anaerobic ammonia oxidation step, if the PO 4- P concentration in the nitrite tank 2 and the anaerobic ammonia oxidation tank 4 is too low, ammonia oxidizers and anaerobic ammonia oxidizers are used as carriers. It may be difficult to adhere and fix. On the other hand, if PO 4- P is too high, Ca reacts with PO 4- P in a high pH region to precipitate an insoluble solid substance mainly composed of hydroxyl apatite (HAP), which is used as a carrier. It adheres and tends to inhibit the stable adhesion of ammonia-oxidizing bacteria and anaerobic ammonia-oxidizing bacteria. Therefore, in the nitrite formation step and the anaerobic ammonia oxidation step, the PO 4- P concentration can be controlled to be 0.1 to 1.0 mg / L, more preferably 0.1 to 0.5 mg / L. More preferred. For example, when leachate or factory effluent is used as raw water, it is preferable to add phosphorus necessary for microbial growth to the nitrite tank 2 when the phosphorus content in the raw water is low.

上述の軟化処理工程において、(6)式、(7)式に従い、Na2CO3添加を行った場合、亜硝酸化槽2へ流入する処理水のpHが8.5以上となり、微生物が失活することが懸念される。よって、軟化処理工程におけるカルシウム除去処理の際に、硝化、嫌気性アンモニア酸化用のNa2CO3を過剰に添加する場合は、後段の亜硝酸化槽2で浮遊汚泥と担体とを併用することにより、有機物除去用の微生物と硝化菌を共存させることが望ましい。このように有機物除去用の微生物と硝化菌を共存させることで、硝化の進行によりアルカリ度を消費し、pHが低下し、微生物による有機物除去に適したpH(6.0〜8.5)を維持することが可能になる。 In the above-mentioned softening treatment step, when Na 2 CO 3 is added according to the formulas (6) and (7), the pH of the treated water flowing into the nitrite tank 2 becomes 8.5 or more, and the microorganisms are lost. There is concern that it will be useful. Therefore, in the case of excessive addition of Na 2 CO 3 for nitrification and anaerobic ammonia oxidation during the calcium removal treatment in the softening treatment step, the floating sludge and the carrier should be used together in the nitrite tank 2 in the subsequent stage. Therefore, it is desirable that microorganisms for removing organic substances and nitrifying bacteria coexist. By coexisting the microorganisms for removing organic matter and the nitrifying bacteria in this way, the alkalinity is consumed as the nitrification progresses, the pH is lowered, and the pH (6.0 to 8.5) suitable for removing organic matter by the microorganisms is obtained. It will be possible to maintain.

このように、本発明は上記の開示から妥当な特許請求の範囲の発明特定事項によって表されるものであり、実施段階においては、その要旨を逸脱しない範囲において変形し具体化し得るものである。 As described above, the present invention is represented by the matters specifying the invention within the scope of claims reasonable from the above disclosure, and at the implementation stage, it can be modified and embodied without departing from the gist thereof.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.

図1に示す処理装置を用いて、アンモニア性窒素含有排水処理を実施した。原水は、実機産業廃棄物処分場の軟化処理工程後の浸出水を使用した。表1に試験期間中の原水性状を示す。表1中「平均」、「最小」、「最大」は、試験期間中の原水の各水質平均値、最小値、最大値を表す。 Ammonia nitrogen-containing wastewater treatment was carried out using the treatment apparatus shown in FIG. As the raw water, leachate after the softening process of the actual industrial waste disposal site was used. Table 1 shows the raw water condition during the test period. In Table 1, "average", "minimum", and "maximum" represent the average value, minimum value, and maximum value of each raw water quality during the test period.

