JP2016055230A - Wastewater treatment apparatus and method - Google Patents

Wastewater treatment apparatus and method Download PDF

Info

Publication number
JP2016055230A
JP2016055230A JP2014182372A JP2014182372A JP2016055230A JP 2016055230 A JP2016055230 A JP 2016055230A JP 2014182372 A JP2014182372 A JP 2014182372A JP 2014182372 A JP2014182372 A JP 2014182372A JP 2016055230 A JP2016055230 A JP 2016055230A
Authority
JP
Japan
Prior art keywords
nitrogen
nitrite
reaction
anaerobic ammonia
ammonia oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014182372A
Other languages
Japanese (ja)
Other versions
JP2016055230A5 (en
JP6227509B2 (en
Inventor
裕哉 木村
Hiroya Kimura
裕哉 木村
井坂 和一
Kazuichi Isaka
和一 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014182372A priority Critical patent/JP6227509B2/en
Priority to KR1020150118770A priority patent/KR20160030042A/en
Publication of JP2016055230A publication Critical patent/JP2016055230A/en
Publication of JP2016055230A5 publication Critical patent/JP2016055230A5/ja
Application granted granted Critical
Publication of JP6227509B2 publication Critical patent/JP6227509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a wastewater treatment apparatus and a method that can improve the quality of treated water by reducing the concentration of nitrogen components remaining after anaerobic ammonia oxidation reaction in the biological treatment of wastewater using anaerobic ammonia oxidation reaction.SOLUTION: A wastewater treatment apparatus includes: a nitrite-type nitrification reaction tank 10 in which a part of ammonia nitrogen contained in wastewater is converted into nitrite nitrogen by nitrite-type nitrification reaction; an anaerobic ammonia oxidation reaction tank 20 in which the rest of the ammonia nitrogen and the nitrite nitrogen are converted into molecular nitrogen and nitrate nitrogen by anaerobic ammonia oxidation reaction; and an autotrophic denitrification reaction tank 30 in which the nitrite nitrogen remaining after the anaerobic ammonia oxidation reaction and the nitrate nitrogen are converted into molecular nitrogen by autotrophic denitrification reaction to perform nitrogen removal treatment.SELECTED DRAWING: Figure 1

Description

本発明は、排水処理装置及び排水処理方法に関する。詳細には、窒素含有排水を嫌気性アンモニア酸化反応を利用して生物学的に窒素除去処理する排水処理装置及び排水処理方法に関する。   The present invention relates to a wastewater treatment apparatus and a wastewater treatment method. Specifically, the present invention relates to a wastewater treatment apparatus and a wastewater treatment method for biologically removing nitrogen from wastewater containing nitrogen using an anaerobic ammonia oxidation reaction.

各種無機態窒素や有機態窒素を含有する窒素含有排水は、閉鎖性水域の富栄養化を招き水質汚染を引き起こす一因となっている。そのため、下水や各種産業排水をはじめとした窒素含有排水に含まれているアンモニア等の窒素成分を、微生物による作用で窒素ガス(分子状窒素)にまで変換して除去する生物学的処理が行われている。   Nitrogen-containing wastewater containing various inorganic nitrogen and organic nitrogen causes eutrophication of closed water areas and contributes to water pollution. Therefore, biological treatment is performed to convert nitrogen components such as ammonia contained in sewage and various industrial effluents and other nitrogen-containing effluents into nitrogen gas (molecular nitrogen) and remove them by the action of microorganisms. It has been broken.

窒素含有排水を生物学的処理する方法としては、従来、硝化反応と脱窒反応とを組み合わせた硝化脱窒処理が主流となっている。硝化脱窒処理は、好気的に行われる硝化反応によって、窒素含有排水に含まれているアンモニア態窒素や亜硝酸態窒素を硝酸態窒素にまで酸化し、無酸素的に行われる脱窒反応によって、硝酸態窒素を分子状窒素にまで還元することで窒素除去処理を行う排水処理方法である。   As a method for biologically treating nitrogen-containing wastewater, a nitrification / denitrification treatment combining a nitrification reaction and a denitrification reaction has been the mainstream. Nitrification denitrification treatment is an anaerobic nitrification reaction that oxidizes ammonia nitrogen and nitrite nitrogen contained in nitrogen-containing wastewater to nitrate nitrogen and performs anaerobic denitrification reaction. Is a wastewater treatment method in which nitrogen removal treatment is performed by reducing nitrate nitrogen to molecular nitrogen.

一般に、硝化脱窒処理の脱窒反応は、従属栄養性の脱窒細菌群を利用して行われる。そのため、脱窒反応処理にあたっては、炭素源としてメタノール等の有機物の添加を要する場合がある。また、硝化反応にあたっては、アンモニア態窒素や亜硝酸態窒素を硝酸態窒素にまで完全酸化させるために十分な曝気を行わなければならない。このような理由から、従来の硝化脱窒処理は、多大な薬剤コストや動力コストを要し、運転コストが高い排水処理方法となっている。   In general, the denitrification reaction in the nitrification denitrification treatment is performed using heterotrophic denitrification bacteria. Therefore, in the denitrification reaction treatment, it may be necessary to add an organic substance such as methanol as a carbon source. In the nitrification reaction, sufficient aeration must be performed to completely oxidize ammonia nitrogen or nitrite nitrogen to nitrate nitrogen. For these reasons, the conventional nitrification / denitrification treatment requires a large amount of chemical cost and power cost, and is a wastewater treatment method with high operation cost.

近年、このような硝化反応と脱窒反応との組み合わせに代えて、嫌気性アンモニア酸化(ANAMMOX(アナモックス);Anaerobic Ammonium Oxidation)反応を利用した排水処理方法の開発が進められている。嫌気性アンモニア酸化反応は、アンモニウムイオンを電子供与体とし、亜硝酸イオンを電子受容体として、次の式1のとおりアンモニア態窒素と亜硝酸態窒素とを共脱窒する方法である。
NH +1.32NO +0.066HCO +0.13H
→1.02N+0.26NO +0.066CH0.50.15+2.03HO・・・(式1)
In recent years, instead of such a combination of a nitrification reaction and a denitrification reaction, development of a wastewater treatment method using an anaerobic ammonia oxidation (ANAMMOX) reaction has been promoted. The anaerobic ammonia oxidation reaction is a method of co-denitrifying ammonia nitrogen and nitrite nitrogen as shown in the following formula 1, using ammonium ions as electron donors and nitrite ions as electron acceptors.
NH 4 + +1.32 NO 2 + 0.066HCO 3 + 0.13H +
→ 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O (Formula 1)

嫌気性アンモニア酸化反応を利用した排水処理方法では、窒素除去処理のための反応を独立栄養性である嫌気性アンモニア酸化細菌群が担うため、従来の硝化脱窒処理とは異なり、炭素源として有機物を添加する必要が無いという利点がある。また、亜硝酸態窒素を硝酸態窒素にまで亜硝酸酸化させる必要が無いため、排水の曝気に関わる動力コストを低減できる利点も有している。また、嫌気性アンモニア酸化細菌群は、高い脱窒速度を示し、汚泥生成量も少ないことから、反応槽を小型化することが可能である点でも有利である。そのため、嫌気性アンモニア酸化反応を利用した排水処理方法は、窒素成分の除去に特化し、従来の硝化脱窒処理よりも専用性の高い排水処理を実現する技術として期待されている。   In the wastewater treatment method using anaerobic ammonia oxidation reaction, the anaerobic ammonia-oxidizing bacteria group responsible for nitrogen removal is responsible for the nitrogen removal treatment, so unlike conventional nitrification denitrification treatment, organic substances are used as carbon sources. There is an advantage that it is not necessary to add. Moreover, since it is not necessary to nitrite-nitrogen-oxidize nitrite nitrogen to nitrate nitrogen, it also has the advantage that the power cost related to aeration of waste water can be reduced. In addition, the anaerobic ammonia-oxidizing bacteria group is advantageous in that the reaction tank can be miniaturized because it exhibits a high denitrification rate and a small amount of sludge. Therefore, a wastewater treatment method using an anaerobic ammonia oxidation reaction is expected as a technique that specializes in removing nitrogen components and realizes a wastewater treatment with higher exclusiveness than the conventional nitrification denitrification treatment.

嫌気性アンモニア酸化反応においては、前記の式1に示されるように、反応基質であるアンモニウムイオンと亜硝酸イオンとが、約1:1.32の比率で反応する。通常、処理すべき窒素含有排水中の窒素成分の多くは、アンモニア態窒素として存在し、亜硝酸態窒素の比率は低いため、嫌気性アンモニア酸化反応を利用した生物学的処理にあたっては、排水中のアンモニア態窒素の一部を亜硝酸態窒素にまであらかじめ部分酸化(亜硝酸型硝化)させる亜硝酸型硝化反応処理を行うのが一般的である。   In the anaerobic ammonia oxidation reaction, as shown in the above formula 1, ammonium ions and nitrite ions, which are reaction substrates, react at a ratio of about 1: 1.32. Usually, most of the nitrogen components in the nitrogen-containing wastewater to be treated exist as ammonia nitrogen, and the ratio of nitrite nitrogen is low, so in biological treatment using anaerobic ammonia oxidation reaction, In general, a nitrite type nitrification reaction treatment is performed in which a part of ammonia nitrogen is partially oxidized (nitrite type nitrification) to nitrite nitrogen in advance.

亜硝酸型硝化反応を担う硝化細菌群は、アンモニア態窒素を亜硝酸態窒素にまで酸化するアンモニア酸化細菌(ammonium oxidizing bacteria;AOB)と、亜硝酸態窒素を硝酸態窒素にまで酸化する亜硝酸酸化細菌(nitrate oxidizing bacteria;NOB)との混成であり、通常の処理条件では、硝酸態窒素を生じる完全酸化まで反応が進行してしまう場合がある。そこで、亜硝酸型硝化反応処理では、排水中のアンモニウムイオンと亜硝酸イオンとを適切な比率にするために、排水の溶存酸素濃度、水温、pH、窒素成分濃度等を適切に管理し、亜硝酸酸化細菌の活性を抑制する運転が行われる。   The nitrifying bacteria responsible for the nitrite-type nitrification reaction are ammonia oxidizing bacteria (AOB) that oxidizes ammonia nitrogen to nitrite nitrogen and nitrite that oxidizes nitrite nitrogen to nitrate nitrogen. It is a hybrid with oxidizing bacteria (NOB), and under normal processing conditions, the reaction may proceed to complete oxidation that produces nitrate nitrogen. Therefore, in the nitrite-type nitrification treatment, in order to adjust the ammonium ion and nitrite ions in the wastewater to an appropriate ratio, the dissolved oxygen concentration, water temperature, pH, nitrogen component concentration, etc. in the wastewater are appropriately managed. The driving | operation which suppresses the activity of nitrate oxidation bacteria is performed.

嫌気性アンモニア酸化反応を利用した排水処理方法としては、亜硝酸型硝化反応処理と嫌気性アンモニア酸化反応処理とを各別の反応槽において行う方法の他、単槽式の反応槽で一段階として行う方法の開発も進められている。例えば、特許文献1には、硝化微生物を用い酸素を付加することによりアンモニアを含む排水を硝化処理してアンモニアの酸化生成物を有する溶液を生成する第1の工程と、アンモニアと共に酸化生成物を脱窒微生物を介して窒素に変換する第2の工程とを含有し、重炭酸塩を供給する空気が実質的に除去された重炭酸塩を含む廃水を用い、第1の工程で通気を制御することによりペーハ値は7.2以下に維持し、廃水内に存在するアンモニアの一部をニトリットに変換してニトリットを含む溶液を生成し、第2の工程で、生成したニトリットを脱窒微生物により残りのアンモニアの酸化体として使用することを特徴とするアンモニアを含む排水を処理する方法が開示されている。そして、第1及び第2の工程を単一のバイオリアクタ内で同時に行い、バイオリアクタ内で硝化微生物および脱窒微生物を固形相で存在させ、硝化微生物を実質的に固形相の外側の好気部分に存在させ、脱窒微生物を実質的に固形相の内側の嫌気部分に存在させ、酸素をバイオリアクタ内のアンモニア濃度に対応させて第1の工程を制限する量供給することが記載されている。   As a wastewater treatment method using anaerobic ammonia oxidation reaction, in addition to a method of performing nitrite-type nitrification reaction treatment and anaerobic ammonia oxidation reaction treatment in separate reaction tanks, one-stage reaction tank Development of methods to do this is also underway. For example, Patent Document 1 discloses a first step of generating a solution having an oxidation product of ammonia by nitrifying wastewater containing ammonia by adding oxygen using a nitrifying microorganism, and an oxidation product together with ammonia. A second step of converting to nitrogen via a denitrifying microorganism, and using a waste water containing bicarbonate from which air for supplying bicarbonate is substantially removed, aeration is controlled in the first step Thus, the pH value is maintained at 7.2 or less, a part of ammonia present in the waste water is converted into nitrite to produce a solution containing nitrite, and the produced nitrite is denitrified in the second step. Discloses a method for treating wastewater containing ammonia, characterized in that it is used as an oxidant of the remaining ammonia. Then, the first and second steps are simultaneously performed in a single bioreactor, the nitrifying microorganisms and the denitrifying microorganisms are present in the solid phase in the bioreactor, and the nitrifying microorganisms are substantially aerobic outside the solid phase. The denitrifying microorganisms are present in the anaerobic part substantially inside the solid phase and oxygen is supplied in an amount corresponding to the ammonia concentration in the bioreactor to limit the first step. Yes.

また、非特許文献1には、嫌気性アンモニア酸化反応を利用した単槽式の反応槽によって排水処理するCANON(Completely Autotrophic Nitrogen Removal Over Nitrite)法について開示されており、アンモニウムイオン濃度の変化に伴う各細菌群の変動を解析したことが記載されている。   Further, Non-Patent Document 1 discloses a CANON (Completely Autotrophic Nitrogen Removal Over Nitrite) method in which wastewater treatment is performed in a single tank type reaction tank using an anaerobic ammonia oxidation reaction, which is accompanied by a change in ammonium ion concentration. It is described that the variation of each bacterial group was analyzed.

特表2001−506535号公報Special table 2001-506535 gazette

K. A. Third, O. Sliekers, J. G. Kuenen, M. S. M. Jetten, The CANON System (Completely Autotrophic Nitrogen-removal Over Nitrite) under Ammonium Limitation: Interaction and Competition between Three Groups of Bacteria, Syst. Appl. Microbiol., 24(4), p588-596(2001)KA Third, O. Sliekers, JG Kuenen, MSM Jetten, The CANON System (Completely Autotrophic Nitrogen-removal Over Nitrite) under Ammonium Limitation: Interaction and Competition between Three Groups of Bacteria, Syst.Appl.Microbiol., 24 (4), p588-596 (2001)

嫌気性アンモニア酸化反応を利用した生物学的処理においては、前記の式1に示されるように、硝酸イオンが理論上、窒素換算で約11%程度の割合生成し、窒素除去処理されることなく必然的に処理水中に残留してしまう。そのため、処理する排水の窒素成分濃度が高い場合には、処理水中に残留する硝酸イオンの量は無視できないものとなり、要求される処理水質が確保され難くなるという問題がある。   In biological treatment using an anaerobic ammonia oxidation reaction, as shown in the above formula 1, nitrate ions are theoretically generated at a rate of about 11% in terms of nitrogen without being subjected to nitrogen removal treatment. Inevitably remains in the treated water. Therefore, when the nitrogen component concentration of the wastewater to be treated is high, the amount of nitrate ions remaining in the treated water cannot be ignored, and there is a problem that it is difficult to ensure the required treated water quality.

また、亜硝酸型硝化反応処理に用いられる硝化細菌群や嫌気性アンモニア酸化反応を担う嫌気性アンモニア酸化細菌群は、増殖速度が極めて遅く、滞留時間の確保や、反応槽外への菌体流出の防止に対する要求が高いことから、微生物固定化の形態が利用されることが多い。そのため、固定化担体の形態や固定床の構造等に起因して、各反応基質と各細菌群との接触性が不良になり易い。そして、接触性の不良によって反応速度が低下すると、亜硝酸型硝化反応においては、嫌気性アンモニア酸化反応の反応基質となる亜硝酸イオンが十分に生成されず、アンモニウムイオンの一部が亜硝酸イオンと反応できずに処理水中に残留したり、嫌気性アンモニア酸化反応においては、反応基質の全量を十分に反応させることができず、アンモニウムイオンや亜硝酸イオンが処理水中にそのまま残留したりして処理水質が低下することになる。   Also, the nitrifying bacteria used for nitrite type nitrification treatment and the anaerobic ammonia oxidizing bacteria responsible for the anaerobic ammonia oxidation reaction have a very slow growth rate, ensuring retention time, and outflow of cells outside the reaction tank. Since there is a high demand for prevention of microorganisms, a form of microbial immobilization is often used. Therefore, the contact between each reaction substrate and each bacterial group tends to be poor due to the form of the immobilization carrier, the structure of the fixed bed, and the like. If the reaction rate decreases due to poor contact, the nitrite type nitrification reaction does not produce enough nitrite ions as a reaction substrate for the anaerobic ammonia oxidation reaction, and some ammonium ions are nitrite ions. In the anaerobic ammonia oxidation reaction, the entire amount of the reaction substrate cannot be sufficiently reacted, and ammonium ions and nitrite ions remain in the treated water as they are. The quality of treated water will deteriorate.

