JP2008296164A - Nitrogen removal method and apparatus - Google Patents

Nitrogen removal method and apparatus Download PDF

Info

Publication number
JP2008296164A
JP2008296164A JP2007146766A JP2007146766A JP2008296164A JP 2008296164 A JP2008296164 A JP 2008296164A JP 2007146766 A JP2007146766 A JP 2007146766A JP 2007146766 A JP2007146766 A JP 2007146766A JP 2008296164 A JP2008296164 A JP 2008296164A
Authority
JP
Japan
Prior art keywords
ammonia
denitrification
tank
wastewater
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007146766A
Other languages
Japanese (ja)
Other versions
JP4671178B2 (en
Inventor
Kazuichi Isaka
和一 井坂
Tatsuo Sumino
立夫 角野
Hiroya Kimura
裕哉 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2007146766A priority Critical patent/JP4671178B2/en
Publication of JP2008296164A publication Critical patent/JP2008296164A/en
Application granted granted Critical
Publication of JP4671178B2 publication Critical patent/JP4671178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly efficiently remove nitric acid secondarily generated by anaerobic ammonia oxidation reaction by adding a small amount of an organic matter. <P>SOLUTION: A method for removing nitrogen in ammonia-containing wastewater comprises the nitrous acid type nitrification process of nitrifying a part of ammonia contained in the wastewater to nitrous acid by nitrifying bacteria, the first denitrification process of removing the ammonia and nitrous acid contained in the wastewater discharged from the nitrous acid type nitrification process by anaerobic ammonia-oxidizing bacteria, and a second nitrification process of removing residual ammonia contained in the waste water, discharged from the first denitrification process and the nitrous acid generated in the first denitrification process, by anaerobic ammonia-oxidizing bacteria and heterotrophic denitrifying bacteria. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、窒素除去方法及び装置に係り、特に、アンモニア含有廃水を嫌気性アンモニア酸化反応により処理する技術に関する。   The present invention relates to a nitrogen removal method and apparatus, and more particularly to a technique for treating ammonia-containing wastewater by an anaerobic ammonia oxidation reaction.

下水や産業廃水に含まれる窒素成分は、湖沼の富栄養化や、河川の溶存酸素の低下等の原因になることから、除去されることが望まれている。このような窒素成分としては、主に、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素、有機性窒素等、がある。   The nitrogen component contained in sewage and industrial wastewater is desired to be removed because it causes eutrophication of lakes and marshes and lowers dissolved oxygen in rivers. Such nitrogen components mainly include ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, organic nitrogen, and the like.

従来、下水や産業廃水に含まれる窒素成分が低濃度であれば、イオン交換法により除去する方法や塩素やオゾンにより酸化除去する方法が採用されているが、窒素成分が中、高濃度であれば、以下のような生物処理方法が採用されている。   Conventionally, if the nitrogen component contained in sewage and industrial wastewater is low concentration, the method of removing by ion exchange method or the method of oxidizing and removing by chlorine or ozone has been adopted, but if the nitrogen component is medium or high concentration For example, the following biological treatment methods are adopted.

生物処理としては、好気硝化と嫌気脱窒による硝化・脱窒処理が行われている。好気硝化では、アンモニア酸化細菌(Nitrosomonas、Nitrosococcus、Nitrosospira、Nitrosolobus等)と亜硝酸酸化細菌(Nitrobactor、Nitrospina、Nitrococcus、Nitrospira等)によるアンモニア性窒素や亜硝酸性窒素の酸化が行われている。一方、嫌気脱窒では、従属栄養細菌(Pseudomonas denitrificans等)による脱窒が行われている。   As biological treatment, nitrification / denitrification treatment by aerobic nitrification and anaerobic denitrification is performed. In aerobic nitrification, ammonia nitrogen and nitrite nitrogen are oxidized by ammonia oxidizing bacteria (Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrosolobus, etc.) and nitrite oxidizing bacteria (Nitrobactor, Nitrospina, Nitrococcus, Nitrospira, etc.). On the other hand, in anaerobic denitrification, denitrification by heterotrophic bacteria (Pseudomonas denitrificans etc.) is performed.

好気硝化を行う硝化槽は、0.2〜0.3kg−N/m/日の負荷で運転され、嫌気脱窒の脱窒槽は、0.2〜0.4kg−N/m/日の負荷で運転される。また、下水中の総窒素濃度30〜40mg/Lを処理するには、硝化槽では6〜8時間、脱窒槽では5〜8時間の滞留時間が必要であり、いずれも大規模な処理槽が必要であった。 A nitrification tank for performing aerobic nitrification is operated at a load of 0.2 to 0.3 kg-N / m 3 / day, and a denitrification tank for anaerobic denitrification is 0.2 to 0.4 kg-N / m 3 / day. Operated with day load. Moreover, in order to process the total nitrogen concentration of 30 to 40 mg / L in sewage, a residence time of 6 to 8 hours is required in the nitrification tank and 5 to 8 hours in the denitrification tank, both of which are large-scale treatment tanks. It was necessary.

また、無機物のみを含有する産業廃水を脱窒処理する場合は、有機物を添加する必要があり、廃水中の窒素濃度の3〜4倍程度のメタノールを添加していた。このため、イニシャルコストだけでなく、多大なランニングコストを要するという問題があった。   Moreover, when denitrifying industrial wastewater containing only inorganic substances, it is necessary to add organic substances, and methanol of about 3 to 4 times the nitrogen concentration in the wastewater has been added. For this reason, there is a problem that not only the initial cost but also a great running cost is required.

これに対して、例えば、特許文献1には、嫌気性アンモニア酸化法による窒素除去方法が提案されている。この嫌気性アンモニア酸化法は、アンモニアを水素供与体とし、亜硝酸を水素受容体として、嫌気性アンモニア酸化細菌によりアンモニアと亜硝酸とを下記式1により同時脱窒する方法である。   On the other hand, for example, Patent Document 1 proposes a nitrogen removal method by an anaerobic ammonia oxidation method. This anaerobic ammonia oxidation method is a method in which ammonia is used as a hydrogen donor, nitrite is used as a hydrogen acceptor, and ammonia and nitrous acid are simultaneously denitrified by an anaerobic ammonia oxidizing bacterium according to the following formula 1.

1.00NH+1.32NO+0.066HCO+0.13H
→1.02N+0.26NO+0.066CH0.50.15+2.03H
…(式1)
この方法では、アンモニアを水素供与体とするため、有機物(メタノール等)の添加量を大幅に削減できることや、汚泥の発生量を削減できる等のメリットがある。
1.00 NH 4 +1.32 NO 2 +0.066 HCO 3 + 0.13H +
→ 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O
... (Formula 1)
In this method, since ammonia is used as a hydrogen donor, there is an advantage that the amount of organic matter (methanol or the like) added can be significantly reduced and the amount of sludge generated can be reduced.

また、特許文献2では、この嫌気性アンモニア酸化反応を行う前のアンモニアと亜硝酸の組成比を制御する方法が提案されている。
特開2001−37467号公報 特開2005−246136号公報
Patent Document 2 proposes a method for controlling the composition ratio of ammonia and nitrous acid before performing the anaerobic ammonia oxidation reaction.
JP 2001-37467 A JP 2005-246136 A

しかしながら、上記式1に示すように、嫌気性アンモニア酸化反応では廃水中の窒素成分を完全に除去することができない。すなわち、嫌気性アンモニア酸化反応により硝酸が副次的に生成するため、この硝酸を除去する必要があった。   However, as shown in the above formula 1, the anaerobic ammonia oxidation reaction cannot completely remove the nitrogen component in the wastewater. That is, since nitric acid is produced as a secondary product by the anaerobic ammonia oxidation reaction, it is necessary to remove this nitric acid.

この硝酸の除去方法としては、特許文献2にも示唆されているように、有機物を添加し、従属栄養性の脱窒細菌により脱窒する方法が一般的である。しかしながら、この従来の脱窒方法では、廃水中の窒素濃度に対して約3倍の有機物を必要とするため、大量に有機物を添加しなければならないだけでなく、大量の汚泥を生成するという問題があった。   As suggested in Patent Document 2, as a method for removing this nitric acid, a method of adding an organic substance and denitrifying with heterotrophic denitrifying bacteria is common. However, this conventional denitrification method requires about three times as much organic matter as the nitrogen concentration in the wastewater, so that not only a large amount of organic matter must be added, but also a large amount of sludge is generated. was there.

また、嫌気性アンモニア酸化細菌は亜硝酸によりダメージを受け易いため、処理槽内に亜硝酸が蓄積されないようにするべく、アンモニアと亜硝酸との比を上記式1に示す理想的な反応比よりもアンモニアが過剰となるようにしている。このため、処理槽から流出する廃水中には、未反応のアンモニアが残留することとなり、この残留アンモニアも除去する必要があった。   In addition, since anaerobic ammonia oxidizing bacteria are easily damaged by nitrous acid, the ratio of ammonia to nitrous acid is less than the ideal reaction ratio shown in Equation 1 above so that nitrite is not accumulated in the treatment tank. Also, ammonia is excessive. For this reason, unreacted ammonia remains in the wastewater flowing out from the treatment tank, and it is necessary to remove this residual ammonia.

このように、嫌気性アンモニア酸化反応で副次的に生成する硝酸と残留するアンモニアを、少ない有機物添加量で、且つ高効率で除去することが望まれている。   As described above, it is desired to remove nitric acid that is secondaryly generated in the anaerobic ammonia oxidation reaction and residual ammonia with a small amount of organic substance addition and with high efficiency.

本発明はこのような事情に鑑みてなされたもので、嫌気性アンモニア酸化反応で副次的に生成する硝酸や残留するアンモニアを、少ない有機物添加量で、且つ高効率で除去する窒素除去方法及び装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and a nitrogen removal method for removing nitric acid and residual ammonia, which are secondaryly generated in an anaerobic ammonia oxidation reaction, with a small amount of organic substance addition and with high efficiency, and An object is to provide an apparatus.

