JP2003326297A - Nitrification method for waste water - Google Patents

Nitrification method for waste water

Info

Publication number
JP2003326297A
JP2003326297A JP2002134304A JP2002134304A JP2003326297A JP 2003326297 A JP2003326297 A JP 2003326297A JP 2002134304 A JP2002134304 A JP 2002134304A JP 2002134304 A JP2002134304 A JP 2002134304A JP 2003326297 A JP2003326297 A JP 2003326297A
Authority
JP
Japan
Prior art keywords
nitrification
concentration
nitrogen
wastewater
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002134304A
Other languages
Japanese (ja)
Inventor
Kazuhiko Noto
一彦 能登
Hironori Nakamura
裕紀 中村
Makoto Iwashita
真 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2002134304A priority Critical patent/JP2003326297A/en
Publication of JP2003326297A publication Critical patent/JP2003326297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To carry out a high-efficiency and low-cost nitrification method due to the finding that a nitrous acid type nitrification process can be stably performed from an acclimatizing stage with relatively low ammonia nitrogen concentration to a normal operation stage with high concentration. <P>SOLUTION: In the nitrification method for waste water by bringing waste water containing ammonia nitrogen into contact with nitrifying bacteria in a nitrification tank 12 under aerobic conditions to produce oxidized nitrogen, the pH of the waste water in the nitrification tank 12 is controlled to the range from 7.5 to 9.5 when the concentration of ammonia nitrogen in the waste water is 40 to 1,000 mg/l. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、廃水の硝化処理方
法に係り、特に、高濃度のアンモニア性窒素を含有する
廃水の硝化処理技術に関する。
TECHNICAL FIELD The present invention relates to a nitrification treatment method for wastewater, and more particularly to a nitrification treatment technology for wastewater containing a high concentration of ammoniacal nitrogen.

【0002】[0002]

【従来の技術】廃水中のアンモニア性窒素を硝化処理す
るには、硝化菌と呼ばれる細菌を利用した生物学的処理
方法を用いるのが一般的である。硝化菌には、アンモニ
ア性窒素(NH4 - N)を亜硝酸性窒素(NO2 - N)
に変換するアンモニア酸化細菌と、亜硝酸性窒素を硝酸
性窒素(NO3 - N)に変換する亜硝酸酸化細菌が存在
する。そして、下水処理などのように廃水のpHが中性
域において好気性条件下で硝化処理する場合には、常に
アンモニア酸化細菌と亜硝酸酸化細菌の両方が存在し、
アンモニア性窒素が硝酸性窒素まで酸化される、いわゆ
る硝酸型の硝化処理が行われる。
2. Description of the Related Art In order to nitrify ammoniacal nitrogen in waste water, it is common to use a biological treatment method using bacteria called nitrifying bacteria. For nitrifying bacteria, ammoniacal nitrogen (NH 4 -N) is added to nitrite nitrogen (NO 2 -N)
There are ammonia-oxidizing bacteria that convert into nitrous acid and nitrite-oxidizing bacteria that convert nitrite nitrogen into nitrate nitrogen (NO 3 -N). And, when nitrification is performed under aerobic conditions in the pH of wastewater such as sewage treatment, there are always both ammonia-oxidizing bacteria and nitrite-oxidizing bacteria,
A so-called nitric acid-type nitrification treatment in which ammoniacal nitrogen is oxidized to nitrate nitrogen is performed.

【0003】一般に、硝酸性窒素まで酸化するよりは亜
硝酸性窒素まで酸化する方が消費する酸素が少ないこと
から硝化槽内に曝気する曝気量を少なくすることができ
ると共に、硝化処理に続いて通常設けられる脱窒処理に
おいて有機物添加量を少なくできる。
In general, oxidizing oxygen to nitrite nitrogen consumes less oxygen than oxidizing to nitrate nitrogen. Therefore, the amount of aeration to be aerated in the nitrification tank can be reduced, and the nitrification treatment can be followed. The amount of organic substances added can be reduced in the denitrification treatment that is usually provided.

【0004】従って、硝化反応を亜硝酸性窒素までで確
実に停止する、いわゆる亜硝酸型の硝化処理ができれ
ば、低コストの硝化処理プロセスを構築することが可能
となる。また、硝酸型の硝化処理はアンモニア性窒素→
亜硝酸性窒素→硝酸性窒素の2段階の酸化ステップを必
要とするのに対し、亜硝酸型の硝化処理はアンモニア性
窒素→亜硝酸性窒素の1段階の酸化ステップですむの
で、硝化処理効率を向上させることができる。
Therefore, if a so-called nitrite type nitrification treatment that surely stops the nitrification reaction up to nitrite nitrogen, a low-cost nitrification treatment process can be constructed. In addition, nitric acid nitrification treatment is performed with ammonia nitrogen →
Whereas the nitrite nitrogen → nitric acid nitrogen requires two oxidation steps, the nitrite type nitrification requires only one step of ammonia nitrogen → nitrite nitrogen, so nitrification efficiency is high. Can be improved.

【0005】ここで、アンモニア性窒素を亜硝酸性窒素
に変換するアンモニア酸化細菌の種類について見ると、
アンモニア酸化細菌の基質(エネルギー供給源)である
アンモニア性窒素に関して、下水のようにアンモニア性
窒素濃度が比較的低い条件で最大のアンモニア酸化活性
を示し、例えばアンモニア性窒素濃度が1000〜20
00mg/Lのように高濃度条件においては基質自体に
よって阻害を受ける種類と、アンモニア性窒素濃度が高
いほどアンモニア酸化活性が増加し、例えばアンモニア
性窒素濃度が2000mg/L程度の高濃度条件で非常
に速いアンモニア酸化速度を示す種類が存在することが
知られている。前者のアンモニア酸化細菌を低濃度アン
モニア対応菌、後者のアンモニア酸化細菌を高濃度アン
モニア対応菌と呼ぶことにする。そして、高濃度アンモ
ニア対応菌は、高濃度条件で単位菌体当たりの酸化処理
速度が高くなるため、高濃度アンモニア対応菌を主体と
した生物相を利用した硝化槽を構成することにより、硝
化槽の硝化処理効率を向上させることができる。
Here, looking at the types of ammonia-oxidizing bacteria that convert ammoniacal nitrogen to nitrite nitrogen,
With respect to ammonia nitrogen, which is a substrate (energy supply source) of ammonia-oxidizing bacteria, it exhibits the maximum ammonia oxidation activity under conditions where the ammonia nitrogen concentration is relatively low, such as sewage, and for example, the ammonia nitrogen concentration is 1000 to 20.
In the high concentration condition such as 00 mg / L, the type which is inhibited by the substrate itself and the higher the ammonia nitrogen concentration is, the more the ammonia oxidation activity is increased. For example, in the high concentration condition where the ammonia nitrogen concentration is about 2000 mg / L, It is known that there are several types that exhibit a fast ammonia oxidation rate. The former ammonia-oxidizing bacteria will be referred to as low-concentration ammonia-compatible bacteria, and the latter ammonia-oxidizing bacteria will be referred to as high-concentration ammonia-compatible bacteria. In addition, high-concentration ammonia-compatible bacteria have a high oxidation treatment rate per unit cell under high-concentration conditions, so by constructing a nitrification tank that uses a biota mainly composed of high-concentration ammonia-compatible bacteria, The nitrification treatment efficiency can be improved.