Figure 2021133298
Figure 2021133298

−軟化処理槽−
原水に対して炭酸塩としてNa2CO3を添加した。
実施例1では、式(6)式に従って、Na2CO3を添加し、亜硝酸化槽にてpH調整に必要なNaOHを添加した。
実施例2では、式(7)式に従って、Na2CO3を添加し、亜硝酸化槽にてpH調整に必要なNaOHを添加した。なお、実施例2では、亜硝酸化槽の処理水を用いて中和滴定曲線を作製してアルカリ度とpHとの関係を調べておき、亜硝酸化槽の処理水pHが設定値となるように亜硝酸化槽内のアルカリ度を設定し、その値に応じて、Na2CO3を添加した。
比較例では、式(5)式に従って、Na2CO3を添加し、亜硝酸化槽にはアルカリ源の
添加を行わなかった。
-Softening tank-
Na 2 CO 3 was added as a carbonate to the raw water.
In Example 1, Na 2 CO 3 was added according to the formula (6), and NaOH necessary for pH adjustment was added in the nitrite tank.
In Example 2, Na 2 CO 3 was added according to the formula (7), and NaOH necessary for pH adjustment was added in the nitrite tank. In Example 2, a neutralization titration curve is prepared using the treated water in the nitrite tank to investigate the relationship between alkalinity and pH, and the treated water pH in the nitrite tank becomes the set value. The alkalinity in the nitrite tank was set as described above, and Na 2 CO 3 was added according to the value.
In the comparative example, Na 2 CO 3 was added according to the formula (5), and no alkaline source was added to the nitrite tank.

−亜硝酸化槽−
亜硝酸化槽では、平均粒径が4.2mmのPEG担体を20V%充填した。亜硝酸化槽内のpHは、中継槽のNH4−N濃度から目標NH4−N濃度を設定し、亜硝酸化槽内の目標アンモニア性窒素濃度及び水温からFAが1.0〜10mg/Lとなるように目標pHを設定し、酸、アルカリを添加して制御を行った。
-Nitrite tank-
In the nitrite tank, 20 V% of PEG carrier having an average particle size of 4.2 mm was filled. PH of nitritation tank sets a target NH 4 -N concentration of NH 4 -N concentration of the relay tank is FA from the target ammonia nitrogen concentration and temperature of nitritation tank 1.0 to 10 mg / The target pH was set so as to be L, and acid and alkali were added for control.

亜硝酸化槽では、原水の平均アンモニア濃度120mg−N/L、水温30℃のとき、亜硝酸化槽の目標アンモニア性窒素濃度は120×1÷2.3=52mg−N/Lと設定される。この目標アンモニア性窒素濃度で水温が30℃のとき、FAが1.0〜10mg/Lとなるように、この時は安全率をみて2.7〜4.7mg/Lとなるように、目標pHを決定した。ここでは、目標pHを7.8〜8.0と設定し、この目標pHを維持するようにpH調整剤として苛性ソーダ(NaOH)を添加した。曝気風量は、亜硝酸化槽内のNH4−N、NO2−Nを測定し、NO2−N/NH4−N比が1.32に近づくように、間欠曝気によりブロワの運転時間を調整した。更に、亜硝酸化槽後段の沈澱槽から1Qの汚泥を循環させ、槽内に活性汚泥を維持した。 In the nitrite tank, when the average ammonia concentration of raw water is 120 mg-N / L and the water temperature is 30 ° C, the target ammonia nitrogen concentration of the nitrite tank is set to 120 × 1 ÷ 2.3 = 52 mg-N / L. NS. At this target ammonia nitrogen concentration, when the water temperature is 30 ° C, the FA should be 1.0 to 10 mg / L, and at this time, the safety factor should be 2.7 to 4.7 mg / L. The pH was determined. Here, the target pH was set to 7.8 to 8.0, and caustic soda (NaOH) was added as a pH adjuster so as to maintain this target pH. For the aeration air volume, measure NH 4- N and NO 2- N in the nitrite tank, and adjust the operating time of the blower by intermittent aeration so that the NO 2- N / NH 4-N ratio approaches 1.32. It was adjusted. Further, 1Q sludge was circulated from the settling tank in the latter stage of the nitrite tank to maintain activated sludge in the tank.