本発明の請求項1は前記目的を達成するために、アンモニア含有廃水における窒素除去方法であって、前記廃水に含まれるアンモニアの一部を硝化細菌により亜硝酸に硝化する亜硝酸型の硝化工程と、前記亜硝酸型の硝化工程から流出する廃水に含まれるアンモニアと亜硝酸とを、嫌気性アンモニア酸化細菌により除去する第1の脱窒工程と、前記第1の脱窒工程から流出する廃水中に含まれる残留アンモニアと前記第1の脱窒工程において生成した硝酸を、嫌気性アンモニア酸化細菌と従属栄養性の脱窒細菌とにより除去する第2の脱窒工程と、を備えたことを特徴とする窒素除去方法を提供する。   In order to achieve the above object, claim 1 of the present invention is a method for removing nitrogen from ammonia-containing wastewater, wherein a part of ammonia contained in the wastewater is nitrified to nitrite by nitrifying bacteria, and is a nitrite type nitrification step. A first denitrification step for removing ammonia and nitrous acid contained in the wastewater flowing out from the nitrite type nitrification step by anaerobic ammonia oxidizing bacteria; and a wastewater flowing out from the first denitrification step A second denitrification step for removing residual ammonia contained therein and nitric acid produced in the first denitrification step by anaerobic ammonia oxidizing bacteria and heterotrophic denitrifying bacteria. A featured nitrogen removal method is provided.

請求項1によれば、第1の脱窒工程後において残留するアンモニアと、第1の脱窒工程の嫌気性アンモニア酸化反応において副次的に生成した硝酸を、第2の脱窒工程において、嫌気性アンモニア酸化細菌と、(有機物を水素供与体として)従属栄養性の脱窒細菌とにより分解除去する。   According to claim 1, in the second denitrification step, the ammonia remaining after the first denitrification step and the nitric acid that is secondarily generated in the anaerobic ammonia oxidation reaction of the first denitrification step are Degradation and removal by anaerobic ammonia oxidizing bacteria and heterotrophic denitrifying bacteria (with organic matter as hydrogen donor).

このように、第1の脱窒工程から流出する廃水に含まれる残留アンモニアと硝酸を、従属栄養性の脱窒細菌のみで除去するのではなく、嫌気性アンモニア酸化細菌と従属栄養性の脱窒細菌とを組み合わせて除去する。このため、大量の有機物を添加する必要がなく、嫌気性アンモニア酸化反応後の廃水に含まれるアンモニアと硝酸を少ない有機物添加量で、且つ高効率で分解除去できる。   Thus, the residual ammonia and nitric acid contained in the waste water flowing out from the first denitrification step are not removed only by heterotrophic denitrification bacteria, but anaerobic ammonia oxidizing bacteria and heterotrophic denitrification are removed. Remove in combination with bacteria. For this reason, it is not necessary to add a large amount of organic substances, and ammonia and nitric acid contained in the waste water after the anaerobic ammonia oxidation reaction can be decomposed and removed with a small amount of organic substances and efficiently.

なお、第2の脱窒工程において、嫌気性アンモニア酸化細菌によるアンモニアの除去工程と、脱窒細菌による硝酸の除去工程を同時に行ってもよいし、別々に行ってもよい。   In the second denitrification step, the ammonia removal step by the anaerobic ammonia oxidizing bacteria and the nitric acid removal step by the denitrification bacteria may be performed simultaneously or separately.

請求項2は請求項1において、前記第2の脱窒工程は、前記従属栄養性の脱窒細菌により有機物を水素供与体として前記硝酸を亜硝酸に還元する工程と、前記工程において生成した亜硝酸と、前記廃水中のアンモニアとを前記嫌気性アンモニア酸化細菌により除去する工程と、を備えたことを特徴とする。   A second aspect of the present invention is the first aspect, wherein the second denitrification step includes a step of reducing the nitric acid to nitrous acid by using the heterotrophic denitrifying bacterium as an organic substance as a hydrogen donor, and the sub-nitrogen generated in the step. A step of removing nitric acid and ammonia in the wastewater by the anaerobic ammonia oxidizing bacteria.

請求項2によれば、従属栄養性の脱窒細菌による硝酸還元反応では、硝酸を亜硝酸まで還元できればよく、更に亜硝酸とアンモニアは、嫌気性アンモニア酸化細菌によって分解除去される。このため、脱窒細菌のみで窒素ガスまで還元する場合よりも有機物の添加量を大幅に少なくすることができる。   According to claim 2, in the nitrate reduction reaction by heterotrophic denitrifying bacteria, it is only necessary to reduce nitric acid to nitrous acid, and nitrous acid and ammonia are decomposed and removed by anaerobic ammonia oxidizing bacteria. For this reason, the amount of organic matter added can be greatly reduced as compared with the case of reducing to nitrogen gas only by denitrifying bacteria.

請求項3は請求項1又は2において、前記第2の脱窒工程に流入する廃水の組成比は、アンモニア:硝酸が1:1であることを特徴とする。   A third aspect of the present invention is characterized in that, in the first or second aspect, the composition ratio of the waste water flowing into the second denitrification step is 1: 1 ammonia: nitric acid.

請求項3によれば、嫌気性アンモニア酸化細菌と脱窒細菌とにより、廃水中のアンモニアと硝酸を高効率で分解除去できる。これは、硝酸は、脱窒細菌により硝酸からほぼ同モルの亜硝酸に還元され(NO→NO)、この亜硝酸(NO)は、ほぼ同モルのアンモニア(NH)とともに、嫌気性アンモニア酸化細菌により上記式(1)の反応によって分解除去されるためである。 According to claim 3, ammonia and nitric acid in wastewater can be decomposed and removed with high efficiency by anaerobic ammonia oxidizing bacteria and denitrifying bacteria. This is because nitric acid is reduced from nitric acid to approximately the same mole of nitrous acid by denitrifying bacteria (NO 3 → NO 2 ), and this nitrous acid (NO 2 ) is anaerobic together with approximately the same mole of ammonia (NH 4 ). This is because it is decomposed and removed by the reaction of the above formula (1) by the oxidative ammonia oxidizing bacteria.

請求項4は請求項3において、前記第1の脱窒工程から流出する廃水に、前記亜硝酸型の硝化工程を行う前の廃水を混合することにより前記組成比を形成することを特徴とする。   A fourth aspect of the present invention is the method according to the third aspect, wherein the composition ratio is formed by mixing waste water flowing out of the first denitrification step with waste water before performing the nitrite type nitrification step. .

請求項4によれば、第2の脱窒槽に流入する廃水の硝酸とアンモニアとの組成比を適切な範囲に調整できる。   According to claim 4, the composition ratio of nitric acid and ammonia of the wastewater flowing into the second denitrification tank can be adjusted to an appropriate range.

請求項5は請求項3において、前記亜硝酸型の硝化工程において、硝化率を57%以下にすることを特徴とする。   A fifth aspect of the present invention is characterized in that, in the third aspect, in the nitrite type nitrification step, the nitrification rate is 57% or less.

請求項5によれば、硝化率を57%以下と低くすることで、硝化工程後の廃水に含まれるアンモニア濃度を高めると同時に、第1の脱窒工程において生成する硝酸濃度を低下させ、第2の脱窒工程に流入する廃水のアンモニアと硝酸の組成比を適切な範囲に調整できる。   According to claim 5, by reducing the nitrification rate to 57% or less, the ammonia concentration contained in the waste water after the nitrification step is increased, and at the same time, the nitric acid concentration generated in the first denitrification step is decreased, The composition ratio of ammonia and nitric acid in the wastewater flowing into the denitrification process 2 can be adjusted to an appropriate range.

請求項6は請求項1〜5の何れか1項において、前記第2の脱窒工程において、廃水中の添加有機物濃度Cの前記廃水中の総窒素濃度Nに対するC/N比を0.8〜1.3にすることを特徴とする。   A sixth aspect of the present invention provides the method according to any one of the first to fifth aspects, wherein, in the second denitrification step, the C / N ratio of the added organic substance concentration C in the wastewater to the total nitrogen concentration N in the wastewater is 0.8. -1.3.

第2の脱窒工程において、有機物の添加量が少なすぎると脱窒細菌の活性が低下し、有機物の添加量が多すぎると嫌気性アンモニア酸化細菌の活性が低下する。請求項6によれば、廃水中の添加有機物濃度が上記範囲を満たすようにするので、嫌気性アンモニア酸化細菌と脱窒細菌の活性をバランス良く保つことができ、廃水中のアンモニアと硝酸を分解除去できる。   In the second denitrification step, if the amount of organic matter added is too small, the activity of the denitrifying bacteria decreases, and if the amount of organic matter added is too large, the activity of the anaerobic ammonia-oxidizing bacteria decreases. According to the sixth aspect, since the concentration of the added organic substance in the wastewater satisfies the above range, the activity of the anaerobic ammonia oxidizing bacteria and the denitrifying bacteria can be maintained in a well-balanced manner, and the ammonia and nitric acid in the wastewater are decomposed. Can be removed.

なお、添加有機物濃度Cとは、あらかじめ廃水中に含まれる有機物濃度を含まず、第2の脱窒工程において添加した(廃水中の)有機物濃度をいう。また、C/N比は0.9〜1.2であることがより好ましい。   The added organic substance concentration C refers to the organic substance concentration (in the wastewater) added in the second denitrification step without including the organic substance concentration contained in the wastewater in advance. The C / N ratio is more preferably 0.9 to 1.2.

本発明の請求項7は前記目的を達成するために、アンモニア含有廃水に含まれる窒素成分を除去する窒素除去装置であって、前記廃水に含まれるアンモニアの一部を硝化細菌により亜硝酸に硝化する亜硝酸型の硝化槽と、前記亜硝酸型の硝化槽の下流側に設けられ、前記硝化槽から流出する廃水に含まれるアンモニアと亜硝酸とを、嫌気性アンモニア酸化細菌により除去する第1の脱窒槽と、前記第1の脱窒槽の下流側に設けられ、前記第1の脱窒槽から流出する廃水中に含まれる残留アンモニアと前記第1の脱窒槽において生成した硝酸を、嫌気性アンモニア酸化細菌と従属栄養性の脱窒細菌とにより除去する第2の脱窒槽と、を備えたことを特徴とする窒素除去装置を提供する。   Claim 7 of the present invention is a nitrogen removal apparatus for removing nitrogen components contained in ammonia-containing wastewater to achieve the above object, wherein a part of the ammonia contained in the wastewater is nitrified to nitrite by nitrifying bacteria. A nitrite-type nitrification tank that is disposed on the downstream side of the nitrite-type nitrification tank, and removes ammonia and nitrous acid contained in waste water flowing out of the nitrification tank by anaerobic ammonia-oxidizing bacteria. The denitrification tank of the first denitrification tank is provided downstream of the first denitrification tank and the residual ammonia contained in the waste water flowing out of the first denitrification tank and the nitric acid generated in the first denitrification tank are converted into anaerobic ammonia. There is provided a nitrogen removal apparatus comprising a second denitrification tank for removal by oxidizing bacteria and heterotrophic denitrifying bacteria.

