JP2003126886A - Biological denitrification method and device of the same - Google Patents

Biological denitrification method and device of the same

Info

Publication number
JP2003126886A
JP2003126886A JP2001329234A JP2001329234A JP2003126886A JP 2003126886 A JP2003126886 A JP 2003126886A JP 2001329234 A JP2001329234 A JP 2001329234A JP 2001329234 A JP2001329234 A JP 2001329234A JP 2003126886 A JP2003126886 A JP 2003126886A
Authority
JP
Japan
Prior art keywords
nitrogen
nitrite
ammoniacal
liter
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001329234A
Other languages
Japanese (ja)
Other versions
JP4302341B2 (en
Inventor
Toshihiro Tanaka
俊博 田中
Kiyomi Arakawa
清美 荒川
Yousei Katsura
甬生 葛
Akira Yamaguchi
晶 山口
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001329234A priority Critical patent/JP4302341B2/en
Publication of JP2003126886A publication Critical patent/JP2003126886A/en
Application granted granted Critical
Publication of JP4302341B2 publication Critical patent/JP4302341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biological denitrification method capable of easily obtaining a high-quality treated water at a low cost and a device of the same. SOLUTION: In a method that a wastewater containing an ammoniacal nitrogen is biologically nitrified and denitrified, wherein there are provided the biological denitrification method and the device of the same that the wastewater is treated in a first denitrification process that the ammoniacal nitrogen, a nitrite nitrogen and/or a nitrate nitrogen in the wastewater are partially denitrified as nitrogen gas while the ammoniacal nitrogen is allowed to stay behind in the presence of a mycology of independent nutritious nitrifying bacteria and independent nutritious denitrifying bacteria under a microaerophilic condition and/or an intermittent aeration condition and in a second denitrification that the ammoniacal nitrogen, the nitrite nitrogen and/or the nitrate nitrogen in the effluent of the first denitrification process are denitrified as nitrogen gas in the presence of the mycology of the independent nutritious denitrifying bacteria capable of utilizing a bound oxygen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニア性窒素
を含む汚水を生物学的に浄化する生物学的窒素除去方法
及び装置に関する。
TECHNICAL FIELD The present invention relates to a biological nitrogen removal method and apparatus for biologically purifying wastewater containing ammoniacal nitrogen.

【0002】[0002]

【従来の技術】汚水中に含まれるアンモニア性窒素は河
川、湖沼および海洋などにおける富栄養化の原因物質の
一つであり、汚水処理工程で効率的に除去されることが
望まれる。一般に、汚水中のアンモニア性窒素は、硝化
工程と脱窒工程によって窒素ガスにまで分解される。具
体的には、硝化工程ではアンモニア性窒素は好気条件で
独立栄養性細菌であるアンモニア酸化細菌によって亜硝
酸性窒素に酸化され、この亜硝酸性窒素が独立栄養性細
菌である亜硝酸酸化細菌によって硝酸性窒素に酸化され
る。次の脱窒工程ではこれらの亜硝酸性窒素および硝酸
性窒素は嫌気条件下で、従属栄養性細菌である脱窒菌に
より、有機物を電子供与体として利用しながら窒素ガス
にまで分解される。
2. Description of the Related Art Ammoniacal nitrogen contained in sewage is one of the causative substances of eutrophication in rivers, lakes and oceans, and it is desired to be efficiently removed in the sewage treatment process. In general, ammoniacal nitrogen in wastewater is decomposed into nitrogen gas by a nitrification process and a denitrification process. Specifically, in the nitrification step, ammoniacal nitrogen is oxidized to nitrite nitrogen by an autotrophic bacterium, an ammonia-oxidizing bacterium under aerobic conditions, and the nitrite nitrogen is an autotrophic bacterium, a nitrite-oxidizing bacterium. Is oxidized to nitrate nitrogen. In the next denitrification step, these nitrite nitrogen and nitrate nitrogen are decomposed into nitrogen gas under anaerobic conditions by the denitrifying bacterium, which is a heterotrophic bacterium, while utilizing organic substances as electron donors.

【0003】このような従来の生物学的窒素除去法で
は、アンモニア性窒素を亜硝酸性窒素および硝酸性窒素
に酸化する硝化工程では多量の酸素が必要であり、また
従属栄養性細菌である脱窒菌を利用する脱窒工程では、
電子供与体としてメタノールなどの有機物を多量に添加
する必要があるので、ランニングコストを増加させてい
る。
In such a conventional biological nitrogen removal method, a large amount of oxygen is required in the nitrification step for oxidizing ammoniacal nitrogen to nitrite nitrogen and nitrate nitrogen, and denitrification which is a heterotrophic bacterium is required. In the denitrification process using nitrifying bacteria,
Since it is necessary to add a large amount of an organic substance such as methanol as an electron donor, the running cost is increased.

【0004】ところで、近年、嫌気条件下でアンモニア
性窒素を電子供与体、硝酸性窒素を電子受容体として両
者を反応させ、窒素ガスを生成することができる独立栄
養性の微生物群を利用した新しい窒素処理技術の開発が
進められている。
By the way, recently, under anaerobic conditions, ammonia nitrogen is used as an electron donor and nitrate nitrogen is used as an electron acceptor to react with each other to produce nitrogen gas. Nitrogen treatment technology is being developed.

【0005】例えば特開平8−192185号では、ア
ンモニア性窒素を含む汚水を硝化槽で部分的に硝化し
て、アンモニア性窒素の一部を残留させる部分硝化工程
の後、部分硝化工程流出液のアンモニア性窒素、亜硝酸
性窒素、硝酸性窒素とを結合酸素脱窒工程で独立栄養微
生物群と反応させて除去している。しかしながら、この
ような方法においては、処理が以下のような現象で極め
て不安定であり窒素除去が不十分で、実用性に乏しいと
いう問題点があった。すなわち、一般的には硝化反応は
概ねアンモニア性窒素が残留しない状態で設定されてお
り、部分硝化工程でアンモニアを残留させつつ亜硝酸性
窒素や硝酸性窒素にするには、DOやMLSS(汚泥濃
度)を極めて高い精度で原水状況に応じて調整する必要
があること。結合酸素脱窒工程においては、アンモニア
性窒素が残留しすぎると亜硝酸性窒素、硝酸性窒素が当
量比以上で結果的にはアンモニア性窒素が残留する。逆
にアンモニア性窒素が少なく亜硝酸性窒素、硝酸性窒素
が当量比以上になると亜硝酸性窒素、硝酸性窒素が残留
する。
For example, in Japanese Unexamined Patent Publication No. 8-192185, after the partial nitrification step of partially nitrifying wastewater containing ammoniacal nitrogen in a nitrification tank to leave a part of the ammoniacal nitrogen, the effluent of the partial nitrification step is Ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen are removed by reacting with the autotrophic microorganism group in the combined oxygen denitrification process. However, in such a method, there is a problem that the treatment is extremely unstable due to the following phenomenon, nitrogen removal is insufficient, and practicability is poor. That is, the nitrification reaction is generally set in a state in which almost no ammonia nitrogen remains, and DO and MLSS (sludge) can be used to make nitrite nitrogen or nitrate nitrogen while leaving ammonia in the partial nitrification process. It is necessary to adjust (concentration) with extremely high accuracy according to the raw water conditions. In the combined oxygen denitrification step, if the amount of ammonia nitrogen remains excessively, the amount of nitrite nitrogen and nitrate nitrogen is equal to or more than the equivalence ratio, and as a result, ammonia nitrogen remains. On the contrary, when the amount of ammoniacal nitrogen is small and the amounts of nitrite nitrogen and nitrate nitrogen exceed the equivalent ratio, nitrite nitrogen and nitrate nitrogen remain.

【0006】また、特開2000−104992では、
汚水の一部を亜硝酸化槽に導入し、槽内のアンモニア酸
化細菌を含む生物汚泥と混合し、散気装置から曝気し
て、アンモニア酸化細菌によりアンモニア性窒素を亜硝
酸性窒素に酸化する。亜硝酸化槽内の亜硝酸化液は独立
栄養性脱窒槽に導入するとともに、バイパス汚水路から
汚水の他の一部を導入し、槽内の独立栄養性脱窒菌を含
む生物汚泥と混合し、嫌気条件下に脱窒を行う方法が開
示されている。しかしながら、この方法においても、亜
硝酸化槽においても、曝気時間、pH条件によっては、
汚水中のアンモニア性窒素は硝酸化まで反応が進行し、
結果的には嫌気条件下において独立栄養性脱窒菌による
脱窒が不十分な場合が多く、処理の安定性がなく実用性
に問題があった。
Further, in Japanese Patent Laid-Open No. 2000-104992,
Part of the wastewater is introduced into the nitrite tank, mixed with the biological sludge containing ammonia-oxidizing bacteria in the tank, and aerated from the air diffuser, and the ammonia-oxidizing bacteria oxidize the ammoniacal nitrogen to nitrite nitrogen. . The nitrite solution in the nitrite tank is introduced into the autotrophic denitrification tank, and at the same time, another part of the wastewater is introduced from the bypass wastewater channel and mixed with the biological sludge containing the autotrophic denitrifying bacteria in the tank. , A method of denitrifying under anaerobic conditions is disclosed. However, both in this method and in the nitrite tank, depending on the aeration time and pH conditions,
The reaction of ammonia nitrogen in sewage proceeds to nitrification,
As a result, denitrification by autotrophic denitrifying bacteria was often insufficient under anaerobic conditions, and the treatment was not stable and there was a problem in practicality.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、低コ
ストで、しかも容易に高い処理水質が得られる生物学的
窒素除去方法を提案することである。本発明の他の課題
は、低コストで、しかも容易に高い処理水質が得られる
生物学的窒素除去装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to propose a method for removing biological nitrogen, which is low in cost and can easily obtain high treated water quality. Another object of the present invention is to provide a biological nitrogen removing apparatus that can easily obtain high quality of treated water at low cost.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の課題を
次の構成からなる生物学的窒素除去方法および装置によ
り解決するものである。 (1)アンモニア性窒素を含む汚水を生物学的に硝化脱
窒素する方法において、前記汚水を微好気的条件及び/
又は間欠曝気条件下で、独立栄養性硝化菌及び独立栄養
性脱窒素菌群の存在下に、アンモニア性窒素を残留させ
つつ、アンモニア性窒素と亜硝酸性窒素及び/又は硝酸
性窒素とを窒素ガスとして部分的に脱窒する第1窒素除
去工程と、前記第1窒素除去工程の流出液を結合酸素を
利用可能な独立栄養性脱窒素菌群の存在下で、該流出液
中のアンモニア性窒素と亜硝酸性窒素及び/又は硝酸性
窒素とを窒素ガスとして脱窒素する第2窒素除去工程で
処理することを特徴とする生物学的窒素除去方法。
The present invention solves the above problems by a biological nitrogen removing method and apparatus having the following constitution. (1) In a method for biologically nitrifying and denitrifying wastewater containing ammoniacal nitrogen, the wastewater is treated under a slightly aerobic condition and / or
Alternatively, under intermittent aeration conditions, in the presence of an autotrophic nitrifying bacteria and an autotrophic denitrifying bacteria group, while leaving ammoniacal nitrogen, ammoniacal nitrogen and nitrite nitrogen and / or nitrate nitrogen are converted into nitrogen. A first nitrogen removal step of partially denitrifying as a gas, and an effluent of the first nitrogen removal step in the presence of an autotrophic denitrifying bacteria group capable of utilizing bound oxygen. A method for removing biological nitrogen, which comprises performing a second nitrogen removal step of denitrifying nitrogen and nitrite nitrogen and / or nitrate nitrogen as nitrogen gas.