−嫌気性アンモニア酸化槽−
嫌気性アンモニア酸化槽内に、平均粒径4mmのPVA担体を20V%充填した。嫌気性アンモニア酸化槽の立ち上げ時は、人工排水にて事前に培養した種担体を担体の10%分投入した。嫌気性アンモニア酸化槽への流入水量は、嫌気性アンモニア酸化槽内のNH4−N、NO2−Nを測定し、それぞれが50mg−N/L、20mg−N/Lとなるように調整しつつ、徐々に処理水量を増加させた。また、嫌気性アンモニア酸化槽には、鉄、および微量元素(亜鉛、コバルト、マンガン、銅、モリブデン、ニッケル)液の添加を行った。嫌気性アンモニア酸化槽への流入水量は、嫌気性アンモニア酸化槽処理水のNO2−N、NH4−N濃度を確認し、処理が良好である(いずれも20mg−N/L以下)であることを確認したら流入水量を上げることを繰り返し、2.0kg−N/m3まで徐々に窒素負荷を増加させた。
-Anaerobic Ammonia Oxidation Tank-
An anaerobic ammonia oxide tank was filled with 20 V% of a PVA carrier having an average particle size of 4 mm. At the time of starting up the anaerobic ammonia oxidation tank, 10% of the carrier was charged with the seed carrier pre-cultured in artificial wastewater. The amount of water flowing into the anaerobic ammonia oxidation tank was adjusted so that NH 4- N and NO 2- N in the anaerobic ammonia oxidation tank were measured and adjusted to 50 mg-N / L and 20 mg-N / L, respectively. At the same time, the amount of treated water was gradually increased. In addition, iron and trace element (zinc, cobalt, manganese, copper, molybdenum, nickel) liquids were added to the anaerobic ammonia oxidation tank. Regarding the amount of water flowing into the anaerobic ammonia oxidation tank, the NO 2- N and NH 4- N concentrations of the anaerobic ammonia oxidation tank treated water were confirmed, and the treatment was good (both 20 mg-N / L or less). After confirming that, the amount of inflow water was repeatedly increased, and the nitrogen load was gradually increased to 2.0 kg-N / m 3.

<カルシウム除去工程(軟化処理)における炭酸塩添加の影響>
処理を120日行った後の実施例1、実施例2及び比較例における軟化処理水及び亜硝酸化槽内のアンモニア性窒素含有排水の水質の比較結果を表2に示す。
<Effect of carbonate addition in calcium removal process (softening treatment)>
Table 2 shows the comparison results of the water quality of the softened treated water and the ammoniacal nitrogen-containing wastewater in the nitrite tank in Example 1, Example 2 and Comparative Example after the treatment was carried out for 120 days.

Figure 2021133298
Figure 2021133298

表2に示すように、軟化処理水のカルシウム濃度は、低い順に実施例2、実施例1、比較例となり、カルシウム除去工程(軟化処理)時にNa2CO3添加量を過剰に添加することにより、原水のCa濃度が変動しても安定してカルシウムを除去できることが確認された。また、いずれの方法においても、部分亜硝酸化槽での窒素の水質に差は見られなかった。さらに、試験終了時の亜硝酸化槽の担体付着物中のCa比率は、比較例、実施例1、実施例2の順に低くなり、比較例では担体上でのカルシウムスケールの成長が確認され、実施例1、2においてカルシウムスケールの生成が抑制されることが確認された。また、比較例では担体へのスケール付着により硝化速度が実施例1、2よりも低下したため、実施例1、2と同様の曝気風量で運転しても硝化が進行せず、NO2−N/NH4−N比が低下した。 As shown in Table 2, the calcium concentrations of the softened water are, in ascending order, Example 2, Example 1, and Comparative Example, and by excessively adding the amount of Na 2 CO 3 added during the calcium removal step (softening treatment). It was confirmed that calcium can be stably removed even if the Ca concentration of raw water fluctuates. In addition, no difference was observed in the water quality of nitrogen in the partial nitrite tank in any of the methods. Furthermore, the Ca ratio in the carrier deposits of the nitrite tank at the end of the test decreased in the order of Comparative Example, Example 1 and Example 2, and in Comparative Example, the growth of calcium scale on the carrier was confirmed. It was confirmed that the production of calcium scale was suppressed in Examples 1 and 2. Further, in the comparative example, since the nitrification rate was lower than that in Examples 1 and 2 due to the scale adhesion to the carrier, nitrification did not proceed even if the operation was performed with the same aeration air volume as in Examples 1 and 2, and NO 2- N / The NH 4- N ratio decreased.