このように嫌気性アンモニア酸化反応を利用した生物学的処理では、実用上、窒素成分の除去に限界があり、一定程度以上の良好な処理水質を得難い現状がある。特に、排水のSBR(sequencing batch reactor)処理や連続処理を適用する場合には、接触性の不良による反応速度の低下の影響はより顕著となるし、特許文献1や非特許文献1に記載されるような単槽式の反応槽を適用した処理では、基質の反応率が処理中に低下する頻度が高くなることが想定されるため、未反応の窒素成分が残留し易くなり、処理水質の確保がさらに困難となる恐れがある。   Thus, in biological treatment using an anaerobic ammonia oxidation reaction, there is a practical limit to the removal of nitrogen components, and it is difficult to obtain a good quality of treated water above a certain level. In particular, in the case of applying SBR (sequencing batch reactor) treatment or continuous treatment of wastewater, the influence of a decrease in reaction rate due to poor contact becomes more prominent, and is described in Patent Document 1 and Non-Patent Document 1. In such a process using a single tank type reaction tank, it is assumed that the reaction rate of the substrate decreases during the process, so that an unreacted nitrogen component tends to remain and the quality of the treated water is reduced. There is a risk that it will be more difficult to secure.

そこで、本発明は、嫌気性アンモニア酸化反応を利用した排水の生物学的処理において、嫌気性アンモニア酸化反応後に残留する窒素成分の濃度を低減し、処理水質を向上させることができる排水処理装置及び排水処理方法を提供することを目的とする。   Therefore, the present invention provides a wastewater treatment apparatus capable of reducing the concentration of nitrogen components remaining after anaerobic ammonia oxidation reaction and improving the quality of treated water in biological treatment of wastewater utilizing anaerobic ammonia oxidation reaction. An object is to provide a wastewater treatment method.

前記課題を解決するために本発明に係る排水処理装置は、アンモニア態窒素を含有する排水を嫌気性アンモニア酸化反応を利用して生物学的に窒素除去処理する排水処理装置であって、前記排水に含まれるアンモニア態窒素の一部を、亜硝酸型硝化反応によって亜硝酸態窒素に変換し、前記アンモニア態窒素の残部と前記亜硝酸態窒素とを、嫌気性アンモニア酸化反応によって分子状窒素と硝酸態窒素とに変換し、嫌気性アンモニア酸化反応後に残留している亜硝酸態窒素と前記硝酸態窒素とを、独立栄養的な脱窒反応によって分子状窒素に変換して窒素除去処理することを特徴とする。   In order to solve the above problems, a wastewater treatment apparatus according to the present invention is a wastewater treatment apparatus for biologically removing nitrogen from wastewater containing ammonia nitrogen using an anaerobic ammonia oxidation reaction. Part of the ammonia nitrogen contained in the nitrite is converted to nitrite nitrogen by a nitrite-type nitrification reaction, and the remainder of the ammonia nitrogen and the nitrite nitrogen are converted to molecular nitrogen by an anaerobic ammonia oxidation reaction. Converting to nitrate nitrogen, converting the nitrite nitrogen remaining after the anaerobic ammonia oxidation reaction and the nitrate nitrogen to molecular nitrogen by an autotrophic denitrification reaction and removing nitrogen It is characterized by.

また、本発明に係る排水処理方法は、アンモニア態窒素を含有する排水を嫌気性アンモニア酸化反応を利用して生物学的に窒素除去処理する排水処理方法であって、前記排水に含まれるアンモニア態窒素の一部を、亜硝酸型硝化反応によって亜硝酸態窒素に変換する亜硝酸型硝化反応工程、前記アンモニア態窒素の残部と前記亜硝酸態窒素とを、嫌気性アンモニア酸化反応によって分子状窒素と硝酸態窒素とに変換する嫌気性アンモニア酸化工程、嫌気性アンモニア酸化反応後に残留している亜硝酸態窒素と前記硝酸態窒素とを、独立栄養的な脱窒反応によって分子状窒素に変換する独立栄養的脱窒反応工程を含むことを特徴とする。   Further, the wastewater treatment method according to the present invention is a wastewater treatment method for biologically nitrogen removal treatment of wastewater containing ammonia nitrogen using an anaerobic ammonia oxidation reaction, wherein the ammonia state contained in the wastewater A nitrite-type nitrification reaction step for converting a part of nitrogen into nitrite-type nitrogen by nitrite-type nitrification reaction, the rest of the ammonia nitrogen and the nitrite-type nitrogen are converted into molecular nitrogen by anaerobic ammonia oxidation reaction And anaerobic ammonia oxidation process to convert to nitrate nitrogen, nitrite nitrogen remaining after anaerobic ammonia oxidation reaction and nitrate nitrogen are converted to molecular nitrogen by autotrophic denitrification reaction It includes an autotrophic denitrification reaction step.

本発明によれば、嫌気性アンモニア酸化反応を利用した窒素含有排水の生物学的排水処理において、嫌気性アンモニア酸化反応後に残留する窒素成分の濃度を低減し、処理水質を向上させることができる排水処理装置及び排水処理方法を提供することができる。特に、炭素源として有機物を添加する必要が無く、運転コストがより低廉でありながら、処理水質を向上させることができる排水処理装置及び排水処理方法を提供することができる。   According to the present invention, in biological wastewater treatment of nitrogen-containing wastewater using anaerobic ammonia oxidation reaction, wastewater that can reduce the concentration of nitrogen components remaining after anaerobic ammonia oxidation reaction and improve the quality of treated water A treatment apparatus and a waste water treatment method can be provided. In particular, it is possible to provide a wastewater treatment apparatus and a wastewater treatment method capable of improving the quality of treated water without adding an organic substance as a carbon source and having a lower operating cost.

本発明の第1実施形態に係る排水処理装置の概略構成を示す図である。It is a figure which shows schematic structure of the waste water treatment equipment which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る排水処理装置の概略構成を示す図である。It is a figure which shows schematic structure of the waste water treatment equipment which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る排水処理装置の概略構成を示す図である。It is a figure which shows schematic structure of the waste water treatment equipment which concerns on 3rd Embodiment of this invention. 本発明の実施例1に係る排水処理方法によって処理された排水の窒素濃度を示す図である。It is a figure which shows the nitrogen concentration of the waste_water | drain processed by the waste water treatment method which concerns on Example 1 of this invention. 本発明の実施例2に係る排水処理方法によって処理された排水の窒素濃度を示す図である。It is a figure which shows the nitrogen concentration of the waste_water | drain processed by the waste water treatment method which concerns on Example 2 of this invention.

[第1実施形態]
はじめに、本発明の第1実施形態に係る排水処理装置及び排水処理方法について説明する。なお、各図において共通する部分には同一の符号を付し、重複する部分についての説明は省略する。
[First Embodiment]
First, the waste water treatment apparatus and waste water treatment method according to the first embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the common part in each figure, and description about the overlapping part is abbreviate | omitted.

図1は、本発明の第1実施形態に係る排水処理装置の概略構成を示す図である。   FIG. 1 is a diagram showing a schematic configuration of a wastewater treatment apparatus according to the first embodiment of the present invention.

図1に示すように、第1実施形態に係る排水処理装置1は、亜硝酸型硝化反応槽10と、嫌気性アンモニア酸化反応槽20と、独立栄養的脱窒反応槽30とをこの順に直列的な配列で備えている。第1実施形態に係る排水処理装置1は、アンモニア態窒素を含有する窒素含有排水(排水)を嫌気性アンモニア酸化反応を利用して生物学的に窒素除去処理する排水処理装置である。この排水処理装置1は、嫌気性アンモニア酸化反応によって窒素除去処理された処理水が、さらに独立栄養的な脱窒反応に供されて副次的に窒素除去処理される構成とされている特徴を有している。なお、本明細書において、独立栄養的な脱窒反応とは、炭素源としての有機物が存在しない条件の下で独立栄養性細菌によって行われる脱窒反応を意味する。   As shown in FIG. 1, the waste water treatment apparatus 1 according to the first embodiment includes a nitrite type nitrification reaction tank 10, an anaerobic ammonia oxidation reaction tank 20, and an autotrophic denitrification reaction tank 30 in this order. With a typical arrangement. The wastewater treatment apparatus 1 according to the first embodiment is a wastewater treatment apparatus that biologically removes nitrogen-containing wastewater (drainage) containing ammonia nitrogen using an anaerobic ammonia oxidation reaction. The wastewater treatment apparatus 1 is characterized in that treated water that has been subjected to nitrogen removal treatment by an anaerobic ammonia oxidation reaction is further subjected to nitrogen removal treatment by being subjected to an autotrophic denitrification reaction. Have. In the present specification, the autotrophic denitrification reaction means a denitrification reaction performed by autotrophic bacteria under the condition that no organic substance as a carbon source exists.

排水処理装置1では、亜硝酸型硝化反応槽10、嫌気性アンモニア酸化反応槽20及び独立栄養的脱窒反応槽30の各反応槽には、被処理水としての排水が順次導入され、各反応槽毎に管理された反応条件の下で微生物による生物学的処理が行われる。すなわち、排水処理装置1は、亜硝酸型硝化反応工程、嫌気性アンモニア酸化工程、及び、独立栄養的脱窒反応工程の各工程を各別の反応槽において順次行う排水処理方法(第1実施形態に係る排水処理方法)が好適に行われる装置となっている。これらの各反応槽は、槽型及びタンク型のいずれの形態としてもよく、また、SBR処理型の反応槽及び連続処理型の反応槽のいずれの運転方式を採用することも可能である。   In the wastewater treatment apparatus 1, wastewater as treated water is sequentially introduced into each reaction tank of the nitrite type nitrification reaction tank 10, the anaerobic ammonia oxidation reaction tank 20, and the autotrophic denitrification reaction tank 30, and each reaction Biological treatment with microorganisms is performed under reaction conditions controlled for each tank. That is, the wastewater treatment apparatus 1 is a wastewater treatment method (first embodiment) for sequentially performing each step of a nitrite type nitrification reaction step, an anaerobic ammonia oxidation step, and an autotrophic denitrification reaction step in each separate reaction tank. The wastewater treatment method according to (2) is an apparatus that is suitably performed. Each of these reaction tanks may be either a tank type or a tank type, and any operation method of an SBR treatment type reaction tank and a continuous treatment type reaction tank may be employed.

排水処理装置1において処理される窒素含有排水(排水)は、はじめに、亜硝酸型硝化反応槽10に導入される。処理する排水は、例えば、排水を一時的に貯留している排水タンク等から、排水ポンプ8によって、窒素負荷に応じた適度の水量で亜硝酸型硝化反応槽10に導入することができる。処理する排水は、アンモニア態窒素の他に亜硝酸態窒素や硝酸態窒素を含有していてもよいが、低BODないしC/N比(炭素質量/窒素質量比)が小さい排水が、生物学的処理を安定的にし、高い窒素除去率を実現し得る点で好適である。このような排水としては、具体的には、例えば、下水処理施設、畜産排水処理施設、食品排水処理施設等で生じる活性汚泥処理水を脱水した活性汚泥脱水濾液や、半導体工場、化学工場、めっき工場、塗装工場等で生じる高窒素濃度の事業排水等が挙げられる。   The nitrogen-containing wastewater (drainage) to be treated in the wastewater treatment apparatus 1 is first introduced into the nitrite type nitrification reaction tank 10. The wastewater to be treated can be introduced into the nitrite type nitrification reaction tank 10 from a drainage tank or the like temporarily storing wastewater by a drainage pump 8 with an appropriate amount of water according to the nitrogen load. The wastewater to be treated may contain nitrite nitrogen or nitrate nitrogen in addition to ammonia nitrogen, but wastewater having a low BOD or C / N ratio (carbon mass / nitrogen mass ratio) is biological. It is preferable in that the treatment can be stabilized and a high nitrogen removal rate can be realized. Specifically, as such wastewater, for example, activated sludge dewatered filtrate obtained by dehydrating activated sludge treated water generated in sewage treatment facilities, livestock wastewater treatment facilities, food wastewater treatment facilities, semiconductor factories, chemical factories, plating, etc. Business wastewater with high nitrogen concentration generated in factories and paint factories can be mentioned.

亜硝酸型硝化反応槽10は、排水に含まれるアンモニア態窒素の一部を亜硝酸型硝化反応によって亜硝酸態窒素に変換する亜硝酸型硝化反応処理(亜硝酸型硝化反応工程)が行われる反応槽となっている。この亜硝酸型硝化反応処理では、排水に含まれているアンモニウムイオンの一部を亜硝酸型硝化反応によって亜硝酸イオンにまであらかじめ部分酸化させることで、嫌気性アンモニア酸化反応処理に供される排水のアンモニウムイオンと亜硝酸イオンとの比率が、嫌気性アンモニア酸化反応処理に適した反応基質の比率となるようにする。なお、亜硝酸型硝化反応は、次の式2のように表される。
NH +1.5O→NO +2H+HO・・・(式2)
The nitrite type nitrification reaction tank 10 is subjected to a nitrite type nitrification reaction process (nitrite type nitrification reaction step) in which a part of ammonia nitrogen contained in the waste water is converted into nitrite nitrogen by a nitrite type nitrification reaction. It is a reaction tank. In this nitrite-type nitrification reaction treatment, wastewater provided for anaerobic ammonia oxidation reaction treatment is obtained by partially oxidizing part of ammonium ions contained in the wastewater to nitrite ions in advance by nitrite-type nitrification reaction. The ratio of ammonium ions to nitrite ions is set to a ratio of reaction substrate suitable for anaerobic ammonia oxidation reaction treatment. The nitrite type nitrification reaction is expressed as the following formula 2.
NH 4 + + 1.5O 2 → NO 2 + 2H + + H 2 O (Formula 2)

亜硝酸型硝化反応槽10には、亜硝酸型硝化反応を担う硝化細菌群が保持される。硝化細菌群は、図1においては、浮遊性の固定化担体110に固定化されて流動床の形態で保持されているが、固定化された形態及び非固定の形態のいずれとすることも可能である。また、固定化は、包括固定化及び付着固定化のいずれによるものでもよく、流動床及び固定床のいずれの形態としてもよい。但し、硝化細菌群の増殖速度は遅いため、滞留時間を確保したり、反応槽外への菌体流出を防止したりする観点からは、固定化された形態が好ましい。固定化担体については、球状、円筒状、立方体状、直方体状等の適宜の形状とすることができ、非多孔質としてもよいし、スポンジ状等の多孔質としてもよい。また、固定床については、静置型の濾材及び揺動型の濾材のいずれによるものであってもよい。   The nitrite type nitrification reaction tank 10 holds a group of nitrifying bacteria responsible for the nitrite type nitrification reaction. In FIG. 1, the nitrifying bacteria group is immobilized on the floating immobilization carrier 110 and held in the form of a fluidized bed. However, the nitrifying bacteria group may be in either an immobilized form or an unfixed form. It is. Further, the immobilization may be performed by either entrapping immobilization or adhesion immobilization, and may be in any form of fluidized bed or fixed bed. However, since the growth rate of the nitrifying bacteria group is slow, the immobilized form is preferable from the viewpoint of securing the residence time and preventing the bacterial cell from flowing out of the reaction tank. The immobilization carrier can have an appropriate shape such as a spherical shape, a cylindrical shape, a cubic shape, and a rectangular parallelepiped shape, and may be non-porous or porous such as a sponge shape. The fixed bed may be either a stationary filter medium or a rocking filter medium.

亜硝酸型硝化反応槽10には、図1に示すように、排水に空気を散気する散気管12と、散気管12に空気を送気するブロア13とが備えられる。ブロア13が散気管12に空気を送気し、散気管12が排水中に空気を散気することで、亜硝酸型硝化反応槽10の排水が曝気されて溶存酸素濃度が高められるようになっている。排水の溶存酸素濃度を微好気条件となる所定濃度範囲に制御することによって、アンモニア態窒素から亜硝酸態窒素までの部分酸化に留めた亜硝酸型硝化反応を行うことが可能である。   As shown in FIG. 1, the nitrite-type nitrification reaction tank 10 is provided with an air diffuser 12 that diffuses air into drainage and a blower 13 that supplies air to the diffuser 12. The blower 13 feeds air to the diffuser tube 12, and the diffuser tube 12 diffuses air into the waste water, whereby the waste water of the nitrite type nitrification reaction tank 10 is aerated and the dissolved oxygen concentration is increased. ing. By controlling the concentration of dissolved oxygen in the waste water within a predetermined concentration range that is a microaerobic condition, it is possible to perform a nitrite-type nitrification reaction that is limited to partial oxidation from ammonia nitrogen to nitrite nitrogen.