請求項7によれば、第1の脱窒槽から流出する廃水中のアンモニアと硝酸を、従属栄養性の脱窒細菌のみで除去するのではなく、第2の脱窒槽において、嫌気性アンモニア酸化細菌と脱窒細菌とにより除去する。したがって、大量の有機物を添加することなく、嫌気性アンモニア酸化反応後の廃水に含まれるアンモニアと硝酸を少ない有機物添加量で且つ高効率で除去できる。   According to claim 7, the ammonia and nitric acid in the wastewater flowing out from the first denitrification tank are not removed only by heterotrophic denitrification bacteria, but in the second denitrification tank, anaerobic ammonia oxidizing bacteria And denitrifying bacteria. Therefore, ammonia and nitric acid contained in the waste water after the anaerobic ammonia oxidation reaction can be removed with a small amount of organic substance addition and high efficiency without adding a large amount of organic substance.

請求項8は請求項7において、前記第2の脱窒槽は、前記嫌気性アンモニア酸化細菌が保持された第1の処理槽と、前記第1の処理槽の下流側に設けられ、前記脱窒細菌が保持された第2の処理槽と、を備え、前記第2の処理槽の下流側と前記第1の処理槽の上流側とを連通し、前記第2の処理槽から流出する廃水の少なくとも一部を前記第1の処理槽に流入するための循環流路と、を備えたことを特徴とする。   An eighth aspect of the present invention is the method according to the seventh aspect, wherein the second denitrification tank is provided on the downstream side of the first treatment tank in which the anaerobic ammonia oxidizing bacteria are retained, and the first treatment tank. A second treatment tank in which bacteria are retained, and communicates the downstream side of the second treatment tank and the upstream side of the first treatment tank, and waste water flowing out from the second treatment tank. And a circulation channel for flowing at least a part into the first treatment tank.

請求項8によれば、第2の脱窒槽を2つの処理槽に分けて別の処理を行うので、嫌気性アンモニア酸化細菌と従属栄養性の脱窒細菌との競合が生じることがない。また、従属栄養性の脱窒細菌が保持された第2の処理槽から流出する廃水の少なくとも一部を、嫌気性アンモニア酸化細菌が保持された第1の処理槽に流入するので、第2の処理槽において生成する亜硝酸を、第1の処理槽において嫌気性アンモニア酸化細菌により分解除去できる。   According to the eighth aspect, since the second denitrification tank is divided into two treatment tanks and another treatment is performed, competition between the anaerobic ammonia oxidizing bacteria and the heterotrophic denitrifying bacteria does not occur. Moreover, since at least a part of the waste water flowing out from the second treatment tank in which the heterotrophic denitrifying bacteria are retained flows into the first treatment tank in which the anaerobic ammonia oxidizing bacteria are retained, the second Nitrous acid produced in the treatment tank can be decomposed and removed by anaerobic ammonia oxidizing bacteria in the first treatment tank.

請求項9は請求項7において、前記第2の脱窒槽は、1つの処理槽内に前記嫌気性アンモニア酸化細菌と前記脱窒細菌とが保持されたことを特徴とする。   A ninth aspect of the present invention is characterized in that, in the seventh aspect, the second denitrification tank holds the anaerobic ammonia oxidizing bacteria and the denitrifying bacteria in one treatment tank.

請求項9によれば、1つの処理槽内に嫌気性アンモニア酸化細菌と脱窒細菌とを共存させるので、処理槽をコンパクトにすることができる。   According to the ninth aspect, since the anaerobic ammonia oxidizing bacteria and the denitrifying bacteria coexist in one processing tank, the processing tank can be made compact.

請求項10は請求項7〜9の何れか1項において、前記廃水中の硝酸濃度を測定する硝酸濃度測定手段と、前記硝酸濃度測定手段における測定結果に基づいて、前記第2の脱窒槽に流入する廃水中のアンモニアと硝酸の組成比を制御する組成比制御手段と、を備えたことを特徴とする。   A tenth aspect of the present invention provides the second denitrification tank according to any one of the seventh to ninth aspects, based on a measurement result of the nitric acid concentration measuring means for measuring the nitric acid concentration in the wastewater and the nitric acid concentration measuring means. And a composition ratio control means for controlling the composition ratio of ammonia and nitric acid in the inflowing wastewater.

請求項10によれば、第2の脱窒槽に流入する廃水中の硝酸とアンモニアとの組成比を調整できる。   According to claim 10, the composition ratio of nitric acid and ammonia in the wastewater flowing into the second denitrification tank can be adjusted.

請求項11は請求項7〜10の何れか1項において、前記亜硝酸型の硝化槽の前段の流路から分岐し、前記第2の脱窒槽の前段の流路と連通するバイパス流路を備えたことを特徴とする。   An eleventh aspect of the present invention is the method according to any one of the seventh to tenth aspects, wherein a bypass flow path that branches off from a flow path in front of the nitrite type nitrification tank and communicates with a flow path in front of the second denitrification tank is provided. It is characterized by having.

請求項11によれば、第2の脱窒槽に流入する廃水中の硝酸とアンモニアとの組成比を適切な範囲に調整できる。   According to the eleventh aspect, the composition ratio of nitric acid and ammonia in the wastewater flowing into the second denitrification tank can be adjusted to an appropriate range.

請求項12は請求項7〜11の何れか1項において、前記第2の脱窒槽には、有機物添加手段が設けられたことを特徴とする。   A twelfth aspect according to any one of the seventh to eleventh aspects is characterized in that the second denitrification tank is provided with an organic substance adding means.

請求項12によれば、第2の脱窒槽における脱窒細菌が、有機物を水素供与体として硝酸(及び亜硝酸)を分解除去できる。なお、第2の脱窒槽を、嫌気性アンモニア酸化細菌を備えた第1の処理槽と、脱窒細菌を備えた第2の処理槽と、で別々に構成する場合は、第2の処理槽に有機物添加手段を設けるものとする。   According to the twelfth aspect, the denitrifying bacterium in the second denitrification tank can decompose and remove nitric acid (and nitrous acid) using the organic substance as a hydrogen donor. In addition, when comprising separately a 2nd denitrification tank with the 1st processing tank provided with the anaerobic ammonia oxidizing bacteria, and the 2nd processing tank provided with the denitrifying bacteria, the 2nd processing tank It is assumed that an organic substance adding means is provided.

請求項13は請求項7〜12の何れか1項において、前記第2の脱窒槽において、前記廃水中の総窒素濃度を測定する窒素濃度測定手段と、前記窒素濃度測定手段の測定結果に基づいて、前記第2の脱窒槽への有機物の添加量を所定の範囲となるように制御する添加量制御手段と、を備えたことを特徴とする。   A thirteenth aspect is based on any one of the seventh to twelfth aspects, based on the second denitrification tank, a nitrogen concentration measuring means for measuring the total nitrogen concentration in the wastewater, and a measurement result of the nitrogen concentration measuring means. And an addition amount control means for controlling the addition amount of the organic substance to the second denitrification tank to be within a predetermined range.

請求項13によれば、第2の脱窒槽における脱窒細菌が、有機物を水素供与体として硝酸を高効率で分解除去できるように、有機物の添加量を調節できる。   According to the thirteenth aspect, the addition amount of the organic substance can be adjusted so that the denitrifying bacteria in the second denitrification tank can decompose and remove nitric acid with high efficiency using the organic substance as a hydrogen donor.

本発明によれば、嫌気性アンモニア酸化反応で生成する硝酸や残留するアンモニアを、少ない有機物添加量で、且つ高効率で除去できる。   According to the present invention, nitric acid generated by an anaerobic ammonia oxidation reaction and residual ammonia can be removed with a small amount of organic substance added and with high efficiency.

以下、添付図面に従って、本発明に係る窒素除去方法及び装置の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a nitrogen removal method and apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明に係る窒素除去装置10の概要を説明する断面模式図である。   FIG. 1 is a schematic cross-sectional view for explaining the outline of a nitrogen removing apparatus 10 according to the present invention.

図1に示すように、窒素除去装置10は、主に、アンモニア含有廃水(以下、単に「廃水」ともいう)に含まれるアンモニアの一部を亜硝酸に硝化する亜硝酸型の硝化槽12と、この硝化槽12から流出する廃水中のアンモニアと亜硝酸とを嫌気性アンモニア酸化細菌により除去する第1脱窒槽14と、該第1脱窒槽14において副次的に生成した廃水中の硝酸と残留アンモニアを除去する第2脱窒槽16と、を備えている。   As shown in FIG. 1, the nitrogen removal apparatus 10 mainly includes a nitrite type nitrification tank 12 that nitrifies a part of ammonia contained in ammonia-containing wastewater (hereinafter also simply referred to as “wastewater”) into nitrite. The first denitrification tank 14 that removes ammonia and nitrous acid in the wastewater flowing out from the nitrification tank 12 by anaerobic ammonia oxidizing bacteria, and the nitric acid in the wastewater produced as a secondary in the first denitrification tank 14 And a second denitrification tank 16 for removing residual ammonia.

亜硝酸型の硝化槽12(以下、単に「硝化槽12」ともいう)は、アンモニア含有廃水が流入する流入流路18と連通している。硝化槽12には、アンモニアを亜硝酸に硝化する硝化細菌が保持されており、好気性雰囲気に保たれている。硝化槽12では、アンモニアの約半分量が亜硝酸に硝化される亜硝酸型の硝化が行われる。亜硝酸型の硝化は、例えば、廃水中のDO(溶存酸素)濃度を低く制御することによって行うことができる。   The nitrite type nitrification tank 12 (hereinafter also simply referred to as “nitrification tank 12”) communicates with an inflow passage 18 into which ammonia-containing wastewater flows. The nitrification tank 12 holds nitrifying bacteria that nitrify ammonia into nitrous acid, and is maintained in an aerobic atmosphere. In the nitrification tank 12, nitrite type nitrification is performed in which about half of the ammonia is nitrified to nitrite. Nitrite-type nitrification can be performed, for example, by controlling the DO (dissolved oxygen) concentration in the wastewater to be low.

硝化槽12における容積負荷は0.8〜3.5kg−N/m/d、水温は20〜37℃、DO濃度は0.5以下で運転することが好ましい。 The nitrification tank 12 is preferably operated at a volume load of 0.8 to 3.5 kg-N / m 3 / d, a water temperature of 20 to 37 ° C., and a DO concentration of 0.5 or less.