【0006】しかし、硝化槽の馴養運転時のように運転
初期のアンモニア性窒素濃度が例えば1000mg/L
以下の比較的低濃度条件では、馴養の過程で低濃度アン
モニア対応菌も顕著に増殖する。この結果、低濃度アン
モニア対応菌によって処理水中の残存アンモニア性窒素
濃度は低下するが、アンモニア性窒素濃度が1000m
g/L以上の高濃度領域での定常運転時に移行した際
に、高濃度アンモニア対応菌が充分に優占繁殖しておら
ず少ないために必ずしも高い硝化処理速度が得られない
という問題がある。また、一度、高濃度アンモニア対応
菌が優占繁殖した高活性の生物相は、亜硝酸性窒素まで
で硝化反応が停止するといわれているが、多くの場合、
時間の経過に伴って硝酸性窒素が生成し始め、最終的に
は硝酸型の硝化反応に変化してしまうという問題があ
る。
However, the ammonia nitrogen concentration at the beginning of the operation is 1000 mg / L, for example, during the acclimatization operation of the nitrification tank.
Under the following relatively low concentration conditions, low concentration ammonia-corresponding bacteria also proliferate remarkably during the acclimation process. As a result, the residual ammoniacal nitrogen concentration in the treated water decreases due to the low-concentration ammonia-compatible bacteria, but the ammoniacal nitrogen concentration is 1000 m
There is a problem that a high nitrification treatment rate cannot always be obtained when the normal operation in a high concentration region of g / L or more is performed and the high-concentration ammonia-corresponding bacteria do not sufficiently proliferate and are small. Moreover, once it is said that the highly active biota in which high-concentration ammonia-compatible bacteria predominantly propagate, the nitrification reaction is stopped by nitrite nitrogen, but in many cases,
There is a problem that nitrate nitrogen starts to be generated with the lapse of time, and the nitric acid-type nitrification reaction is finally changed.

【0007】[0007]

【発明が解決しようとする課題】このように、アンモニ
ア酸化細菌の種類のうちの高濃度アンモニア対応菌を利
用して低コストな亜硝酸型の硝化処理方法を行うには、
アンモニア性窒素濃度が1000mg/L未満の比較的
低濃度な馴養運転時でも高濃度アンモニア対応菌を優占
繁殖させることができ、且つアンモニア性窒素濃度が1
000mg/L以上の高濃度な正常運転に移行した後
も、亜硝酸型の硝化処理を安定して維持できるための技
術的な確立が必要である。
As described above, in order to carry out a low-cost nitrite type nitrification treatment method using a high-concentration ammonia-compatible bacterium of the types of ammonia-oxidizing bacteria,
Ammonia nitrogen concentration can be predominantly propagated even in acclimatization operation at a relatively low concentration of less than 1000 mg / L, and the ammonia nitrogen concentration is 1
Even after shifting to normal operation with a high concentration of 000 mg / L or more, it is necessary to establish technically so that the nitrite type nitrification treatment can be stably maintained.

【0008】本発明はこのような事情に鑑みてなされた
もので、高濃度のアンモニア性窒素を含有する廃水の硝
化処理において、アンモニア性窒素濃度が比較的低濃度
な馴養運転時から高濃度な正常運転に至るまで、亜硝酸
型の硝化処理を安定して行うことができるので、高効率
且つ低コストの硝化処理方法を行うことができる廃水の
硝化処理方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and in nitrification treatment of wastewater containing a high concentration of ammonia nitrogen, the ammonia nitrogen concentration is relatively high from the acclimation operation to a high concentration. It is an object of the present invention to provide a wastewater nitrification treatment method capable of performing a highly efficient and low-cost nitrification treatment method, since the nitrite-type nitrification treatment can be stably performed until normal operation.

【0009】[0009]

【課題を解決するための手段】本発明は前記目的を達成
するために、アンモニア性窒素を含有する廃水と硝化菌
とを硝化槽内で好気性条件下で接触させて酸化性窒素を
生成する廃水の硝化処理方法において、前記廃水のアン
モニア性窒素の濃度が40〜1000mg/Lのとき
に、前記硝化槽内の廃水pHを7.5〜9.5の範囲に
なるように制御することを特徴とする。
In order to achieve the above-mentioned object, the present invention produces wastewater containing ammoniacal nitrogen and nitrifying bacteria in a nitrification tank under aerobic conditions to produce oxidative nitrogen. In the wastewater nitrification treatment method, when the concentration of ammonia nitrogen in the wastewater is 40 to 1000 mg / L, the pH of the wastewater in the nitrification tank is controlled to be in the range of 7.5 to 9.5. Characterize.