また、亜硝酸型硝化反応槽10には、図1に示すように、pH調整剤を貯留する薬注タンク15と、薬注タンク15に貯留されているpH調整剤を排水に供給する薬注ポンプ16とを設置することができる。pH調整剤としては、水酸化ナトリウム等のアルカリ水酸化物や、炭酸ナトリウム等のアルカリ炭酸塩や、炭酸水素ナトリウム等のアルカリ重炭酸塩が用いられる。好ましいpH調整剤は、アルカリ炭酸塩又はアルカリ重炭酸塩である。このようなアルカリを排水に供給することによって、亜硝酸型硝化反応によって消費されたアルカリ度を回復させることができ、排水のpHを亜硝酸型硝化反応に適した中性から弱アルカリ付近の領域に維持することが可能である。   In addition, as shown in FIG. 1, the nitrite type nitrification reaction tank 10 has a chemical injection tank 15 for storing a pH adjusting agent, and a chemical injection for supplying the pH adjusting agent stored in the chemical injection tank 15 to drainage. A pump 16 can be installed. As the pH adjuster, an alkali hydroxide such as sodium hydroxide, an alkali carbonate such as sodium carbonate, or an alkali bicarbonate such as sodium bicarbonate is used. A preferred pH adjuster is an alkali carbonate or an alkali bicarbonate. By supplying such alkali to the wastewater, the alkalinity consumed by the nitrite-type nitrification reaction can be recovered, and the pH of the wastewater is a neutral to weak alkali region suitable for the nitrite-type nitrification reaction. Can be maintained.

亜硝酸型硝化反応処理では、排水のpHを弱アルカリ付近の領域に維持し、排水を微好気条件として処理を行う。通常、亜硝酸型硝化反応槽10において用いられる硝化細菌群は、アンモニア態窒素を亜硝酸態窒素にまで酸化するアンモニア酸化細菌と、亜硝酸態窒素を硝酸態窒素にまで酸化する亜硝酸酸化細菌とを含む嫌気性汚泥の形態を採る。そのため、亜硝酸型硝化反応処理において、排水中のアンモニウムイオンと亜硝酸イオンとの比率を所定比率にするには、アンモニア態窒素が部分酸化されて生じた亜硝酸態窒素が硝酸態窒素にまで完全酸化されないように、排水の窒素成分濃度や水温に応じて亜硝酸酸化細菌の活性を抑制する制御を行えばよい。具体的には、排水のpHは、少なくともpH6以上pH9以下、好ましくはpH7以上pH8.2以下となるように調整し、排水の溶存酸素濃度は、微生物固定化の形態にもよるが、好ましくは5.0mg/L程度以下、より好ましくは4.0mg/L程度以下の微好気条件に制限する。   In the nitrite type nitrification treatment, the pH of the waste water is maintained in a region near weak alkali, and the waste water is treated under a microaerobic condition. Usually, the nitrifying bacteria used in the nitrite type nitrification reactor 10 are ammonia oxidizing bacteria that oxidize ammonia nitrogen to nitrite nitrogen, and nitrite oxidizing bacteria that oxidize nitrite nitrogen to nitrate nitrogen. It takes the form of anaerobic sludge. Therefore, in the nitrite-type nitrification reaction treatment, in order to set the ratio of ammonium ions and nitrite ions in the wastewater to a predetermined ratio, the nitrite nitrogen produced by partial oxidation of ammonia nitrogen is reduced to nitrate nitrogen. What is necessary is just to perform control which suppresses the activity of nitrite oxidation bacteria according to the nitrogen component density | concentration and water temperature of waste water so that it may not be completely oxidized. Specifically, the pH of the wastewater is adjusted to be at least pH 6 or more and pH 9 or less, preferably pH 7 or more and pH 8.2 or less, and the dissolved oxygen concentration in the waste water depends on the form of microorganism immobilization, but preferably It is limited to a microaerobic condition of about 5.0 mg / L or less, more preferably about 4.0 mg / L or less.

亜硝酸型硝化反応処理は、通常、排水中のアンモニウムイオンと亜硝酸イオンとの比率が、嫌気性アンモニア酸化反応に必要な約1:1.32付近の比率となるような滞留時間とし、亜硝酸型硝化反応処理された処理水は、嫌気性アンモニア酸化反応槽20に導入する。なお、このような方法に代えて、排水の一部について亜硝酸型硝化反応槽10をバイパスさせる方法を利用することも可能である。具体的には、処理すべき排水の一部については、亜硝酸型硝化反応槽10をバイパスさせて、亜硝酸型硝化反応処理に供すること無く通水する一方で、排水の残部については、亜硝酸型硝化反応槽10に導入して亜硝酸態窒素までの部分酸化が、例えば導入されたアンモニア態窒素の全量に対して行われるようにし、その後、亜硝酸型硝化反応槽10をバイパスさせた排水と、亜硝酸型硝化反応槽10において亜硝酸型硝化反応処理された排水とを再混合してから、嫌気性アンモニア酸化反応槽20に移送する形態とすることもできる。すなわち、このときの排水の混合比によって、嫌気性アンモニア酸化反応槽20に移送されるアンモニウムイオンと亜硝酸イオンとの比率を嫌気性アンモニア酸化反応処理に適した比率に調整することが可能である。   The nitrite type nitrification treatment is usually performed with a residence time such that the ratio of ammonium ions to nitrite ions in the wastewater is approximately 1: 1.32 required for the anaerobic ammonia oxidation reaction. The treated water subjected to the nitric acid type nitrification reaction treatment is introduced into the anaerobic ammonia oxidation reaction tank 20. Instead of such a method, it is also possible to use a method of bypassing the nitrite type nitrification reaction tank 10 for a part of the waste water. Specifically, a part of the wastewater to be treated is bypassed by the nitrite type nitrification reaction tank 10 and passed without being subjected to the nitrite type nitrification reaction treatment, while the rest of the wastewater is subsidized. The partial oxidation up to the nitrite nitrogen introduced into the nitrate nitrification reaction tank 10 is performed, for example, with respect to the total amount of ammonia nitrogen introduced, and then the nitrite nitrification reaction tank 10 is bypassed. The waste water and the waste water subjected to the nitrite type nitrification reaction treatment in the nitrite type nitrification reaction tank 10 may be remixed and then transferred to the anaerobic ammonia oxidation reaction tank 20. That is, it is possible to adjust the ratio of ammonium ions and nitrite ions transferred to the anaerobic ammonia oxidation reaction tank 20 to a ratio suitable for the anaerobic ammonia oxidation reaction treatment by the mixing ratio of the waste water at this time. .

嫌気性アンモニア酸化反応槽20は、排水に含まれるアンモニア態窒素のうち、亜硝酸型硝化反応において亜硝酸態窒素に変換されなかったアンモニア態窒素の残部と亜硝酸型硝化反応によって生成した亜硝酸態窒素とを、嫌気性アンモニア酸化反応によって分子状窒素と硝酸態窒素とに変換する嫌気性アンモニア酸化反応処理(嫌気性アンモニア酸化反応工程)が行われる反応槽となっている。この嫌気性アンモニア酸化反応処理では、亜硝酸型硝化反応において酸化されなかったアンモニウムイオンを電子供与体とし、亜硝酸型硝化反応によってアンモニウムイオンが部分酸化されて生じた亜硝酸イオンを電子受容体として、前記の式1に示される生物学的反応によって、排水中に含まれている窒素成分を分子状窒素に変換して窒素除去する。なお、窒素成分の一部は硝酸(硝酸イオン)に変換されて、未反応のアンモニウムイオンや亜硝酸イオンと共に処理水中に残留することになる。   The anaerobic ammonia oxidation reaction tank 20 includes the remaining ammonia nitrogen that has not been converted to nitrite nitrogen in the nitrite type nitrification reaction, and nitrous acid produced by the nitrite type nitrification reaction, among the ammonia nitrogen contained in the waste water. It is a reaction tank in which an anaerobic ammonia oxidation reaction treatment (anaerobic ammonia oxidation reaction step) is performed in which the nitrogen is converted into molecular nitrogen and nitrate nitrogen by an anaerobic ammonia oxidation reaction. In this anaerobic ammonia oxidation reaction treatment, ammonium ions not oxidized in the nitrite type nitrification reaction are used as electron donors, and nitrite ions generated by partial oxidation of ammonium ions by the nitrite type nitrification reaction are used as electron acceptors. The nitrogen component contained in the waste water is converted into molecular nitrogen by the biological reaction represented by the above-described formula 1 to remove nitrogen. A part of the nitrogen component is converted into nitric acid (nitrate ions) and remains in the treated water together with unreacted ammonium ions and nitrite ions.

嫌気性アンモニア酸化反応槽20には、嫌気性アンモニア酸化反応を担う嫌気性アンモニア酸化細菌群が保持される。嫌気性アンモニア酸化細菌群は、図1においては、浮遊性の固定化担体120に固定化されて保持されているが、固定化された形態及び非固定の形態のいずれとすることも可能である。また、固定化は、包括固定化、付着固定化及び自己造粒化のいずれによるものでもよく、流動床及び固定床のいずれの形態としてもよい。但し、滞留時間を確保したり、反応槽外への菌体流出を防止したりする観点からは、固定化された形態が好ましい。なお、固定化担体や固定床の形態については、固定化担体110についてと同様である。   The anaerobic ammonia oxidation reaction tank 20 holds anaerobic ammonia oxidizing bacteria group responsible for the anaerobic ammonia oxidation reaction. In FIG. 1, the anaerobic ammonia-oxidizing bacteria group is immobilized and held on the floating immobilization carrier 120. However, the anaerobic ammonia-oxidizing bacteria group can be in either an immobilized form or a non-immobilized form. . Further, the immobilization may be any of entrapping immobilization, adhesion immobilization, and self-granulation, and may be in any form of fluidized bed and fixed bed. However, from the viewpoint of securing the residence time and preventing the bacterial cell from flowing out of the reaction tank, a fixed form is preferable. The form of the immobilization carrier and the immobilization bed is the same as that of the immobilization carrier 110.

嫌気性アンモニア酸化反応槽20には、図1に示すように、排水を攪拌する攪拌手段24が備えられる。攪拌手段24によって嫌気性アンモニア酸化反応処理される排水が均一化され、pH勾配等の排水の分布むらが解消されることで窒素除去率がより高められる。なお、攪拌形式は、機械攪拌に限られるものではなく、排水による循環流攪拌や、無酸素ガス等による散気攪拌の形式としてもよい。例えば、嫌気性アンモニア酸化反応槽20を、浮遊担体を上向流によって攪拌するガスリフト型の反応槽や、嫌気性汚泥を上向流によって自己造粒化させる上向流汚泥床型の反応槽等としてもよい。   As shown in FIG. 1, the anaerobic ammonia oxidation reaction tank 20 is provided with a stirring means 24 for stirring the waste water. The waste water that is subjected to the anaerobic ammonia oxidation reaction treatment is made uniform by the stirring means 24, and the uneven distribution of the waste water such as pH gradient is eliminated, so that the nitrogen removal rate is further increased. The agitation method is not limited to mechanical agitation, and may be a circulation agitation method using drainage or a diffused agitation method using oxygen-free gas. For example, the anaerobic ammonia oxidation reaction tank 20 is a gas lift type reaction tank in which the floating carrier is agitated by upward flow, an upward flow sludge bed type reaction tank in which anaerobic sludge is self-granulated by upward flow, etc. It is good.

また、嫌気性アンモニア酸化反応槽20には、図1に示すように、pH調整剤を貯留する薬注タンク25と、薬注タンク25に貯留されているpH調整剤を被処理水に供給する薬注ポンプ26とを設置することができる。pH調整剤としては、塩酸、硫酸等の非還元性硫黄を含有しない酸、及び、硫化水素水溶液、二酸化硫黄水溶液等の還元性硫黄を含有する酸のいずれを用いることもできる。酸をpH調整剤として排水に供給することによって、嫌気性アンモニア酸化反応によって消費される水素イオンを補充することができ、排水のpHを、嫌気性アンモニア酸化反応に適した中性から弱アルカリ付近の領域に維持することが可能である。また、還元性硫黄を含有する酸をpH調整剤として排水に供給することによって、独立栄養的脱窒反応槽30に導入されることになる排水の還元性硫黄化合物濃度を高めることが可能となるため、独立栄養的脱窒反応処理に関わる薬剤コストを低減することができる。   In addition, as shown in FIG. 1, the anaerobic ammonia oxidation reaction tank 20 supplies a chemical injection tank 25 for storing a pH adjusting agent and a pH adjusting agent stored in the chemical injection tank 25 to the water to be treated. A chemical injection pump 26 can be installed. As the pH adjuster, any of acids not containing non-reducing sulfur such as hydrochloric acid and sulfuric acid, and acids containing reducing sulfur such as hydrogen sulfide aqueous solution and sulfur dioxide aqueous solution can be used. By supplying acid to the wastewater as a pH adjuster, hydrogen ions consumed by the anaerobic ammonia oxidation reaction can be replenished, and the pH of the wastewater can be adjusted from neutral to weak alkali suitable for anaerobic ammonia oxidation reaction. It is possible to maintain in the area. Moreover, it becomes possible to raise the reductive sulfur compound density | concentration of the waste_water | drain which will be introduce | transduced into the autotrophic denitrification reaction tank 30 by supplying the acid containing reducible sulfur to waste_water | drain as a pH adjuster. Therefore, the drug cost related to the autotrophic denitrification treatment can be reduced.

嫌気性アンモニア酸化反応処理では、排水のpHを中性から弱アルカリ付近の領域に維持し、溶存酸素濃度を制限すると共に、嫌気性アンモニア酸化反応を阻害する亜硝酸態窒素を好ましくは250mg/L以下の範囲に制限して処理を行う。具体的には、排水のpHは、少なくともpH6.5以上pH9以下とし、好ましくはpH7.5以上pH8.5以下、より好ましくはpH7.8以上pH8.2以下付近となるように調整する。排水の溶存酸素濃度は、微生物固定化の形態にもよるが1.0mg/L未満が好ましく、例えば、窒素ガス等の低酸素濃度ガスの散気や、硫化ナトリウム等の還元剤の添加によって低減することが可能である。還元剤として還元性硫黄化合物を用いると、還元性硫黄化合物の一部が未反応のまま嫌気性アンモニア酸化反応槽20から流出しても、独立栄養的脱窒反応槽30に導入されることになる排水の還元性硫黄化合物濃度を高める働きをもたらすため、独立栄養的脱窒反応処理に関わる薬剤コストを低減させることが可能である。このようなガスの散気や、還元剤の添加は、亜硝酸型硝化反応槽10と嫌気性アンモニア酸化反応槽20との間に調整槽を設けて行ってよいし、嫌気性アンモニア酸化反応槽20において行ってもよい。   In the anaerobic ammonia oxidation reaction treatment, the pH of the waste water is maintained in a neutral to weak alkaline region, the dissolved oxygen concentration is restricted, and nitrite nitrogen that inhibits the anaerobic ammonia oxidation reaction is preferably 250 mg / L. Processing is limited to the following range. Specifically, the pH of the wastewater is adjusted to at least pH 6.5 or more and pH 9 or less, preferably pH 7.5 or more and pH 8.5 or less, more preferably pH 7.8 or more and pH 8.2 or less. The dissolved oxygen concentration in the wastewater is preferably less than 1.0 mg / L, although it depends on the form of microorganism immobilization. For example, it is reduced by aeration of low oxygen concentration gas such as nitrogen gas or addition of a reducing agent such as sodium sulfide. Is possible. When a reducing sulfur compound is used as the reducing agent, even if a part of the reducing sulfur compound flows out of the anaerobic ammonia oxidation reaction tank 20 without being reacted, it is introduced into the autotrophic denitrification reaction tank 30. Therefore, it is possible to reduce the cost of chemicals related to autotrophic denitrification treatment. Such gas aeration and addition of a reducing agent may be performed by providing an adjustment tank between the nitrite type nitrification reaction tank 10 and the anaerobic ammonia oxidation reaction tank 20, or an anaerobic ammonia oxidation reaction tank. 20 may be performed.

嫌気性アンモニア酸化反応処理は、通常、排水に含まれるアンモニウムイオンと亜硝酸イオンとが十分に反応し、アンモニウムイオンの消費が略定常状態となるような滞留時間とし、嫌気性アンモニア酸化反応処理された処理水は、独立栄養的脱窒反応槽30に導入する。この処理水には、嫌気性アンモニア酸化反応において副生成した硝酸イオンが存在している他、嫌気性アンモニア酸化反応において分子状窒素に変換されなかった亜硝酸イオンが残留していることがあるが、亜硝酸イオンや硝酸イオンについては独立栄養的脱窒反応槽30で除去が可能である。   The anaerobic ammonia oxidation reaction treatment is usually an anaerobic ammonia oxidation reaction treatment in which the residence time is such that the ammonium ions and nitrite ions contained in the wastewater react sufficiently and the consumption of ammonium ions is in a substantially steady state. The treated water is introduced into the autotrophic denitrification reaction tank 30. This treated water contains nitrate ions that are by-produced in the anaerobic ammonia oxidation reaction, and nitrite ions that have not been converted to molecular nitrogen in the anaerobic ammonia oxidation reaction may remain. Nitrite ions and nitrate ions can be removed in the autotrophic denitrification reaction tank 30.