<間接曝気の影響> <Effect of indirect aeration>

実施例1において、亜硝酸化槽内のNH4−N、NO2−Nを測定し、NO2−N/NH4−N比が1.32に近づくように、間欠曝気によりブロワの運転時間を調整した。比較例では間欠曝気は行わなかった。処理水量30L/d、亜硝酸化槽の容量を70Lとしたときの、各原水NH4−N濃度と、そのときのNO2−N/NH4−N比の目標比率が1.32となる必要硝化量の計算値を表3に、間欠曝気でのブロワの稼働率(On/(On+Off))と硝化量の関係を図3に示す。 In Example 1, NH 4- N and NO 2- N in the nitrite tank were measured, and the blower operating time was measured by intermittent aeration so that the NO 2- N / NH 4- N ratio approached 1.32. Was adjusted. No intermittent aeration was performed in the comparative example. When the treated water volume is 30 L / d and the capacity of the nitrite tank is 70 L, the target ratio of each raw water NH 4- N concentration and the NO 2- N / NH 4-N ratio at that time is 1.32. Table 3 shows the calculated values of the required nitrification amount, and FIG. 3 shows the relationship between the blower operating rate (On / (On + Off)) in intermittent aeration and the nitrification amount.

Figure 2021133298
Figure 2021133298

表3より、原水NH4−N濃度が変動すると、必要硝化量が大きく変化することがわかる。また、図3より、間欠曝気による運転時間比率と必要硝化量には線形関係があり、原水濃度の変動に追従して運転時間比率を調整可能であることがわかる。表3を用いて、例えば原水NH4−Nが125mg−N/Lのときの必要硝化量は2.1g−N/dと計算でき、図3より、運転時間比率を約0.10とすることが適切であることが分かる。この結果から、例えば、運転時間比率を、オン時間2分、オフ時間18分というように調整することができる。また、タイマ設定の翌日以降に、亜硝酸化槽の槽内の水質を確認し、NO2−N/NH4−N比が目標比率である1.32よりも高い場合は、オフ時間を延長し、NO2−N/NH4−N比が1.32よりも低い場合は、オフ時間を短縮するといった制御を行った。このような間欠曝気を80日間行った後、比較のため、間欠曝気以外は間欠曝気時と同条件で連続曝気を行った。 From Table 3, it can be seen that the required nitrification amount changes significantly when the concentration of raw water NH 4-N fluctuates. Further, from FIG. 3, it can be seen that there is a linear relationship between the operating time ratio due to intermittent aeration and the required nitrification amount, and the operating time ratio can be adjusted according to the fluctuation of the raw water concentration. Using Table 3, for example, when the raw water NH 4- N is 125 mg-N / L, the required nitrification amount can be calculated as 2.1 g-N / d, and the operating time ratio is set to about 0.10. Turns out to be appropriate. From this result, for example, the operation time ratio can be adjusted such that the on time is 2 minutes and the off time is 18 minutes. In addition, after the day after the timer is set, check the water quality in the nitrite tank, and if the NO 2- N / NH 4- N ratio is higher than the target ratio of 1.32, extend the off time. However, when the NO 2- N / NH 4- N ratio was lower than 1.32, control was performed such as shortening the off time. After performing such intermittent aeration for 80 days, continuous aeration was performed under the same conditions as during intermittent aeration except for intermittent aeration for comparison.

亜硝酸化槽に80日間、間欠曝気を行った場合と、その後連続曝気を行った場合において、亜硝酸化槽内のNO2−N/NH4−N比(−)の変化を図4に示し、亜硝酸化槽内の処理経過時間とNO2−N/NOx−N比(%)の変化を図5に示し、なお、原水、嫌気性アンモニア酸化槽内の窒素負荷及び窒素除去率(窒素除去速度/窒素負荷)の変化を図6に示す。 Fig. 4 shows the change in the NO 2- N / NH 4- N ratio (-) in the nitrite tank when the nitrite tank was exposed to intermittent air for 80 days and then continuously exposed to air. The changes in the elapsed treatment time and the NO 2- N / NO x- N ratio (%) in the nitrite tank are shown in FIG. 5, and the nitrogen load and nitrogen removal rate in the raw water and anaerobic ammonia oxidation tank are shown. The change in (nitrogen removal rate / nitrogen load) is shown in FIG.