【0010】本発明によれば、硝化処理において、廃水
のアンモニア性窒素の濃度が40〜1000mg/Lの
ときに、硝化槽内の廃水pHを7.5〜9.5の範囲に
なるように制御するようにしたので、アンモニア性窒素
濃度が1000mg/L未満の比較的低濃度な馴養運転
時でも高濃度アンモニア対応菌を優占繁殖させることが
でき、且つアンモニア性窒素濃度が1000mg/L以
上の高濃度な正常運転に移行した後も、亜硝酸型の硝化
処理を安定して維持できる。アンモニア性窒素の濃度が
40〜1000mg/Lは、正常運転に移行する前の馴
養運転時におけるアンモニア性窒素濃度に略該当するこ
とから、本発明は、アンモニア性窒素の濃度が1000
mg/L以上の廃水を処理するに際して、高効率且つ低
コストの亜硝酸型の硝化処理を行うため、特に馴養運転
時における運転条件として極めて有効である。
According to the present invention, in the nitrification treatment, when the concentration of ammonia nitrogen in the wastewater is 40 to 1000 mg / L, the pH of the wastewater in the nitrification tank is adjusted to be in the range of 7.5 to 9.5. Since it is controlled, the ammonia-rich nitrogen-containing bacteria can be dominated by high-concentration ammonia-compatible bacteria even during acclimatization operation at a relatively low ammonia-nitrogen concentration of less than 1000 mg / L, and the ammoniacal nitrogen concentration is 1000 mg / L or more. The nitrite type nitrification treatment can be stably maintained even after shifting to normal operation with high concentration. Since the concentration of ammonia nitrogen of 40 to 1000 mg / L substantially corresponds to the concentration of ammonia nitrogen at the time of acclimatization operation before shifting to normal operation, the present invention provides that the concentration of ammonia nitrogen is 1000.
When treating wastewater of mg / L or more, nitrite type nitrification treatment of high efficiency and low cost is performed, so that it is extremely effective as an operating condition particularly during acclimatization operation.

【0011】ここで、廃水のアンモニア性窒素の濃度が
40〜1000mg/Lのときに、硝化槽内の廃水pH
を7.5〜9.5の範囲になるように制御する理由につ
いて説明すると、アンモニア性窒素として計測されるア
ンモニアには、イオンの形態のアンモニアと遊離のアン
モニアとがある。そして、アンモニア酸化細菌の基質
は、イオンの形態でない遊離アンモニア(NH3 )であ
り、イオンの形態のアンモニアと遊離のアンモニアの存
在比率はpHによって変化する。また、遊離のアンモニ
アは亜硝酸性窒素を硝酸性窒素まで酸化する亜硝酸酸化
細菌の活性を阻害する。従って、遊離のアンモニアの存
在比率を意図的に大きくできるなら、高濃度アンモニア
対応菌を優占繁殖でき且つ亜硝酸型の硝化処理を安定し
て行うことができる。
When the concentration of ammonia nitrogen in the waste water is 40 to 1000 mg / L, the pH of the waste water in the nitrification tank is
Explaining the reason why control is performed so as to be in the range of 7.5 to 9.5, ammonia that is measured as ammoniacal nitrogen includes ammonia in the form of ions and free ammonia. The substrate of ammonia-oxidizing bacteria is free ammonia (NH 3 ) that is not in the ionic form, and the abundance ratio of ionic form of ammonia and free ammonia changes with pH. Free ammonia also inhibits the activity of nitrite-oxidizing bacteria that oxidize nitrite nitrogen to nitrate nitrogen. Therefore, if the abundance ratio of free ammonia can be intentionally increased, the bacteria compatible with high-concentration ammonia can be dominantly propagated and the nitrite type nitrification treatment can be stably performed.

【0012】発明者はこの観点から遊離のアンモニアの
存在比率を意図的に大きくする技術を鋭意検討したとこ
ろ、廃水のアンモニア性窒素の濃度が40〜1000m
g/Lのときに、硝化槽内の廃水pHを7.5〜9.5
の範囲でアルカリ側に制御することで、遊離のアンモニ
アを増加させてアンモニア性窒素の酸化を亜硝酸性窒素
までで停止する制御が可能になるとの知見を得た。この
場合、廃水pHが7.5未満では、アルカリ度が弱すぎ
て遊離のアンモニアの存在比率を増加させる作用が生じ
ず、pHが9.5を越えると、アルカリ度が強すぎて硝
化菌の活性が低下したり死滅する。また、硝化槽内の廃
水のアンモニア性窒素濃度が40mg/L未満では、p
Hを7.5〜9.5に制御しても遊離のアンモニアの絶
対量が不足し、低濃度アンモニア対応菌が優占するた
め、亜硝酸型の硝化反応を確実に行うには至らない。逆
に、廃水のアンモニア性窒素濃度が1000mg/Lを
越えると、遊離のアンモニアの絶対量が十分にあること
からpHを7.5〜9.5に制御する作用効果が小さく
なる。従って、硝化槽内の廃水pHを7.5〜9.5の
範囲でアルカリ側に制御したときに、効果的に遊離アン
モニアの存在比率を高めて高濃度アンモニア対応菌を優
占繁殖させ、亜硝酸型の硝化反応に寄与することができ
るアンモニア性窒素濃度条件は、40〜1000mg/
Lの範囲のときである。
From this point of view, the inventor diligently studied a technique for intentionally increasing the abundance ratio of free ammonia, and as a result, the concentration of ammonia nitrogen in the waste water was 40 to 1000 m.
When it is g / L, the pH of the wastewater in the nitrification tank is 7.5 to 9.5.
It has been found that by controlling the alkali side in the range of 1, the amount of free ammonia can be increased and the control of stopping the oxidation of ammonia nitrogen by nitrite nitrogen can be performed. In this case, if the pH of the wastewater is less than 7.5, the alkalinity is too weak and the effect of increasing the abundance ratio of free ammonia does not occur, and if the pH is more than 9.5, the alkalinity is too strong and the nitrifying bacteria become It loses activity or dies. When the ammonia nitrogen concentration of wastewater in the nitrification tank is less than 40 mg / L, p
Even if H is controlled to 7.5 to 9.5, the absolute amount of free ammonia is insufficient and the bacteria compatible with low-concentration ammonia dominate, so that the nitrite-type nitrification reaction cannot be reliably performed. On the other hand, when the concentration of ammonia nitrogen in the waste water exceeds 1000 mg / L, the absolute amount of free ammonia is sufficient, and the effect of controlling the pH to 7.5 to 9.5 becomes small. Therefore, when the pH of the wastewater in the nitrification tank is controlled to the alkaline side in the range of 7.5 to 9.5, the abundance ratio of free ammonia is effectively increased to predominantly propagate high-concentration ammonia-corresponding bacteria. The concentration of ammoniacal nitrogen that can contribute to nitric acid type nitrification reaction is 40 to 1000 mg /
It is in the range of L.