独立栄養的脱窒反応槽30は、排水に含まれる亜硝酸態窒素のうち、嫌気性アンモニア酸化反応後に残留している亜硝酸態窒素と嫌気性アンモニア酸化反応によって生成した硝酸態窒素とを、独立栄養的な脱窒反応によって分子状窒素に変換する独立栄養的脱窒反応処理(独立栄養的脱窒反応工程)が行われる反応槽となっている。すなわち、独立栄養的脱窒反応処理では、排水中に残留している亜硝酸イオンや嫌気性アンモニア酸化反応によって生成した硝酸イオンが独立栄養的な脱窒反応によって分子状窒素にまで還元されることで、排水が、嫌気性アンモニア酸化反応に加えて副次的に窒素除去処理されることになる。   The autotrophic denitrification reaction tank 30 includes nitrite nitrogen contained in the waste water, nitrite nitrogen remaining after the anaerobic ammonia oxidation reaction, and nitrate nitrogen generated by the anaerobic ammonia oxidation reaction, This is a reaction tank in which an autotrophic denitrification reaction process (autotrophic denitrification reaction step) for converting to molecular nitrogen by autotrophic denitrification is performed. In other words, in autotrophic denitrification treatment, nitrite ions remaining in wastewater and nitrate ions generated by anaerobic ammonia oxidation reaction are reduced to molecular nitrogen by autotrophic denitrification. Thus, the wastewater is secondarily removed with nitrogen in addition to the anaerobic ammonia oxidation reaction.

独立栄養的脱窒反応槽30には、独立栄養的な脱窒反応を担う独立栄養性脱窒細菌群が保持される。独立栄養性脱窒細菌群は、図1においては、浮遊性の固定化担体130に固定化されて流動床の形態で保持されているが、固定化された形態及び非固定の形態のいずれとすることも可能である。また、固定化は、包括固定化、付着固定化及び自己造粒化のいずれによるものでもよく、流動床及び固定床のいずれの形態としてもよい。但し、滞留時間を確保したり、反応槽外への菌体流出を防止したりする観点からは、固定化された形態が好ましい。なお、固定化担体や固定床の形態については、固定化担体110についてと同様である。   The autotrophic denitrification reaction tank 30 holds autotrophic denitrification bacteria that are responsible for autotrophic denitrification. In FIG. 1, the autotrophic denitrifying bacteria group is immobilized on a floating immobilization support 130 and held in the form of a fluidized bed. It is also possible to do. Further, the immobilization may be any of entrapping immobilization, adhesion immobilization, and self-granulation, and may be in any form of fluidized bed and fixed bed. However, from the viewpoint of securing the residence time and preventing the bacterial cell from flowing out of the reaction tank, a fixed form is preferable. The form of the immobilization carrier and the immobilization bed is the same as that of the immobilization carrier 110.

独立栄養性脱窒細菌群は、例えば、独立栄養性の硫黄脱窒菌を含む組成とされ、嫌気性汚泥の形態を採る。硫黄脱窒菌としては、通性化学独立栄養細菌又は偏性化学独立栄養細菌であり、無酸素条件の下で亜硝酸態窒素や硝酸態窒素を電子受容体として利用して還元性還元性硫黄化合物を酸化することができる硫黄酸化細菌を用いることができる。すなわち、このような硫黄脱窒菌に電子供与体として還元性硫黄化合物を供給することによって、亜硝酸態窒素や硝酸態窒素を分子状窒素にまで還元して窒素除去処理することが可能になる。独立栄養性脱窒細菌群は、炭素源として有機物ではなく無機物を利用するため、メタノール等の有機物を供給すること無く排水処理を行うことができる利点がある。硫黄脱窒菌としては、具体的には、Thiobacillus denitrificans、Thiomicrospira denitrificans、Paracoccus denitrificans等を含む嫌気性汚泥を、還元性硫黄化合物を使用した馴養により得ることが可能である。   The autotrophic denitrifying bacteria group has, for example, a composition containing autotrophic sulfur denitrifying bacteria and takes the form of anaerobic sludge. Sulfur denitrifying bacteria are facultatively autotrophic bacteria or obligately chemoautotrophic bacteria, and reduce reductive sulfur compounds using nitrite nitrogen and nitrate nitrogen as electron acceptors under anoxic conditions Sulfur-oxidizing bacteria that can oxidize can be used. That is, by supplying a reducing sulfur compound as an electron donor to such a sulfur denitrifying bacterium, it is possible to reduce nitrite nitrogen and nitrate nitrogen to molecular nitrogen and perform nitrogen removal treatment. The autotrophic denitrifying bacteria group uses an inorganic substance instead of an organic substance as a carbon source, and therefore has an advantage that wastewater treatment can be performed without supplying an organic substance such as methanol. Specifically, as the sulfur denitrifying bacteria, anaerobic sludge containing Thiobacillus denitrificans, Thiomicrospira denitrificans, Paracoccus denitrificans and the like can be obtained by habituation using a reducing sulfur compound.

独立栄養的脱窒反応槽30には、図1に示すように、被処理水を攪拌する攪拌手段34が備えられる。攪拌手段34によって独立栄養的脱窒反応処理される排水が均一化されるようになっている。なお、攪拌形式は、機械攪拌に限られるものではなく、排水による循環流攪拌や、無酸素ガス等による散気攪拌の形式としてもよい。例えば、独立栄養的脱窒反応槽30を、嫌気性汚泥を上向流によって自己造粒化させる上向流汚泥床型の反応槽等としてもよい。   As shown in FIG. 1, the autotrophic denitrification reaction tank 30 is provided with a stirring means 34 for stirring the water to be treated. The agitation means 34 makes the waste water subjected to the autotrophic denitrification reaction uniform. The agitation method is not limited to mechanical agitation, and may be a circulation agitation method using drainage or a diffused agitation method using oxygen-free gas. For example, the autotrophic denitrification reaction tank 30 may be an upward flow sludge bed type reaction tank that self-granulates anaerobic sludge by an upward flow.

また、独立栄養的脱窒反応槽30には、図1に示すように、pH調整剤を貯留する薬注タンク35と、薬注タンク35に貯留されているpH調整剤を排水に供給する薬注ポンプ36とを設置することができる。pH調整剤としては、水酸化ナトリウム等のアルカリ水酸化物や、炭酸ナトリウム等のアルカリ炭酸塩や、炭酸水素ナトリウム等のアルカリ重炭酸塩等を用いることができる。好ましいpH調整剤は、無機炭素源として利用可能なアルカリ炭酸塩又はアルカリ重炭酸塩である。アルカリをpH調整剤として排水に供給することによって、硫酸等の生成に伴って低下した排水のpHを、独立栄養的脱窒反応に適した中性付近の領域に維持することが可能である。   In addition, as shown in FIG. 1, the autotrophic denitrification reaction tank 30 has a chemical injection tank 35 for storing a pH adjusting agent, and a chemical for supplying the pH adjusting agent stored in the chemical injection tank 35 to waste water. An injection pump 36 can be installed. As the pH adjuster, an alkali hydroxide such as sodium hydroxide, an alkali carbonate such as sodium carbonate, an alkali bicarbonate such as sodium bicarbonate, or the like can be used. A preferred pH adjuster is an alkali carbonate or alkali bicarbonate that can be used as an inorganic carbon source. By supplying alkali to the wastewater as a pH adjusting agent, it is possible to maintain the pH of the wastewater that has decreased with the production of sulfuric acid or the like in a neutral region suitable for the autotrophic denitrification reaction.

独立栄養的脱窒反応槽30には、独立栄養的脱窒反応の電子供与体として働く還元性硫黄化合物を排水に供給する硫黄供給手段が設置される。なお、図1においては、硫黄供給手段は、還元性硫黄化合物を貯留する硫黄供給タンク37と、硫黄供給タンク37に貯留されている還元性硫黄化合物を排水に供給する硫黄供給ポンプ38とによって構成され、還元性硫黄化合物が反応槽外から供給される形態とされている。還元性硫黄化合物を排水に供給すると共に、独立栄養的脱窒反応槽30における溶存酸素濃度を低くすると、独立栄養性脱窒細菌群が、還元性硫黄化合物を電子供与体として利用し、排水中に残留している亜硝酸態窒素や硝酸態窒素を分子状窒素にまで還元するため、処理水に残留する窒素成分の濃度はさらに低減し、嫌気性アンモニア酸化反応処理後よりもさらに処理水質を向上させることが可能である。   The autotrophic denitrification reaction tank 30 is provided with sulfur supply means for supplying a reducing sulfur compound that serves as an electron donor for autotrophic denitrification reaction to waste water. In FIG. 1, the sulfur supply means includes a sulfur supply tank 37 that stores the reducing sulfur compound, and a sulfur supply pump 38 that supplies the reducing sulfur compound stored in the sulfur supply tank 37 to the waste water. The reducing sulfur compound is supplied from outside the reaction vessel. When the reducing sulfur compound is supplied to the wastewater and the dissolved oxygen concentration in the autotrophic denitrification reactor 30 is lowered, the autotrophic denitrifying bacteria group uses the reducing sulfur compound as an electron donor, In order to reduce nitrite nitrogen and nitrate nitrogen remaining in water to molecular nitrogen, the concentration of nitrogen components remaining in the treated water is further reduced, and the treated water quality is further improved than after anaerobic ammonia oxidation reaction treatment. It is possible to improve.

還元性硫黄化合物としては、独立栄養性脱窒細菌群が基質として利用可能な、単体硫黄(元素硫黄)や、硫化ナトリウム、硫化カリウム等の硫化物や、亜硫酸ナトリウム、亜硫酸カルシウム等の亜硫酸塩や、次亜硫酸ナトリウム等の次亜硫酸塩や、チオ硫酸ナトリウム等のチオ硫酸塩等の各種の還元性化合物を用いることができる。このような還元性硫黄化合物は、その種類に応じて、粉状体、粒状体及び溶液のいずれの形態で供給してもよい。   As the reducing sulfur compounds, the elemental sulfur (elemental sulfur), sulfides such as sodium sulfide and potassium sulfide, sulfites such as sodium sulfite and calcium sulfite, which can be used as substrates by autotrophic denitrifying bacteria, Various reducing compounds such as hyposulfites such as sodium hyposulfite and thiosulfates such as sodium thiosulfate can be used. Such a reducing sulfur compound may be supplied in any form of a powdery body, a granular body, and a solution according to the kind.

また、硫黄供給手段は、還元性硫黄化合物を反応槽外から供給する形態に代えて、還元性硫黄化合物を含有する硫黄含有固形体を反応槽内に浸漬させて、排水に還元性硫黄化合物を直接供給する形態とすることもできる。硫黄含有固形体としては、固形成形物である硫黄含有資材や、天然の硫黄鉱物を用いることができる。硫黄含有資材としては、具体的には、粉末状の還元性硫黄化合物とその他の結着剤化合物等とを混合し、適宜の形状に成形した成形物が挙げられ、例えば、粉末状の元素硫黄と炭酸カルシウムとを混合してペレット状に圧縮成形した成形物を好適に用いることができる。還元性硫黄化合物が酸化されて生じる硫酸イオンの電荷をカルシウムイオンによって中和できるため、排水処理をより安定化させることが可能である。また、硫黄鉱物としては、具体的には、自然硫黄、硫化鉱物等を用いることができる。こうした硫黄含有固形体は、独立栄養性脱窒細菌群を付着固定化させる固定床として利用できる他、還元性硫黄化合物の薬注の管理が省略化される利点がある。   In addition, the sulfur supply means, instead of supplying the reducing sulfur compound from the outside of the reaction tank, immerses the sulfur-containing solid body containing the reducing sulfur compound in the reaction tank and puts the reducing sulfur compound in the waste water. It can also be set as the form which supplies directly. As the sulfur-containing solid body, a sulfur-containing material that is a solid molded product or a natural sulfur mineral can be used. Specific examples of the sulfur-containing material include a molded product obtained by mixing a powdery reductive sulfur compound and other binder compound and molding the mixture into an appropriate shape, for example, powdered elemental sulfur. A molded product obtained by mixing and calcium carbonate and compression-molding into a pellet can be suitably used. Since the charges of sulfate ions generated by oxidation of the reducing sulfur compound can be neutralized by calcium ions, it is possible to further stabilize the waste water treatment. Moreover, as sulfur mineral, specifically, natural sulfur, sulfide mineral or the like can be used. Such a sulfur-containing solid body can be used as a fixed bed for adhering and immobilizing autotrophic denitrifying bacteria, and also has an advantage that the management of chemical injection of reducing sulfur compounds is omitted.

独立栄養的脱窒反応処理では、排水のpHを中性付近の領域に維持し、溶存酸素濃度を制限して処理を行う。具体的には、排水のpHは、pH6以上pH9以下とし、好ましくはpH7以上pH8以下となるように調整する。また、排水の溶存酸素濃度は、好ましくは1.0mg/L以下、より好ましくは0.3mg/L以下に調整する。還元性硫黄化合物を硫黄供給手段によって反応槽外から排水に供給する形態では、還元性硫黄化合物の供給を、一定時間間隔で定期的に行ってよいし、排水中の窒素成分濃度を計測して、窒素成分濃度の高低に応じて適量が供給されるように不定期に行ってもよい。また、還元性硫黄化合物の供給量は、例えば、硝酸態窒素に対して反応当量となる量、排水のpHが一定化する量等の適宜の量とすることができる。そして、独立栄養的脱窒反応処理された処理水は、排水処理装置1から外部へ排水される。   In the autotrophic denitrification treatment, the pH of the wastewater is maintained in a neutral region, and the dissolved oxygen concentration is limited. Specifically, the pH of the waste water is adjusted to pH 6 or more and pH 9 or less, preferably pH 7 or more and pH 8 or less. The dissolved oxygen concentration in the waste water is preferably adjusted to 1.0 mg / L or less, more preferably 0.3 mg / L or less. In the form in which the reducing sulfur compound is supplied from the outside of the reaction tank to the wastewater by the sulfur supply means, the reducing sulfur compound may be supplied periodically at regular time intervals, and the concentration of the nitrogen component in the wastewater is measured. Alternatively, it may be performed irregularly so that an appropriate amount is supplied according to the level of nitrogen component concentration. In addition, the supply amount of the reducing sulfur compound can be set to an appropriate amount such as, for example, an amount that becomes a reaction equivalent with respect to nitrate nitrogen and an amount that stabilizes the pH of the waste water. Then, the treated water subjected to the autotrophic denitrification reaction process is drained from the waste water treatment apparatus 1 to the outside.

以上の第1実施形態に係る排水処理装置又は排水処理方法によれば、嫌気性アンモニア酸化反応処理の後に独立栄養的脱窒反応処理が行われることによって、嫌気性アンモニア酸化反応によって窒素除去処理後に残留する亜硝酸イオンや硝酸イオンを副次的に窒素除去処理することが可能となるため、処理水の窒素成分の濃度をより低減し、嫌気性アンモニア酸化反応処理のみの処理と比較して処理水質を向上させることができる。また、通常、従属栄養性細菌による従属栄養的脱窒反応によって窒素除去処理を行う場合には、窒素処理量の凡そ3倍量のメタノール等の有機物を供給する必要があるところ、独立栄養的脱窒反応処理では、独立栄養性の脱窒細菌群を利用しているため、電子供与体として有機物を供給する必要が無く、薬剤コストやBODを低く抑えることが可能である。また、独立栄養性脱窒細菌群は、従属栄養性細菌と比較して、汚泥生成量が少ないため、副次的な窒素除去処理を行うために反応槽が付加されるにもかかわらず、余剰汚泥量が大きく増大することが無く、廃棄物量や運転コストを抑制することができる。   According to the waste water treatment apparatus or the waste water treatment method according to the first embodiment described above, the autotrophic denitrification reaction treatment is performed after the anaerobic ammonia oxidation reaction treatment, thereby performing the nitrogen removal treatment by the anaerobic ammonia oxidation reaction. Residual nitrite ions and nitrate ions can be removed as a secondary nitrogen treatment, so the concentration of the nitrogen component in the treated water is further reduced, compared to treatment using only the anaerobic ammonia oxidation reaction treatment. Water quality can be improved. Normally, when nitrogen removal treatment is performed by heterotrophic denitrification reaction with heterotrophic bacteria, it is necessary to supply organic matter such as methanol, which is approximately three times the nitrogen treatment amount. In the nitrogen reaction treatment, autotrophic denitrifying bacteria are used, so that it is not necessary to supply an organic substance as an electron donor, and it is possible to keep drug costs and BOD low. In addition, the autotrophic denitrifying bacteria group has less sludge production than the heterotrophic bacteria, so the surplus despite the addition of a reaction tank to perform secondary nitrogen removal treatment. The amount of sludge does not increase greatly, and the amount of waste and operating costs can be reduced.