硝化槽12の下流側には、流路20を介して第1脱窒槽14が設けられている。第1脱窒槽14には、アンモニアと亜硝酸とを嫌気性アンモニア酸化反応により除去する嫌気性アンモニア酸化細菌が保持されており、嫌気性雰囲気に保たれている。第1脱窒槽14では、下記式1に示すように、廃水中の亜硝酸とアンモニアが嫌気性アンモニア酸化反応により除去されると同時に、少量の硝酸が副次的に生成される。   A first denitrification tank 14 is provided on the downstream side of the nitrification tank 12 via a flow path 20. The first denitrification tank 14 holds anaerobic ammonia oxidizing bacteria that remove ammonia and nitrous acid by an anaerobic ammonia oxidation reaction, and is maintained in an anaerobic atmosphere. In the first denitrification tank 14, as shown in the following formula 1, nitrous acid and ammonia in the wastewater are removed by an anaerobic ammonia oxidation reaction, and at the same time, a small amount of nitric acid is generated as a secondary.

1.00NH+1.32NO+0.066HCO+0.13H
→1.02N+0.26NO+0.066CH0.50.15+2.03H
…(式1)
また、亜硝酸は嫌気性アンモニア酸化細菌に悪影響を及ぼすので、亜硝酸が確実に反応によって消費されるように、アンモニアが若干過剰量となるように調整されている。このため、第1脱窒槽14から流出する廃水には、上記の副生成した硝酸だけでなく、残留するアンモニアも含まれている。
1.00 NH 4 +1.32 NO 2 +0.066 HCO 3 + 0.13H +
→ 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O
... (Formula 1)
Also, since nitrous acid has an adverse effect on anaerobic ammonia oxidizing bacteria, the amount of ammonia is adjusted to be slightly excessive so that nitrous acid is surely consumed by the reaction. For this reason, the waste water flowing out from the first denitrification tank 14 contains not only the by-produced nitric acid but also residual ammonia.

第1脱窒槽14における容積負荷は2〜10kg−N/m/d、水温は20〜37℃、DO濃度は0.5以下で運転することが好ましい。 The first denitrification tank 14 is preferably operated at a volume load of 2 to 10 kg-N / m 3 / d, a water temperature of 20 to 37 ° C., and a DO concentration of 0.5 or less.

第1脱窒槽14の下流側には、流路22を介して第2脱窒槽16が設けられている。流路22は、バイパス流路24を介して流入流路18と連通している。また、流路22上には、廃水中の硝酸濃度を測定する硝酸濃度計26と、該硝酸濃度計26の測定結果に基づき、バイパス流路24に設けられたバルブ28の開度を調節する制御手段30が配設されている。これにより、第2脱窒槽16に流入する廃水中のアンモニアと硝酸の組成比を調節できるように構成されている。   A second denitrification tank 16 is provided on the downstream side of the first denitrification tank 14 via a flow path 22. The flow path 22 communicates with the inflow flow path 18 via the bypass flow path 24. A nitric acid concentration meter 26 that measures the concentration of nitric acid in the wastewater on the flow path 22 and the opening degree of the valve 28 provided in the bypass flow path 24 are adjusted based on the measurement result of the nitric acid concentration meter 26. Control means 30 is provided. Thereby, the composition ratio of ammonia and nitric acid in the wastewater flowing into the second denitrification tank 16 can be adjusted.

第2脱窒槽16には、嫌気性アンモニア酸化細菌及び従属栄養性の脱窒細菌(以下、単に脱窒細菌という)が保持されており、下流側には脱窒細菌が必要とする有機物を添加するための有機物供給タンク(図2参照)が設けられている。第2脱窒槽16では、廃水中の残留アンモニアと硝酸が、嫌気性アンモニア酸化細菌と、(有機物を水素供与体として)従属栄養性の脱窒細菌と、により除去された後、流出流路32から排出される。   The second denitrification tank 16 holds anaerobic ammonia-oxidizing bacteria and heterotrophic denitrifying bacteria (hereinafter simply referred to as denitrifying bacteria), and an organic substance required by the denitrifying bacteria is added to the downstream side. An organic substance supply tank (see FIG. 2) is provided. In the second denitrification tank 16, the residual ammonia and nitric acid in the wastewater are removed by anaerobic ammonia oxidizing bacteria and heterotrophic denitrifying bacteria (using organic matter as a hydrogen donor), and then the outflow channel 32. Discharged from.

図2は、第2脱窒槽16の構成の一例を説明する断面模式図である。   FIG. 2 is a schematic cross-sectional view illustrating an example of the configuration of the second denitrification tank 16.

図2に示すように、第2脱窒槽16は、仕切板34により2つの処理室36A、36Bに区画されている。   As shown in FIG. 2, the second denitrification tank 16 is partitioned into two processing chambers 36 </ b> A and 36 </ b> B by a partition plate 34.

処理室36Aには、嫌気性アンモニア酸化細菌が優先的に保持されており、処理室36Bには、従属栄養性の脱窒細菌が優先的に保持されている。また、処理室36Bには、脱窒細菌に水素供与体としてのメタノール等の有機物を添加するための有機物供給タンク38が設けられ、この有機物供給タンク38から処理室36Bへ供給管38Aが延設されている。この供給管38Aには、有機物の添加量を調整できるバルブ40が設けられている。このバルブ40は、硝酸濃度計26の測定結果に基づき、C/N比制御手段42により有機物の添加量を制御できるように構成されている。   The processing chamber 36A preferentially holds anaerobic ammonia oxidizing bacteria, and the processing chamber 36B preferentially holds heterotrophic denitrifying bacteria. The processing chamber 36B is provided with an organic substance supply tank 38 for adding an organic substance such as methanol as a hydrogen donor to the denitrifying bacteria, and a supply pipe 38A extends from the organic substance supply tank 38 to the processing chamber 36B. Has been. The supply pipe 38A is provided with a valve 40 that can adjust the amount of organic matter added. The valve 40 is configured so that the amount of organic substance added can be controlled by the C / N ratio control means 42 based on the measurement result of the nitric acid concentration meter 26.

第2脱窒槽16の下流側は、処理した後の廃水を流出する流出流路32が連通している。また、流出流路32と流路22とを連通する循環流路44と送液ポンプ46が設けられており、処理室36Bから排出された廃水を処理室36Aに循環できるように構成されている。これにより、廃水が第2脱窒槽16に流入すると、まず、処理室36Aにおいて廃水中の嫌気性アンモニア酸化細菌が捕捉され、更に処理室36Bにおいて、有機物を水素供与体として廃水中の硝酸が従属栄養性の脱窒細菌により亜硝酸(又は窒素)まで分解される。この亜硝酸を含む廃水は、循環流路44を介して再び処理室36Aに循環されるので、循環流路44から流入する廃水中の亜硝酸と、流路22から流入する廃水中のアンモニアとが嫌気性アンモニア酸化細菌により分解除去される。   The downstream side of the second denitrification tank 16 communicates with an outflow channel 32 through which the treated wastewater flows out. Further, a circulation channel 44 and a liquid feed pump 46 that communicate the outflow channel 32 and the channel 22 are provided, and the waste water discharged from the processing chamber 36B can be circulated to the processing chamber 36A. . As a result, when the wastewater flows into the second denitrification tank 16, the anaerobic ammonia-oxidizing bacteria in the wastewater is first captured in the treatment chamber 36A, and in the treatment chamber 36B, nitric acid in the wastewater is subordinated with the organic substance as a hydrogen donor. It is degraded to nitrous acid (or nitrogen) by nutrient denitrifying bacteria. The waste water containing nitrous acid is circulated again to the treatment chamber 36A via the circulation channel 44, so that nitrous acid in the waste water flowing from the circulation channel 44 and ammonia in the waste water flowing from the channel 22 Is decomposed and removed by anaerobic ammonia oxidizing bacteria.

このように、嫌気性アンモニア酸化反応を行う処理室36Aを従属栄養性の脱窒反応を行う処理室36Bの上流側に設けることで、処理室36Aでは、第1脱窒槽14から流出する廃水中の嫌気性アンモニア酸化細菌を捕捉し易くなり、嫌気性アンモニア酸化細菌を効率的に増殖させることができる。したがって、第2脱窒槽16の運転の立上げを迅速に行い、安定に運転を継続できる。   Thus, by providing the processing chamber 36A that performs the anaerobic ammonia oxidation reaction on the upstream side of the processing chamber 36B that performs the heterotrophic denitrification reaction, in the processing chamber 36A, the wastewater flowing out from the first denitrification tank 14 is obtained. The anaerobic ammonia oxidizing bacteria can be easily captured, and the anaerobic ammonia oxidizing bacteria can be efficiently propagated. Therefore, the operation of the second denitrification tank 16 can be quickly started up and the operation can be continued stably.

第2脱窒槽16における容積負荷は0.2〜2.0kg−N/m/d、水温は20〜37℃、DO濃度は0.5以下の範囲で運転することが好ましい。 It is preferable that the second denitrification tank 16 is operated in a volume load of 0.2 to 2.0 kg-N / m 3 / d, a water temperature of 20 to 37 ° C., and a DO concentration of 0.5 or less.

上記第2脱窒槽16において、嫌気性アンモニア酸化細菌と脱窒細菌によるアンモニアと硝酸の分解反応を効率的に行わせるためには、(1)第2脱窒槽16に流入する廃水中のアンモニアと硝酸の組成比、及び(2)第2脱窒槽16への有機物の添加量(第2脱窒槽16における廃水中の添加有機物濃度)、を適正な範囲にすることが好ましい。   In order to efficiently perform the decomposition reaction of ammonia and nitric acid by the anaerobic ammonia oxidizing bacteria and denitrifying bacteria in the second denitrifying tank 16, (1) ammonia in wastewater flowing into the second denitrifying tank 16 and It is preferable that the composition ratio of nitric acid and (2) the amount of organic substance added to the second denitrification tank 16 (concentration of added organic substance in the wastewater in the second denitrification tank 16) be within an appropriate range.

第2脱窒槽16に流入する廃水中のアンモニアと硝酸の組成比(モル比)としては、アンモニア:硝酸が1:1となるように調整する。これは、硝酸は、脱窒細菌によりほぼ同モルの亜硝酸に還元され(NO→NO)、この亜硝酸(NO)は、ほぼ同モルのアンモニア(NH)とともに、嫌気性アンモニア酸化細菌により上記式(1)の反応によって分解除去されるためである。 The composition ratio (molar ratio) of ammonia and nitric acid in the wastewater flowing into the second denitrification tank 16 is adjusted so that ammonia: nitric acid is 1: 1. This is because nitric acid is reduced to approximately the same mole of nitrous acid by denitrifying bacteria (NO 3 → NO 2 ), and this nitrous acid (NO 2 ) is anaerobic ammonia together with approximately the same mole of ammonia (NH 4 ). This is because it is decomposed and removed by the reaction of the above formula (1) by oxidizing bacteria.