【0013】本発明の請求項2は、請求項1において、
生成される酸化態窒素の種類中に硝酸態窒素が検出され
る場合には、前記硝化槽内の廃水pHを7.5〜9.5
の範囲で前記硝酸性窒素が検出されたときのpH値より
も大きくするようにしたので、硝酸型の硝化処理に移行
しても再び亜硝酸型の硝化処理に戻すことができる。こ
の場合、亜硝酸型の硝化処理に戻ったら、硝酸態窒素が
検出されたpH値に戻しても、硝酸型の硝化処理に戻っ
てしまうことはない。従って、生成される酸化態窒素の
種類中に硝酸態窒素が検出される場合には、一時的にp
Hを上げることが好ましい。
According to claim 2 of the present invention, in claim 1,
When nitrate nitrogen is detected in the type of oxidized nitrogen produced, the pH of the wastewater in the nitrification tank is adjusted to 7.5 to 9.5.
In this range, the pH value is set to be higher than the pH value when the nitrate nitrogen is detected. Therefore, even if the nitric acid nitrification treatment is started, it can be returned to the nitrite nitrification treatment again. In this case, after returning to the nitrite type nitrification treatment, even if the pH value in which nitrate nitrogen is detected is returned, it does not return to the nitric acid type nitrification treatment. Therefore, when nitrate nitrogen is detected in the types of oxidized nitrogen produced, p
It is preferable to raise H.

【0014】本発明の請求項3は、硝化槽を複数直列に
設け、上流側の硝化槽から下流側の硝化槽にいくに従っ
て硝化槽内の廃水pHが順次小さくなるように各硝化槽
のpHを制御すると共に、少なくとも最上流側の硝化槽
は請求項1又は2を満足する硝化処理方法を行うように
したので、各硝化槽トータルでの硝化反応速度を大きく
することができる。
According to a third aspect of the present invention, a plurality of nitrification tanks are provided in series, and the pH of the wastewater in the nitrification tanks is gradually reduced from the upstream nitrification tank to the downstream nitrification tank. In addition to controlling the above, the nitrification treatment method satisfying claim 1 or 2 is performed in at least the most upstream nitrification tank, so that the total nitrification reaction rate in each nitrification tank can be increased.

【0015】[0015]

【発明の実施の形態】以下添付図面に従って、本発明に
係る廃水の硝化処理方法の好ましい実施の形態について
詳説する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the method for nitrifying waste water according to the present invention will be described in detail below with reference to the accompanying drawings.

【0016】図1は本発明の廃水の硝化処理方法を適用
する第1の実施の形態の硝化処理装置10の構成図であ
る。
FIG. 1 is a block diagram of a nitrification treatment apparatus 10 of a first embodiment to which the wastewater nitrification treatment method of the present invention is applied.

【0017】図1に示すように、アンモニア性窒素を含
有する廃水は、硝化槽12に流入して好気性条件下で硝
化処理される。流入する廃水のアンモニア性窒素濃度は
40〜1000mg/Lの範囲である。
As shown in FIG. 1, wastewater containing ammoniacal nitrogen flows into the nitrification tank 12 and is nitrified under aerobic conditions. The ammonia nitrogen concentration of the inflowing waste water is in the range of 40 to 1000 mg / L.

【0018】硝化槽12内には、硝化菌を付着保持する
ための複数の波板状の付着固定板14、14…が水没配
置され、運転開始時には廃水中の活性汚泥を付着固定板
14に付着させて馴養を開始し、硝化菌の菌体濃度を高
める。尚、硝化菌を保持する手段としては、付着固定板
14に限定されるものではなく、後記する第2の実施の
形態のように、活性汚泥や純粋培養した硝化菌を包括固
定化した担体を硝化槽12内に投入すようにしてもよ
い。担体の場合には、硝化槽12の出口にスクリーン等
の担体流出防止機構を設けることが好ましい。
In the nitrification tank 12, a plurality of corrugated plate-like adhering and fixing plates 14, 14 for adhering and holding nitrifying bacteria are submerged and arranged. At the start of operation, activated sludge in wastewater is adhered and fixed to the adhering and fixing plate 14. Start acclimation by attaching and increase the concentration of nitrifying bacteria. The means for holding the nitrifying bacteria is not limited to the attachment fixing plate 14, and a carrier in which activated sludge or purely cultured nitrifying bacteria are entrapped and immobilized is used as in the second embodiment described later. You may make it throw in in the nitrification tank 12. In the case of a carrier, it is preferable to provide a carrier outflow preventing mechanism such as a screen at the outlet of the nitrification tank 12.

【0019】硝化槽12内の底部には、ブロア13に接
続された散気管15が設けられ、この散気管15から空
気が曝気されることにより硝化槽12内が好気性条件に
形成される。
An air diffuser 15 connected to the blower 13 is provided at the bottom of the nitrification tank 12, and the air is aerated from the air diffuser 15 to form the inside of the nitrification tank 12 under an aerobic condition.

【0020】硝化槽12の上方には、硝化槽12内の廃
水pHを調整するアルカリ液が貯留されたアルカリタン
ク16が設けられ、添加配管18の途中に添加量調整バ
ルブ20が設けられる。硝化槽12内には、廃水pHを
測定するpH計22が設けられ、pH計22に基づいて
添加量調整バルブ20からのアルカリ液の添加量が調整
される。硝化槽12内の廃水pH値は7.5〜9.5の
範囲に調整される。例えば、pHの7.5〜9.5の中
央値であるpH8.5を基準に制御し、pH8.5を下
回ったらアルカリタンク16からアルカリ液を添加して
pHを8.5に戻すように制御する。
Above the nitrification tank 12, an alkali tank 16 for storing an alkaline liquid for adjusting the pH of the wastewater in the nitrification tank 12 is provided, and an addition amount adjusting valve 20 is provided in the middle of the addition pipe 18. A pH meter 22 for measuring the pH of wastewater is provided in the nitrification tank 12, and the addition amount of the alkaline liquid from the addition amount adjusting valve 20 is adjusted based on the pH meter 22. The pH value of the wastewater in the nitrification tank 12 is adjusted to the range of 7.5 to 9.5. For example, control is performed on the basis of pH 8.5, which is the median value of pH 7.5 to 9.5, and when the pH is lower than 8.5, the alkaline solution is added from the alkaline tank 16 to return the pH to 8.5. Control.