また、第1実施形態に係る排水処理装置又は排水処理方法では、亜硝酸型硝化反応が行われる反応槽と、嫌気性アンモニア酸化反応が行われる反応槽と、独立栄養的な脱窒反応が行われる反応槽とが、それぞれ別体の反応槽とされるため、排水の水温や窒素負荷の変動に対して、各生物学的処理を個別に管理することができ、排水処理を安定化させ易い利点がある。さらに、排水の水温や窒素負荷の変動によって亜硝酸型硝化反応処理や嫌気性アンモニア酸化反応処理が不安定となる場合にも、独立栄養的脱窒反応処理のの運転条件次第で、亜硝酸態窒素や硝酸態窒素については確実に除去することが可能となる。   In the wastewater treatment apparatus or wastewater treatment method according to the first embodiment, a reaction tank in which a nitrite-type nitrification reaction is performed, a reaction tank in which an anaerobic ammonia oxidation reaction is performed, and an autotrophic denitrification reaction are performed. Since each reaction tank is a separate reaction tank, each biological treatment can be managed individually against fluctuations in the water temperature and nitrogen load of the wastewater, and it is easy to stabilize the wastewater treatment. There are advantages. Furthermore, even when the nitrite type nitrification treatment or anaerobic ammonia oxidation reaction treatment becomes unstable due to fluctuations in the temperature of the waste water or nitrogen load, the nitrite state depends on the operating conditions of the autotrophic denitrification reaction treatment. Nitrogen and nitrate nitrogen can be reliably removed.

[変形例]
なお、前記の第1実施形態に係る排水処理装置1は、図1に示すワンパスの構成に代えて、独立栄養的脱窒反応槽30の出口と嫌気性アンモニア酸化反応槽20の入口と、又は、独立栄養的脱窒反応槽30の出口と亜硝酸型硝化反応槽10と嫌気性アンモニア酸化反応槽20との間に設けられる調整槽と、を返送配管で接続して循環流路を形成して、独立栄養的脱窒反応槽30における処理水の一部を嫌気性アンモニア酸化反応槽20に返送する構成としてもよい。このようにして独立栄養的脱窒反応槽30における処理水を返送する運転を行うことによって、嫌気性アンモニア酸化反応槽20に対する窒素負荷を適宜調整することができる。また、溶存酸素濃度が低い排水と共に、独立栄養的脱窒反応槽30において供給された還元性硫黄化合物の余剰分を返送させることができるため、嫌気性アンモニア酸化反応槽20に導入される排水の溶存酸素濃度を効率的に低下させることもできる。独立栄養的脱窒反応槽30における処理水の返送と併せて、亜硝酸型硝化反応処理において亜硝酸イオンの生成を微増させた運転を行うことで、アンモニア態窒素をより確実に除去する処理を行うことも可能である。
[Modification]
In addition, the waste water treatment apparatus 1 according to the first embodiment described above, instead of the one-pass configuration illustrated in FIG. 1, may include an outlet of the autotrophic denitrification reactor 30 and an inlet of the anaerobic ammonia oxidation reactor 20, or The circulation path is formed by connecting the outlet of the autotrophic denitrification reaction tank 30 and the adjustment tank provided between the nitrite type nitrification reaction tank 10 and the anaerobic ammonia oxidation reaction tank 20 with a return pipe. In addition, a part of the treated water in the autotrophic denitrification reaction tank 30 may be returned to the anaerobic ammonia oxidation reaction tank 20. Thus, the nitrogen load with respect to the anaerobic ammonia oxidation reaction tank 20 can be adjusted suitably by performing the operation | movement which returns the treated water in the autotrophic denitrification reaction tank 30. FIG. Moreover, since the excess of the reducing sulfur compound supplied in the autotrophic denitrification reaction tank 30 can be returned together with the wastewater having a low dissolved oxygen concentration, the wastewater introduced into the anaerobic ammonia oxidation reaction tank 20 can be returned. The dissolved oxygen concentration can also be reduced efficiently. Along with the return of treated water in the autotrophic denitrification reaction tank 30, a process to remove ammonia nitrogen more reliably by performing an operation in which the production of nitrite ions is slightly increased in the nitrite type nitrification reaction treatment. It is also possible to do this.

[第2実施形態]
次に、本発明の第2実施形態に係る排水処理装置及び排水処理方法について説明する。
[Second Embodiment]
Next, a wastewater treatment apparatus and a wastewater treatment method according to a second embodiment of the present invention will be described.

図2は、本発明の第2実施形態に係る排水処理装置の概略構成を示す図である。   FIG. 2 is a diagram showing a schematic configuration of a wastewater treatment apparatus according to the second embodiment of the present invention.

図2に示すように、第2実施形態に係る排水処理装置2は、単槽式嫌気性アンモニア酸化反応槽40と、独立栄養的脱窒反応槽30とをこの順に直列的な配列で備えている。第2実施形態に係る排水処理装置2は、アンモニア態窒素を含有する窒素含有排水を嫌気性アンモニア酸化反応を利用して生物学的に窒素除去処理する排水処理装置であり、亜硝酸型硝化反応が行われる反応槽と嫌気性アンモニア酸化反応が行われる反応槽とが一体の反応槽(単槽式嫌気性アンモニア酸化反応槽40)とされる一方で、独立栄養的な脱窒反応が行われる反応槽が別体の反応槽(独立栄養的脱窒反応槽30)とされた構成を有している。   As shown in FIG. 2, the waste water treatment apparatus 2 according to the second embodiment includes a single tank type anaerobic ammonia oxidation reaction tank 40 and an autotrophic denitrification reaction tank 30 arranged in series in this order. Yes. The wastewater treatment apparatus 2 according to the second embodiment is a wastewater treatment apparatus that biologically removes nitrogen-containing wastewater containing ammonia nitrogen using an anaerobic ammonia oxidation reaction, and is a nitrite type nitrification reaction The reaction tank in which the reaction is carried out and the reaction tank in which the anaerobic ammonia oxidation reaction is carried out are integrated into a reaction tank (single tank type anaerobic ammonia oxidation reaction tank 40), while an autotrophic denitrification reaction is carried out. The reaction tank is configured as a separate reaction tank (autotrophic denitrification reaction tank 30).

排水処理装置2では、単槽式嫌気性アンモニア酸化反応槽40及び独立栄養的脱窒反応槽30の各反応槽には、被処理水としての排水が順次導入され、各反応槽毎に管理された反応条件の下で微生物による生物学的処理が行われる。すなわち、排水処理装置2は、単槽式嫌気性アンモニア酸化工程及び独立栄養的脱窒反応工程の各工程を各別の反応槽において順次行う排水処理方法(第2実施形態に係る排水処理方法)が好適に行われる装置となっている。これらの各反応槽は、槽型及びタンク型のいずれの形態としてもよく、また、SBR処理型の反応槽及び連続処理型の反応槽のいずれの運転方式を採用することも可能である。   In the waste water treatment apparatus 2, waste water as treated water is sequentially introduced into each reaction tank of the single tank type anaerobic ammonia oxidation reaction tank 40 and the autotrophic denitrification reaction tank 30, and is managed for each reaction tank. Biological treatment with microorganisms is carried out under the reaction conditions. That is, the waste water treatment apparatus 2 is a waste water treatment method in which each process of the single tank type anaerobic ammonia oxidation process and the autotrophic denitrification reaction process is sequentially performed in each separate reaction tank (the waste water treatment method according to the second embodiment). Is an apparatus that is suitably performed. Each of these reaction tanks may be either a tank type or a tank type, and any operation method of an SBR treatment type reaction tank and a continuous treatment type reaction tank may be employed.

単槽式嫌気性アンモニア酸化反応槽40は、排水に含まれるアンモニア態窒素の一部を亜硝酸型硝化反応によって亜硝酸態窒素に変換すると共に、排水に含まれるアンモニア態窒素のうち、亜硝酸型硝化反応において亜硝酸態窒素に変換されなかったアンモニア態窒素の残部と亜硝酸型硝化反応によって生成した亜硝酸態窒素とを、嫌気性アンモニア酸化反応によって分子状窒素と硝酸態窒素とに変換する単槽式嫌気性アンモニア酸化反応処理(単槽式嫌気性アンモニア酸化反応工程)が行われる反応槽となっている。単槽式嫌気性アンモニア酸化反応処理は、例えば、嫌気性アンモニア酸化細菌群による生物学的処理を、低酸素濃度に制限した曝気の下で行う方法(CANON法)、硝化細菌群による生物学的処理を、低酸素濃度の条件に制限して行う方法(OLAND法)、固定化担体の内部に嫌気性アンモニア酸化細菌群を固定化し、固定化担体の表面に硝化細菌群を付着させて行う方法(SNAP法)等の適宜の運転方法を利用して行うことができる。   The single tank type anaerobic ammonia oxidation reaction tank 40 converts a part of ammonia nitrogen contained in the wastewater into nitrite nitrogen by a nitrite type nitrification reaction, and among the ammonia nitrogen contained in the wastewater, nitrous acid. Of the rest of ammonia nitrogen that was not converted to nitrite nitrogen in the nitrification reaction and the nitrite nitrogen produced by the nitrite nitrification reaction into molecular nitrogen and nitrate nitrogen by anaerobic ammonia oxidation reaction It is a reaction tank in which a single tank type anaerobic ammonia oxidation reaction treatment (single tank type anaerobic ammonia oxidation reaction process) is performed. The single tank type anaerobic ammonia oxidation reaction treatment includes, for example, a method in which biological treatment by anaerobic ammonia oxidizing bacteria group is performed under aeration restricted to a low oxygen concentration (CANON method), a biological treatment by nitrifying bacteria group A method in which treatment is performed under the condition of low oxygen concentration (OLAND method), a method in which anaerobic ammonia-oxidizing bacteria are immobilized inside an immobilization carrier, and nitrifying bacteria are adhered to the surface of the immobilization carrier It can be performed using an appropriate operation method such as (SNAP method).

単槽式嫌気性アンモニア酸化反応槽40には、亜硝酸型硝化反応に関与する硝化細菌群と嫌気性アンモニア酸化反応に関与する嫌気性アンモニア酸化細菌群とが保持される。図2においては、硝化細菌群と嫌気性アンモニア酸化細菌群とは、浮遊性の固定化担体140に固定化されて流動床の形態で保持されているが、固定化は、包括固定化及び付着固定化のいずれによるものでもよく、流動床及び固定床のいずれの形態としてもよい。但し、硝化細菌群と嫌気性アンモニア酸化細菌群との共生は維持し難いため、馴養期間をとって付着固定化させるのが好ましい。固定化担体や固定床の形態については、固定化担体110についてと同様であるが、SNAP法による場合は、多孔質で立体的な形状を有する担体が好ましい。   The single tank type anaerobic ammonia oxidation reaction tank 40 holds a nitrifying bacteria group involved in the nitrite type nitrification reaction and an anaerobic ammonia oxidizing bacteria group involved in the anaerobic ammonia oxidation reaction. In FIG. 2, the nitrifying bacteria group and the anaerobic ammonia oxidizing bacteria group are immobilized on the floating immobilization carrier 140 and held in the form of a fluidized bed. Any of immobilization may be used, and either a fluidized bed or a fixed bed may be employed. However, since it is difficult to maintain the symbiosis between the nitrifying bacteria group and the anaerobic ammonia oxidizing bacteria group, it is preferable to take the acclimatization period and fix them. The form of the immobilization carrier and the immobilization bed is the same as that of the immobilization carrier 110, but in the case of the SNAP method, a porous and three-dimensional shape carrier is preferable.

単槽式嫌気性アンモニア酸化反応槽40には、図2に示すように、排水に空気を散気する散気管42と、散気管42に空気を送気するブロア43とが備えられる。単槽式嫌気性アンモニア酸化反応槽40は、縦円筒状タンク型の反応槽とし、散気管42を底部に配設することによってガスリフト型の反応槽としてもよい。ガスリフト型の反応槽とすることによって、酸素の気液物質移動が律速段階となり、処理が不安定化するのを抑制することができる。   As shown in FIG. 2, the single tank type anaerobic ammonia oxidation reaction tank 40 is provided with a diffuser pipe 42 that diffuses air into the waste water and a blower 43 that feeds air into the diffuser pipe 42. The single tank type anaerobic ammonia oxidation reaction tank 40 may be a vertical cylindrical tank type reaction tank, and a gas lift type reaction tank may be provided by disposing an aeration tube 42 at the bottom. By using a gas lift type reaction vessel, the gas-liquid mass transfer of oxygen becomes a rate-determining step, and the process can be prevented from becoming unstable.

また、単槽式嫌気性アンモニア酸化反応槽40には、図2に示すように、pH調整剤を貯留する薬注タンク45と、薬注タンク45に貯留されているpH調整剤を排水に供給する薬注ポンプ46とを設置することができる。pH調整剤としては、水酸化ナトリウム等のアルカリ水酸化物や、炭酸ナトリウム等のアルカリ炭酸塩や、炭酸水素ナトリウム等のアルカリ重炭酸塩や、塩酸、硫酸等の非還元性硫黄を含有しない酸や、硫化水素水溶液、二酸化硫黄水溶液等の還元性硫黄を含有する酸等が用いられる。アルカリや酸を排水に供給することによって、排水のpHを、単槽式嫌気性アンモニア酸化反応に適した弱アルカリ付近の領域に維持することが可能である。また、還元性硫黄を含有する酸をpH調整剤として排水に供給することによって、独立栄養的脱窒反応槽30に導入されることになる排水の還元性硫黄化合物濃度を高めることが可能となるため、独立栄養的脱窒反応処理に関わる薬剤コストを低減することができる。   In addition, as shown in FIG. 2, the single tank type anaerobic ammonia oxidation reaction tank 40 supplies a chemical injection tank 45 storing a pH adjusting agent and a pH adjusting agent stored in the chemical injection tank 45 to the drainage. A chemical injection pump 46 can be installed. Examples of pH adjusters include alkali hydroxides such as sodium hydroxide, alkali carbonates such as sodium carbonate, alkali bicarbonates such as sodium bicarbonate, and acids that do not contain non-reducing sulfur such as hydrochloric acid and sulfuric acid. Alternatively, an acid containing reducing sulfur such as an aqueous hydrogen sulfide solution or an aqueous sulfur dioxide solution is used. By supplying alkali or acid to the wastewater, it is possible to maintain the pH of the wastewater in a region near a weak alkali suitable for the single tank type anaerobic ammonia oxidation reaction. Moreover, it becomes possible to raise the reductive sulfur compound density | concentration of the waste_water | drain which will be introduce | transduced into the autotrophic denitrification reaction tank 30 by supplying the acid containing reducible sulfur to waste_water | drain as a pH adjuster. Therefore, the drug cost related to the autotrophic denitrification treatment can be reduced.

単槽式嫌気性アンモニア酸化反応処理では、排水のpHを弱アルカリ付近の領域に維持し、溶存酸素濃度を制限して処理を行う。具体的には、排水のpHは、pH7.5以上pH9以下、好ましくはpH7.5以上pH8以下付近となるように調整する。排水の溶存酸素濃度は、排水中に含まれるアンモニア態窒素濃度等を計測し、少なくとも4.0mg/L以下の範囲として亜硝酸酸化を抑制しつつ、窒素負荷や窒素除去率に応じて亜硝酸型硝化反応と嫌気性アンモニア酸化反応とを制御すればよい。   In the single tank type anaerobic ammonia oxidation reaction treatment, the pH of the waste water is maintained in a region near weak alkali, and the treatment is performed while limiting the dissolved oxygen concentration. Specifically, the pH of the waste water is adjusted to be pH 7.5 or more and pH 9 or less, preferably pH 7.5 or more and pH 8 or less. The concentration of dissolved oxygen in the wastewater is measured by measuring the concentration of ammonia nitrogen contained in the wastewater, and at least 4.0 mg / L or less, while suppressing nitrite oxidation, depending on the nitrogen load and nitrogen removal rate The mold nitrification reaction and the anaerobic ammonia oxidation reaction may be controlled.

単槽式嫌気性アンモニア酸化反応処理は、通常、排水に含まれるアンモニウムイオンと亜硝酸イオンとが十分に反応し、アンモニウムイオンの消費が略定常状態となるような滞留時間とし、単槽式嫌気性アンモニア酸化反応処理後には、その処理水を独立栄養的脱窒反応槽30に導入する。この排水には、嫌気性アンモニア酸化反応において副生成した硝酸イオンが存在している他、単槽式嫌気性アンモニア酸化反応において窒素ガスや硝酸イオンに変換されなかったアンモニウムイオンや亜硝酸イオンが二槽式と比較して多量に残留することもあるが、亜硝酸イオンや硝酸イオンについては独立栄養的脱窒反応槽30で除去が可能である。   Single tank type anaerobic ammonia oxidation reaction treatment is usually a residence time in which the ammonium ions and nitrite ions contained in the waste water react sufficiently and the consumption of ammonium ions becomes a substantially steady state. After the basic ammonia oxidation reaction treatment, the treated water is introduced into the autotrophic denitrification reaction tank 30. This wastewater contains nitrate ions by-produced in the anaerobic ammonia oxidation reaction, as well as two ammonium ions and nitrite ions that were not converted to nitrogen gas and nitrate ions in the single tank anaerobic ammonia oxidation reaction. Although a large amount may remain as compared with the tank type, nitrite ions and nitrate ions can be removed by the autotrophic denitrification reaction tank 30.