【0009】(2)前記第1窒素除去工程及び第2窒素
除去工程において、微生物担体および活性汚泥を存在さ
せることを特徴とする前記(1)記載の生物学的窒素除
去方法。 (3)前記第1窒素除去工程は、溶存酸素濃度を常時1
mg/リットル未満となるように酸素含有気体を曝気す
るか、又は1mg/リットル以上の場合において溶存酸
素濃度が0.2mg/リットル以下の時間帯があるよう
に間欠曝気することを特徴とする前記(1)又は(2)
に記載の生物学的窒素除去方法。 (4)前記流入汚水のBODを流入アンモニア性窒素に
対して1/2以下となるように溶解性BODを除去する
ことを特徴とする前記(1)〜(3)のいずれか1項に
記載の生物学的窒素除去方法。
(2) The method for removing biological nitrogen according to (1) above, wherein a microbial carrier and activated sludge are present in the first nitrogen removing step and the second nitrogen removing step. (3) In the first nitrogen removing step, the dissolved oxygen concentration is constantly set to 1
An oxygen-containing gas is aerated so as to be less than mg / liter, or intermittently aerated so that the dissolved oxygen concentration is 0.2 mg / liter or less at a time of 1 mg / liter or more. (1) or (2)
The method for removing biological nitrogen according to 1. (4) The soluble BOD is removed so that the BOD of the inflowing wastewater becomes 1/2 or less of the inflowing ammoniacal nitrogen, and the soluble BOD is removed. Biological nitrogen removal method.

【0010】(5)アンモニア性窒素を含む汚水を生物
学的に硝化脱窒素する装置において、前記汚水を微好気
的条件及び/又は間欠曝気条件下で、独立栄養性硝化菌
及び独立栄養性脱窒素菌群の存在下に、アンモニア性窒
素を残留させつつアンモニア性窒素と亜硝酸性窒素及び
/又は硝酸性窒素とを窒素ガスとして部分的に脱窒する
第1窒素除去装置と、前記第1窒素除去装置の流出液を
結合酸素を利用可能な独立栄養性脱窒素菌群の存在下
で、該流出液中のアンモニア性窒素と亜硝酸性窒素及び
/又は硝酸性窒素とを窒素ガスとして脱窒素する第2窒
素除去装置と、前記第2窒素除去装置の流出液を処理水
と沈殿汚泥に分離する固液分離装置と、前記沈殿汚泥の
一部を返送汚泥として第1窒素除去装置へ返送する配管
とを有することを特徴とする生物学的窒素除去装置。
(5) In a device for biologically nitrifying and denitrifying sewage containing ammoniacal nitrogen, the sewage is subjected to autoaerobic nitrifying bacteria and autotrophs under microaerobic conditions and / or intermittent aeration conditions. A first nitrogen removing device for partially denitrifying ammoniacal nitrogen and nitrite nitrogen and / or nitrate nitrogen as nitrogen gas while leaving the ammoniacal nitrogen in the presence of a group of denitrifying bacteria; 1 The effluent of the nitrogen removal device is used in the presence of an autotrophic denitrifying bacteria group capable of utilizing bound oxygen, with ammonia nitrogen and nitrite nitrogen and / or nitrate nitrogen in the effluent as nitrogen gas. A second nitrogen removal device for denitrification, a solid-liquid separation device for separating the effluent of the second nitrogen removal device into treated water and settling sludge, and a part of the settling sludge as return sludge to the first nitrogen removal device It has a pipe for returning Biological nitrogen removal system to.

【0011】本発明の好ましい実施態様として、以下の
ものがある。 (6)前記第1窒素除去工程は、pH7.5以上の条件
下に置くことにより前記独立栄養性脱窒素菌群を優先さ
せるか、又は前記条件下で増量培養した前記独立栄養性
脱窒素菌群を添加することを特徴とする前記(1)〜
(4)記載の生物学的窒素除去方法。 (7)前記第1窒素除去工程及び第2窒素除去工程に
は、複数の反応槽を設けることを特徴とする前記(1)
〜(4)、(6)のいずれか1項に記載の生物学的窒素
除去方法。 (8)前記第1窒素除去装置および第2窒素除去装置
に、微生物担体および活性汚泥を共存させることを特徴
とする前記(5)記載の生物学的窒素除去装置。 (9)前記第1窒素除去装置は、溶存酸素濃度を常時1
mg/リットル未満となるように酸素含有気体を曝気す
る散気装置、又は1mg/リットル以上の場合において
溶存酸素濃度が0.2mg/リットル以下の時間帯があ
るように間欠曝気する散気装置を有することを特徴とす
る前記(5)又は(8)記載の生物学的窒素除去装置。 (10)前記第1窒素除去装置および第2窒素除去装置
には、複数の反応槽を設けたことを特徴とする前記
(5)及び(8)〜(9)のいずか1項に記載の生物学
的窒素除去装置。
The following are preferred embodiments of the present invention. (6) In the first nitrogen removal step, the autotrophic denitrifying bacteria group is prioritized by placing it under conditions of pH 7.5 or higher, or the autotrophic denitrifying bacteria that have been subjected to increased culture under the conditions. The above (1) to characterized in that a group is added.
(4) The biological nitrogen removal method as described above. (7) In the first nitrogen removing step and the second nitrogen removing step, a plurality of reaction tanks are provided, (1)
~ The biological nitrogen removing method according to any one of (4) and (6). (8) The biological nitrogen removing device according to (5), wherein a microbial carrier and activated sludge are allowed to coexist in the first nitrogen removing device and the second nitrogen removing device. (9) The first nitrogen removing device keeps the dissolved oxygen concentration at 1
An air diffuser that aerates oxygen-containing gas to less than mg / liter, or an aerator that intermittently aerates so that the dissolved oxygen concentration is 0.2 mg / liter or less when there is 1 mg / liter or more. The biological nitrogen removing apparatus according to (5) or (8) above, which further comprises: (10) The first nitrogen removing device and the second nitrogen removing device are provided with a plurality of reaction tanks, and the above (5) and (8) to (9) are included. Biological nitrogen removal equipment.

【0012】本発明において、「脱窒」は特にことわら
ない限り独立栄養性脱窒菌による脱窒を意味する。本発
明で処理の対象となる汚水はアンモニア性窒素を含む汚
水であり、有機物、亜硝酸性窒素、その他の不純物など
を含んでいてもよい。有機性窒素化合物を含む汚水は、
そのまま本発明に供してもよいが、嫌気性処理又は好気
性処理などにより有機性窒素化合物をアンモニア性窒素
に変換したのち、本発明に供してもよい。また、BOD
濃度にはこだわらないが、独立栄養性脱窒素菌群の存在
割合を増加させるために、あらかじめBODだけを生物
処理して、BODをアンモニア性窒素に対して1/2以
下にした後、本発明に供するのが効果的である。本発明
で処理の対象となる汚水の例としては、し尿、下水、嫌
気性消化槽脱離液、ごみ浸出水、肥料工場排水などが挙
げられる。
In the present invention, "denitrification" means denitrification by autotrophic denitrifying bacteria unless otherwise specified. The sewage to be treated in the present invention is sewage containing ammoniacal nitrogen and may contain organic matter, nitrite nitrogen, and other impurities. Sewage containing organic nitrogen compounds,
Although it may be directly used for the present invention, it may be used for the present invention after converting an organic nitrogen compound into ammonia nitrogen by anaerobic treatment or aerobic treatment. Also, BOD
Although the concentration of the present invention is not limited, in order to increase the abundance of the autotrophic denitrifying bacteria group, only BOD was biologically treated in advance to reduce the BOD to ½ or less with respect to ammoniacal nitrogen. It is effective to use it. Examples of wastewater to be treated in the present invention include human waste, sewage, anaerobic digester desorption liquid, leachate leachate, fertilizer factory wastewater, and the like.

【0013】本発明の生物学的窒素除去は、アンモニア
性窒素を含む汚水を微好気的条件及び/又は間欠曝気条
件下で、独立栄養性硝化菌及び独立栄養性脱窒素菌群の
存在下に、アンモニア性窒素を残留させつつ、アンモニ
ア性窒素と亜硝酸性窒素及び/又は硝酸性窒素とを窒素
ガスとして部分的に脱窒する第1窒素除去工程と、前記
第1窒素除去工程の流出液を結合酸素を利用可能な独立
栄養性脱窒素菌群の存在下で、該流出液中のアンモニア
性窒素と亜硝酸性窒素及び/又は硝酸性窒素とを窒素ガ
スとして脱窒素する第2窒素除去工程で処理することを
特徴とする生物学的処理方法である。
The biological nitrogen removal of the present invention is carried out in the presence of autotrophic nitrifying bacteria and autotrophic denitrifying bacteria under aerobic conditions and / or intermittent aeration of sewage containing ammoniacal nitrogen. First, a first nitrogen removing step of partially denitrifying the ammonia nitrogen and the nitrite nitrogen and / or nitrate nitrogen as nitrogen gas while leaving the ammonia nitrogen remaining, and the outflow of the first nitrogen removing step. A second nitrogen that denitrifies the liquid as nitrogen gas using ammonia nitrogen and nitrite nitrogen and / or nitrate nitrogen in the effluent in the presence of an autotrophic denitrifying bacteria group capable of utilizing bound oxygen It is a biological treatment method characterized by treatment in a removal step.