【0021】また、硝化槽12内には、アンモニア性窒
素が酸化されて生成された酸化性窒素のうち、少なくと
も硝酸性窒素を検出する検出器17が設けられ、検出器
17で硝酸性窒素が検出されると、硝化槽12内の廃水
pHを7.5〜9.5の範囲で硝酸性窒素が検出された
ときのpH値よりも一時的に大きくなるように、添加量
調整バルブ20からのアルカリ液の添加量を調整する。
pH計22でpH8.5に制御する場合には、検出器1
7で硝酸性窒素が検出されると、例えばpH9.0にな
るように一時的に制御する。
Further, in the nitrification tank 12, there is provided a detector 17 for detecting at least nitrate nitrogen among the oxidizing nitrogen produced by oxidizing ammonia nitrogen, and the detector 17 detects nitrate nitrogen. When detected, the pH of the wastewater in the nitrification tank 12 is temporarily increased from the pH value when nitrate nitrogen is detected in the range of 7.5 to 9.5 from the addition amount adjusting valve 20. Adjust the amount of alkaline solution added.
When controlling the pH to 8.5 with the pH meter 22, the detector 1
When nitrate nitrogen is detected in 7, the pH is temporarily controlled to pH 9.0, for example.

【0022】図2は、上記の如く構成された第1の実施
の形態の硝化処理装置10を用いて、本発明の廃水の硝
化処理方法を行ったもので、アンモニア性窒素濃度の5
00mg/LをpH8.5で硝化処理したものである。
本発明の場合には、処理水中のアンモニア性窒素(NH
4 - N)濃度は、運転開始から約30日目までに急激に
減少し、その後、NH4 - N濃度が略100mg/L程
度で安定して残存するようになった。これに伴って亜硝
酸性窒素(NO2 - N)が生成され、NO2 -N濃度は
NH4 - N濃度の減少に反比例するように増加し、運転
開始から約30日目で略400mg/L程度で安定し
た。硝酸性窒素(NO3 - N)については、運転開始1
50日たっても生成は認められなかった。この結果は、
廃水のアンモニア性窒素の濃度が40〜1000mg/
Lのときに、硝化槽12内の廃水pHを7.5〜9.5
の範囲になるように制御する場合には同様の結果を得る
ことができる。このことは、本発明の廃水の硝化処理方
法を行うことにより、硝化槽内に高濃度アンモニア対応
菌が優占繁殖していることを意味する。特に、廃水のア
ンモニア性窒素濃度が1000mg/L以上の高濃度の
アンモニア性窒素を硝化処理する際の、馴養運転時のア
ンモニア性窒素濃度に略相当する40〜1000mg/
Lのときに、高濃度アンモニア対応菌を優占繁殖できる
ので、1000mg/L以上の高濃度の定常運転への移
行を円滑に行うことができる。
FIG. 2 shows a wastewater nitrification treatment method of the present invention using the nitrification treatment apparatus 10 of the first embodiment configured as described above.
00 mg / L was nitrified at pH 8.5.
In the case of the present invention, ammoniacal nitrogen (NH
The 4 -N) concentration decreased sharply from the start of operation to about 30 days, and thereafter, the NH 4 -N concentration remained stable at about 100 mg / L. Along with this, nitrite nitrogen (NO 2 -N) is generated, and the NO 2 -N concentration increases in inverse proportion to the decrease of the NH 4 -N concentration, and about 400 mg / It was stable at about L. Start operation 1 for nitrate nitrogen (NO 3 -N)
No production was observed even after 50 days. This result is
The concentration of ammonia nitrogen in the wastewater is 40-1000mg /
When L, the pH of the wastewater in the nitrification tank 12 is 7.5 to 9.5.
Similar results can be obtained when control is performed within the range. This means that high-concentration ammonia-compatible bacteria predominantly propagate in the nitrification tank by carrying out the wastewater nitrification treatment method of the present invention. In particular, when nitrifying a high concentration of ammonia nitrogen having a concentration of 1000 mg / L or more in wastewater, the concentration of ammonia nitrogen in the acclimation operation is approximately 40 to 1000 mg / l.
At L, high-concentration ammonia-compatible bacteria can be dominated and proliferated, so that a transition to steady operation at a high concentration of 1000 mg / L or more can be smoothly performed.

【0023】図3は、同じ硝化処理装置10を用いて5
00mg/Lのアンモニア性窒素濃度の廃水をpH7.
0で硝化処理した比較例である。比較例の場合には、運
転開始から約45日目まで処理水中のNH4 - N濃度が
下がり続けて本発明の場合よりも低くなり、これに反比
例するようにNO2 - N濃度が増加する。しかし、NO
2 - N濃度がピークに達する運転開始45日目を過ぎる
頃からNO2 - N濃度が減少し始め、NO3 - N濃度が
増加し始めた。そして、運転開始120日頃にNO2 -
N濃度とNO3 - N濃度が逆転し、運転開始150日目
には硝化槽内の硝化反応が略完全に硝酸型の硝化反応に
移行していた。このことは、本発明のpH範囲域を外れ
ると、運転開始後の時間の経過に伴って、硝化槽内で低
濃度アンモニア対応菌と亜硝酸酸化細菌が優占繁殖して
くることを意味している。
FIG. 3 shows that the same nitrification treatment apparatus 10 is used.
Waste water having an ammoniacal nitrogen concentration of 00 mg / L has a pH of 7.
It is a comparative example in which nitrification treatment was performed at 0. In the case of the comparative example, the NH 4 -N concentration in the treated water continues to decrease until about 45 days from the start of operation and becomes lower than that of the present invention, and the NO 2 -N concentration increases in inverse proportion to this. . But no
The NO 2 -N concentration began to decrease and the NO 3 -N concentration began to increase from the 45th day after the start of operation when the 2 -N concentration reached its peak. And about 120 days after the start of operation, NO 2-
The N concentration and the NO 3 -N concentration were reversed, and the nitrification reaction in the nitrification tank was almost completely transferred to the nitric acid type nitrification reaction on the 150th day after the start of operation. This means that outside the pH range of the present invention, low-concentration ammonia-corresponding bacteria and nitrite-oxidizing bacteria predominantly propagate in the nitrification tank with the passage of time after the start of operation. ing.

【0024】図4は、本発明の廃水の硝化処理方法を適
用する第2の実施の形態の硝化処理装置30の構成図で
あり、処理槽を多段で設けて多段硝化処理する場合であ
る。
FIG. 4 is a block diagram of the nitrification treatment apparatus 30 of the second embodiment to which the wastewater nitrification treatment method of the present invention is applied, and shows a case where the treatment tanks are provided in multiple stages to perform multistage nitrification treatment.