独立栄養的脱窒反応槽30は、第1実施形態に係る排水処理装置1に備えられるものと同様に、排水に含まれる亜硝酸態窒素のうち、嫌気性アンモニア酸化反応後に残留している亜硝酸態窒素と嫌気性アンモニア酸化反応によって生成した硝酸態窒素とを、独立栄養的な脱窒反応によって分子状窒素に変換する独立栄養的脱窒反応処理(独立栄養的脱窒反応工程)が行われる反応槽となっている。独立栄養的脱窒反応処理は、通常、排水に含まれる亜硝酸イオンと硝酸イオンとを十分に脱窒処理し得るような滞留時間とし、独立栄養的脱窒反応処理された処理水は、排水処理装置2から外部へ排水される。   The autotrophic denitrification reaction tank 30 is the same as that provided in the wastewater treatment apparatus 1 according to the first embodiment, among the nitrite nitrogen contained in the wastewater, the nitrous acid remaining after the anaerobic ammonia oxidation reaction. An autotrophic denitrification process (autotrophic denitrification process) is performed to convert nitrate nitrogen and nitrate nitrogen produced by anaerobic ammonia oxidation reaction to molecular nitrogen by autotrophic denitrification. It is a reaction tank. Autotrophic denitrification treatment usually has a residence time that allows sufficient denitrification of nitrite ions and nitrate ions contained in the wastewater. Waste water is discharged from the processing apparatus 2 to the outside.

以上の第2実施形態に係る排水処理装置又は排水処理方法によれば、単槽式嫌気性アンモニア酸化反応処理の後に独立栄養的脱窒反応処理が行われることによって、嫌気性アンモニア酸化反応によって窒素除去処理した後に、残留する亜硝酸イオンや硝酸イオンを副次的に窒素除去処理することが可能となるため、処理水の窒素成分の濃度をより低減し、嫌気性アンモニア酸化反応処理のみの処理と比較して処理水質を向上させることができる。また、独立栄養的脱窒反応処理では、独立栄養性の脱窒細菌群を利用するため、電子供与体として有機物を供給する必要が無く、薬剤コストやBODを低く抑えることが可能である。また、副次的な窒素除去処理を行うために反応槽が付加されるにもかかわらず、余剰汚泥量が大きく増大することが無く、廃棄物量や運転コストを抑えることができる。   According to the waste water treatment apparatus or the waste water treatment method according to the second embodiment described above, the autotrophic denitrification reaction treatment is performed after the single tank type anaerobic ammonia oxidation reaction treatment. Since the remaining nitrite ions and nitrate ions can be secondarily removed after the removal treatment, the concentration of the nitrogen component in the treated water is further reduced and only the anaerobic ammonia oxidation reaction treatment is performed. Compared with, the quality of treated water can be improved. In addition, in the autotrophic denitrification reaction treatment, since autotrophic denitrifying bacteria are used, it is not necessary to supply an organic substance as an electron donor, and the drug cost and BOD can be kept low. Moreover, although a reaction tank is added to perform a secondary nitrogen removal process, the amount of surplus sludge does not increase greatly, and the amount of waste and operating costs can be suppressed.

また、第1実施形態に係る排水処理装置又は排水処理方法では、亜硝酸型硝化反応が行われる反応槽と嫌気性アンモニア酸化反応が行われる反応槽とが一体の反応槽とされるため、排水処理装置の小型化を図ることができる。その一方で、独立栄養的な脱窒反応が行われる反応槽は別体の反応槽とされるため、一槽型嫌気性アンモニア酸化反応処理で残留した窒素成分を確実に窒素除去処理することが可能である。すなわち、一槽型嫌気性アンモニア酸化反応処理が不安定となる場合にも、独立栄養的脱窒反応処理の運転条件によっては、亜硝酸態窒素や硝酸態窒素について確実に除去することができる。また、一槽型嫌気性アンモニア酸化反応については、必ずしも厳密に制御する必要が無く、アンモニウムイオンと亜硝酸イオンとの比率が亜硝酸イオン過剰となるように幅を持たせて運転することも可能になる。   In the waste water treatment apparatus or waste water treatment method according to the first embodiment, the reaction tank in which the nitrite-type nitrification reaction is performed and the reaction tank in which the anaerobic ammonia oxidation reaction are performed are integrated reaction tanks. The processing apparatus can be reduced in size. On the other hand, since the reaction tank in which the autotrophic denitrification reaction is performed is a separate reaction tank, the nitrogen component remaining in the one-tank type anaerobic ammonia oxidation reaction treatment can be reliably removed with nitrogen. Is possible. That is, even when the one-tank type anaerobic ammonia oxidation reaction treatment becomes unstable, nitrite nitrogen and nitrate nitrogen can be reliably removed depending on the operating conditions of the autotrophic denitrification reaction treatment. In addition, it is not always necessary to strictly control the single tank type anaerobic ammonia oxidation reaction, and it is possible to operate with a wide range so that the ratio of ammonium ion to nitrite ion becomes excessive. become.

[第3実施形態]
次に、本発明の第3実施形態に係る排水処理装置及び排水処理方法について説明する。
[Third Embodiment]
Next, a waste water treatment apparatus and a waste water treatment method according to a third embodiment of the present invention will be described.

図3は、本発明の第3実施形態に係る排水処理装置の概略構成を示す図である。   FIG. 3 is a diagram showing a schematic configuration of a waste water treatment apparatus according to the third embodiment of the present invention.

図3に示すように、第3実施形態に係る排水処理装置3は、脱窒反応槽(単槽式脱窒反応槽)50を生物学的処理を行う単槽式の反応槽)として備えている。第3実施形態に係る排水処理装置3は、アンモニア態窒素を含有する窒素含有排水を嫌気性アンモニア酸化反応を利用して生物学的に窒素除去処理する排水処理装置であり、亜硝酸型硝化反応が行われる反応槽と嫌気性アンモニア酸化反応が行われる反応槽と独立栄養的な脱窒反応が行われる反応槽とが一体の反応槽(単槽式脱窒反応槽50)とされた構成を有している。   As shown in FIG. 3, the waste water treatment apparatus 3 according to the third embodiment includes a denitrification reaction tank (single tank type denitrification reaction tank) 50 as a single tank type reaction tank that performs biological treatment. Yes. The wastewater treatment apparatus 3 according to the third embodiment is a wastewater treatment apparatus that biologically removes nitrogen-containing wastewater containing ammonia nitrogen using an anaerobic ammonia oxidation reaction, and is a nitrite type nitrification reaction And a reaction tank in which an anaerobic ammonia oxidation reaction is performed and a reaction tank in which an autotrophic denitrification reaction is performed are integrated into a single reaction tank (single tank denitrification reaction tank 50). Have.

排水処理装置3は、単槽式脱窒反応工程を単槽の反応槽において行う排水処理方法(第3実施形態に係る排水処理方法)が好適に行われる装置となっている。この反応槽は、槽型及びタンク型のいずれの形態としてもよく、また、SBR処理型の反応槽及び連続処理型の反応槽のいずれの運転方式を採用することも可能である。   The waste water treatment apparatus 3 is an apparatus in which a waste water treatment method (a waste water treatment method according to the third embodiment) in which a single tank type denitrification reaction step is performed in a single tank reaction tank is suitably performed. This reaction tank may be either a tank type or a tank type, and any operation method of an SBR treatment type reaction tank and a continuous treatment type reaction tank may be employed.

単槽式脱窒反応槽50は、排水に含まれるアンモニア態窒素の一部を亜硝酸型硝化反応によって亜硝酸態窒素に変換すると共に、排水に含まれるアンモニア態窒素のうち、亜硝酸型硝化反応において亜硝酸態窒素に変換されなかったアンモニア態窒素の残部と亜硝酸型硝化反応によって生成した亜硝酸態窒素とを、嫌気性アンモニア酸化反応によって分子状窒素と硝酸態窒素とに変換し、且つ、排水に含まれる亜硝酸態窒素のうち、嫌気性アンモニア酸化反応後に残留している亜硝酸態窒素と嫌気性アンモニア酸化反応によって生成した硝酸態窒素とを、独立栄養的な脱窒反応によって分子状窒素に変換する単槽式脱窒反応処理(単槽式脱窒反応工程)が行われる反応槽となっている。   The single tank type denitrification reaction tank 50 converts a part of ammonia nitrogen contained in the wastewater into nitrite nitrogen by a nitrite type nitrification reaction, and among the ammonia nitrogen contained in the wastewater, nitrite type nitrification. The remainder of the ammonia nitrogen that was not converted to nitrite nitrogen in the reaction and the nitrite nitrogen produced by the nitrite type nitrification reaction are converted into molecular nitrogen and nitrate nitrogen by the anaerobic ammonia oxidation reaction, In addition, among the nitrite nitrogen contained in the wastewater, the nitrite nitrogen remaining after the anaerobic ammonia oxidation reaction and the nitrate nitrogen produced by the anaerobic ammonia oxidation reaction are separated by an autotrophic denitrification reaction. It is a reaction tank in which a single tank type denitrification reaction process (single tank type denitrification reaction step) for conversion into molecular nitrogen is performed.

単槽式脱窒反応槽50には、亜硝酸型硝化反応に関与する硝化細菌群と嫌気性アンモニア酸化反応に関与する嫌気性アンモニア酸化細菌群と独立栄養的な脱窒反応に関与する独立栄養性脱窒細菌群とが保持される。図3においては、硝化細菌群と嫌気性アンモニア酸化細菌群と独立栄養性脱窒細菌群とは、浮遊性の固定化担体150に固定化されて流動床の形態で保持されているが、固定化は、包括固定化及び付着固定化のいずれによるものでもよく、流動床及び固定床のいずれの形態としてもよい。但し、硝化細菌群と嫌気性アンモニア酸化細菌群との共生は維持し難いため、馴養期間をとって付着固定化させるのが好ましい。固定化担体や固定床の形態については、固定化担体110についてと同様であるが、SNAP法による場合は、多孔質で立体的な形状を有する担体が好ましい。   In the single tank type denitrification reaction tank 50, the nitrifying bacteria group involved in the nitrite type nitrification reaction, the anaerobic ammonia oxidizing bacteria group involved in the anaerobic ammonia oxidation reaction, and the autotrophic process involved in the autotrophic denitrification reaction are included. Sexual denitrifying bacteria are retained. In FIG. 3, the nitrifying bacteria group, the anaerobic ammonia oxidizing bacteria group, and the autotrophic denitrifying bacteria group are immobilized on the floating immobilization carrier 150 and held in the form of a fluidized bed. The formation may be performed by either entrapping immobilization or adhesion immobilization, and may be in any form of a fluidized bed and a fixed bed. However, since it is difficult to maintain the symbiosis between the nitrifying bacteria group and the anaerobic ammonia oxidizing bacteria group, it is preferable to take the acclimatization period and fix them. The form of the immobilization carrier and the immobilization bed is the same as that of the immobilization carrier 110, but in the case of the SNAP method, a porous and three-dimensional shape carrier is preferable.

単槽式脱窒反応槽50には、図3に示すように、排水に空気を散気する散気管52と、散気管52に空気を送気するブロア53とが備えられる。単槽式脱窒反応槽50は、縦円筒状タンク型の反応槽とし、散気管52を底部に配設することによってガスリフト型の反応槽としてもよい。ガスリフト型の反応槽とすることによって、酸素の気液物質移動が律速段階となり、処理が不安定化するのを抑制することができる。   As shown in FIG. 3, the single tank type denitrification reaction tank 50 is provided with a diffuser pipe 52 that diffuses air into the drainage and a blower 53 that sends air to the diffuser pipe 52. The single tank type denitrification reaction tank 50 may be a vertical cylindrical tank type reaction tank, and may be a gas lift type reaction tank by disposing an aeration tube 52 at the bottom. By using a gas lift type reaction vessel, the gas-liquid mass transfer of oxygen becomes a rate-determining step, and the process can be prevented from becoming unstable.

また、単槽式脱窒反応槽50には、図3に示すように、pH調整剤を貯留する薬注タンク55と、薬注タンク55に貯留されているpH調整剤を排水に供給する薬注ポンプ56とを設置することができる。pH調整剤としては、水酸化ナトリウム等のアルカリ水酸化物や、炭酸ナトリウム等のアルカリ炭酸塩や、炭酸水素ナトリウム等のアルカリ重炭酸塩や、塩酸、硫酸等の非還元性硫黄を含有しない酸や、硫化水素水溶液、二酸化硫黄水溶液等の還元性硫黄を含有する酸等が用いられる。アルカリや酸を排水に供給することによって、排水のpHを、単槽式嫌気性アンモニア酸化反応に適した弱アルカリ付近の領域に維持することが可能である。また、還元性硫黄を含有する酸をpH調整剤として排水に供給することによって、排水の還元性硫黄化合物濃度を高めることが可能となるため、薬剤コストを低減することができる。   Further, as shown in FIG. 3, the single tank type denitrification reaction tank 50 includes a chemical injection tank 55 that stores a pH adjusting agent, and a chemical that supplies the pH adjusting agent stored in the chemical injection tank 55 to waste water. An injection pump 56 can be installed. Examples of pH adjusters include alkali hydroxides such as sodium hydroxide, alkali carbonates such as sodium carbonate, alkali bicarbonates such as sodium bicarbonate, and acids that do not contain non-reducing sulfur such as hydrochloric acid and sulfuric acid. Alternatively, an acid containing reducing sulfur such as an aqueous hydrogen sulfide solution or an aqueous sulfur dioxide solution is used. By supplying alkali or acid to the wastewater, it is possible to maintain the pH of the wastewater in a region near a weak alkali suitable for the single tank type anaerobic ammonia oxidation reaction. Further, by supplying an acid containing reductive sulfur as a pH adjuster to the wastewater, it is possible to increase the concentration of the reducible sulfur compound in the wastewater, so that the chemical cost can be reduced.

また、単槽式脱窒反応槽50には、独立栄養的脱窒反応の電子供与体として働く還元性硫黄化合物を排水に供給する硫黄供給手段が設置される。なお、図3においては、硫黄供給手段は、還元性硫黄化合物を貯留する硫黄供給タンク57と、硫黄供給タンク57に貯留されている還元性硫黄化合物を排水に供給する硫黄供給ポンプ58とによって構成され、還元性硫黄化合物が反応槽外から供給される形態とされている。硫黄供給手段の形態については、排水処理装置1においてと同様のものを適用することができる。図3の硫黄供給タンク57と硫黄供給ポンプ58とに代えて、硫黄含有固形体を排水に浸漬させると共に、その硫黄含有固形体に独立栄養性脱窒細菌群を付着固定させて運転する形態を採ることもできる。これによって、特に独立栄養性脱窒細菌群による活性を安定的に維持させることが可能になる。このとき、循環流が形成され易くなるように硫黄含有固形体によってガスリフト管形状を形成させてもよい。   The single tank type denitrification reaction tank 50 is provided with sulfur supply means for supplying a reducing sulfur compound that serves as an electron donor for the autotrophic denitrification reaction to the waste water. In FIG. 3, the sulfur supply means includes a sulfur supply tank 57 that stores the reducing sulfur compound, and a sulfur supply pump 58 that supplies the reducing sulfur compound stored in the sulfur supply tank 57 to the waste water. The reducing sulfur compound is supplied from outside the reaction vessel. About the form of a sulfur supply means, the thing similar in the waste water treatment apparatus 1 is applicable. In place of the sulfur supply tank 57 and the sulfur supply pump 58 in FIG. 3, a mode in which the sulfur-containing solid body is immersed in wastewater and the autotrophic denitrifying bacteria are attached and fixed to the sulfur-containing solid body is operated. It can also be taken. This makes it possible to stably maintain the activity particularly by the autotrophic denitrifying bacteria group. At this time, the gas lift pipe shape may be formed by a sulfur-containing solid body so that a circulation flow is easily formed.