【0014】第2窒素除去工程では、汚水中のアンモニ
ア性窒素の約1/3〜1/2量を亜硝酸性窒素あるいは
硝酸性窒素に酸化すると同時に、残留したアンモニア性
窒素で生成した亜硝酸性窒素あるいは硝酸性窒素を脱窒
する。反応式は式(1)〜(4)のようになる。 1)亜硝酸性窒素の生成 NH4 ++ 3/2O2→ NO2 -+ 2H++ H2O・・・(1) 2)硝酸性窒素の生成 NO2 -+ 1/2O2→ NO3 -・・・・・・・・・・・・(2) 3)アンモニア性窒素と亜硝酸結合酸素を用いた独立栄養性脱窒素菌群による脱 窒反応 NH4 ++ NO2 -→ N2+ 2H2O・・・・・・・・・・(3) 4)アンモニア性窒素と硝酸結合酸素を用いた独立栄養性脱窒素菌群による脱窒 反応 NH4 ++ 2/3NO3 -→ 5/6N2+ 2H2O・・・・(4)
In the second nitrogen removing step, about 1/3 to 1/2 amount of the ammoniacal nitrogen in the wastewater is oxidized to nitrite nitrogen or nitrate nitrogen, and at the same time, the nitrous acid produced by the remaining ammoniacal nitrogen. Nitrogen or nitrate nitrogen is denitrified. The reaction formulas are as shown in formulas (1) to (4). 1) Generation of nitrite nitrogen NH 4 + + 3 / 2O 2 → NO 2 + 2H + + H 2 O (1) 2) Generation of nitrate nitrogen NO 2 + 1 / 2O 2 → NO 3 - ............ (2) 3) denitrification with ammonia nitrogen and autotrophic denitrification bacteria group using nitrous acid bound oxygen NH 4 + + NO 2 - → N 2 + 2H 2 O ·········· (3 ) 4) denitrified by ammonia nitrogen and nitrate bound oxygen autotrophic denitrifying bacteria group using the reaction NH 4 + + 2 / 3NO 3 - → 5 / 6N 2 + 2H 2 O ... (4)

【0015】本発明の第1窒素除去工程では圧倒的に
(1)と(3)の反応が主流であり、(2)と(4)の
反応は極めて起こりにくい。さらに、(1)と(3)の
反応のトリガーとなるのは、第1窒素除去工程に概ね1
mg/リットル以上、好ましくは3mg/リットルの遊
離のアンモニアが存在することである。遊離のアンモニ
アを存在せしめるためには、流入するアンモニア性窒素
に応じて水温及び/又はpHを操作するのが好ましい。
目安になる算定式を式(5)と(6)に示す。 [NH3-N] = {[NH4+ -N][10pH] }/ {(Kb /Kw )+10pH}…… (5) (Kb /Kw ) = exp(6334/(273+T)) ……(6) ここで、〔NH3−N〕は遊離のアンモニア濃度(mg
−N/リットル)、〔NH4 +−N〕はアンモニア性窒素
濃度(mg−N/リットル)、Tは温度(℃)である。
In the first nitrogen removing step of the present invention, the reactions (1) and (3) are predominantly the mainstream, and the reactions (2) and (4) are extremely unlikely to occur. Furthermore, the trigger for the reactions of (1) and (3) is that the first nitrogen removal step generally has about 1
The presence of more than 1 mg / l, preferably 3 mg / l of free ammonia. In order to allow free ammonia to exist, it is preferable to adjust the water temperature and / or pH depending on the inflowing ammoniacal nitrogen.
Equations (5) and (6) show the standard calculation formulas. [NH3-N] = {[NH4 + -N] [10 pH ]} / {(Kb / Kw) +10 pH } (5) (Kb / Kw) = exp (6334 / (273 + T)) (6) Here, [NH 3 -N] is the free ammonia concentration (mg
-N / l), a [NH 4 + -N] of ammonia nitrogen concentration (mg-N / L), T is temperature (° C.).

【0016】生物処理では希釈により処理を安定させる
のが一般的であり、たとえ、数千mg/リットルのアン
モニア性窒素が流入したときでも、反応槽内は高々数百
mg/リットルのアンモニア性窒素濃度となっている。
従って、式(5)で求められた値よりは、水温又は/及
びpHはやや高めに設定するのが好ましい。さらに、p
H7.5以上の条件下で増量培養した前記独立栄養性脱
窒素菌群を添加することでも、第1窒素除去工程の反応
は促進される。
In the biological treatment, it is general to stabilize the treatment by dilution. Even when a few thousand mg / liter of ammoniacal nitrogen is introduced, the reaction tank contains at most several hundred mg / liter of ammoniacal nitrogen. It is a concentration.
Therefore, it is preferable to set the water temperature and / or the pH to be slightly higher than the value obtained by the equation (5). Furthermore, p
The reaction in the first nitrogen removal step is also promoted by adding the above-mentioned autotrophic denitrifying bacteria group, which has been subjected to increased culture under conditions of H7.5 or higher.

【0017】本発明者らが長期に実験した結果では、水
温は10℃〜80℃、好ましくは20℃〜60℃であ
り、pHは7.5以上、好ましくは7.5〜9.5に設
定することで、遊離のアンモニアは概ね1mg/リット
ル以上となり、第1窒素除去工程では圧倒的に(1)と
(3)の反応が進行した。pH7以下では、遊離(ガス
状)のアンモニアが1.0mg/リットル以下となるが
7.5以上では3mg/リットル以上となり、亜硝酸性
窒素を硝酸性窒素に変換する亜硝酸酸化細菌の増殖が大
幅に抑制され、アンモニア性窒素は大部分が亜硝酸性窒
素で反応を停止する。
According to the results of long-term experiments conducted by the present inventors, the water temperature is 10 ° C to 80 ° C, preferably 20 ° C to 60 ° C, and the pH is 7.5 or more, preferably 7.5 to 9.5. By setting it, the amount of free ammonia was about 1 mg / liter or more, and the reactions (1) and (3) predominantly proceeded in the first nitrogen removal step. At pH 7 or less, free (gaseous) ammonia is 1.0 mg / liter or less, but at 7.5 or more, it is 3 mg / liter or more, and the growth of nitrite-oxidizing bacteria that convert nitrite nitrogen to nitrate nitrogen is increased. It is largely suppressed, and most of the ammoniacal nitrogen is terminated by nitrite nitrogen.

【0018】さらに、この第1窒素除去工程における、
重要な操作条件として、工程内のDO(溶存酸素)濃度
があることが長期の実験で明らかとなった。すなわち、
式(1)、式(2)に示すように、アンモニア性窒素を
すべて硝酸性窒素はもちろん亜硝酸性窒素に変換させな
いこと、変換した亜硝酸性窒素の脱窒素のためにDOの
供給を制限することが、処理を安定させるために重要な
因子であることが明らかとなった。そのため、この第1
窒素除去素工程は、溶存酸素濃度を常時1mg/リット
ル未満となるように酸素含有気体を曝気し、微好気的条
件にするか、又は1mg/リットル以上の場合において
溶存酸素濃度が0.2mg/リットル以下、好ましくは
0mg/リットルの時間帯があるように間欠曝気するこ
とが重要である。間欠曝気の場合、DO濃度が0.2m
g/リットル以下の時間を0.2mg/リットル以上の
時間より長く取るほうが好ましい。なお、DO供給方法
は微好気と間欠曝気を組み合わせてもよい。
Further, in this first nitrogen removing step,
Long-term experiments have revealed that DO (dissolved oxygen) concentration in the process is an important operating condition. That is,
As shown in the formulas (1) and (2), do not convert all of the ammoniacal nitrogen into nitrite nitrogen as well as nitrate nitrogen, and restrict the supply of DO for denitrification of the converted nitrite nitrogen. It has been revealed that this is an important factor for stabilizing the treatment. Therefore, this first
In the nitrogen removal step, the oxygen-containing gas is aerated so that the dissolved oxygen concentration is always less than 1 mg / liter, and the condition is slightly aerobic, or when the dissolved oxygen concentration is 1 mg / liter or more, the dissolved oxygen concentration is 0.2 mg. It is important to perform intermittent aeration so that there is a time zone of 1 / liter or less, preferably 0 mg / liter. In case of intermittent aeration, DO concentration is 0.2m
It is preferable to take the time of g / liter or less longer than the time of 0.2 mg / liter or more. The DO supply method may be a combination of slightly aerobic and intermittent aeration.

【0019】また、本発明では、活性汚泥(浮遊微生
物)だけでも独立栄養性脱窒素菌群と独立栄養性硝化菌
を増殖でき、第1窒素除去工程における反応は可能であ
るが、第1窒素除去工程に微生物担体を添加すると、こ
の表面に独立栄養性脱窒素菌群と独立栄養性硝化菌の生
物膜が形成され、反応が促進される。活性汚泥と微生物
担体表面のそれぞれの菌数が微妙に異なるため、相互に
効果を出し合うために、第1窒素除去工程の反応時間が
短縮するだけでなく、汚水中のアンモニア性窒素にも対
応でき処理が極めて安定する。また、第1窒素除去工程
の内部を多段にすることで、汚水中のアンモニア性窒素
濃度に応じた適切な、pH、汚泥濃度が選択でき、より
安定した第1窒素除去処理が可能となる。具体的には汚
水の流入端側ではpHを低めに設定し、窒素負荷を高め
るためにMLSSを下げる、工程の流出側ではpHを高
めに設定し、MLSSを上げることの操作が可能とな
る。
Further, in the present invention, the activated nitrogen sludge (floating microorganisms) alone can grow the autotrophic denitrifying bacteria group and the autotrophic nitrifying bacteria, and the reaction in the first nitrogen removing step is possible, but the first nitrogen is removed. When a microbial carrier is added to the removal step, biofilms of autotrophic denitrifying bacteria and autotrophic nitrifying bacteria are formed on this surface, and the reaction is promoted. Since the numbers of bacteria on the activated sludge and the surface of the microbial carrier are slightly different, the mutual effects exert each other, so that not only the reaction time in the first nitrogen removal step is shortened, but also ammonia nitrogen in the wastewater can be supported. Processing is extremely stable. Further, by making the inside of the first nitrogen removal step multistage, it is possible to select an appropriate pH and sludge concentration according to the ammonia nitrogen concentration in the wastewater, and a more stable first nitrogen removal treatment becomes possible. Specifically, it is possible to set a lower pH on the inflow end side of the wastewater, lower the MLSS to increase the nitrogen load, and set a higher pH on the outflow side of the process to raise the MLSS.

【0020】第2窒素除去工程では、前段の第1窒素除
去工程の流出液中のアンモニア性窒素と亜硝酸性窒素及
び/又は硝酸性窒素とを結合酸素を利用可能な独立栄養
性脱窒素菌群の存在下で、窒素ガスとして脱窒素する工
程である。この工程では、嫌気条件下で、DO濃度は好
ましくは0.2mg/リットル以下とすることにより脱
窒反応が効率よく進行し、流入したアンモニア性窒素は
ほぼ完全に脱窒される。本発明では、前段の第1窒素除
去工程においては、前述したようにDOの制御がなされ
ているために、特別な方法を採らずに容易に嫌気条件下
とすることが可能である。また、第1窒素除去工程でB
ODは50mg/リットル以下となっており独立栄養性
脱窒素菌群の増殖に好適な環境となっている。脱窒の過
程においてはアルカリ度が上昇するので、このアルカリ
度を前段の第1窒素除去工程に循環することも可能であ
る。
In the second nitrogen removing step, an autotrophic denitrifying bacterium capable of utilizing the combined oxygen by combining the ammoniacal nitrogen and the nitrite nitrogen and / or nitrate nitrogen in the effluent of the first nitrogen removing step of the preceding stage. This is a step of denitrifying as nitrogen gas in the presence of the group. In this step, under anaerobic conditions, the DO concentration is preferably 0.2 mg / liter or less, whereby the denitrification reaction proceeds efficiently and the inflowing ammoniacal nitrogen is almost completely denitrified. In the present invention, since the DO is controlled in the first nitrogen removing step in the former stage as described above, it is possible to easily set the anaerobic condition without using a special method. In the first nitrogen removing step, B
The OD is 50 mg / liter or less, which is an environment suitable for the growth of autotrophic denitrifying bacteria. Since the alkalinity increases in the denitrification process, it is possible to circulate this alkalinity in the first nitrogen removing step in the preceding stage.