【0025】図4に示すように、アンモニア性窒素を含
有する廃水は、先ず第1硝化槽32に流入して好気性条
件下で1段目の硝化処置がなされた後、第2硝化槽34
に流入して好気性条件下で2段目の硝化処置がなされ
る。この場合、第1硝化槽32では、廃水のアンモニア
性窒素の濃度が40〜1000mg/Lのときに、第1
硝化槽32内の廃水pHを7.5〜9.5の範囲になる
ように制御する硝化処理方法を行う。
As shown in FIG. 4, the wastewater containing ammoniacal nitrogen first flows into the first nitrification tank 32 to undergo the first-stage nitrification treatment under aerobic conditions, and then the second nitrification tank 34.
And is subjected to a second nitrification treatment under aerobic conditions. In this case, in the first nitrification tank 32, when the concentration of ammoniacal nitrogen in the waste water is 40 to 1000 mg / L,
A nitrification treatment method is performed in which the pH of the wastewater in the nitrification tank 32 is controlled to be in the range of 7.5 to 9.5.

【0026】各硝化槽32、34内の底部には、それぞ
れブロア36、38に接続された散気管40、42が配
設され、散気管40、42から空気を曝気することによ
り、各硝化槽32、34内に好気性条件が形成される。
Diffuser tubes 40 and 42 connected to blowers 36 and 38 are provided at the bottoms of the nitrification tanks 32 and 34, respectively, and by aerating air from the diffuser tubes 40 and 42, the nitrification tanks are respectively aerated. Aerobic conditions are formed within 32,34.

【0027】各硝化槽32、34には、活性汚泥や純粋
培養した硝化菌を包括固定化した担体44が投入され、
硝化槽32、34の出口に図示しないスクリーン等の担
体流出防止機構を設けられる。
Into each of the nitrification tanks 32 and 34, a carrier 44 in which activated sludge and purely cultured nitrifying bacteria are entrapped and immobilized,
A carrier outflow prevention mechanism such as a screen (not shown) is provided at the outlets of the nitrification tanks 32 and 34.

【0028】第1硝化槽32の上方には、第1硝化槽3
2内の廃水pHを調整するアルカリ液が貯留された第1
アルカリタンク46が設けられ、添加配管47の途中に
は添加量調整バルブ48が設けられる。第1硝化槽32
内には、第1硝化槽32内の廃水pHを測定するpH計
50が設けられ、pH計50に基づいて添加量調整バル
ブ48からのアルカリ液の添加量が調整される。これに
より、第1硝化槽32内の廃水pHを7.5〜9.5の
範囲になるように制御される。ここでは、第1硝化槽3
2内の廃水pHを8.0に制御することにする。
Above the first nitrification tank 32, the first nitrification tank 3 is provided.
No. 1 in which the alkaline liquid for adjusting the pH of the wastewater in 2 was stored
An alkali tank 46 is provided, and an addition amount adjustment valve 48 is provided in the middle of the addition pipe 47. First nitrification tank 32
A pH meter 50 for measuring the pH of the wastewater in the first nitrification tank 32 is provided therein, and the addition amount of the alkaline liquid from the addition amount adjusting valve 48 is adjusted based on the pH meter 50. As a result, the pH of the wastewater in the first nitrification tank 32 is controlled to be in the range of 7.5 to 9.5. Here, the first nitrification tank 3
The pH of the wastewater in 2 will be controlled to 8.0.

【0029】第2硝化槽34内の上方には、アルカリ液
を添加する第2アルカリタンク52と酸液を添加する酸
タンク54とが設けられると共に、それぞれの添加配管
56、58には添加量調整バルブ60、62が設けられ
る。第2硝化槽34内には、第2硝化槽34内の廃水p
Hを測定するpH計64が設けられ、pH計64に基づ
いてそれぞれの添加量調整バルブ60、62からのアル
カリ液又は酸液の添加量が調整される。これにより、第
2硝化槽34内の廃水pH値が第1硝化槽32内の廃水
pH値よりも低くなるように制御される。ここでは、第
2硝化槽34のpH値を7.0になるように制御するこ
ととする。
A second alkali tank 52 for adding an alkaline solution and an acid tank 54 for adding an acid solution are provided above the inside of the second nitrification tank 34, and the addition amount is provided in each of the addition pipes 56, 58. Adjustment valves 60, 62 are provided. In the second nitrification tank 34, the wastewater p in the second nitrification tank 34
A pH meter 64 for measuring H is provided, and the addition amount of the alkaline liquid or the acid liquid from the addition amount adjusting valves 60 and 62 is adjusted based on the pH meter 64. As a result, the pH value of the wastewater in the second nitrification tank 34 is controlled to be lower than the pH value of the wastewater in the first nitrification tank 32. Here, the pH value of the second nitrification tank 34 is controlled to be 7.0.

【0030】また、第1硝化槽32には、第1の実施の
形態と同様に、アンモニア性窒素が酸化されて生成され
た酸化性窒素のうち、少なくとも硝酸性窒素を検出する
検出器66が設けられ、検出器66のデータが第1アル
カリタンク46の添加量調整バルブ48に接続される。
Further, in the first nitrification tank 32, as in the first embodiment, there is a detector 66 for detecting at least nitrate nitrogen among the oxidizing nitrogen produced by oxidizing ammonia nitrogen. The data of the detector 66 provided is connected to the addition amount adjusting valve 48 of the first alkali tank 46.

【0031】図5は、上記の如く構成された第2の実施
の形態の硝化処理装置30を用いて、本発明の廃水の硝
化処理方法を行った結果である。その結果、廃水のアン
モニア性窒素濃度が40〜1000mg/Lのときに、
2槽の硝化槽32、34から成る多段式にして、第1硝
化槽32をpH8.0の高濃度アンモニア対応菌が優占
繁殖する運転条件、第2硝化槽34をpH7.0の低濃
度アンモニア対応菌が優占繁殖する運転条件とすること
によって、硝化処理装置30全体の硝化反応速度をアッ
プさせることができた。
FIG. 5 shows the results of carrying out the nitrification treatment method of waste water of the present invention using the nitrification treatment apparatus 30 of the second embodiment configured as described above. As a result, when the ammonia nitrogen concentration in the wastewater is 40 to 1000 mg / L,
It is a multi-stage system consisting of two nitrification tanks 32 and 34, and the first nitrification tank 32 is operated under the operating conditions in which high-concentration ammonia-compatible bacteria having a pH of 8.0 dominately propagate, and the second nitrification tank 34 has a low concentration of 7.0. It was possible to increase the nitrification reaction rate of the entire nitrification treatment apparatus 30 by setting the operating conditions in which the ammonia-compatible bacteria proliferate predominantly.