このアンモニア:硝酸の組成比は、例えば、硝酸濃度計26により廃水中の硝酸濃度を測定し、この測定結果に基づいて、組成比制御手段30がバイパス流路24から流入するアンモニア含有廃水の流量をバルブ28により調整する。   The composition ratio of ammonia: nitric acid is, for example, the concentration of nitric acid in the wastewater is measured by the nitric acid concentration meter 26, and the flow rate of the ammonia-containing wastewater that the composition ratio control means 30 flows from the bypass passage 24 based on the measurement result. Is adjusted by a valve 28.

第2脱窒槽16において、廃水中の添加有機物濃度Cの総窒素量濃度Nに対するC/N比が0.8〜1.3となるように有機物を添加することが好ましい。すなわち、従属栄養性の脱窒細菌は、脱窒反応の際に有機物を必要とするが、この有機物が少なすぎると十分な活性を示すことができず、多すぎると廃水中の嫌気性アンモニア酸化細菌の活性を著しく低下させるおそれがある。このため、両者の活性をバランス良くするために、処理室36Bにおける廃水中の添加有機物濃度を上記の範囲にする。   In the 2nd denitrification tank 16, it is preferable to add an organic substance so that C / N ratio with respect to the total nitrogen amount density | concentration N of the addition organic substance density | concentration C in wastewater may be 0.8-1.3. That is, heterotrophic denitrifying bacteria require organic substances in the denitrification reaction, but if these organic substances are too little, they cannot exhibit sufficient activity, and if they are too much, anaerobic ammonia oxidation in wastewater. There is a risk of significantly reducing the activity of bacteria. For this reason, in order to improve the activity of both, the concentration of the added organic substance in the wastewater in the treatment chamber 36B is set to the above range.

なお本発明では、C/N比の添加有機物濃度Cとは、第2の脱窒工程において添加した結果、(廃水中に含まれる)有機物濃度をいい、廃水中に元から含まれる有機物濃度は含まない。すなわち、嫌気性アンモニア酸化反応後の廃水中には有機物が含まれているが、これらの有機物は難分解性であるため、本発明で必要とする有機物としての性質を有していない。このため、廃水中にあらかじめ含まれる有機物を加味したC/N比ではなく、第2脱窒槽16における廃水中の添加有機物濃度を対象としたC/N比を規定し、運転することが重要である。   In the present invention, the added organic substance concentration C of C / N ratio means the organic substance concentration (contained in the wastewater) as a result of addition in the second denitrification step, and the organic substance concentration originally contained in the wastewater is Not included. That is, although the organic matter is contained in the waste water after anaerobic ammonia oxidation reaction, since these organic matter is hardly decomposable, it does not have the property as the organic matter required in the present invention. For this reason, it is important to define and operate the C / N ratio for the added organic matter concentration in the wastewater in the second denitrification tank 16 instead of the C / N ratio in consideration of the organic substances contained in the wastewater in advance. is there.

C/N比の調整方法としては、例えば、第2脱窒槽16に流入する前の廃水中の総窒素濃度Nを硝酸濃度計26或いはその他の窒素濃度計(不図示)によって測定し、この結果に基づいて、C/N比制御手段42がバルブ40の開度を制御し、廃水中の添加有機物濃度を調整する。有機物としては、例えば、廃糖蜜、酢酸、プロピオン酸、等が使用できる。なお、メタノールは、嫌気性アンモニア酸化活性を低下させるため、有機物として使用するのは好ましくない。   As a method for adjusting the C / N ratio, for example, the total nitrogen concentration N in the wastewater before flowing into the second denitrification tank 16 is measured by the nitric acid concentration meter 26 or other nitrogen concentration meter (not shown), and the result Based on the above, the C / N ratio control means 42 controls the opening degree of the valve 40 to adjust the concentration of added organic matter in the wastewater. Examples of organic substances that can be used include molasses, acetic acid, propionic acid, and the like. In addition, since methanol reduces anaerobic ammonia oxidation activity, it is not preferable to use it as an organic substance.

上記各槽において、硝化細菌、嫌気性アンモニア酸化細菌、又は脱窒細菌を保持する方法としては、特に限定されないが、例えば、担体材料に微生物を包括固定化した包括固定化担体、担体材料に微生物を付着固定した付着固定化担体、微生物の自己造粒を利用したグラニュール等が使用できる。   The method for retaining nitrifying bacteria, anaerobic ammonia-oxidizing bacteria, or denitrifying bacteria in each tank is not particularly limited. For example, a entrapping immobilization carrier in which microorganisms are entrapped and immobilized in a carrier material, and a microorganism in a carrier material. Adhesive immobilization carriers with adhering and fixing, granules utilizing self-granulation of microorganisms, and the like can be used.

包括固定化担体における担体の材質としては、特に限定はしないが、例えば、ポリビニルアルコール、アルギン酸、ポリエチレングリコール系のゲルや、セルロース、ポリエステル、ポリプロピレン、塩化ビニルなどのプラスチック担体等が挙げられる。担体の形状としては、球状体、円筒形状体、多孔質体、立方体、スポンジ状体、ハニカム状体等の整形を行なったものを使用することが好ましい。   The material of the carrier in the entrapping immobilization carrier is not particularly limited, and examples thereof include polyvinyl alcohol, alginic acid, polyethylene glycol-based gel, and plastic carriers such as cellulose, polyester, polypropylene, and vinyl chloride. As the shape of the carrier, it is preferable to use a shape obtained by shaping a spherical body, a cylindrical body, a porous body, a cube, a sponge body, a honeycomb body or the like.

付着固定化担体における固定床の材質としては、特に限定はしないが、例えば、ポリエチレン、ポリエステル、ポリプロピレン、塩化ビニルなどのプラスチック素材や、活性炭ファイバー等が挙げられる。固定床の形状としては、特に限定はしないが、繊維状や、菊花状、ハニカム状等に整形したもの等が挙げられる。   The material of the fixed bed in the adhesion-immobilized carrier is not particularly limited, and examples thereof include plastic materials such as polyethylene, polyester, polypropylene, and vinyl chloride, and activated carbon fibers. The shape of the fixed floor is not particularly limited, and examples thereof include a fiber shape, a chrysanthemum shape, and a honeycomb shape.

このように、本実施形態によれば、第1脱窒槽14における嫌気性アンモニア酸化反応により副次的に生成する硝酸や残留するアンモニアを、第2脱窒槽16において有機物を大量に添加することなく高効率で分解除去できる。   As described above, according to the present embodiment, nitric acid or secondary ammonia generated by the anaerobic ammonia oxidation reaction in the first denitrification tank 14 can be added without adding a large amount of organic matter in the second denitrification tank 16. It can be decomposed and removed with high efficiency.

以上、本発明に係る窒素除去方法及び装置の好ましい実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、各種の態様が採り得る。   As mentioned above, although preferable embodiment of the nitrogen removal method and apparatus which concerns on this invention was described, this invention is not limited to the said embodiment, Various aspects can be taken.

たとえば、上記実施形態では、第2脱窒槽16の前段において硝酸濃度を測定する方法を用いたが、例えば、図3に示すような方法も採用できる。   For example, in the above-described embodiment, the method of measuring the nitric acid concentration in the previous stage of the second denitrification tank 16 is used. However, for example, a method as shown in FIG.

図3は、廃水中の硝酸濃度の測定方法の変形例を説明する断面模式図である。図3に示すように、硝化槽12の前段と後段にそれぞれ廃水中のアンモニア濃度を測定するアンモニア濃度計48A、48Bを設置し、硝化槽12におけるアンモニア濃度の減少量(亜硝酸の生成量)を測定する。すなわち、硝化前の廃水中のアンモニア濃度をa、硝化後の廃水中のアンモニア濃度をbとすると、(a−b)/aの値が1.32以下であれば、亜硝酸の生成量はF×(a−b)となる。ここで、Fの値は、廃水の種類によって異なるものであり、Fの値は0.25〜0.1であることが好ましく、0.18〜0.22であることがより好ましい。   FIG. 3 is a schematic cross-sectional view illustrating a modification of the method for measuring the nitric acid concentration in wastewater. As shown in FIG. 3, ammonia concentration meters 48A and 48B for measuring the ammonia concentration in the wastewater are installed at the front and rear stages of the nitrification tank 12, respectively, and the decrease in ammonia concentration in the nitrification tank 12 (the amount of nitrous acid produced) Measure. That is, assuming that the ammonia concentration in the wastewater before nitrification is a and the ammonia concentration in the wastewater after nitrification is b, if the value of (ab) / a is 1.32 or less, the amount of nitrous acid produced is F × (ab). Here, the value of F varies depending on the type of wastewater, and the value of F is preferably 0.25 to 0.1, and more preferably 0.18 to 0.22.

また、上記各実施形態では、廃水中のアンモニアと硝酸の組成比を調整する方法として、第2脱窒槽16に流入する廃水に、バイパス流路24を介して亜硝酸型の硝化を行う前のアンモニア含有廃水を混合する例を示したが、例えば、以下のような方法も採用できる。   In each of the above embodiments, as a method of adjusting the composition ratio of ammonia and nitric acid in the wastewater, the wastewater flowing into the second denitrification tank 16 is subjected to nitrite type nitrification via the bypass channel 24. Although the example which mixes an ammonia containing wastewater was shown, the following methods are also employable, for example.

すなわち、図1におけるバイパス流路24を用いることなく、亜硝酸型の硝化槽12における硝化率を低下させることにより、未反応のアンモニアを多くし、生成する亜硝酸を少なくする。亜硝酸が少なくなると、第1脱窒槽14において嫌気性アンモニア酸化反応により生成する硝酸も少なくなる。硝化率としては、57%以下にすることが好ましい。   That is, by reducing the nitrification rate in the nitrite-type nitrification tank 12 without using the bypass flow path 24 in FIG. 1, unreacted ammonia is increased and nitrite produced is reduced. When the amount of nitrous acid decreases, the amount of nitric acid generated by the anaerobic ammonia oxidation reaction in the first denitrification tank 14 also decreases. The nitrification rate is preferably 57% or less.