【0021】また、第2窒素除去工程の内部を多段にし
返送汚泥を調整することで、前記第1窒素除去工程と同
様に流入水のアンモニア性窒素と亜硝酸性窒素/硝酸性
窒素濃度に応じた適切な、pH、汚泥濃度が選択でき、
より安定した脱窒処理が可能となる。第2窒素除去工程
に微生物担体を添加すると、この表面に独立栄養性脱窒
素菌群と独立栄養性硝化菌の生物膜が形成され、反応が
促進される。活性汚泥と微生物担体表面のそれぞれの菌
数が微妙に異なるため、相互に効果を出し合うために、
この工程の反応時間が短縮するだけでなく、汚水中のア
ンモニア性窒素の変動にも対応でき処理が極めて安定す
る。
Further, by adjusting the internal sludge in the second nitrogen removing step to a plurality of stages and adjusting the returned sludge, the same as in the first nitrogen removing step, the concentration of ammonia nitrogen and nitrite nitrogen / nitrate nitrogen in the inflow water is adjusted. You can select the appropriate pH and sludge concentration.
A more stable denitrification process becomes possible. When a microbial carrier is added to the second nitrogen removal step, biofilms of autotrophic denitrifying bacteria and autotrophic nitrifying bacteria are formed on this surface, and the reaction is promoted. Since the numbers of bacteria on the activated sludge and the surface of the microbial carrier are slightly different, in order to exert mutual effects,
Not only the reaction time of this process is shortened, but also fluctuation of ammonia nitrogen in the wastewater can be dealt with and the treatment is extremely stable.

【0022】本発明の生物学的窒素除去装置を構成する
第1窒素除去装置及び第2窒素除去装置2には、前述し
た活性汚泥式、活性汚泥+微生物担体を添加方式だけで
なく生物ろ過方式(浮上ろ材や浸漬ろ材)からの任意の
ものが使用できる。また、第1窒素除去装置及び第2窒
素除去装置の内部を多段にすることで、汚水中のアンモ
ニア性窒素濃度に応じた適切な、pH、汚泥濃度が選択
でき、より安定した脱窒処理が可能となる。固液分離装
置には沈殿池だけでなく、中空糸膜の膜分離装置やダイ
ナミックろ過装置が採用できる。
The first nitrogen removing device and the second nitrogen removing device 2 constituting the biological nitrogen removing device of the present invention are not limited to the above-mentioned activated sludge type, activated sludge + microbial carrier addition type, and biological filtration type. Any of (floating filter media and immersion filter media) can be used. Further, by making the insides of the first nitrogen removal device and the second nitrogen removal device multi-stage, it is possible to select an appropriate pH and sludge concentration according to the ammonia nitrogen concentration in the wastewater, and a more stable denitrification treatment can be performed. It will be possible. As the solid-liquid separation device, not only a sedimentation tank but also a hollow fiber membrane separation device and a dynamic filtration device can be adopted.

【0023】第1窒素除去装置は、アンモニア酸化細菌
の活性を高く、かつ亜硝酸酸化細菌の活性が低くなるよ
うに抑制されるとともに、独立栄養性脱窒素菌群によっ
てアンモニア性窒素を用いて脱窒される。また、アンモ
ニア性窒素をすべて硝酸性窒素はもちろん亜硝酸性窒素
に変換させない装置である。すなわち、水温は10℃〜
80℃、好ましくは20℃〜60℃であり、pHは7.
5〜10.5、好ましくは7.5〜9.5に設定する。
さらに、溶存酸素濃度を常時1mg/リットル未満とな
るように酸素含有気体を曝気し、微好気的条件にする
か、又は1mg/リットル以上の場合において溶存酸素
濃度が0.2mg/リットル以下、好ましくは0mg/
リットルの時間帯があるように間欠曝気することが重要
である。間欠曝気の場合、DO濃度が0.2mg/リッ
トル以下の時間を0.2mg/リットル以上の時間より
長く取るほうが好ましい。窒素負荷は3kg−N/m3
・day以下になるように制御する。
The first nitrogen removing device suppresses the activity of the ammonia-oxidizing bacteria to be high and the activity of the nitrite-oxidizing bacteria to be low, and at the same time, the autotrophic denitrifying bacteria group uses ammonia nitrogen to deoxidize the bacteria. Be suffocated. In addition, it is a device that does not convert all ammoniacal nitrogen into nitrite nitrogen as well as nitrate nitrogen. That is, the water temperature is 10 ° C-
The temperature is 80 ° C, preferably 20 ° C to 60 ° C, and the pH is 7.
It is set to 5-10.5, preferably 7.5-9.5.
Furthermore, the oxygen-containing gas is aerated so that the dissolved oxygen concentration is constantly less than 1 mg / liter, and the condition is slightly aerobic, or when the dissolved oxygen concentration is 1 mg / liter or more, the dissolved oxygen concentration is 0.2 mg / liter or less, Preferably 0 mg /
It is important to perform intermittent aeration so that there are liter hours. In the case of intermittent aeration, it is preferable to take the time when the DO concentration is 0.2 mg / liter or less longer than the time when the DO concentration is 0.2 mg / liter or more. Nitrogen load is 3kg-N / m 3
・ Control so that it is less than or equal to day.

【0024】本発明の生物学的窒素除去装置を構成する
第2窒素除去装置は、前段の第1窒素除去工程の流出液
中のアンモニア性窒素と亜硝酸性窒素及び/又は硝酸性
窒素とを結合酸素を利用可能な独立栄養性脱窒素菌群の
存在下で、窒素ガスとして脱窒素する。この装置では、
嫌気条件下で、脱窒反応が効率よく進行し、流入したア
ンモニア性窒素はほぼ完全に脱窒される。すなわち、水
温は10℃〜80℃、好ましくは20℃〜60℃であ
り、pHは7.5〜10.5、好ましくは7.5〜9.
5に設定する。窒素負荷は1kg−N/m3・day以
下になるように制御する。
The second nitrogen removing device which constitutes the biological nitrogen removing device of the present invention removes ammoniacal nitrogen and nitrite nitrogen and / or nitrate nitrogen in the effluent of the first nitrogen removing step of the preceding stage. It is denitrified as nitrogen gas in the presence of a group of autotrophic denitrifying bacteria that can utilize bound oxygen. With this device,
Under anaerobic conditions, the denitrification reaction proceeds efficiently, and the inflowing ammoniacal nitrogen is almost completely denitrified. That is, the water temperature is 10 ° C to 80 ° C, preferably 20 ° C to 60 ° C, and the pH is 7.5 to 10.5, preferably 7.5 to 9.
Set to 5. The nitrogen load is controlled so as to be 1 kg-N / m 3 · day or less.

【0025】[0025]

【発明の実施の形態】本発明の実施の形態を図面を参照
にして詳細に説明するが、本発明はこの図面に限定され
るものではない。なお、実施の形態および実施例を説明
する全図において、同一機能を有する構成要素は同一符
号を付けて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these drawings. In all the drawings for explaining the embodiments and examples, constituent elements having the same function are designated by the same reference numerals.

【0026】図1は、本発明の処理方式による一例のフ
ローシートを示す。本発明の処理装置の構成は、第1窒
素除去装置1、第2窒素除去装置2、固液分離装置3か
らなる。以下、アンモニア性窒素を含む汚水を原水とい
う。原水4の全量が第1窒素除去装置1に供給される。
その際に第1窒素除去装置1には、固液分離装置3にて
固液分離された返送汚泥6も供給されている。原水投入
量は窒素負荷が3kg−N/m3・d以下になるように
制御している。第1窒素除去装置1は散気装置10を用
い、間欠的に空気9が供給され、空気の供給タイミング
は、DOが0.2mg/リットル以下の時間が0/2m
g/リットル以上になる時間よりも長くなり、さらに0
mg/リットルの時間があるように制御している。ま
た、pH制御装置11を用いアルカリ添加により、装置
内のpHを7.5〜10.5、好ましくは7.5〜9.
5の範囲内に制御してある。第1窒素除去装置1におい
て、原水4はアンモニア性窒素の1/3〜1/2が亜硝
酸性窒素に若干が硝酸性窒素に酸化され、この反応と平
行して原水4中のアンモニア性窒素で亜硝酸性窒素及び
硝酸性窒素が反応して窒素ガスとして脱窒素する。
FIG. 1 shows an example of a flow sheet according to the processing method of the present invention. The structure of the processing apparatus of the present invention comprises a first nitrogen removing apparatus 1, a second nitrogen removing apparatus 2, and a solid-liquid separation apparatus 3. Hereinafter, sewage containing ammoniacal nitrogen is referred to as raw water. The entire amount of raw water 4 is supplied to the first nitrogen removing device 1.
At that time, the first nitrogen removing device 1 is also supplied with the return sludge 6 which has been subjected to solid-liquid separation by the solid-liquid separating device 3. The amount of raw water input is controlled so that the nitrogen load is 3 kg-N / m 3 · d or less. The first nitrogen removing device 1 uses the air diffuser 10, and the air 9 is intermittently supplied. The air supply timing is 0/2 m when DO is 0.2 mg / liter or less.
It is longer than the time of g / liter or more, and 0
It is controlled so that it has a time of mg / liter. Further, the pH inside the apparatus is adjusted to 7.5 to 10.5, preferably 7.5 to 9 by adding an alkali using the pH control apparatus 11.
It is controlled within the range of 5. In the first nitrogen removing apparatus 1, 1/3 to 1/2 of the ammoniacal nitrogen in the raw water 4 is oxidized to nitrite nitrogen and some is oxidized to nitrate nitrogen, and in parallel with this reaction, the ammoniacal nitrogen in the raw water 4 is At this, nitrite nitrogen and nitrate nitrogen react and denitrify as nitrogen gas.