単槽式脱窒反応処理では、排水のpHを弱アルカリ付近の領域に維持し、溶存酸素濃度を制限して処理を行う。具体的には、排水のpHは、pH7.5以上pH9以下、好ましくはpH7.5以上pH8以下付近となるように調整する。排水の溶存酸素濃度は、排水中に含まれるアンモニア態窒素濃度等を計測し、少なくとも4.0mg/L以下の範囲として亜硝酸酸化を抑制しつつ、窒素負荷や窒素除去率に応じて亜硝酸型硝化反応と嫌気性アンモニア酸化反応とを制御すればよい。微生物固定化の形態にもよるが、独立栄養的な脱窒反応による窒素除去速度を確保する観点からは、溶存酸素濃度は、1.0mg/L以下の範囲に制限することが好ましく、0.5mg/L以下の範囲に制限することがより好ましい。単槽式脱窒反応処理は、通常、還元性硫黄化合物の供給により、排水に含まれる硝酸イオンを十分に脱窒処理し得るような滞留時間とし、単槽式脱窒反応処理された処理水は、排水処理装置3から外部へ排水される。   In the single tank type denitrification treatment, the pH of the waste water is maintained in a region near weak alkali, and the treatment is performed while limiting the dissolved oxygen concentration. Specifically, the pH of the waste water is adjusted to be pH 7.5 or more and pH 9 or less, preferably pH 7.5 or more and pH 8 or less. The concentration of dissolved oxygen in the wastewater is measured by measuring the concentration of ammonia nitrogen contained in the wastewater, and at least 4.0 mg / L or less, while suppressing nitrite oxidation, depending on the nitrogen load and nitrogen removal rate The mold nitrification reaction and the anaerobic ammonia oxidation reaction may be controlled. Although depending on the form of immobilization of microorganisms, from the viewpoint of ensuring a nitrogen removal rate by autotrophic denitrification, the dissolved oxygen concentration is preferably limited to a range of 1.0 mg / L or less. More preferably, it is limited to a range of 5 mg / L or less. Single-tank denitrification treatment is usually treated with a single-tank denitrification reaction treated with a residence time that can sufficiently denitrify nitrate ions contained in the wastewater by supplying a reducing sulfur compound. Is drained from the waste water treatment device 3 to the outside.

以上の第3実施形態に係る排水処理装置又は排水処理方法によれば、単槽式脱窒反応処理において、嫌気性アンモニア酸化反応によって窒素除去処理した後に残留する亜硝酸イオンや硝酸イオンを副次的に窒素除去処理することが可能となるため、処理水の窒素成分の濃度をより低減し、嫌気性アンモニア酸化反応処理のみの処理と比較して処理水質を向上させることができる。また、単槽式脱窒反応処理では、独立栄養性脱窒細菌群を利用するため、電子供与体として有機物を供給する必要が無く、薬剤コストやBODを低く抑えることが可能である。また、独立栄養性脱窒細菌群は、汚泥生成量が少ないため、廃棄物量や運転コストを抑えることができる。   According to the waste water treatment apparatus or the waste water treatment method according to the third embodiment described above, in the single tank type denitrification reaction treatment, the nitrite ions and nitrate ions remaining after the nitrogen removal treatment by the anaerobic ammonia oxidation reaction are secondary. Therefore, the concentration of the nitrogen component of the treated water can be further reduced, and the quality of the treated water can be improved as compared with the treatment of only the anaerobic ammonia oxidation reaction treatment. In the single tank type denitrification reaction treatment, since an autotrophic denitrifying bacterium group is used, it is not necessary to supply an organic substance as an electron donor, and the drug cost and BOD can be kept low. In addition, since the autotrophic denitrifying bacteria group has a small amount of sludge generation, the amount of waste and the operation cost can be suppressed.

また、第3実施形態に係る排水処理装置又は排水処理方法では、亜硝酸型硝化反応が行われる反応槽と嫌気性アンモニア酸化反応が行われる反応槽と独立栄養的な脱窒反応が行われる反応槽とが一体の反応槽とされているため、排水処理装置のさらなる小型化を図ることができる。また、単槽式脱窒反応においては、曝気量と硫黄供給量とによって、亜硝酸イオン濃度や硝酸イオン濃度を制御することが可能である。そのため、亜硝酸型硝化反応については、必ずしも厳密に制御する必要が無く、アンモニウムイオンと亜硝酸イオンとの比率が亜硝酸イオン過剰となるように幅を持たせて運転したり、亜硝酸酸化反応の抑制を緩和して運転することもできる。   Moreover, in the waste water treatment apparatus or waste water treatment method according to the third embodiment, the reaction tank in which the nitrite type nitrification reaction is performed, the reaction tank in which the anaerobic ammonia oxidation reaction is performed, and the reaction in which the autotrophic denitrification reaction is performed. Since the tank is an integral reaction tank, the wastewater treatment apparatus can be further downsized. In the single tank type denitrification reaction, the nitrite ion concentration and the nitrate ion concentration can be controlled by the aeration amount and the sulfur supply amount. Therefore, it is not always necessary to strictly control the nitrite type nitrification reaction, and the nitrite type nitrification reaction can be operated with a width so that the ratio of ammonium ion to nitrite ion becomes excessive, or nitrite oxidation reaction It is also possible to drive while mitigating the suppression.

以下、本発明の実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using the Example of this invention, the technical scope of this invention is not limited to this.

[実施例1]
実施例1として、アンモニア態窒素と亜硝酸態窒素とを含有する排水を嫌気性アンモニア酸化反応処理に供した後に独立栄養的脱窒反応処理に供し、その処理水質について評価した。なお、この実施例1は、図1に示す第1実施形態に係る排水処理装置や排水処理方法を模擬したものである。
[Example 1]
As Example 1, wastewater containing ammonia nitrogen and nitrite nitrogen was subjected to an anaerobic ammonia oxidation reaction treatment and then subjected to an autotrophic denitrification reaction treatment, and the treated water quality was evaluated. In addition, this Example 1 simulates the waste water treatment apparatus and waste water treatment method which concern on 1st Embodiment shown in FIG.

嫌気性アンモニア酸化反応処理槽には、窒素成分としてアンモニウムイオンと亜硝酸イオンとを含有し、アンモニウムイオン濃度が155mg−N/L、亜硝酸イオン濃度が202mg−N/Lであり、水温が30℃である排水(原水)を通水して嫌気性アンモニア酸化反応処理を行った。続いて、嫌気性アンモニア酸化反応処理後の処理水を独立栄養的脱窒反応槽に通水した。独立栄養的脱窒反応槽においては、S/N比で1倍量以上となる還元性硫黄化合物を排水に添加し、排水のpHは中性付近となるように調整して独立栄養的脱窒反応処理を行った。そして、これら嫌気性アンモニア酸化反応処理及び独立栄養的脱窒反応処理による連続処理によって得られた処理水について窒素濃度を計測した。   The anaerobic ammonia oxidation reaction treatment tank contains ammonium ions and nitrite ions as nitrogen components, the ammonium ion concentration is 155 mg-N / L, the nitrite ion concentration is 202 mg-N / L, and the water temperature is 30. Anaerobic ammonia oxidation reaction treatment was performed by passing waste water (raw water) at a temperature of ° C. Subsequently, the treated water after the anaerobic ammonia oxidation reaction treatment was passed through an autotrophic denitrification reaction tank. In an autotrophic denitrification reaction tank, a reducing sulfur compound with an S / N ratio of 1 or more times is added to the wastewater, and the pH of the wastewater is adjusted to be near neutral, and the autotrophic denitrification tank is used. Reaction treatment was performed. And the nitrogen concentration was measured about the treated water obtained by the continuous process by these anaerobic ammonia oxidation reaction process and autotrophic denitrification reaction process.

図4は、本発明の実施例1に係る排水処理方法によって処理された排水の窒素濃度を示す図である。   FIG. 4 is a view showing the nitrogen concentration of wastewater treated by the wastewater treatment method according to Example 1 of the present invention.

図4において、縦軸は排水に含まれている各窒素成分の濃度(窒素濃度(mg−N/L))を示している。なお、図4には、処理前の排水(原水)の窒素濃度と、嫌気性アンモニア酸化反応処理の後に独立栄養的脱窒反応処理を行わなかった対照の排水(比較例1)の窒素濃度を併せて示している。   In FIG. 4, the vertical axis represents the concentration of each nitrogen component contained in the waste water (nitrogen concentration (mg-N / L)). In FIG. 4, the nitrogen concentration of the waste water before treatment (raw water) and the nitrogen concentration of the control waste water (Comparative Example 1) that was not subjected to the autotrophic denitrification treatment after the anaerobic ammonia oxidation reaction treatment are shown. It also shows.

図4に示すように、比較例1では、嫌気性アンモニア酸化反応処理を行うことによって、アンモニウムイオン濃度が4mg−N/L、亜硝酸イオン濃度が3mg−N/L、硝酸イオン濃度が40mg−N/Lの処理水が得られており、処理水中には、亜硝酸イオンが一部残留すると共に、副生成した硝酸イオンが多量に残留していることが分かる。これに対して、実施例1では、嫌気性アンモニア酸化反応処理の後に独立栄養的脱窒反応処理をさらに行うことによって、アンモニウムイオン濃度が4mg−N/L、亜硝酸イオン濃度が略0mg−N/L、硝酸イオン濃度が6mg−N/Lの処理水が得られている。このように、独立栄養性脱窒細菌群を利用した副次的な窒素除去処理を行うことで、亜硝酸イオンや硝酸イオンの残留が略無くなり、嫌気性アンモニア酸化反応処理後に残留する窒素成分の約80%程度を除去する高い窒素除去率が達成されており、高水準の処理水質を実現可能であることが確認できる。   As shown in FIG. 4, in Comparative Example 1, by performing anaerobic ammonia oxidation reaction treatment, the ammonium ion concentration was 4 mg-N / L, the nitrite ion concentration was 3 mg-N / L, and the nitrate ion concentration was 40 mg- N / L treated water is obtained, and it can be seen that a part of the nitrite ions and a large amount of by-produced nitrate ions remain in the treated water. On the other hand, in Example 1, by further performing an autotrophic denitrification reaction treatment after the anaerobic ammonia oxidation reaction treatment, the ammonium ion concentration is 4 mg-N / L and the nitrite ion concentration is approximately 0 mg-N. / L, treated water having a nitrate ion concentration of 6 mg-N / L is obtained. In this way, by performing secondary nitrogen removal treatment using autotrophic denitrifying bacteria, nitrite ions and nitrate ions remain substantially free of nitrogen components remaining after anaerobic ammonia oxidation reaction treatment. A high nitrogen removal rate of removing about 80% is achieved, and it can be confirmed that a high level of treated water quality can be realized.

[実施例2]
実施例2として、アンモニア態窒素と硝酸態窒素とを含有する排水を単槽式嫌気性アンモニア酸化反応処理に供した後に独立栄養的脱窒反応処理に供し、その処理水質について評価した。なお、この実施例2は、図2に示す第2実施形態に係る排水処理装置や排水処理方法を模擬したものである。
[Example 2]
As Example 2, wastewater containing ammonia nitrogen and nitrate nitrogen was subjected to a single tank type anaerobic ammonia oxidation reaction treatment, and then subjected to an autotrophic denitrification reaction treatment, and the quality of the treated water was evaluated. In addition, this Example 2 simulates the waste water treatment apparatus and waste water treatment method which concern on 2nd Embodiment shown in FIG.

単槽式嫌気性アンモニア酸化反応処理槽には、窒素成分としてアンモニウムイオンと硝酸イオンとを含有し、アンモニウムイオン濃度が16mg−N/L、硝酸イオン濃度が3mg−N/Lであり、水温が20℃である排水(原水)を通水して単槽式嫌気性アンモニア酸化反応処理を行った。続いて、単槽式嫌気性アンモニア酸化反応処理後の処理水を独立栄養的脱窒反応槽に通水した。独立栄養的脱窒反応槽においては、S/N比で1倍量以上となる還元性硫黄化合物を排水に添加し、排水のpHは中性付近となるように調整して独立栄養的脱窒反応処理を行った。そして、これら単槽式嫌気性アンモニア酸化反応処理及び独立栄養的脱窒反応処理による連続処理によって得られた処理水について窒素濃度を計測した。   The single tank type anaerobic ammonia oxidation reaction treatment tank contains ammonium ions and nitrate ions as nitrogen components, the ammonium ion concentration is 16 mg-N / L, the nitrate ion concentration is 3 mg-N / L, and the water temperature is Waste water (raw water) at 20 ° C. was passed through to perform a single tank type anaerobic ammonia oxidation reaction treatment. Subsequently, the treated water after the single tank type anaerobic ammonia oxidation reaction treatment was passed through the autotrophic denitrification reaction tank. In an autotrophic denitrification reaction tank, a reducing sulfur compound with an S / N ratio of 1 or more times is added to the wastewater, and the pH of the wastewater is adjusted to be near neutral, and the autotrophic denitrification tank is used. Reaction treatment was performed. And the nitrogen concentration was measured about the treated water obtained by the continuous process by these single tank type anaerobic ammonia oxidation reaction process and autotrophic denitrification reaction process.

図5は、本発明の実施例2に係る排水処理方法によって処理された排水の窒素濃度を示す図である。   FIG. 5 is a diagram showing the nitrogen concentration of wastewater treated by the wastewater treatment method according to Example 2 of the present invention.

図5において、縦軸は排水に含まれている各窒素成分の濃度(窒素濃度(mg−N/L))を示している。なお、図5には、処理前の排水(原水)の窒素濃度と、嫌気性アンモニア酸化反応処理の後に独立栄養的脱窒反応処理を行わなかった対照の排水(比較例2)の窒素濃度を併せて示している。   In FIG. 5, the vertical axis represents the concentration of each nitrogen component (nitrogen concentration (mg-N / L)) contained in the waste water. FIG. 5 shows the nitrogen concentration of the waste water (raw water) before the treatment and the nitrogen concentration of the control waste water (Comparative Example 2) that was not subjected to the autotrophic denitrification treatment after the anaerobic ammonia oxidation reaction treatment. It also shows.

図5に示すように、比較例2では、単槽式嫌気性アンモニア酸化反応処理を行うことによって、アンモニウムイオン濃度が2mg−N/L、亜硝酸イオン濃度が2mg−N/L、硝酸イオン濃度が4mg−N/Lの処理水が得られており、処理水中には、アンモニアイオンや亜硝酸イオンが一部残留すると共に、硝酸イオンが多量に残留していることが分かる。これに対して、実施例2では、単槽式嫌気性アンモニア酸化反応処理の後に独立栄養的な脱窒処理をさらに行うことによって、アンモニウムイオン濃度が2mg−N/L、亜硝酸イオン濃度が略0mg−N/L、硝酸イオン濃度が略0mg−N/Lの処理水が得られている。このように、独立栄養性脱窒細菌群を利用した副次的な窒素除去処理を行うことで、亜硝酸イオンや硝酸イオンの残留が略無くなり、嫌気性アンモニア酸化反応処理後に残留する窒素成分の約75%程度を除去する高い窒素除去率が達成されており、高水準の処理水質を実現可能であることが確認できる。   As shown in FIG. 5, in Comparative Example 2, by performing a single tank type anaerobic ammonia oxidation reaction treatment, the ammonium ion concentration was 2 mg-N / L, the nitrite ion concentration was 2 mg-N / L, and the nitrate ion concentration. 4 mg-N / L of treated water is obtained, and it can be seen that ammonia ions and nitrite ions partially remain in the treated water, and a large amount of nitrate ions remain. On the other hand, in Example 2, by further performing an autotrophic denitrification treatment after the single tank type anaerobic ammonia oxidation reaction treatment, the ammonium ion concentration was 2 mg-N / L, and the nitrite ion concentration was substantially reduced. Treated water having 0 mg-N / L and a nitrate ion concentration of approximately 0 mg-N / L is obtained. In this way, by performing secondary nitrogen removal treatment using autotrophic denitrifying bacteria, nitrite ions and nitrate ions remain substantially free of nitrogen components remaining after anaerobic ammonia oxidation reaction treatment. A high nitrogen removal rate of removing about 75% is achieved, and it can be confirmed that a high level of treated water quality can be realized.