図4に示すように、亜硝酸化工程においては、間欠曝気期間のNO2−N/NH4−N比はおおむね1.2〜1.5となり、目標比率である1.32に近い値であったのに対し、連続曝気すると、NO2−N/NH4−N比が3を超え、亜硝酸化槽内のアンモニア性窒素がほぼ全量硝化してしまっていることが分かる。図5に示すように、NO2−N/NOx−N比は間欠曝気および連続曝気に関わらずほぼ100%となり、いずれも安定した亜硝酸化が得られた。図6に示すように、嫌気性アンモニア酸化槽においては、間欠曝気期間の窒素の除去率(窒素除去速度/窒素負荷)は80〜100%と良好で、徐々に流入水量を増やしても安定的に処理を行うことができたが、連続曝気期間では除去率が10%以下に低下した。 As shown in FIG. 4, in the nitrite formation step, the NO 2- N / NH 4- N ratio during the intermittent air exposure period is approximately 1.2 to 1.5, which is close to the target ratio of 1.32. On the other hand, when continuously exposed to air, the NO 2- N / NH 4- N ratio exceeded 3, and it can be seen that almost all of the ammoniacal nitrogen in the nitrite tank was nitrified. As shown in FIG. 5, the NO 2- N / NO x- N ratio was almost 100% regardless of intermittent aeration and continuous aeration, and stable nitrite formation was obtained in both cases. As shown in FIG. 6, in the anaerobic ammonia oxidation tank, the nitrogen removal rate (nitrogen removal rate / nitrogen load) during the intermittent aeration period is as good as 80 to 100%, and it is stable even if the inflow water amount is gradually increased. However, the removal rate decreased to 10% or less during the continuous aeration period.

1…軟化処理槽
2…亜硝酸化槽
3…沈殿槽
4…嫌気性アンモニア酸化槽
5…沈殿槽
6…好気槽
7…嫌気槽
11…水質測定手段
12…炭酸塩添加手段
13…沈殿槽
14…中継槽
15…BOD酸化槽
21…水質測定手段
22…曝気・pH調整手段
23…流量調整手段
24…水質測定手段
100…制御手段
1 ... Softening treatment tank 2 ... Subnitration tank 3 ... Sedimentation tank 4 ... Anaerobic ammonia oxidation tank 5 ... Sedimentation tank 6 ... Aerobic tank 7 ... Anaerobic tank 11 ... Water quality measuring means 12 ... Carbonate adding means 13 ... Sedimentation tank 14 ... Relay tank 15 ... BOD oxidation tank 21 ... Water quality measuring means 22 ... Air exposure / pH adjusting means 23 ... Flow rate adjusting means 24 ... Water quality measuring means 100 ... Control means

Claims (7)