【0027】第1窒素除去装置流出液7は全量、第2窒
素除去装置2に流入し、残存しているアンモニア性窒素
と亜硝酸性窒素および硝酸性窒素が反応して窒素ガスと
なり、ガス排出管14より装置外へ排出される。窒素負
荷は1kg−N/m3・d以下になるように制御してい
る。第2窒素除去装置2でもpH制御装置12を用いて
装置内のpHを7.5〜10.5、好ましくは7.5〜
9.5に制御している。第1窒素除去装置1にてpH制
御を行っており、第2窒素除去装置2でのpH変動は小
さいため、第2窒素除去装置2でのpH制御は省略する
ことも可能である。第2窒素除去装置流出液8は固液分
離装置3に導入され、汚泥と処理水5に分離される。分
離された汚泥は返送汚泥6として第1窒素除去装置1へ
返送される。処理水5は系外に排出する。また固液分離
された汚泥の一部は余剰汚泥13として系外に排出す
る。
The entire amount of the first nitrogen removing device effluent 7 flows into the second nitrogen removing device 2, and the remaining ammoniacal nitrogen reacts with nitrite nitrogen and nitrate nitrogen to become nitrogen gas, and the gas is discharged. It is discharged from the pipe 14 to the outside of the device. The nitrogen load is controlled to be 1 kg-N / m 3 · d or less. Also in the second nitrogen removing device 2, the pH in the device is adjusted to 7.5 to 10.5, preferably 7.5 by using the pH control device 12.
It is controlled to 9.5. Since the first nitrogen removing device 1 controls the pH and the second nitrogen removing device 2 has a small pH fluctuation, the pH control in the second nitrogen removing device 2 can be omitted. The second nitrogen removal device effluent 8 is introduced into the solid-liquid separation device 3 and separated into sludge and treated water 5. The separated sludge is returned to the first nitrogen removing device 1 as return sludge 6. The treated water 5 is discharged outside the system. In addition, a part of the sludge that has been solid-liquid separated is discharged outside the system as excess sludge 13.

【0028】図1においては、第1窒素除去装置1及び
第2窒素除去装置2には、担体17を添加した活性汚泥
+微生物担体の添加方式を示しているが、前述した活性
汚泥のみの活性汚泥方式、さらに生物膜ろ過方式(浮上
ろ材や浸漬ろ材)のうちの任意のものが使用できる。ま
た、第1窒素除去装置1及び第2窒素除去装置2の内部
を多段にすることで、汚水中のアンモニア性窒素濃度に
応じた適切なpH、汚泥濃度が選択でき、より安定した
脱窒処理が可能となる。固液分離装置には沈殿池だけで
なく、中空糸膜の膜分離装置やダイナミックろ過装置が
採用できる。
In FIG. 1, the first nitrogen removing device 1 and the second nitrogen removing device 2 show an addition system of activated sludge containing a carrier 17 and a microorganism carrier. Any of the sludge system and the biofilm filtration system (floating filter medium or immersion filter medium) can be used. Further, by making the insides of the first nitrogen removing device 1 and the second nitrogen removing device 2 multi-staged, an appropriate pH and sludge concentration can be selected according to the ammonia nitrogen concentration in the wastewater, and a more stable denitrification process can be performed. Is possible. As the solid-liquid separation device, not only a sedimentation tank but also a hollow fiber membrane separation device and a dynamic filtration device can be adopted.

【0029】[0029]

【実施例】以下において、本発明を実施例によりさらに
詳細に説明するが、本発明はこれらの実施例により制限
されるものではない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0030】実施例1 この実施例においては、図1に示すようなフローにより
ごみ浸出水の処理を行った。各装置の容量は、第1窒素
除去装置1;10リットル、第2窒素除去装置2;10
リットルからなる。最初に原水4であるごみ浸出水の水
質を第1表に示す。この場合、BODは20mg/リッ
トル、アンモニア性窒素390mg/リットルであり、
BODはアンモニア性窒素に対し1/2以下となった。
なお、各表においてアンモニア性窒素はNH4−Nで表
し、亜硝酸性窒素はNO2−Nで表し、硝酸性窒素はN
3−Nで表す。また、図4〜7においても同様とす
る。
Example 1 In this example, waste leachate was treated according to the flow shown in FIG. The capacity of each device is as follows: first nitrogen removing device 1; 10 liters, second nitrogen removing device 2; 10
It consists of liters. First, Table 1 shows the water quality of the waste leachate, which is Raw Water 4. In this case, BOD is 20 mg / liter, ammoniacal nitrogen is 390 mg / liter,
BOD was less than 1/2 of ammoniacal nitrogen.
In each table, ammoniacal nitrogen is represented by NH 4 —N, nitrite nitrogen is represented by NO 2 —N, and nitrate nitrogen is N 2.
It is represented by O 3 -N. The same applies to FIGS.

【0031】[0031]

【表1】 [Table 1]

【0032】原水4は、第1窒素除去装置1に供給し、
窒素除去を行った。第1窒素除去装置1の運転条件を第
2表に示す。第1窒素除去装置1には5mm×5mm×
5mmのスポンジ担体を装置容積の10v/v%投入
し、攪拌機を用いて連続攪拌を行った。DO制御は1分
間曝気、5分間停止の間欠曝気で行った。pH制御はp
Hコントローラを用い8.7より高くなった場合H2
4、8.5より低くなった場合NaOHを添加するこ
とにより行った。NaOHの消費量は1.8〜2.5g
/d、H2SO4はほとんど消費されなかった。
Raw water 4 is supplied to the first nitrogen removing device 1,
Nitrogen was removed. Table 2 shows the operating conditions of the first nitrogen removing apparatus 1. 5 mm x 5 mm x for the first nitrogen removing device 1
A 5 mm sponge carrier was added at 10 v / v% of the device volume, and continuous stirring was performed using a stirrer. DO control was performed by aeration for 1 minute and intermittent aeration for 5 minutes. pH control is p
When using H controller and it becomes higher than 8.7 H 2 S
This was done by adding NaOH when O 4 , below 8.5. The consumption of NaOH is 1.8-2.5g
/ D, H 2 SO 4 was hardly consumed.

【0033】[0033]

【表2】 [Table 2]

【0034】第1窒素除去装置流出液7の全量を第2窒
素除去装置2に導入した。第2窒素除去装置2の運転条
件を第3表に示す。第2窒素除去装置には5mm×5m
m×5mmのスポンジ担体を装置容積の10v/v%投
入し、攪拌機を用いて密閉状態で連続攪拌を行った。空
気による曝気は行わず、DOは常に0.2mg/リット
ル以下、pHは8.6であり、pH制御は不要であっ
た。
The entire amount of the first nitrogen removing device effluent 7 was introduced into the second nitrogen removing device 2. Table 3 shows the operating conditions of the second nitrogen removing device 2. 5 mm x 5 m for the second nitrogen removal device
A m × 5 mm sponge carrier was added at 10 v / v% of the apparatus volume, and continuous stirring was performed using a stirrer in a sealed state. Aeration with air was not performed, DO was always 0.2 mg / liter or less, pH was 8.6, and pH control was unnecessary.

【0035】[0035]

【表3】 [Table 3]

【0036】第4表に各装置の入口と出口での水質を示
す。第1窒素除去装置1ではアンモニア性窒素が約90
%減少し、亜硝酸性窒素および硝酸性窒素の増加が認め
られた。第2窒素除去装置2ではアンモニア性窒素、亜
硝酸性窒素および硝酸性窒素はほぼ100%除去され、
処理水のアンモニア性窒素、亜硝酸性窒素および硝酸性
窒素は1mg/リットル以下となり、ほぼ完全に窒素は
除去されていた。
Table 4 shows the water quality at the inlet and outlet of each device. In the first nitrogen removing device 1, the amount of ammonia nitrogen is about 90
%, And increases in nitrite nitrogen and nitrate nitrogen were observed. In the second nitrogen removing device 2, almost 100% of ammonia nitrogen, nitrite nitrogen and nitrate nitrogen are removed,
The amount of ammonia nitrogen, nitrite nitrogen and nitrate nitrogen in the treated water was 1 mg / liter or less, and the nitrogen was almost completely removed.

【0037】[0037]

【表4】 [Table 4]

【0038】実施例2 実施例1と同様のフローにて、第1窒素除去装置1及び
第2窒素除去装置2に担体を添加せず、実施例1と同じ
原水1の処理を行った。担体を投入しない以外は運転条
件も実施例1と同様とした。第5表に各装置の入口と出
口での水質を示す。第1窒素除去装置1ではアンモニア
性窒素が約90%除去され、亜硝酸性窒素および硝酸性
窒素の増加が認められた。実施例1に比べ硝酸性窒素濃
度が高かった。第2窒素除去装置2ではアンモニア性窒
素及び亜硝酸性窒素はほぼ100%除去され、硝酸性窒
素も25%程度除去され、処理水のアンモニア性窒素お
よび亜硝酸性窒素は1mg/リットル以下であったが、
硝酸性窒素は24mg/リットルと実施例1より高い結
果となった。
Example 2 In the same flow as in Example 1, the same treatment of raw water 1 as in Example 1 was performed without adding a carrier to the first nitrogen removing device 1 and the second nitrogen removing device 2. The operating conditions were the same as in Example 1 except that no carrier was added. Table 5 shows the water quality at the inlet and outlet of each device. In the first nitrogen removing apparatus 1, about 90% of ammonia nitrogen was removed, and an increase in nitrite nitrogen and nitrate nitrogen was observed. The nitrate nitrogen concentration was higher than that in Example 1. In the second nitrogen removing device 2, almost 100% of ammonia nitrogen and nitrite nitrogen are removed, about 25% of nitrate nitrogen is also removed, and the amount of ammonia nitrogen and nitrite nitrogen of the treated water is 1 mg / liter or less. But
The nitrate nitrogen was 24 mg / liter, which was higher than that in Example 1.

【0039】[0039]

【表5】 [Table 5]

【0040】実施例3 この実施例においては、図2に示すようなフローにより
屎尿処理をおこなった。接触酸化装置19によるBOD
の低減を行ってから生物学的窒素除去を行った。各装置
の容量は、接触酸化装置19;10リットル、第1窒素
除去装置1;10リットル、第2窒素除去装置2;10
リットルからなる。最初に原水4である希釈屎尿の水質
を第6表に示す。この場合、BODは860mg/リッ
トル、アンモニア性窒素385mg/リットルであり、
BODはアンモニア性窒素に対し2.2倍程度となっ
た。
Example 3 In this example, human waste treatment was carried out according to the flow shown in FIG. BOD by catalytic oxidizer 19
Was reduced prior to biological nitrogen removal. The capacity of each device is as follows: catalytic oxidizer 19; 10 liters, first nitrogen remover 1; 10 liters, second nitrogen remover 2; 10
It consists of liters. First, Table 6 shows the water quality of diluted raw sewage, which is raw water 4. In this case, BOD is 860 mg / liter, ammoniacal nitrogen is 385 mg / liter,
BOD was about 2.2 times that of ammoniacal nitrogen.

【0041】[0041]

【表6】 [Table 6]

【0042】原水4は、接触酸化装置19にも供給しB
OD除去を行った。接触酸化装置19の運転条件を第7
表に示す。接触酸化装置19には50×50×80mm
のハニカム構造のろ材21を浸漬させ、連続曝気を行っ
た。
The raw water 4 is also supplied to the catalytic oxidizer 19 B
OD removal was performed. The operating conditions of the catalytic oxidation device 19 are
Shown in the table. 50 × 50 × 80 mm for the catalytic oxidizer 19
The honeycomb-structured filter medium 21 was immersed and continuously aerated.