【0032】また、第1硝化槽32内のNH4 - N濃
度、NO2 - N濃度及びNO3 - N濃度の挙動について
見ると、図5に示すように、運転開始後、第1硝化槽3
2内の廃水のNH4 - N濃度は急激に低下し、約50日
目頃でNH4 - N濃度が最低の約100mg/Lに達
し、その後安定した。これに伴ってNO2 - Nが生成さ
れ、NO2 - N濃度はNH4 - N濃度の減少に反比例す
るように増加し、運転開始から約50日目で略400m
g/L程度で安定した。運転開始後60日を過ぎた頃
に、何かの拍子でNO2 - N濃度が減少し、それに伴っ
てNO3 - N濃度が上昇し、硝酸型の硝化反応が一時的
に認められたが、第1処理槽32の第1アルカリタンク
46からアルカリ液を添加してpH値を一時的に8.0
から8.5まで上昇させることで再び亜硝酸型の硝化反
応に戻すことができた。これにより、生成される酸化性
窒素の種類中に硝酸態窒素が検出されて硝酸型の硝化反
応に変化しようとする場合には、第1硝化槽32内の廃
水pHを7.5〜9.5の範囲で硝酸態窒素が検出され
たときのpH値よりも一時的に大きくすることで、亜硝
酸型の硝化反応に戻すことができる。
Looking at the behavior of the NH 4 -N concentration, NO 2 -N concentration and NO 3 -N concentration in the first nitrification tank 32, as shown in FIG. Three
The NH 4 -N concentration of the wastewater in 2 dropped sharply, and the NH 4 -N concentration reached the minimum of about 100 mg / L at about the 50th day, and then stabilized. Along with this, NO 2 -N is generated, and the NO 2 -N concentration increases in inverse proportion to the decrease of the NH 4 -N concentration. About 50 m after the start of operation, about 400 m
It was stable at about g / L. About 60 days after the start of operation, the NO 2 -N concentration decreased at some rate, and the NO 3 -N concentration increased accordingly, and nitric acid-type nitrification reaction was temporarily recognized. The pH value is temporarily adjusted to 8.0 by adding an alkaline solution from the first alkaline tank 46 of the first treatment tank 32.
It was possible to return to the nitrite type nitrification reaction again by increasing the temperature from 1 to 8.5. As a result, when nitrate nitrogen is detected in the type of oxidative nitrogen produced and the nitrification reaction of nitric acid type is about to be changed, the pH of the wastewater in the first nitrification tank 32 is set to 7.5 to 9. By temporarily increasing the pH value when nitrate nitrogen is detected in the range of 5, the nitrite type nitrification reaction can be restored.

【0033】[0033]

【発明の効果】以上説明したように、本発明に係る廃水
の硝化処理方法によれば、高濃度のアンモニア性窒素を
含有する廃水の硝化処理において、アンモニア性窒素濃
度が比較的低濃度な馴養運転時から高濃度な正常運転に
至るまで、亜硝酸型の硝化処理を安定して行うことがで
きるので、高効率且つ低コストの硝化処理方法を行うこ
とができる。
As described above, according to the nitrification treatment method of wastewater according to the present invention, in the nitrification treatment of wastewater containing a high concentration of ammonia nitrogen, the acclimation with a relatively low concentration of ammonia nitrogen is carried out. Since the nitrite type nitrification treatment can be stably performed from the time of operation to the normal operation with high concentration, a highly efficient and low cost nitrification treatment method can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の廃水の硝化処理方法を適用する第1の
実施の形態の硝化処理装置の構成図
FIG. 1 is a configuration diagram of a nitrification treatment apparatus according to a first embodiment to which a wastewater nitrification treatment method of the present invention is applied.

【図2】第1の実施の形態の硝化処理装置において本発
明を実施した場合の硝化槽内のNH4 - N濃度、NO2
- N濃度及びNO3 - N濃度の挙動を示したグラフ
FIG. 2 shows the NH 4 -N concentration and NO 2 in the nitrification tank when the present invention is carried out in the nitrification treatment apparatus of the first embodiment.
-Graph showing behavior of N concentration and NO 3 -N concentration

【図3】第1の実施の形態の硝化処理装置において比較
例を実施した場合の硝化槽内のNH4 - N濃度、NO2
- N濃度及びNO3 - N濃度の挙動を示したグラフ
FIG. 3 shows the NH 4 -N concentration and NO 2 in the nitrification tank when a comparative example is carried out in the nitrification treatment apparatus of the first embodiment.
-Graph showing behavior of N concentration and NO 3 -N concentration

【図4】本発明の廃水の硝化処理方法を適用する第2の
実施の形態の硝化処理装置の構成図
FIG. 4 is a configuration diagram of a nitrification treatment apparatus of a second embodiment to which the wastewater nitrification treatment method of the present invention is applied.

【図5】第2の実施の形態の硝化処理装置における第1
処理槽内のNH4 - N濃度、NO2 - N濃度及びNO3
- N濃度の挙動を示したグラフ
FIG. 5 shows a first nitrification treatment apparatus according to a second embodiment.
NH 4 -N concentration, NO 2 -N concentration and NO 3 in the treatment tank
-Graph showing behavior of N concentration

【符号の説明】[Explanation of symbols]