カルシウムを含有するアンモニア性窒素含有排水中のカルシウムを除去するカルシウム除去工程と、前記カルシウム除去工程後の前記アンモニア性窒素含有排水中のアンモニア性窒素の一部を亜硝酸性窒素へ亜硝酸化処理する亜硝酸化工程及び前記亜硝酸化処理の処理水を嫌気性アンモニア酸化菌を用いて嫌気性アンモニア酸化処理する嫌気性アンモニア酸化工程を含む硝化工程と、を含むアンモニア性窒素含有排水の処理工程において、
前記カルシウムを除去するための炭酸塩と、前記硝化工程で必要な無機体炭素を補充するための炭酸塩とを、前記カルシウム除去工程で添加することを含むアンモニア性窒素含有排水の処理方法。
A calcium removal step for removing calcium in the ammonia-containing nitrogen-containing wastewater containing calcium, and a nitrite treatment of a part of the ammoniacal nitrogen in the ammoniacal nitrogen-containing wastewater after the calcium removal step into nitrite nitrogen. A nitrite step and a nitrification step including an anaerobic ammonia oxidation step of anaerobic ammonia oxidation treatment of the treated water of the nitrite treatment using an anaerobic ammonia-oxidizing bacterium, and a treatment step of ammonia nitrogen-containing wastewater including the anaerobic ammonia oxidation step. In
A method for treating ammoniacal nitrogen-containing wastewater, which comprises adding a carbonate for removing calcium and a carbonate for supplementing inorganic carbon required in the nitrification step in the calcium removing step.
前記亜硝酸化工程において、亜硝酸化処理のpH調整剤として苛性ソーダを添加することを含む請求項1に記載のアンモニア性窒素含有排水の処理方法。 The method for treating ammoniacal nitrogen-containing wastewater according to claim 1, which comprises adding caustic soda as a pH adjuster for the nitrite treatment in the nitrite step. 前記カルシウム除去工程が、
前記アンモニア性窒素含有排水中のカルシウム濃度、アルカリ度、及びアンモニア性窒素濃度と、前記亜硝酸化工程における目標アンモニア性窒素濃度との関係に基づいて、前記亜硝酸化工程で必要な無機体炭素を補充するための前記炭酸塩を添加することを含む請求項1又は2に記載のアンモニア性窒素含有排水の処理方法。
The calcium removal step
Inorganic carbon required in the nitrite step based on the relationship between the calcium concentration, alkalinity, and ammonia nitrogen concentration in the ammonia nitrogen-containing wastewater and the target ammonia nitrogen concentration in the nitrite step. The method for treating ammoniacal nitrogen-containing wastewater according to claim 1 or 2, which comprises adding the above-mentioned carbonate for supplementing.
前記亜硝酸化処理が、前記アンモニア性窒素含有排水を処理する亜硝酸化槽内にアンモニア酸化菌を付着固定させた担体を流動させることを含む請求項1〜3のいずれか1項に記載のアンモニア性窒素含有排水の処理方法。 The one according to any one of claims 1 to 3, wherein the nitrite treatment involves flowing a carrier on which ammonia-oxidizing bacteria are adhered and fixed in a nitrite tank for treating the ammoniacal nitrogen-containing wastewater. A method for treating ammoniacal nitrogen-containing wastewater. 前記亜硝酸化処理が、前記アンモニア性窒素含有排水を処理する亜硝酸化槽内に浮遊汚泥を共存させることを更に含む請求項1〜4のいずれか1項に記載のアンモニア性窒素含有排水の処理方法。 The ammoniacal nitrogen-containing wastewater according to any one of claims 1 to 4, further comprising the coexistence of suspended sludge in the nitrite tank for treating the ammoniacal nitrogen-containing wastewater. Processing method. 前記亜硝酸化処理が、前記アンモニア性窒素含有排水を処理する亜硝酸化槽内を間欠曝気することを含む請求項1〜5のいずれか1項に記載のアンモニア性窒素含有排水の処理方法。 The method for treating ammoniacal nitrogen-containing wastewater according to any one of claims 1 to 5, wherein the nitrite treatment comprises intermittent aeration in the nitrite tank for treating the ammoniacal nitrogen-containing wastewater. カルシウムを含有するアンモニア性窒素含有排水を軟化処理してカルシウムを除去する軟化処理槽と、
前記軟化処理後の前記アンモニア性窒素含有排水に含まれるアンモニア性窒素の一部を亜硝酸性窒素へ亜硝酸化処理する亜硝酸化槽と、
亜硝酸化処理の処理水を、嫌気性アンモニア酸化菌を用いて嫌気性アンモニア酸化処理する嫌気性アンモニア酸化槽と、
前記アンモニア性窒素含有排水中のカルシウム濃度及びアルカリ度に基づいて、前記亜硝酸化処理及び前記嫌気性アンモニア酸化処理に必要な炭酸塩を、前記軟化処理槽に添加する炭酸塩添加手段と
を備えるアンモニア性窒素含有排水の処理装置。
A softening treatment tank that softens calcium-containing ammoniacal nitrogen-containing wastewater to remove calcium,
A nitrite tank that nitrites a part of the ammoniacal nitrogen contained in the ammoniacal nitrogen-containing wastewater after the softening treatment into nitrite nitrogen.
An anaerobic ammonia oxidation tank in which the treated water for nitrite treatment is treated with anaerobic ammonia oxidation using anaerobic ammonia-oxidizing bacteria,
A carbonate adding means for adding carbonate necessary for the nitrite treatment and the anaerobic ammonia oxidation treatment to the softening treatment tank based on the calcium concentration and alkalinity in the ammoniacal nitrogen-containing wastewater is provided. Ammonia nitrogen-containing wastewater treatment equipment.
JP2020030971A 2020-02-26 2020-02-26 Treatment method and equipment for ammoniacal nitrogen-containing wastewater Active JP7332501B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020030971A JP7332501B6 (en) 2020-02-26 2020-02-26 Treatment method and equipment for ammoniacal nitrogen-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030971A JP7332501B6 (en) 2020-02-26 2020-02-26 Treatment method and equipment for ammoniacal nitrogen-containing wastewater