また、上記実施形態では、嫌気性アンモニア酸化細菌と脱窒細菌とを処理室36A、36Bに分離して充填する例を示したが、これに限定されず、例えば、図4に示すように1つの第2脱窒槽16’内に上記2つの微生物群をそれぞれ包括固定化した2種類の担体を混在させてもよいし、1つの第2脱窒槽16’内に上記2つの微生物群を1つの担体内に同時に包括固定化してもよい。また、固定化方法についても、包括固定化担体に限らず、担体材料に微生物を付着させた付着固定化担体等も使用できる。   Moreover, in the said embodiment, although the example which isolate | separates and fills anaerobic ammonia oxidation bacteria and denitrification bacteria in process chamber 36A, 36B was shown, it is not limited to this, For example, as shown in FIG. Two types of carriers in which the above two microorganism groups are entrapped and immobilized may be mixed in one second denitrification tank 16 ', or one of the above two microorganism groups may be mixed in one second denitrification tank 16'. It is also possible to immobilize and immobilize simultaneously in the carrier. Further, the immobilization method is not limited to the entrapping immobilization carrier, and an adhesion immobilization carrier in which microorganisms are adhered to the carrier material can be used.

このとき、図4に示すように、有機物を第2脱窒槽16の下流側に添加することが好ましい。通常の脱窒細菌は、嫌気性アンモニア酸化細菌よりも増殖が早く、上流側に有機物を添加すると、嫌気性アンモニア酸化細菌の付着及び増殖が阻害されるためである。   At this time, it is preferable to add the organic substance to the downstream side of the second denitrification tank 16, as shown in FIG. This is because normal denitrifying bacteria grow faster than anaerobic ammonia oxidizing bacteria, and when an organic substance is added upstream, adhesion and growth of anaerobic ammonia oxidizing bacteria are inhibited.

以下、本発明に係る実施例を説明するが、これらの実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

[実施例1]
(廃水の組成)
表1に示す合成廃水を用いて廃水処理試験を行った。
[Example 1]
(Composition of waste water)
A wastewater treatment test was conducted using the synthetic wastewater shown in Table 1.

Figure 2008296164
Figure 2008296164

亜硝酸型の硝化槽12には、硝化細菌を固定化した包括固定化担体を充填した。容積負荷は0.8〜3.5kg−N/m/d、水温は30℃、DOは0.5〜4.0で運転した。 The nitrite type nitrification tank 12 was filled with a entrapping immobilization support on which nitrifying bacteria were immobilized. The volume load was 0.8 to 3.5 kg-N / m 3 / d, the water temperature was 30 ° C., and the DO was operated at 0.5 to 4.0.

第1脱窒槽14には、嫌気性アンモニア酸化細菌を固定化した包括固定化担体を充填した。容積負荷は2〜10kg−N/m/d、水温は30℃、DO濃度は0.5以下で運転した。 The first denitrification tank 14 was filled with a entrapping immobilization support on which anaerobic ammonia-oxidizing bacteria were immobilized. The volume load was 2 to 10 kg-N / m 3 / d, the water temperature was 30 ° C., and the DO concentration was 0.5 or less.

そして、表1の廃水を硝化槽12において亜硝酸型の硝化を行ったところ、廃水中のアンモニア性窒素は420mg/Lであり、亜硝酸性窒素は560mg/Lであった。   And when the nitrite type nitrification was performed for the waste water of Table 1 in the nitrification tank 12, ammonia nitrogen in the waste water was 420 mg / L and nitrite nitrogen was 560 mg / L.

この廃水を第1脱窒槽14において嫌気性アンモニア酸化処理したところ、廃水中のアンモニア性窒素及び亜硝酸性窒素は、いずれも5mg/L以下まで低減できたものの、105mg/Lの硝酸性窒素が含まれていた(この廃水を「廃水A」という)。   When this wastewater was subjected to anaerobic ammonia oxidation treatment in the first denitrification tank 14, ammonia nitrogen and nitrite nitrogen in the wastewater were both reduced to 5 mg / L or less, but 105 mg / L nitrate nitrogen was present. It was included (this wastewater is called “Wastewater A”).

次に、第2脱窒槽16としては、図2のものを使用した。処理室36Aには、嫌気性アンモニア酸化細菌を不織布に付着させたものを充填し、処理室36Bには、従属栄養性の脱窒細菌を網状のプラスチック製の充填剤に付着させた後、馴養したものを充填した。   Next, the 2nd denitrification tank 16 used the thing of FIG. The treatment chamber 36A is filled with anaerobic ammonia-oxidizing bacteria adhered to a non-woven fabric, and the treatment chamber 36B is acclimated after heterotrophic denitrifying bacteria are adhered to a reticulated plastic filler. Was filled.

この脱窒細菌としては、まず下水処理場から採取した汚泥を5000mg/Lとなるように処理槽に添加し、酢酸ナトリウムと硝酸ナトリウム(窒素濃度として80mg/L)を連続的に供給することにより馴養したものを用いた。馴養後の脱窒細菌は、容積当たりの脱窒速度として0.3kg−N/m/dの能力を示すことを確認した。 As the denitrifying bacteria, first, sludge collected from a sewage treatment plant is added to a treatment tank so as to be 5000 mg / L, and sodium acetate and sodium nitrate (80 mg / L as nitrogen concentration) are continuously supplied. A well-known one was used. It was confirmed that the denitrifying bacteria after acclimation showed a capacity of 0.3 kg-N / m 3 / d as a denitrification rate per volume.

送液ポンプ46の流速を、亜硝酸型の硝化を行う前における廃水の流速の約4倍とした。水温は30℃とし、添加する有機物としては、酢酸ナトリウムを用いた。この第2脱窒槽16への亜硝酸性窒素の容積負荷は0.3kg−N/m/dとした。 The flow rate of the liquid feed pump 46 was set to about 4 times the flow rate of waste water before nitrite type nitrification was performed. The water temperature was 30 ° C., and sodium acetate was used as the organic substance to be added. The volume load of nitrite nitrogen to the second denitrification tank 16 was 0.3 kg-N / m 3 / d.

そして、第1脱窒槽14で生成した硝酸を含む廃水Aと、亜硝酸型の硝化を行う前のアンモニア含有廃水をバイパス流路24を介して混合し、アンモニアと硝酸の組成比が1:1となる廃水を調整し、第2脱窒槽16において脱窒した。その結果、廃水中の添加有機物濃度は、硝酸性窒素濃度に対してl.0倍程度であった。   And the waste water A containing nitric acid produced | generated in the 1st denitrification tank 14 and the ammonia containing waste water before performing nitrite type nitrification are mixed through the bypass flow path 24, and the composition ratio of ammonia and nitric acid is 1: 1. The waste water which becomes was denitrified in the second denitrification tank 16. As a result, the concentration of the added organic matter in the wastewater is less than that of nitrate nitrogen. It was about 0 times.

[比較例1]
従来の脱窒槽としては、網状のプラスチック製の充填剤を30%充填し、そこに脱窒細菌を付着させ、馴養させた。この脱窒細菌は、まず下水処理場から採取した汚泥を5000mg/Lとなるように脱窒槽に添加し、酢酸ナトリウムと硝酸ナトリウム(窒素濃度として80mg/L)を連続的に供給することにより馴養した。馴養後は、容積当たりの脱窒速度として、0.3kg−N/m/dの能力を示すことを確認した。
[Comparative Example 1]
As a conventional denitrification tank, 30% of a net-like plastic filler was filled, and denitrifying bacteria were attached thereto for acclimatization. This denitrifying bacterium is acclimatized by first adding sludge collected from a sewage treatment plant to a denitrifying tank so as to be 5000 mg / L and continuously supplying sodium acetate and sodium nitrate (80 mg / L as nitrogen concentration). did. After the acclimatization, it was confirmed that a denitrification rate per volume of 0.3 kg-N / m 3 / d was exhibited.

この脱窒槽に、上記廃水Aを流入し、容積負荷は0.3kg−N/m/d、水温は25℃で運転した。有機物としては、酢酸ナトリウムを用いた。 The waste water A was introduced into the denitrification tank, the volume load was 0.3 kg-N / m 3 / d, and the water temperature was 25 ° C. Sodium acetate was used as the organic substance.

この結果、硝酸性窒素を5mg/L以下に低減できたものの、廃水中に添加有機物濃度は、廃水中の総窒素濃度に対して約2.8倍であった。   As a result, although nitrate nitrogen could be reduced to 5 mg / L or less, the concentration of added organic substances in the wastewater was about 2.8 times the total nitrogen concentration in the wastewater.

以上の結果から、本発明を適用した実施例1では、従来の比較例1の約半分以下の添加有機物濃度で、脱窒できることがわかった。   From the above results, it was found that in Example 1 to which the present invention was applied, denitrification was possible at an added organic substance concentration of about half or less of the conventional Comparative Example 1.

[実施例2]
第2脱窒槽16において、廃水中の添加有機物濃度Cの総窒素濃度Nに対するC/N比と脱窒性能との関係について検討した。この結果を図5に示す。
[Example 2]
In the 2nd denitrification tank 16, the relationship between C / N ratio with respect to the total nitrogen concentration N of the addition organic substance density | concentration C in wastewater, and the denitrification performance was examined. The result is shown in FIG.

図5に示すように、有機物の添加量は、廃水中の硝酸量に対して適正な比率が存在することが明らかとなった。また、添加有機物濃度Cの硝酸性窒素濃度Nに対するC/N比は、0.8〜1.3であることが好ましく、0.9〜1.2であることがより好ましいことがわかった。廃水中の添加有機物濃度が低すぎると、充分に反応せず効率が低下したものと考えられる。これに対して、廃水中の添加有機物濃度が高すぎると、嫌気性アンモニア酸化細菌に対して悪影響を及ぼし、脱窒性能を低下させたものと考えられる。   As shown in FIG. 5, it has been clarified that the added amount of the organic substance has an appropriate ratio with respect to the amount of nitric acid in the wastewater. Further, it was found that the C / N ratio of the added organic substance concentration C to the nitrate nitrogen concentration N is preferably 0.8 to 1.3, and more preferably 0.9 to 1.2. If the concentration of the added organic substance in the wastewater is too low, it is considered that the reaction is not sufficiently performed and the efficiency is lowered. On the other hand, if the concentration of the added organic substance in the wastewater is too high, it is considered that it has an adverse effect on the anaerobic ammonia-oxidizing bacteria and has reduced the denitrification performance.

[実施例3]
第2脱窒槽16に流入する廃水組成(アンモニアと硝酸の組成比)を、硝化槽12における硝化率を低下させることにより調整した。亜硝酸型の硝化を行った後の廃水組成は、アンモニア性窒素が486mg/L、亜硝酸性窒素が515mg/Lであった(この廃水を廃水A’という)。この廃水A’を第1脱窒槽14において嫌気性アンモニア酸化処理したところ、92mg/Lの硝酸が生成し、これと同時にアンモニア性窒素が90mg/L残留した。
[Example 3]
The wastewater composition (composition ratio of ammonia and nitric acid) flowing into the second denitrification tank 16 was adjusted by reducing the nitrification rate in the nitrification tank 12. The composition of the wastewater after nitrifying nitrite was 486 mg / L for ammonia nitrogen and 515 mg / L for nitrite nitrogen (this wastewater is called wastewater A ′). When this wastewater A ′ was subjected to anaerobic ammonia oxidation treatment in the first denitrification tank 14, 92 mg / L of nitric acid was produced, and at the same time, 90 mg / L of ammoniacal nitrogen remained.