10…第1の実施の形態の硝化処理装置、12…硝化
槽、13…ブロア、14…付着固定板、15…散気板
管、16…アルカリタンク、17、66…検出器、18
…添加配管、20…添加量調整バルブ、22…pH計、
30…第2の実施の形態の硝化処理装置、32…第1硝
化槽、34…第2硝化槽、36、38…ブロア、40、
42…散気管、44…担体、46…第1アルカリタン
ク、48、60…添加量調整バルブ、50、64…pH
計、52…第2アルカリタンク、54…酸タンク
DESCRIPTION OF SYMBOLS 10 ... Nitrification processing apparatus of 1st Embodiment, 12 ... Nitrification tank, 13 ... Blower, 14 ... Adhesion fixing plate, 15 ... Diffuser plate tube, 16 ... Alkaline tank, 17, 66 ... Detector, 18
… Addition pipe, 20… Addition amount adjusting valve, 22… pH meter,
30 ... Nitrification treatment apparatus of the second embodiment, 32 ... First nitrification tank, 34 ... Second nitrification tank, 36, 38 ... Blower, 40,
42 ... Air diffuser, 44 ... Carrier, 46 ... First alkali tank, 48, 60 ... Addition amount adjusting valve, 50, 64 ... pH
Total, 52 ... Second alkaline tank, 54 ... Acid tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アンモニア性窒素を含有する廃水と硝化菌
とを硝化槽内で好気性条件下で接触させて酸化性窒素を
生成する廃水の硝化処理方法において、 前記廃水のアンモニア性窒素の濃度が40〜1000m
g/Lのときに、前記硝化槽内の廃水pHを7.5〜
9.5の範囲になるように制御することを特徴とする廃
水の硝化処理方法。
1. A method for nitrifying wastewater, wherein wastewater containing ammoniacal nitrogen and nitrifying bacteria are contacted in a nitrification tank under aerobic conditions to produce oxidative nitrogen, the concentration of ammoniacal nitrogen in the wastewater. Is 40 to 1000 m
When it is g / L, the pH of the wastewater in the nitrification tank is 7.5.
A method for nitrifying waste water, which is controlled to fall within a range of 9.5.
【請求項2】前記生成される酸化性窒素の種類の中に硝
酸性窒素が検出される場合には、前記硝化槽内の廃水p
Hを7.5〜9.5の範囲で前記硝酸性窒素が検出され
るときのpH値よりも大きくすることを特徴とする請求
項1に記載の廃水の硝化処理方法。
2. When nitrate nitrogen is detected in the kind of generated oxidizing nitrogen, waste water p in the nitrification tank is detected.
The method for nitrifying waste water according to claim 1, wherein H is set to a value in the range of 7.5 to 9.5, which is higher than the pH value when the nitrate nitrogen is detected.
【請求項3】硝化菌を固定した担体が投入された硝化槽
を複数直列に設け、上流側の硝化槽から下流側の硝化槽
にいくに従って硝化槽内の廃水pHが順次小さくなるよ
うに各硝化槽のpHを制御すると共に、少なくとも最上
流側の硝化槽は請求項1又は2を満足する硝化処理方法
を行うことを特徴とする廃水の硝化処理方法。
3. A plurality of nitrification tanks in which a carrier on which nitrifying bacteria are fixed are introduced, and the pH of the wastewater in the nitrification tank is gradually reduced from the upstream nitrification tank to the downstream nitrification tank. A nitrification treatment method for wastewater, characterized in that the pH of the nitrification tank is controlled, and at least the most upstream nitrification tank is subjected to the nitrification treatment method satisfying claim 1 or 2.
JP2002134304A 2002-05-09 2002-05-09 Nitrification method for waste water Pending JP2003326297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002134304A JP2003326297A (en) 2002-05-09 2002-05-09 Nitrification method for waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002134304A JP2003326297A (en) 2002-05-09 2002-05-09 Nitrification method for waste water

Publications (1)

Publication Number Publication Date
JP2003326297A true JP2003326297A (en) 2003-11-18

Family

ID=29696992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002134304A Pending JP2003326297A (en) 2002-05-09 2002-05-09 Nitrification method for waste water

Country Status (1)

Country Link
JP (1) JP2003326297A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131451A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2007054726A (en) * 2005-08-24 2007-03-08 Japan Organo Co Ltd Method and device for treating waste water
JP2008272610A (en) * 2007-04-25 2008-11-13 Hitachi Plant Technologies Ltd Nitrous acid type nitrification carrier and its manufacturing method, and wastewater treatment method and apparatus using it
JP2011189249A (en) * 2010-03-12 2011-09-29 Nippon Steel Corp Biological nitrogen treatment method for ammonia-containing waste water
WO2011134011A1 (en) * 2010-04-28 2011-11-03 The University Of Queensland Production of nitrite
CN103588306A (en) * 2013-10-29 2014-02-19 中国科学院南京土壤研究所 Application of fatty acid amide compound
JP2017202473A (en) * 2016-05-13 2017-11-16 株式会社ウェルシィ Water treatment method and system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131451A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2007054726A (en) * 2005-08-24 2007-03-08 Japan Organo Co Ltd Method and device for treating waste water
JP2008272610A (en) * 2007-04-25 2008-11-13 Hitachi Plant Technologies Ltd Nitrous acid type nitrification carrier and its manufacturing method, and wastewater treatment method and apparatus using it
JP2011189249A (en) * 2010-03-12 2011-09-29 Nippon Steel Corp Biological nitrogen treatment method for ammonia-containing waste water
WO2011134011A1 (en) * 2010-04-28 2011-11-03 The University Of Queensland Production of nitrite
CN103588306A (en) * 2013-10-29 2014-02-19 中国科学院南京土壤研究所 Application of fatty acid amide compound
CN103588306B (en) * 2013-10-29 2015-02-11 中国科学院南京土壤研究所 Application of fatty acid amide compound
JP2017202473A (en) * 2016-05-13 2017-11-16 株式会社ウェルシィ Water treatment method and system

Similar Documents

Publication Publication Date Title
JP4284700B2 (en) Nitrogen removal method and apparatus
JP5355314B2 (en) Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
US8323487B2 (en) Waste water treatment apparatus
JP5115908B2 (en) Waste water treatment apparatus and treatment method
US11685677B2 (en) Nitrite-oxidizing bacteria activity inhibitor and method
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
JP2005246135A (en) Method for biologically removing nitrogen
JP2003154393A (en) Biological method for removing nitrogen and apparatus therefor
JP2003326297A (en) Nitrification method for waste water
JP2014104416A (en) Water treatment apparatus and water treatment method
CN111960538A (en) System and method for realizing stable operation of shortcut nitrification-anaerobic ammonia oxidation denitrification of low-ammonia nitrogen wastewater
JP2003126886A (en) Biological denitrification method and device of the same
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP2013081881A (en) Apparatus for treating ammonia nitrogen content wastewater
JP5149728B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP7194628B2 (en) Wastewater treatment equipment and wastewater treatment method
JP2002143888A (en) Method for accumulating autotrophic denitrifying microorganism and biological method for removing nitrogen
JP2008221161A (en) Denitrifying treatment device and denitrifying treatment method
CN114853172B (en) Continuous flow low-carbon denitrification process for domestic sewage with low carbon nitrogen ratio
McCullough et al. Decarbonization potentials in nitrogen management
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP5325124B2 (en) Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
JP5656656B2 (en) Water treatment equipment
Chang et al. Using sequencing batch biofilm reactor (SBBR) to treat ABS wastewater
CN212476266U (en) Anaerobic ammonia oxidation sewage autotrophic denitrification device based on pulse aeration

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040910

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060817

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070116

Free format text: JAPANESE INTERMEDIATE CODE: A02