【0043】[0043]

【表7】 [Table 7]

【0044】第1窒素除去装置1及び第2窒素除去装置
2の運転条件は、実施例1と同様とした。第8表に各装
置の入口と出口での水質を示す。接触酸化装置19では
BODが約80%除去された。接触酸化装置流出液20
は、BOD180mg/リットル、アンモニア性窒素3
65mg/リットルであり、BODはアンモニア性窒素
に対し1/2程度となった。第1窒素除去装置1ではア
ンモニア性窒素が約90%減少し、亜硝酸性窒素及び硝
酸性窒素の増加が認められた。第2窒素除去装置2では
アンモニア性窒素および亜硝酸性窒素はほぼ100%除
去され、硝酸性窒素は40%程度除去された。第1窒素
除去装置1の前に接触酸化装置19を設けBODを除去
することにより、第1窒素除去装置1内にて独立栄養性
脱窒細菌による脱窒処理が優先的に進行する結果となっ
た。
The operating conditions of the first nitrogen removing device 1 and the second nitrogen removing device 2 were the same as in Example 1. Table 8 shows the water quality at the inlet and outlet of each device. The catalytic oxidizer 19 removed about 80% of BOD. Contact oxidizer effluent 20
Is BOD 180 mg / liter, ammoniacal nitrogen 3
It was 65 mg / liter, and the BOD was about 1/2 of that of ammoniacal nitrogen. In the first nitrogen removing apparatus 1, the amount of ammonia nitrogen was reduced by about 90%, and the increase of nitrite nitrogen and nitrate nitrogen was recognized. In the second nitrogen removing apparatus 2, almost 100% of ammonia nitrogen and nitrite nitrogen were removed, and about 40% of nitrate nitrogen was removed. By providing the catalytic oxidation device 19 in front of the first nitrogen removal device 1 to remove the BOD, the denitrification treatment by the autotrophic denitrifying bacteria in the first nitrogen removal device 1 is preferentially advanced. It was

【0045】[0045]

【表8】 [Table 8]

【0046】比較例1 従来の硝化脱窒法であるメタノール注入による生物学的
窒素除去を行った。フローを図3に示す。実施例1と槽
の大きさ及び配置は同様とし、第1窒素除去装置1を連
続曝気し、かつ、pHの制御を行わずに通常の硝化槽と
し、第2窒素除去装置2を脱窒槽として運転した。第1
窒素除去装置1の運転条件を第9表に示す。第1窒素除
去装置には、5mm×5mm×5mmのスポンジ担体を
装置容積の10v/v%投入し、攪拌機を用いて連続攪
拌を行った。第2窒素除去装置2は連続攪拌を行いメタ
ノール注入量は0g/dとした。
Comparative Example 1 Biological nitrogen removal was performed by injecting methanol, which is a conventional nitrification denitrification method. The flow is shown in FIG. The size and arrangement of the tank were the same as in Example 1, the first nitrogen removing device 1 was continuously aerated, and a normal nitrification tank was used without pH control, and the second nitrogen removing device 2 was a denitrification tank. I drove. First
Table 9 shows the operating conditions of the nitrogen removing apparatus 1. A 5 mm × 5 mm × 5 mm sponge carrier was charged into the first nitrogen removing device at 10 v / v% of the device volume, and continuous stirring was performed using a stirrer. The second nitrogen removing device 2 was continuously stirred and the injection amount of methanol was set to 0 g / d.

【0047】[0047]

【表9】 [Table 9]

【0048】第10表に各装置の入口と出口での水質を
示す。第1窒素除去装置1ではアンモニア性窒素は10
0%硝化し、ほとんど硝酸性窒素に変化した。また、p
H制御を行わなかったため、6.5まで低下した。第2
窒素除去装置2では硝酸性窒素はほとんど除去されなか
った。また、沈殿池での脱窒による汚泥浮上が激しく汚
泥管理が困難であった。第1窒素除去装置1と第2窒素
除去装置2あわせての窒素除去率は21%であり、実施
例1、2に比べ除去率が非常に小さい結果となった。
Table 10 shows the water quality at the inlet and outlet of each device. In the first nitrogen removing apparatus 1, the amount of ammonia nitrogen is 10
0% nitrification, almost converted to nitrate nitrogen. Also, p
Since H control was not performed, the value decreased to 6.5. Second
Nitrate nitrogen was hardly removed by the nitrogen removing device 2. In addition, sludge floated due to denitrification in the sedimentation tank, making sludge management difficult. The nitrogen removal rate of both the first nitrogen removal apparatus 1 and the second nitrogen removal apparatus 2 was 21%, which resulted in a very low removal rate as compared with Examples 1 and 2.

【0049】[0049]

【表10】 [Table 10]

【0050】比較例2 比較例1と同様に、従来の硝化脱窒法であるメタノール
注入による生物学的窒素除去を行った。フローを図3に
示す。実施例1と槽の大きさおよび配置は同様とし、第
1窒素除去装置1は連続曝気し、かつ、pHの制御を行
わずに通常の硝化槽として運転し、第2窒素除去装置2
にはメタノールを8.0g/d添加し連続攪拌を行い脱
窒槽とし、メタノールの残留があったため3リットルの
再曝気槽を沈殿池の前に付けて運転した。
Comparative Example 2 As in Comparative Example 1, biological nitrogen removal by injecting methanol, which is a conventional nitrification denitrification method, was performed. The flow is shown in FIG. The size and arrangement of the tank were the same as in Example 1, the first nitrogen removing device 1 was continuously aerated, and operated as an ordinary nitrification tank without controlling the pH, and the second nitrogen removing device 2 was used.
For the denitrification tank, 8.0 g / d of methanol was added and continuously stirred to make a denitrification tank. Since there was residual methanol, a 3 liter re-aeration tank was installed in front of the sedimentation tank for operation.

【0051】各装置の入口と出口での水質を第11表に
示す。アンモニア性窒素は100%硝化し、ほとんど硝
酸性窒素に変化した。また、pH制御を行わなかったた
め、6.5まで低下した。第2窒素除去装置2ではメタ
ノールを添加することにより脱窒が進行し、硝酸性窒素
は90%除去された。第1窒素除去装置1と第2窒素除
去装置2あわせての窒素除去率は約90%であり、従来
の硝化脱窒法の場合、メタノールを投入窒素量の3.4
倍の8.0g/d添加したにも拘わらず、処理水水質が
実施例1より悪くなる結果であった。
Table 11 shows the water quality at the inlet and outlet of each device. Ammoniacal nitrogen was 100% nitrified and almost converted to nitrate nitrogen. In addition, the pH was lowered to 6.5 because the pH was not controlled. In the second nitrogen removing device 2, denitrification proceeded by adding methanol, and nitrate nitrogen was removed by 90%. The nitrogen removal rate of both the first nitrogen removal device 1 and the second nitrogen removal device 2 is about 90%, and in the case of the conventional nitrification denitrification method, methanol was added to the amount of nitrogen of 3.4.
Despite the double addition of 8.0 g / d, the quality of the treated water was worse than that of Example 1.

【0052】[0052]

【表11】 [Table 11]

【0053】確認実験1 実施例1の第1窒素除去装置1及び第2窒素除去装置2
にて、独立栄養性脱窒細菌によるアンモニア性窒素と亜
硝酸性窒素の減少が起こっていることを確認するため
に、活性汚泥混合液および担体を用いアンモニア性窒素
と亜硝酸性窒素による脱窒の回分処理を行った。回分処
理の原水は、連続実験で用いたごみ浸出水に亜硝酸性窒
素および硝酸性窒素が400mg/リットルとなるよう
にNaNO2とNaNO3を添加した。原水のBODは1
0mg/リットル以下であった。
Confirmation Experiment 1 First nitrogen removing apparatus 1 and second nitrogen removing apparatus 2 of Example 1
In order to confirm that the reduction of ammonia nitrogen and nitrite nitrogen by autotrophic denitrifying bacteria has occurred, denitrification with ammonia nitrogen and nitrite nitrogen was performed using activated sludge mixture and carrier. Batch processing was performed. As raw water for batch treatment, NaNO 2 and NaNO 3 were added to the leachate used in the continuous experiment so that nitrite nitrogen and nitrate nitrogen were 400 mg / liter. BOD of raw water is 1
It was 0 mg / liter or less.

【0054】(1)活性汚泥単独の場合 活性汚泥の窒素除去速度測定は、活性汚泥混合液に上記
原水をアンモニア性窒素及び亜硝酸性窒素が60mg/
リットル、硝酸性窒素が50mg/リットル、BODが
5mg/リットル以下、MLSSが3000mg/リッ
トルになるように密閉容器に入れ連続攪拌し反応させ
た。槽内DOは常に0mg/リットル、pHは8.5〜
8.6であった。第1窒素除去装置1の場合のアンモニ
ア性窒素、亜硝酸性窒素、硝酸性窒素の挙動を図4に示
す。10時間処理後、アンモニア性窒素はほぼ100
%、亜硝酸性窒素は83%減少していた。この結果より
求めたアンモニア性窒素の除去速度は2.0mg−N/
gMLSS/h、亜硝酸性窒素の除去速度は1.7mg
−N/g−MLSS/hであった。硝酸性窒素は17%
減少しており、硝酸性窒素の除去速度は0.3mg−N
/g−MLSS/hであった。アンモニア性窒素、亜硝
酸性窒素に比べ硝酸性窒素の除去速度は低かった。
(1) In the case of activated sludge alone The nitrogen removal rate of the activated sludge was measured by adding 60 mg / min of the above-mentioned raw water to the activated sludge mixed solution with ammoniacal nitrogen and nitrite nitrogen.
Liter, nitrate nitrogen of 50 mg / liter, BOD of 5 mg / liter or less, and MLSS of 3000 mg / liter were placed in a closed container and continuously stirred to react. DO in the tank is always 0 mg / liter, pH is 8.5-
It was 8.6. The behaviors of ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen in the case of the first nitrogen removing device 1 are shown in FIG. After treatment for 10 hours, the ammonia nitrogen is almost 100
% And nitrite nitrogen were reduced by 83%. The removal rate of ammoniacal nitrogen obtained from this result was 2.0 mg-N /
gMLSS / h, removal rate of nitrite nitrogen is 1.7 mg
It was -N / g-MLSS / h. Nitrate nitrogen is 17%
The rate of removal of nitrate nitrogen is 0.3mg-N
/ G-MLSS / h. The removal rate of nitrate nitrogen was lower than that of ammonia nitrogen and nitrite nitrogen.