Publications (3)

Publication Number Publication Date
JP2021133298A true JP2021133298A (en) 2021-09-13
JP7332501B2 JP7332501B2 (en) 2023-08-23
JP7332501B6 JP7332501B6 (en) 2024-02-26

Family

ID=77659581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030971A Active JP7332501B6 (en) 2020-02-26 2020-02-26 Treatment method and equipment for ammoniacal nitrogen-containing wastewater

Country Status (1)

Country Link
JP (1) JP7332501B6 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126888A (en) * 2001-10-26 2003-05-07 Ebara Corp Method and device for treating wastewater containing nitrogen and phosphorus
JP2007125484A (en) * 2005-11-02 2007-05-24 Japan Organo Co Ltd Nitrogen-containing wastewater treatment method
JP2008246434A (en) * 2007-03-30 2008-10-16 Japan Organo Co Ltd Water treating method and water treating apparatus
JP2010221151A (en) * 2009-03-24 2010-10-07 Electric Power Dev Co Ltd Method of treating coal gasification wastewater
JP2012236122A (en) * 2011-05-10 2012-12-06 Swing Corp Method for denitrification treatment of ammonium nitrogen and calcium-containing wastewater, and treatment apparatus for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126888A (en) * 2001-10-26 2003-05-07 Ebara Corp Method and device for treating wastewater containing nitrogen and phosphorus
JP2007125484A (en) * 2005-11-02 2007-05-24 Japan Organo Co Ltd Nitrogen-containing wastewater treatment method
JP2008246434A (en) * 2007-03-30 2008-10-16 Japan Organo Co Ltd Water treating method and water treating apparatus
JP2010221151A (en) * 2009-03-24 2010-10-07 Electric Power Dev Co Ltd Method of treating coal gasification wastewater
JP2012236122A (en) * 2011-05-10 2012-12-06 Swing Corp Method for denitrification treatment of ammonium nitrogen and calcium-containing wastewater, and treatment apparatus for the same

Also Published As

Publication number Publication date
JP7332501B6 (en) 2024-02-26
JP7332501B2 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
KR101473050B1 (en) Method and device for removing biological nitrogen and support therefor
JP5727291B2 (en) Method for denitrification of wastewater containing ammoniacal nitrogen and calcium, and its treatment equipment
JP4872171B2 (en) Biological denitrification equipment
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP4106203B2 (en) How to remove nitrogen from water
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP7229190B2 (en) Ammonia nitrogen-containing wastewater treatment method and treatment apparatus
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
EP2242060B1 (en) Method and apparatus for treating radioactive nitrate waste liquid
JP4837706B2 (en) Ammonia nitrogen removal equipment
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP2002011495A (en) Method for removing nitrogen and phosphor from wastewater
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP5900098B2 (en) Nitrogen and phosphorus removal apparatus and method
JP3958900B2 (en) How to remove nitrogen from wastewater
JP5186429B2 (en) Method and apparatus for denitrification treatment of digested sludge separation liquid
JP4104311B2 (en) How to remove nitrogen from wastewater
CN104271516A (en) System and method for treating wastewater containing suspended organic substance
JP7332501B6 (en) Treatment method and equipment for ammoniacal nitrogen-containing wastewater
JP2002018479A (en) Method for removing nitrogen from water
JP2001070984A (en) Method for removing nitrogen from waste water
KR100202066B1 (en) Wastewater treatment method using biological 3 step digestion process in one reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230810

R150 Certificate of patent or registration of utility model

Ref document number: 7332501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150