この廃水を用いて、実施例1と同様に、図2に示す第2脱窒槽16において脱窒処理したところ、脱窒後の廃水中のアンモニア性窒素及び硝酸性窒素は、いずれも5mg/L以下まで低減できた。また、このときの廃水中の添加有機物濃度は、硝酸性窒素濃度に対して0.94であり、上記実施例1の場合よりも更に少なかった。   Using this waste water, the denitrification treatment was performed in the second denitrification tank 16 shown in FIG. 2 in the same manner as in Example 1. As a result, ammonia nitrogen and nitrate nitrogen in the waste water after denitrification were both 5 mg / L. It was reduced to the following. Further, the concentration of the added organic substance in the wastewater at this time was 0.94 with respect to the nitrate nitrogen concentration, which was much smaller than that in the case of Example 1.

以上の結果から、硝化槽12における硝化率を低くすることで、有機物の添加量を少なくすることができ、更に亜硝酸型の硝化を行う前の廃水中のアンモニア性窒素の約1割程度を第2脱窒槽16で除去できることがわかった。   From the above results, by reducing the nitrification rate in the nitrification tank 12, the amount of organic matter added can be reduced, and about 10% of ammonia nitrogen in the wastewater before nitrite type nitrification is further reduced. It was found that it could be removed by the second denitrification tank 16.

[実施例4、5]
第2脱窒槽16における有機物の添加位置について検討した。
[Examples 4 and 5]
The addition position of the organic substance in the second denitrification tank 16 was examined.

図4に示すように、1つの第2脱窒槽16’内で嫌気性アンモニア酸化細菌と脱窒細菌を混在させた場合において、第2脱窒槽16’の上流側で有機物を添加する場合を実施例4とし、図2のように嫌気性アンモニア酸化細菌を第2脱窒槽16の処理室36Aに投入し、脱窒細菌を第2脱窒槽16の処理室36Bに投入し、処理室36Bに有機物を添加する場合を実施例5とした。その他の運転条件は、実施例1と同様とした。   As shown in FIG. 4, when anaerobic ammonia oxidizing bacteria and denitrifying bacteria are mixed in one second denitrification tank 16 ′, an organic substance is added on the upstream side of the second denitrification tank 16 ′. In Example 4, as shown in FIG. 2, anaerobic ammonia-oxidizing bacteria are introduced into the treatment chamber 36A of the second denitrification tank 16, and the denitrification bacteria are introduced into the treatment chamber 36B of the second denitrification tank 16, and the organic matter enters the treatment chamber 36B. Was added as Example 5. Other operating conditions were the same as in Example 1.

そして、第2脱窒槽16における脱窒活性の立上げ期間について比較した結果、図2のように構成した実施例5では、脱窒活性が安定化するのに1ヶ月を要した。これに対して、図4のように構成した実施例4では、脱窒活性が安定化するのに3ヶ月を要した。   And as a result of comparing about the starting period of the denitrification activity in the 2nd denitrification tank 16, in Example 5 comprised like FIG. 2, it took one month for denitrification activity to stabilize. On the other hand, in Example 4 configured as shown in FIG. 4, it took 3 months for the denitrification activity to stabilize.

以上から、脱窒細菌が優先的に保持された処理室36B(第2脱窒槽16の下流側)に有機物を添加することで、嫌気性アンモニア酸化細菌に悪影響を及ぼすのを抑制し、脱窒細菌の活性を向上できることがわかった。   From the above, by adding organic matter to the processing chamber 36B (downstream of the second denitrification tank 16) in which denitrifying bacteria are preferentially retained, it is possible to suppress adverse effects on anaerobic ammonia oxidizing bacteria, It was found that the activity of bacteria can be improved.

[実施例6]
上記各実施例1〜5で使用した合成廃水の代わりに、下水処理場から採取した汚泥消化処理後の廃水を脱水したろ液(以下、廃水という)を用いて、廃水処理試験を行った。この廃水の主な組成としては、NH−N:1050mg/L、COD:320mg/L、BOD:80mg/L、TOC:300mg/Lであった。その他の運転条件は、実施例1と同様とした。
[Example 6]
Instead of the synthetic wastewater used in each of the above Examples 1 to 5, a wastewater treatment test was performed using a filtrate (hereinafter referred to as wastewater) obtained by dewatering wastewater after sludge digestion treatment collected from a sewage treatment plant. The main composition of this wastewater was NH 4 —N: 1050 mg / L, COD: 320 mg / L, BOD: 80 mg / L, TOC: 300 mg / L. Other operating conditions were the same as in Example 1.

この廃水を硝化槽12において亜硝酸型の硝化を行ったところ、硝化処理後の廃水中にはアンモニア性窒素が504mg/L、亜硝酸性窒素が520mg/L含まれていた。   When this waste water was subjected to nitrite type nitrification in the nitrification tank 12, the waste water after the nitrification treatment contained 504 mg / L of ammonia nitrogen and 520 mg / L of nitrite nitrogen.

次いで、この廃水を第1脱窒槽14において嫌気性アンモニア酸化処理したところ、80mg/Lの硝酸性窒素が生成すると共に、アンモニア性窒素が96mg/L残留した。   Subsequently, when this waste water was subjected to anaerobic ammonia oxidation treatment in the first denitrification tank 14, 80 mg / L of nitrate nitrogen was produced and 96 mg / L of ammonia nitrogen remained.

次いで、第1脱窒槽14において処理した廃水を、第2脱窒槽16において更に処理したところ、硝酸を5mg/L以下まで低減できた。   Next, when the waste water treated in the first denitrification tank 14 was further treated in the second denitrification tank 16, the nitric acid could be reduced to 5 mg / L or less.

このとき、第2脱窒槽16における廃水中の添加有機物濃度Cは、硝酸性窒素濃度Nに対して0.9(C/N比)であった。このC/N比について、従来のように、廃水中に元から含まれる有機物を加味した有機物濃度C’で表現すると、廃水に有機物を添加した後の廃水中の有機物濃度C’と硝酸性窒素濃度とのC’/N比は4.65となる。この値は、本発明においては意味をなさないが、これは以下のことから明らかである。   At this time, the added organic substance concentration C in the wastewater in the second denitrification tank 16 was 0.9 (C / N ratio) with respect to the nitrate nitrogen concentration N. When this C / N ratio is expressed as an organic substance concentration C ′ in consideration of organic substances originally contained in the wastewater as in the past, the organic substance concentration C ′ and nitrate nitrogen in the wastewater after adding the organic substances to the wastewater The C ′ / N ratio with respect to the concentration is 4.65. This value does not make sense in the present invention, but this is clear from the following.

第2脱窒槽16において、有機物を新たに添加することなく廃水中に元から含まれる有機物のみで処理すると(このとき、廃水のC’/N比は3以上)、硝酸はほとんど除去できなかった。このことは、廃水中に元から含まれる有機物は、第2脱窒槽16において利用できないことを示唆している。したがって、廃水中に元から含まれる有機物を加味したC’/N比は、本発明での指標とはならず、新たに有機物を添加する必要があることがわかった。   In the second denitrification tank 16, when only the organic matter originally contained in the wastewater was treated without newly adding the organic matter (at this time, the C ′ / N ratio of the wastewater was 3 or more), the nitric acid could hardly be removed. . This suggests that organic substances originally contained in the wastewater cannot be used in the second denitrification tank 16. Therefore, it was found that the C ′ / N ratio in which the organic matter originally contained in the wastewater is added is not an index in the present invention, and it is necessary to newly add the organic matter.

本発明に係る窒素除去装置の一例を説明する断面模式図である。It is a cross-sectional schematic diagram explaining an example of the nitrogen removal apparatus which concerns on this invention. 図1における第2脱窒槽の構成の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of a structure of the 2nd denitrification tank in FIG. 窒素濃度の測定方法の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of the measuring method of nitrogen concentration. 第2脱窒槽の構成の変形例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the modification of a structure of a 2nd denitrification tank. 本実施例における結果を示すグラフ図である。It is a graph which shows the result in a present Example.

符号の説明Explanation of symbols

10…窒素除去装置、12…硝化槽、14…第1脱窒槽、16、16’…第2脱窒槽、24…バイパス流路、26…硝酸濃度計、28…バルブ、30…組成比制御手段、36A、36B…処理室、38…有機物供給タンク、38A…供給管、40…バルブ、42…C/N比制御手段、44…循環流路、48A、48B…アンモニア濃度計   DESCRIPTION OF SYMBOLS 10 ... Nitrogen removal apparatus, 12 ... Nitrification tank, 14 ... 1st denitrification tank, 16, 16 '... 2nd denitrification tank, 24 ... Bypass flow path, 26 ... Nitric acid concentration meter, 28 ... Valve, 30 ... Composition ratio control means 36A, 36B ... processing chamber, 38 ... organic substance supply tank, 38A ... supply pipe, 40 ... valve, 42 ... C / N ratio control means, 44 ... circulation channel, 48A, 48B ... ammonia concentration meter

Claims (13)