【0055】(2)担体単独の場合 担体の除去速度測定は、担体と処理水と上記原水を混合
し、担体が20v/v%、アンモニア性窒素、亜硝酸性
窒素および硝酸性窒素が60mg/リットル、BOD1
0mg/リットルとなるように密閉容器に入れ連続攪拌
し反応させた。槽内DOは常に0.2mg/リットル以
下、pHは8.5〜8.7であった。第1窒素除去装置
1の場合のアンモニア性窒素、亜硝酸性窒素、硝酸性窒
素の挙動を図5に示す。7.5時間処理後、アンモニア
性窒素はほぼ100%、亜硝酸性窒素は86%減少して
いた。この結果より求めたアンモニア性窒素の除去速度
は36mg−N/リットル−担体・h、亜硝酸性窒素の
除去速度は32mg−N/リットル−担体・hであっ
た。硝酸性窒素は14%減少しており、硝酸性窒素の除
去速度は5.3mg−N/リットル−担体・hであっ
た。アンモニア性窒素、亜硝酸性窒素に比べ硝酸性窒素
の除去速度は低かった。第1窒素除去装置1と第2窒素
除去装置2はほぼ同じ結果であった。以上の結果から、
第1及び第2窒素除去装置2では、亜硝酸性窒素をアン
モニア性窒素で脱窒できる脱窒菌の存在が担体、活性汚
泥共に認められた。
(2) When the carrier alone is used: The removal rate of the carrier is measured by mixing the carrier, treated water and the above-mentioned raw water, and the carrier is 20 v / v% and the amount of ammonia nitrogen, nitrite nitrogen and nitrate nitrogen is 60 mg / Liter, BOD1
The mixture was placed in a closed container so that the concentration became 0 mg / liter, and the reaction was carried out by continuously stirring. DO in the tank was always 0.2 mg / liter or less, and pH was 8.5 to 8.7. The behavior of ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen in the case of the first nitrogen removing apparatus 1 is shown in FIG. After treatment for 7.5 hours, the amount of ammonia nitrogen was reduced by almost 100% and the amount of nitrite nitrogen was reduced by 86%. The removal rate of ammoniacal nitrogen determined from these results was 36 mg-N / liter-carrier.h, and the removal rate of nitrite nitrogen was 32 mg-N / liter-carrier.h. Nitrate nitrogen was reduced by 14%, and the removal rate of nitrate nitrogen was 5.3 mg-N / liter-carrier-h. The removal rate of nitrate nitrogen was lower than that of ammonia nitrogen and nitrite nitrogen. The results of the first nitrogen removing device 1 and the second nitrogen removing device 2 were almost the same. From the above results,
In the first and second nitrogen removing devices 2, the presence of denitrifying bacteria capable of denitrifying nitrite nitrogen with ammonia nitrogen was recognized in both the carrier and the activated sludge.

【0056】確認実験2 比較例1の第1窒素除去装置1および第2窒素除去装置
2についても同様の確認を行った。 (1)活性汚泥単独の場合 第1窒素除去装置1の場合のアンモニア性窒素、亜硝酸
性窒素、硝酸性窒素の挙動を図6に示す。10時間処理
後、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素はほ
とんど減少しなかった。これらの結果より求めた除去速
度はアンモニア性窒素 0.07mg−N/g−MLS
S/h、亜硝酸性窒素 0.07mg−N/g−MLS
S/h、硝酸性窒素 0.03mg−N/g−MLSS
/hであった。
Confirmation Experiment 2 The same confirmation was performed for the first nitrogen removing apparatus 1 and the second nitrogen removing apparatus 2 of Comparative Example 1. (1) In the case of activated sludge alone FIG. 6 shows the behavior of ammoniacal nitrogen, nitrite nitrogen, and nitrate nitrogen in the case of the first nitrogen removing device 1. After the treatment for 10 hours, ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen were hardly reduced. The removal rate obtained from these results was 0.07 mg-N / g-MLS of ammonia nitrogen.
S / h, nitrite nitrogen 0.07 mg-N / g-MLS
S / h, nitrate nitrogen 0.03mg-N / g-MLSS
Was / h.

【0057】(2)担体単独の場合 第1窒素除去装置1の場合のアンモニア性窒素、亜硝酸
性窒素、硝酸性窒素の挙動を図7に示す。10時間処理
後、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素はほ
とんど減少しなかった。これらの結果より求めた除去速
度はアンモニア性窒素 0.4mg−N/リットル−担
体・h、亜硝酸性窒素 0.4mg−N/リットル−担
体・h、硝酸性窒素 0.2mg−N/リットル−担体
・hであった。第1窒素除去装置1と第2窒素除去装置
2はほぼ同じ結果であった。以上から、比較例1の第1
窒素除去装置1および第2窒素除去装置2では、担体、
活性汚泥共に亜硝酸性窒素をアンモニア性窒素で脱窒で
きる脱窒菌の存在は皆無に等しかった。
(2) When the carrier is used alone The behavior of ammoniacal nitrogen, nitrite nitrogen, and nitrate nitrogen in the case of the first nitrogen removing device 1 is shown in FIG. After the treatment for 10 hours, ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen were hardly reduced. The removal rate obtained from these results was as follows: ammoniacal nitrogen 0.4 mg-N / liter-carrier-h, nitrite nitrogen 0.4 mg-N / liter-carrier-h, nitrate nitrogen 0.2 mg-N / liter. -Carrier h. The results of the first nitrogen removing device 1 and the second nitrogen removing device 2 were almost the same. From the above, the first of Comparative Example 1
In the nitrogen removing device 1 and the second nitrogen removing device 2, a carrier,
The presence of denitrifying bacteria capable of denitrifying nitrite nitrogen with ammoniacal nitrogen in activated sludge was virtually nonexistent.

【0058】[0058]

【発明の効果】本発明によれば、アンモニア性窒素を含
んだ廃水の処理において、DOおよびpHを制御した第
1窒素除去装置と第2窒素除去装置にて、廃水を生物学
的窒素除去方法により窒素除去を行うことにより、酸素
必要量が従来方法よりも低減でき、かつ、メタノール等
の電子供与体を使用せずに窒素ガスまでに脱窒素するこ
とが可能であることから、低コスト化がはかれる。さら
に亜硝酸性窒素を優先的に生成させると同時に、亜硝酸
性窒素とアンモニア性窒素との反応を促進する効果も認
められ、容易な制御で確実に窒素除去を行うことが可能
である。
According to the present invention, in the treatment of wastewater containing ammoniacal nitrogen, the wastewater is biologically removed by the first nitrogen removing device and the second nitrogen removing device whose DO and pH are controlled. By removing nitrogen, the required oxygen amount can be reduced as compared with the conventional method, and nitrogen can be denitrified to nitrogen gas without using an electron donor such as methanol. Be peeled off. Furthermore, the effect of accelerating the reaction between nitrite nitrogen and ammonia nitrogen while at the same time preferentially generating nitrite nitrogen is recognized, and nitrogen can be reliably removed by easy control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の生物学的窒素除去装置を示すフローで
ある。
FIG. 1 is a flow chart showing a biological nitrogen removing apparatus of the present invention.

【図2】本発明の接触酸化装置を前段に設けた生物学的
窒素除去装置を示すフローである。
FIG. 2 is a flow chart showing a biological nitrogen removing device provided with the catalytic oxidation device of the present invention in the preceding stage.

【図3】従来法の硝化脱窒素法であるメタノール添加に
よる生物学的窒素除去装置のフローである。
FIG. 3 is a flow chart of a biological nitrogen removal apparatus by adding methanol, which is a conventional nitrification denitrification method.

【図4】実施例1における活性汚泥の回分試験結果であ
る。
4 is a batch test result of activated sludge in Example 1. FIG.

【図5】実施例1における担体の回分試験結果である。5 is a batch test result of the carrier in Example 1. FIG.

【図6】比較例1における活性汚泥の回分試験結果であ
る。
6 is a batch test result of activated sludge in Comparative Example 1. FIG.

【図7】比較例1における担体の回分試験結果である。7 is a batch test result of the carrier in Comparative Example 1. FIG.

【符号の説明】[Explanation of symbols]

1 第1窒素除去装置 2 第2窒素除去装置 3 固液分離装置 4 原水 5 処理水 6 返送汚泥 7 第1窒素除去装置流出液 8 第2窒素除去装置流出液 9 空気 10 散気装置 11、12 pH制御装置 13 余剰汚泥 14 ガス排出管 15、16 攪拌装置 17 担体 18 メタノール添加装置 19 接触酸化装置 20 接触酸化装置流出液 21 ハニカム構造のろ材 1st nitrogen removal device 2 Second nitrogen removal device 3 Solid-liquid separator 4 Raw water 5 treated water 6 Return sludge 7 First nitrogen removal device effluent 8 Second nitrogen removal device effluent 9 air 10 Air diffuser 11, 12 pH controller 13 Surplus sludge 14 gas exhaust pipe 15, 16 Stirrer 17 Carrier 18 Methanol addition device 19 Contact oxidizer 20 Outflow of catalytic oxidation equipment 21 Honeycomb structure filter media

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 3/08 C02F 3/08 Z 3/12 3/12 S V (72)発明者 葛 甬生 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 山口 晶 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 片岡 克之 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D003 AA01 AA05 AA12 AB02 BA02 BA03 BA04 CA02 CA03 CA07 EA19 FA02 FA06 4D006 GA02 KA01 KB22 KB25 PA02 PB08 PC64 4D028 AB00 BB06 BC17 BC18 BD06 BD11 BD16 BD17 CA00 CA07 CC07 4D040 BB02 BB12 BB22 BB24 BB42 BB52 BB54 BB82 BB91 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI Theme Coat (reference) C02F 3/08 C02F 3/08 Z 3/12 3/12 SV (72) Inventor Katsura Susumu Tokyo 11-1 Haneda Asahi-cho, Ota-ku, Ebara Corporation (72) Inventor Akira Yamaguchi 11-11 Haneda-Asahi-cho, Ota-ku, Tokyo (72) Inventor, Katsuyuki Kataoka Asahi Haneda, Ota-ku, Tokyo 11th Town No. 1 in Ebara Manufacturing Co., Ltd. (reference) 4D003 AA01 AA05 AA12 AB02 BA02 BA03 BA04 CA02 CA03 CA07 EA19 FA02 FA06 4D006 GA02 KA01 KB22 KB25 PA02 PB08 PC64 4D028 AB00 BB06 BC17 BC18 BD06 BD11 BD16 CC07 BD07 CA040 CA07 CA07 CA07 CA07 BB02 BB12 BB22 BB24 BB42 BB52 BB54 BB82 BB91