1 排水処理装置
2 排水処理装置
3 排水処理装置
8 原水ポンプ
10 亜硝酸型硝化反応槽
12 散気管
13 ブロア
15 薬注タンク
16 薬注ポンプ
20 嫌気性アンモニア槽
24 攪拌手段
25 薬注タンク
26 薬注ポンプ
30 独立栄養性脱窒槽
34 攪拌手段
35 薬注タンク
36 薬注ポンプ
37 硫黄供給タンク
38 硫黄供給ポンプ
40 単槽式嫌気性アンモニア酸化反応槽
42 散気管
43 ブロア
45 薬注タンク
46 薬注ポンプ
50 単槽式脱窒反応槽
52 散気管
53 ブロア
55 薬注タンク
56 薬注ポンプ
57 硫黄供給タンク
58 硫黄供給ポンプ
110 固定化担体
120 固定化担体
130 固定化担体
140 固定化担体
150 固定化担体
DESCRIPTION OF SYMBOLS 1 Waste water treatment equipment 2 Waste water treatment equipment 3 Waste water treatment equipment 8 Raw water pump 10 Nitrite type nitrification reaction tank 12 Aeration pipe 13 Blower 15 Chemical injection tank 16 Chemical injection pump 20 Anaerobic ammonia tank 24 Stirring means 25 Chemical injection tank 26 Chemical injection Pump 30 Autotrophic denitrification tank 34 Stirring means 35 Chemical injection tank 36 Chemical injection pump 37 Sulfur supply tank 38 Sulfur supply pump 40 Single tank anaerobic ammonia oxidation reaction tank 42 Aeration pipe 43 Blower 45 Chemical injection tank 46 Chemical injection pump 50 Single tank type denitrification reaction tank 52 Aeration pipe 53 Blower 55 Chemical injection tank 56 Chemical injection pump 57 Sulfur supply tank 58 Sulfur supply pump 110 Immobilization carrier 120 Immobilization carrier 130 Immobilization carrier 140 Immobilization carrier 150 Immobilization carrier

Claims (6)

アンモニア態窒素を含有する排水を嫌気性アンモニア酸化反応を利用して生物学的に窒素除去処理する排水処理装置であって、
前記排水に含まれるアンモニア態窒素の一部を、亜硝酸型硝化反応によって亜硝酸態窒素に変換し、
前記アンモニア態窒素の残部と前記亜硝酸態窒素とを、嫌気性アンモニア酸化反応によって分子状窒素と硝酸態窒素とに変換し、
嫌気性アンモニア酸化反応後に残留している亜硝酸態窒素と前記硝酸態窒素とを、独立栄養的な脱窒反応によって分子状窒素に変換して窒素除去処理する
ことを特徴とする排水処理装置。
A wastewater treatment apparatus for biologically nitrogen removal treatment of wastewater containing ammonia nitrogen using anaerobic ammonia oxidation reaction,
A part of the ammonia nitrogen contained in the waste water is converted into nitrite nitrogen by a nitrite type nitrification reaction,
The remaining ammonia nitrogen and the nitrite nitrogen are converted into molecular nitrogen and nitrate nitrogen by an anaerobic ammonia oxidation reaction,
A wastewater treatment apparatus characterized in that nitrite nitrogen remaining after an anaerobic ammonia oxidation reaction and the nitrate nitrogen are converted to molecular nitrogen by an autotrophic denitrification reaction to remove nitrogen.
前記排水に含まれるアンモニア態窒素の一部を、亜硝酸型硝化反応によって亜硝酸態窒素に変換する亜硝酸型硝化反応槽と、
前記アンモニア態窒素の残部と前記亜硝酸態窒素とを、嫌気性アンモニア酸化反応によって分子状窒素と硝酸態窒素とに変換する嫌気性アンモニア酸化反応槽と、
嫌気性アンモニア酸化反応後に残留している亜硝酸態窒素と前記硝酸態窒素とを、独立栄養的な脱窒反応によって分子状窒素に変換する独立栄養的脱窒反応槽と、
を備えることを特徴とする請求項1に記載の排水処理装置。
A part of ammonia nitrogen contained in the waste water, a nitrite type nitrification reaction tank for converting into nitrite nitrogen by a nitrite type nitrification reaction;
An anaerobic ammonia oxidation reaction tank for converting the remainder of the ammonia nitrogen and the nitrite nitrogen into molecular nitrogen and nitrate nitrogen by an anaerobic ammonia oxidation reaction;
An autotrophic denitrification reactor that converts nitrite nitrogen remaining after the anaerobic ammonia oxidation reaction and the nitrate nitrogen to molecular nitrogen by autotrophic denitrification;
The wastewater treatment apparatus according to claim 1, comprising:
前記排水に含まれるアンモニア態窒素の一部を、亜硝酸型硝化反応によって亜硝酸態窒素に変換すると共に、
前記アンモニア態窒素の残部と前記亜硝酸態窒素とを、嫌気性アンモニア酸化反応によって分子状窒素と硝酸態窒素とに変換する単槽式嫌気性アンモニア酸化反応槽と、
嫌気性アンモニア酸化反応後に残留している亜硝酸態窒素と前記硝酸態窒素とを、独立栄養的な脱窒反応によって分子状窒素に変換する独立栄養的脱窒反応槽と、
を備えることを特徴とする請求項1に記載の排水処理装置。
A part of the ammonia nitrogen contained in the waste water is converted into nitrite nitrogen by a nitrite type nitrification reaction,
A single tank anaerobic ammonia oxidation reaction tank for converting the remainder of the ammonia nitrogen and the nitrite nitrogen into molecular nitrogen and nitrate nitrogen by an anaerobic ammonia oxidation reaction;
An autotrophic denitrification reactor that converts nitrite nitrogen remaining after the anaerobic ammonia oxidation reaction and the nitrate nitrogen to molecular nitrogen by autotrophic denitrification;
The waste water treatment apparatus according to claim 1, comprising:
前記排水に含まれるアンモニア態窒素の一部を、亜硝酸型硝化反応によって亜硝酸態窒素に変換すると共に、
前記アンモニア態窒素の残部と前記亜硝酸態窒素とを、嫌気性アンモニア酸化反応によって分子状窒素と硝酸態窒素とに変換し、且つ、
嫌気性アンモニア酸化反応後に残留している亜硝酸態窒素と前記硝酸態窒素とを、独立栄養的な脱窒反応によって分子状窒素に変換する脱窒反応槽
を単槽式の反応槽として備えることを特徴とする請求項1に記載の排水処理装置。
A part of the ammonia nitrogen contained in the waste water is converted into nitrite nitrogen by a nitrite type nitrification reaction,
Converting the remainder of the ammonia nitrogen and the nitrite nitrogen into molecular nitrogen and nitrate nitrogen by an anaerobic ammonia oxidation reaction; and
Provide a denitrification reaction tank that converts the nitrite nitrogen remaining after the anaerobic ammonia oxidation reaction and the nitrate nitrogen into molecular nitrogen by autotrophic denitrification as a single tank reaction tank The wastewater treatment apparatus according to claim 1.
前記独立栄養的な脱窒反応が行われる反応槽に、前記独立栄養的な脱窒反応の電子供与体として働く還元性硫黄化合物を供給する硫黄供給手段が設置されていることを特徴とする請求項2から請求項4のいずれか一項に記載の排水処理装置。   A sulfur supply means for supplying a reducing sulfur compound that acts as an electron donor for the autotrophic denitrification reaction is installed in a reaction tank in which the autotrophic denitrification reaction is performed. The waste water treatment apparatus according to any one of claims 2 to 4. アンモニア態窒素を含有する排水を嫌気性アンモニア酸化反応を利用して生物学的に窒素除去処理する排水処理方法であって、
前記排水に含まれるアンモニア態窒素の一部を、亜硝酸型硝化反応によって亜硝酸態窒素に変換する亜硝酸型硝化反応工程、
前記アンモニア態窒素の残部と前記亜硝酸態窒素とを、嫌気性アンモニア酸化反応によって分子状窒素と硝酸態窒素とに変換する嫌気性アンモニア酸化工程、
嫌気性アンモニア酸化反応後に残留している亜硝酸態窒素と前記硝酸態窒素とを、独立栄養的な脱窒反応によって分子状窒素に変換する独立栄養的脱窒反応工程
を含むことを特徴とする排水処理方法。
A wastewater treatment method for biologically nitrogen removal treatment of wastewater containing ammonia nitrogen using anaerobic ammonia oxidation reaction,
A nitrite type nitrification reaction step for converting a part of ammonia nitrogen contained in the waste water into nitrite nitrogen by a nitrite type nitrification reaction,
Anaerobic ammonia oxidation step of converting the remainder of the ammonia nitrogen and the nitrite nitrogen into molecular nitrogen and nitrate nitrogen by an anaerobic ammonia oxidation reaction;
It includes an autotrophic denitrification reaction step of converting nitrite nitrogen remaining after anaerobic ammonia oxidation reaction and the nitrate nitrogen into molecular nitrogen by autotrophic denitrification. Wastewater treatment method.
JP2014182372A 2014-09-08 2014-09-08 Waste water treatment apparatus and waste water treatment method Active JP6227509B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014182372A JP6227509B2 (en) 2014-09-08 2014-09-08 Waste water treatment apparatus and waste water treatment method
KR1020150118770A KR20160030042A (en) 2014-09-08 2015-08-24 Wastewater treatment apparatus and wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014182372A JP6227509B2 (en) 2014-09-08 2014-09-08 Waste water treatment apparatus and waste water treatment method

Publications (3)

Publication Number Publication Date
JP2016055230A true JP2016055230A (en) 2016-04-21
JP2016055230A5 JP2016055230A5 (en) 2016-12-22
JP6227509B2 JP6227509B2 (en) 2017-11-08

Family

ID=55649832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014182372A Active JP6227509B2 (en) 2014-09-08 2014-09-08 Waste water treatment apparatus and waste water treatment method

Country Status (2)

Country Link
JP (1) JP6227509B2 (en)
KR (1) KR20160030042A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105836885A (en) * 2016-06-04 2016-08-10 北京工业大学 Method for deep denitrification of low carbon source urban sewage
JP2017000987A (en) * 2015-06-12 2017-01-05 新日鐵住金株式会社 Biological nitrogen removal method and nitrogen-containing waste water treatment apparatus
CN108862622A (en) * 2018-06-25 2018-11-23 苏州科技大学 A kind of method of ammonia-containing water denitrogenation
JP6432961B1 (en) * 2018-06-21 2018-12-05 南京大学 Integrated apparatus for treating low carbon to nitrogen ratio wastewater and its operating method
CN111470627A (en) * 2020-04-15 2020-07-31 江苏省环境科学研究院 Denitrification treatment process for livestock breeding wastewater with high ammonia nitrogen and low carbon nitrogen ratio
CN112479370A (en) * 2020-11-10 2021-03-12 青岛大学 Sewage autotrophic nitrogen removal device and method
CN112811593A (en) * 2021-01-15 2021-05-18 青岛思普润水处理股份有限公司 Iron-based autotrophic nitrogen and phosphorus removal system based on MBBR and operation method
CN112850894A (en) * 2021-01-28 2021-05-28 北京坦思环保科技有限公司 Device and method for advanced denitrification of industrial wastewater through anaerobic ammonia oxidation
CN112960773A (en) * 2021-02-01 2021-06-15 北京工商大学 Low C/N domestic sewage deep denitrification method based on normal state addition of oxidized nitrogen
JP2022501170A (en) * 2019-08-29 2022-01-06 南京大学 Shortcut Denitrification and Anaerobic Ammonia Oxidation Coupling How to Start an Integrated Denitrification System
CN114275897A (en) * 2021-12-29 2022-04-05 华夏碧水环保科技有限公司 Denitrification system and starting method thereof
CN115385450A (en) * 2022-08-05 2022-11-25 华南理工大学 SND-MSAD (selective non-catalytic reduction-MSAD) deep denitrification and decarbonization process by sulfur autotrophic sludge process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106865773B (en) * 2017-04-07 2020-02-11 北京工业大学 Device and method for realizing partial shortcut nitrification-anaerobic ammonia oxidation by adding hydroxylamine
CN108439588B (en) * 2018-02-01 2021-02-02 哈尔滨工业大学 Plug flow type reaction device and method for stable operation of nitrosation-anaerobic ammonia oxidation process
CN108862585B (en) * 2018-07-06 2021-06-25 北京工业大学 Device and method for starting and stably maintaining shortcut nitrification of municipal sewage
CN110697892A (en) * 2019-09-12 2020-01-17 广西博世科环保科技股份有限公司 Wastewater treatment device and method for realizing shortcut denitrification and anaerobic ammonia oxidation by anaerobic baffle reactor
CN111675437B (en) * 2020-06-18 2022-05-27 中国科学院生态环境研究中心 Method and device for treating inorganic ammonia nitrogen wastewater by electro-adsorption-anaerobic ammonia oxidation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033789A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for denitrificaton treatment using living organisms and device therefor
JP2003126886A (en) * 2001-10-26 2003-05-07 Ebara Corp Biological denitrification method and device of the same
JP2005305410A (en) * 2004-03-25 2005-11-04 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2006272177A (en) * 2005-03-29 2006-10-12 Mitsubishi Heavy Ind Ltd Method and system for removing biological nitrogen
JP2007190491A (en) * 2006-01-19 2007-08-02 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing wastewater
JP2008518753A (en) * 2004-11-05 2008-06-05 株式会社荏原製作所 Biological denitrification method and apparatus
JP2008296164A (en) * 2007-06-01 2008-12-11 Hitachi Plant Technologies Ltd Nitrogen removal method and apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033789A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for denitrificaton treatment using living organisms and device therefor
JP2003126886A (en) * 2001-10-26 2003-05-07 Ebara Corp Biological denitrification method and device of the same
JP2005305410A (en) * 2004-03-25 2005-11-04 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for removing nitrogen
JP2008518753A (en) * 2004-11-05 2008-06-05 株式会社荏原製作所 Biological denitrification method and apparatus
JP2006272177A (en) * 2005-03-29 2006-10-12 Mitsubishi Heavy Ind Ltd Method and system for removing biological nitrogen
JP2007190491A (en) * 2006-01-19 2007-08-02 Kurita Water Ind Ltd Method and apparatus for treating nitrogen-containing wastewater
JP2008296164A (en) * 2007-06-01 2008-12-11 Hitachi Plant Technologies Ltd Nitrogen removal method and apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017000987A (en) * 2015-06-12 2017-01-05 新日鐵住金株式会社 Biological nitrogen removal method and nitrogen-containing waste water treatment apparatus
CN105836885B (en) * 2016-06-04 2018-08-28 北京工业大学 A kind of method of low carbon source urban sewage advanced nitrogen
CN105836885A (en) * 2016-06-04 2016-08-10 北京工业大学 Method for deep denitrification of low carbon source urban sewage
JP6432961B1 (en) * 2018-06-21 2018-12-05 南京大学 Integrated apparatus for treating low carbon to nitrogen ratio wastewater and its operating method
JP2019217487A (en) * 2018-06-21 2019-12-26 南京大学 Integrated device for treatment of low carbon/nitrogen ratio waste water and operation method thereof
CN108862622A (en) * 2018-06-25 2018-11-23 苏州科技大学 A kind of method of ammonia-containing water denitrogenation
JP2022501170A (en) * 2019-08-29 2022-01-06 南京大学 Shortcut Denitrification and Anaerobic Ammonia Oxidation Coupling How to Start an Integrated Denitrification System
JP7125157B2 (en) 2019-08-29 2022-08-24 南京大学 How to Start an Integrated System for Ammonia Nitrogen and Nitrate Removal
CN111470627A (en) * 2020-04-15 2020-07-31 江苏省环境科学研究院 Denitrification treatment process for livestock breeding wastewater with high ammonia nitrogen and low carbon nitrogen ratio
CN112479370A (en) * 2020-11-10 2021-03-12 青岛大学 Sewage autotrophic nitrogen removal device and method
CN112811593A (en) * 2021-01-15 2021-05-18 青岛思普润水处理股份有限公司 Iron-based autotrophic nitrogen and phosphorus removal system based on MBBR and operation method
CN112850894B (en) * 2021-01-28 2022-07-08 北京坦思环保科技有限公司 Device and method for advanced denitrification of industrial wastewater through anaerobic ammonia oxidation
CN112850894A (en) * 2021-01-28 2021-05-28 北京坦思环保科技有限公司 Device and method for advanced denitrification of industrial wastewater through anaerobic ammonia oxidation
CN112960773A (en) * 2021-02-01 2021-06-15 北京工商大学 Low C/N domestic sewage deep denitrification method based on normal state addition of oxidized nitrogen
CN114275897A (en) * 2021-12-29 2022-04-05 华夏碧水环保科技有限公司 Denitrification system and starting method thereof
CN115385450A (en) * 2022-08-05 2022-11-25 华南理工大学 SND-MSAD (selective non-catalytic reduction-MSAD) deep denitrification and decarbonization process by sulfur autotrophic sludge process
CN115385450B (en) * 2022-08-05 2023-05-23 华南理工大学 SND-MSAD deep denitrification and carbon removal process by sulfur autotrophic mud method

Also Published As

Publication number Publication date
JP6227509B2 (en) 2017-11-08
KR20160030042A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP6227509B2 (en) Waste water treatment apparatus and waste water treatment method
JP5890374B2 (en) Biological nitrogen removal apparatus and water treatment system
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
JP4691938B2 (en) Nitrogen-containing liquid processing method and apparatus
JP4572504B2 (en) Biological denitrification method
KR101018772B1 (en) Method for treating water containing ammonia nitrogen
CA2542894C (en) Multi-environment wastewater treatment method
TWI403467B (en) Treatment device for drainage containing organic sulfur compounds
JP4882175B2 (en) Nitrification method
WO2010016268A1 (en) Water treatment system and water treatment method
JP2006122771A (en) Fluid treatment method and fluid treatment system
JP4872171B2 (en) Biological denitrification equipment
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP4867098B2 (en) Biological denitrification method and apparatus
JP4302341B2 (en) Biological nitrogen removal method and apparatus
JP6344216B2 (en) Biological treatment of wastewater
JP2006082053A (en) Method and apparatus for treating nitrogen-containing drainage
JP4848144B2 (en) Waste water treatment equipment
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
Udert et al. Biological nitrogen conversion processes
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
CN111094194A (en) Device and method for short-range denitrification and inhibition of nitrous acid oxidation microbial activity
JP2012024707A (en) Denitrification method and denitrification device for ammoniacal nitrogen waste liquid
KR100857887B1 (en) Wastewater treatment apparatus of denitrification and wastewater treatment method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171011

R150 Certificate of patent or registration of utility model

Ref document number: 6227509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150