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア性窒素を含む汚水を生物学的
に硝化脱窒素する方法において、前記汚水を微好気的条
件及び/又は間欠曝気条件下で、独立栄養性硝化菌及び
独立栄養性脱窒素菌群の存在下に、アンモニア性窒素を
残留させつつ、アンモニア性窒素と亜硝酸性窒素及び/
又は硝酸性窒素とを窒素ガスとして部分的に脱窒する第
1窒素除去工程と、前記第1窒素除去工程の流出液を結
合酸素を利用可能な独立栄養性脱窒素菌群の存在下で、
該流出液中のアンモニア性窒素と亜硝酸性窒素及び/又
は硝酸性窒素とを窒素ガスとして脱窒素する第2窒素除
去工程で処理することを特徴とする生物学的窒素除去方
法。
1. A method for biologically nitrifying and denitrifying sewage containing ammoniacal nitrogen, comprising: treating the sewage under microaerobic conditions and / or intermittent aeration conditions with autotrophic nitrifying bacteria and autotrophic denitrification. In the presence of nitrogenous bacteria, ammoniacal nitrogen and nitrite nitrogen and /
Alternatively, in the presence of a group of autotrophic denitrifying bacteria capable of utilizing bound oxygen, a first nitrogen removing step of partially denitrifying nitrate nitrogen as nitrogen gas and an effluent of the first nitrogen removing step,
A method for removing biological nitrogen, which comprises performing a second nitrogen removing step of denitrifying ammoniacal nitrogen and nitrite nitrogen and / or nitrate nitrogen in the effluent as nitrogen gas.
【請求項2】 前記第1窒素除去工程及び第2窒素除去
工程において、微生物担体および活性汚泥を存在させる
ことを特徴とする請求項1記載の生物学的窒素除去方
法。
2. The biological nitrogen removing method according to claim 1, wherein a microbial carrier and activated sludge are present in the first nitrogen removing step and the second nitrogen removing step.
【請求項3】 前記第1窒素除去工程は、溶存酸素濃度
を常時1mg/リットル未満となるように酸素含有気体
を曝気するか、又は1mg/リットル以上の場合におい
て溶存酸素濃度が0.2mg/リットル以下の時間帯が
あるように間欠曝気することを特徴とする請求項1又は
請求項2に記載の生物学的窒素除去方法。
3. In the first nitrogen removing step, the oxygen-containing gas is aerated so that the dissolved oxygen concentration is always less than 1 mg / liter, or when the dissolved oxygen concentration is 1 mg / liter or more, the dissolved oxygen concentration is 0.2 mg / liter. The method for biological nitrogen removal according to claim 1 or 2, wherein intermittent aeration is performed so that there is a time zone of liters or less.
【請求項4】 前記流入汚水のBODを流入アンモニア
性窒素に対して1/2以下となるように溶解性BODを
除去することを特徴とする請求項1〜3のいずれか1項
に記載の生物学的窒素除去方法。
4. The soluble BOD is removed so that the BOD of the inflowing wastewater becomes 1/2 or less with respect to the inflowing ammoniacal nitrogen, and the soluble BOD is removed. Biological nitrogen removal method.
【請求項5】 アンモニア性窒素を含む汚水を生物学的
に硝化脱窒素する装置において、前記汚水を微好気的条
件及び/又は間欠曝気条件下で、独立栄養性硝化菌及び
独立栄養性脱窒素菌群の存在下に、アンモニア性窒素を
残留させつつアンモニア性窒素と亜硝酸性窒素及び/又
は硝酸性窒素とを窒素ガスとして部分的に脱窒する第1
窒素除去装置と、前記第1窒素除去装置の流出液を結合
酸素を利用可能な独立栄養性脱窒素菌群の存在下で、該
流出液中のアンモニア性窒素と亜硝酸性窒素及び/又は
硝酸性窒素とを窒素ガスとして脱窒素する第2窒素除去
装置と、前記第2窒素除去装置の流出液を処理水と沈殿
汚泥に分離する固液分離装置と、前記沈殿汚泥の一部を
返送汚泥として第1窒素除去装置へ返送する配管とを有
することを特徴とする生物学的窒素除去装置。
5. An apparatus for biologically nitrifying and denitrifying sewage containing ammoniacal nitrogen, wherein the sewage is treated under microaerobic conditions and / or intermittent aeration conditions. Partial denitrification of ammonia nitrogen and nitrite nitrogen and / or nitrate nitrogen as nitrogen gas while leaving ammonia nitrogen in the presence of nitrogen bacteria group 1
The nitrogen removing device and the effluent of the first nitrogen removing device are used in the presence of an autotrophic denitrifying bacteria group capable of utilizing bound oxygen, and ammonia nitrogen and nitrite nitrogen and / or nitric acid in the effluent are provided. Nitrogen removal device for denitrifying organic nitrogen as nitrogen gas, a solid-liquid separation device for separating the effluent of the second nitrogen removal device into treated water and settling sludge, and a part of the settling sludge returning sludge And a pipe for returning it to the first nitrogen removing device as a biological nitrogen removing device.
JP2001329234A 2001-10-26 2001-10-26 Biological nitrogen removal method and apparatus Expired - Lifetime JP4302341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001329234A JP4302341B2 (en) 2001-10-26 2001-10-26 Biological nitrogen removal method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001329234A JP4302341B2 (en) 2001-10-26 2001-10-26 Biological nitrogen removal method and apparatus

Publications (2)

Publication Number Publication Date
JP2003126886A true JP2003126886A (en) 2003-05-07
JP4302341B2 JP4302341B2 (en) 2009-07-22

Family

ID=19145168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001329234A Expired - Lifetime JP4302341B2 (en) 2001-10-26 2001-10-26 Biological nitrogen removal method and apparatus

Country Status (1)

Country Link
JP (1) JP4302341B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP2007117948A (en) * 2005-10-31 2007-05-17 Ebara Corp Method and apparatus for treating high-concentration organic waste liquid
US7438813B1 (en) * 2006-04-13 2008-10-21 Pedros Philip B Ammonia oxidation and pipe denitrification
JP2012157837A (en) * 2011-02-02 2012-08-23 Ishigaki Co Ltd Nitrogen removal system and nitrogen removal method for dehydration filtrate
JP2012157836A (en) * 2011-02-02 2012-08-23 Ishigaki Co Ltd Nitrogen removal system and nitrogen removal method for dehydration filtrate
JP2016055230A (en) * 2014-09-08 2016-04-21 株式会社日立製作所 Wastewater treatment apparatus and method
JP2017024973A (en) * 2015-07-17 2017-02-02 株式会社アイエイアイ Manufacturing method and manufacturing apparatus of organic fertilizer nutritious liquid
JP2018114438A (en) * 2017-01-17 2018-07-26 三菱ケミカルアクア・ソリューションズ株式会社 Wastewater treatment method and wastewater treatment equipment
CN108383235A (en) * 2018-01-15 2018-08-10 华南理工大学 A method of realizing efficient nitrosation for Low Concentration Ammonia Containing Wastewater
CN110590079A (en) * 2019-10-15 2019-12-20 四川国清源环保科技有限公司 Method for treating landfill leachate sewage in full quantity by electron beam irradiation
JP2021133297A (en) * 2020-02-26 2021-09-13 水ing株式会社 Treatment method of ammoniac nitrogen-containing waste water and treatment apparatus
CN113800715A (en) * 2021-09-15 2021-12-17 北京清河北苑水务有限公司 Sewage treatment system and method
JP2022045828A (en) * 2020-09-09 2022-03-22 水ing株式会社 Water treatment method and water treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117124A (en) * 2018-02-07 2019-08-13 深圳市深水生态环境技术有限公司 The landfill leachate full dose further treatment technique technique up to standard and method and system of concentrate are not produced

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230225A (en) * 2003-01-28 2004-08-19 Kurita Water Ind Ltd Method for treating ammonia-containing water
JP4613474B2 (en) * 2003-01-28 2011-01-19 栗田工業株式会社 Method for treating ammonia-containing water
JP2007117948A (en) * 2005-10-31 2007-05-17 Ebara Corp Method and apparatus for treating high-concentration organic waste liquid
JP4642635B2 (en) * 2005-10-31 2011-03-02 荏原エンジニアリングサービス株式会社 High concentration organic waste liquid treatment method and apparatus
US7438813B1 (en) * 2006-04-13 2008-10-21 Pedros Philip B Ammonia oxidation and pipe denitrification
JP2012157837A (en) * 2011-02-02 2012-08-23 Ishigaki Co Ltd Nitrogen removal system and nitrogen removal method for dehydration filtrate
JP2012157836A (en) * 2011-02-02 2012-08-23 Ishigaki Co Ltd Nitrogen removal system and nitrogen removal method for dehydration filtrate
JP2016055230A (en) * 2014-09-08 2016-04-21 株式会社日立製作所 Wastewater treatment apparatus and method
JP2017024973A (en) * 2015-07-17 2017-02-02 株式会社アイエイアイ Manufacturing method and manufacturing apparatus of organic fertilizer nutritious liquid
JP2018114438A (en) * 2017-01-17 2018-07-26 三菱ケミカルアクア・ソリューションズ株式会社 Wastewater treatment method and wastewater treatment equipment
CN108383235A (en) * 2018-01-15 2018-08-10 华南理工大学 A method of realizing efficient nitrosation for Low Concentration Ammonia Containing Wastewater
CN110590079A (en) * 2019-10-15 2019-12-20 四川国清源环保科技有限公司 Method for treating landfill leachate sewage in full quantity by electron beam irradiation
JP2021133297A (en) * 2020-02-26 2021-09-13 水ing株式会社 Treatment method of ammoniac nitrogen-containing waste water and treatment apparatus
JP7229190B2 (en) 2020-02-26 2023-02-27 水ing株式会社 Ammonia nitrogen-containing wastewater treatment method and treatment apparatus
JP2022045828A (en) * 2020-09-09 2022-03-22 水ing株式会社 Water treatment method and water treatment apparatus
JP7378370B2 (en) 2020-09-09 2023-11-13 水ing株式会社 Water treatment method and water treatment equipment
CN113800715A (en) * 2021-09-15 2021-12-17 北京清河北苑水务有限公司 Sewage treatment system and method

Also Published As

Publication number Publication date
JP4302341B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP5961169B2 (en) Optimized nutrient removal from wastewater
JP4644107B2 (en) Method for treating wastewater containing ammonia
WO2006035885A1 (en) Method of treating nitrogen-containing liquid and apparatus therefor
JP4882175B2 (en) Nitrification method
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP2001293494A (en) Biological nitrogen removing method
JP2006325512A (en) Waste water-treating system
TW201024231A (en) System and method for treating waste water containing ammonia
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP2003154394A (en) Biological denitrification method and apparatus
JPH08192185A (en) Biologically nitrifying and denitrifying method
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
CA2295751A1 (en) Process for reducing nitrous oxide emission from waste water treatment
JP2003010883A (en) Nitration method of ammonia nitrogen-containing water
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JP2007007557A (en) Waste water treatment apparatus
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
JP3656426B2 (en) Biological treatment of ammoniacal nitrogen
JP2001079593A (en) Removing method of nitrogen in waste water
JP2019217481A (en) Water treatment method
JPS6038095A (en) Treatment of organic sewage
WO2019244964A1 (en) Water treatment method and water treatment device
JPS6117559B2 (en)
JP2006088057A (en) Method for treating ammonia-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4302341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term