アンモニア含有廃水における窒素除去方法であって、
前記廃水に含まれるアンモニアの一部を硝化細菌により亜硝酸に硝化する亜硝酸型の硝化工程と、
前記亜硝酸型の硝化工程から流出する廃水に含まれるアンモニアと亜硝酸とを、嫌気性アンモニア酸化細菌により除去する第1の脱窒工程と、
前記第1の脱窒工程から流出する廃水中に含まれる残留アンモニアと前記第1の脱窒工程において生成した硝酸を、嫌気性アンモニア酸化細菌と従属栄養性の脱窒細菌とにより除去する第2の脱窒工程と、
を備えたことを特徴とする窒素除去方法。
A method for removing nitrogen in ammonia-containing wastewater,
A nitrite type nitrification step of nitrifying a part of ammonia contained in the wastewater to nitrite by nitrifying bacteria;
A first denitrification step of removing ammonia and nitrous acid contained in waste water flowing out of the nitrite type nitrification step by anaerobic ammonia oxidizing bacteria;
A second method for removing residual ammonia contained in the waste water flowing out from the first denitrification step and nitric acid produced in the first denitrification step by anaerobic ammonia oxidizing bacteria and heterotrophic denitrifying bacteria. Denitrification process of
A method for removing nitrogen, comprising:
前記第2の脱窒工程は、
前記従属栄養性の脱窒細菌により有機物を水素供与体として前記硝酸を亜硝酸に還元する工程と、
前記工程において生成した亜硝酸と、前記廃水中のアンモニアとを前記嫌気性アンモニア酸化細菌により除去する工程と、
を備えたことを特徴とする請求項1に記載の窒素除去方法。
The second denitrification step includes
Reducing the nitric acid to nitrous acid using the heterotrophic denitrifying bacterium as an organic substance as a hydrogen donor;
Removing the nitrous acid produced in the step and ammonia in the wastewater by the anaerobic ammonia oxidizing bacteria;
The nitrogen removal method according to claim 1, comprising:
前記第2の脱窒工程に流入する廃水の組成比は、アンモニア:硝酸が1:1であることを特徴とする請求項1又は2に記載の窒素除去方法。   The nitrogen removal method according to claim 1 or 2, wherein the composition ratio of the wastewater flowing into the second denitrification step is 1: 1 ammonia: nitric acid. 前記第1の脱窒工程から流出する廃水に、前記亜硝酸型の硝化工程を行う前の廃水を混合することにより前記組成比を形成することを特徴とする請求項3に記載の窒素除去方法。   The nitrogen removal method according to claim 3, wherein the composition ratio is formed by mixing waste water flowing out from the first denitrification step with waste water before performing the nitrite type nitrification step. . 前記亜硝酸型の硝化工程において、硝化率を57%以下にすることを特徴とする請求項3に記載の窒素除去方法。   The nitrogen removal method according to claim 3, wherein the nitrification rate is set to 57% or less in the nitrite type nitrification step. 前記第2の脱窒工程において、廃水中の添加有機物濃度Cの前記廃水中の総窒素濃度Nに対するC/N比を0.8〜1.3にすることを特徴とする請求項1〜5の何れか1項に記載の窒素除去方法。   The C / N ratio of the added organic substance concentration C in the wastewater to the total nitrogen concentration N in the wastewater is set to 0.8 to 1.3 in the second denitrification step. The method for removing nitrogen according to any one of the above. アンモニア含有廃水に含まれる窒素成分を除去する窒素除去装置であって、
前記廃水に含まれるアンモニアの一部を硝化細菌により亜硝酸に硝化する亜硝酸型の硝化槽と、
前記亜硝酸型の硝化槽の下流側に設けられ、前記硝化槽から流出する廃水に含まれるアンモニアと亜硝酸とを、嫌気性アンモニア酸化細菌により除去する第1の脱窒槽と、
前記第1の脱窒槽の下流側に設けられ、前記第1の脱窒槽から流出する廃水中に含まれる残留アンモニアと前記第1の脱窒槽において生成した硝酸を、嫌気性アンモニア酸化細菌と従属栄養性の脱窒細菌とにより除去する第2の脱窒槽と、
を備えたことを特徴とする窒素除去装置。
A nitrogen removal device for removing nitrogen components contained in ammonia-containing wastewater,
A nitrite type nitrification tank that nitrifies a part of ammonia contained in the wastewater into nitrite by nitrifying bacteria;
A first denitrification tank which is provided downstream of the nitrite type nitrification tank and removes ammonia and nitrous acid contained in waste water flowing out of the nitrification tank by anaerobic ammonia oxidizing bacteria;
Anaerobic ammonia-oxidizing bacteria and heterotrophic acid are provided on the downstream side of the first denitrification tank, and residual ammonia contained in the waste water flowing out of the first denitrification tank and nitric acid generated in the first denitrification tank are A second denitrification tank to be removed by a natural denitrifying bacterium,
A nitrogen removing apparatus comprising:
前記第2の脱窒槽は、
前記嫌気性アンモニア酸化細菌が保持された第1の処理槽と、
前記第1の処理槽の下流側に設けられ、前記脱窒細菌が保持された第2の処理槽と、を備え、
前記第2の処理槽の下流側と前記第1の処理槽の上流側とを連通し、前記第2の処理槽から流出する廃水の少なくとも一部を前記第1の処理槽に流入するための循環流路と、
を備えたことを特徴とする請求項7に記載の窒素除去装置。
The second denitrification tank is
A first treatment tank in which the anaerobic ammonia oxidizing bacteria are retained;
A second treatment tank provided downstream of the first treatment tank and holding the denitrifying bacteria,
The downstream side of the second treatment tank communicates with the upstream side of the first treatment tank, and at least a part of the waste water flowing out of the second treatment tank flows into the first treatment tank. A circulation channel;
The nitrogen removing apparatus according to claim 7, further comprising:
前記第2の脱窒槽は、1つの処理槽内に前記嫌気性アンモニア酸化細菌と前記脱窒細菌とが保持されたことを特徴とする請求項7に記載の窒素除去装置。   The nitrogen removal apparatus according to claim 7, wherein the second denitrification tank holds the anaerobic ammonia-oxidizing bacteria and the denitrifying bacteria in one treatment tank. 前記廃水中の硝酸濃度を測定する硝酸濃度測定手段と、
前記硝酸濃度測定手段における測定結果に基づいて、前記第2の脱窒槽に流入する廃水中のアンモニアと硝酸の組成比を制御する組成比制御手段と、
を備えたことを特徴とする請求項7〜9の何れか1項に記載の窒素除去装置。
A nitric acid concentration measuring means for measuring the nitric acid concentration in the waste water;
Composition ratio control means for controlling the composition ratio of ammonia and nitric acid in the wastewater flowing into the second denitrification tank based on the measurement result in the nitric acid concentration measurement means;
The nitrogen removing apparatus according to any one of claims 7 to 9, further comprising:
前記亜硝酸型の硝化槽の前段の流路から分岐し、前記第2の脱窒槽の前段の流路と連通するバイパス流路を備えたことを特徴とする請求項7〜10の何れか1項に記載の窒素除去装置。   11. The apparatus according to claim 7, further comprising a bypass flow path that branches from a flow path upstream of the nitrite type nitrification tank and communicates with a flow path upstream of the second denitrification tank. The nitrogen removing apparatus according to item. 前記第2の脱窒槽には、有機物添加手段が設けられたことを特徴とする請求項7〜11の何れか1項に記載の窒素除去装置。   The nitrogen removing apparatus according to any one of claims 7 to 11, wherein the second denitrification tank is provided with an organic substance adding means. 前記第2の脱窒槽において、前記廃水中の総窒素濃度を測定する窒素濃度測定手段と、
前記窒素濃度測定手段の測定結果に基づいて、前記第2の脱窒槽への有機物の添加量を所定の範囲となるように制御する添加量制御手段と、
を備えたことを特徴とする請求項7〜12の何れか1項に記載の窒素除去装置。
In the second denitrification tank, nitrogen concentration measuring means for measuring the total nitrogen concentration in the waste water,
Based on the measurement result of the nitrogen concentration measuring means, an addition amount control means for controlling the addition amount of the organic substance to the second denitrification tank to be within a predetermined range;
The nitrogen removing apparatus according to any one of claims 7 to 12, comprising:
JP2007146766A 2007-06-01 2007-06-01 Nitrogen removal method and apparatus Expired - Fee Related JP4671178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007146766A JP4671178B2 (en) 2007-06-01 2007-06-01 Nitrogen removal method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007146766A JP4671178B2 (en) 2007-06-01 2007-06-01 Nitrogen removal method and apparatus

Publications (2)

Publication Number Publication Date
JP2008296164A true JP2008296164A (en) 2008-12-11
JP4671178B2 JP4671178B2 (en) 2011-04-13

Family

ID=40170194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007146766A Expired - Fee Related JP4671178B2 (en) 2007-06-01 2007-06-01 Nitrogen removal method and apparatus

Country Status (1)

Country Link
JP (1) JP4671178B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039538A (en) * 2011-08-18 2013-02-28 Hitachi Plant Technologies Ltd Wastewater treatment apparatus
CN104129847A (en) * 2014-06-06 2014-11-05 武汉风林环境科技有限公司 Method for one-step denitrification by utilizing wood and decayed wood for enrichment of denitrification environment microbial communities
CN104609566A (en) * 2013-11-05 2015-05-13 中国石油化工股份有限公司 Method for processing ammonia-containing wastewater by synchronous nitrification and denitrification
JP2016055230A (en) * 2014-09-08 2016-04-21 株式会社日立製作所 Wastewater treatment apparatus and method
CN113321303A (en) * 2021-06-16 2021-08-31 浙江一谦生态农业科技有限责任公司 Method for efficiently removing ammonia nitrogen and total nitrogen in wastewater by using denitrifying bacteria
CN115594288A (en) * 2022-09-19 2023-01-13 北京工业大学(Cn) Method for realizing synchronous treatment of domestic sewage and nitrate wastewater by SPNAED integrated MBBR by adding hydroxylamine
CN115893655A (en) * 2022-11-18 2023-04-04 广东工业大学 Method for carrying out anaerobic ammonia oxidation denitrification on microorganisms by using biochar as filler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361285A (en) * 2001-06-12 2002-12-17 Kurita Water Ind Ltd Denitrification method and denitrification equipment
JP2003033789A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for denitrificaton treatment using living organisms and device therefor
JP2003033784A (en) * 2001-07-25 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen
JP2005074253A (en) * 2003-08-28 2005-03-24 Kurita Water Ind Ltd Biological treatment method for wastewater containing bod and nitrogen
JP2006263719A (en) * 2005-02-28 2006-10-05 Hitachi Plant Technologies Ltd Process and equipment for treating ammonia-containing liquid
JP2006272321A (en) * 2005-03-04 2006-10-12 Hitachi Plant Technologies Ltd Treatment method of ammonia-containing liquid and its treatment apparatus
JP2007090148A (en) * 2005-09-27 2007-04-12 Hitachi Plant Technologies Ltd Method and apparatus for measuring reaction ratio

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361285A (en) * 2001-06-12 2002-12-17 Kurita Water Ind Ltd Denitrification method and denitrification equipment
JP2003033784A (en) * 2001-07-25 2003-02-04 Kurita Water Ind Ltd Method and device for denitrification
JP2003033789A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for denitrificaton treatment using living organisms and device therefor
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen
JP2005074253A (en) * 2003-08-28 2005-03-24 Kurita Water Ind Ltd Biological treatment method for wastewater containing bod and nitrogen
JP2006263719A (en) * 2005-02-28 2006-10-05 Hitachi Plant Technologies Ltd Process and equipment for treating ammonia-containing liquid
JP2006272321A (en) * 2005-03-04 2006-10-12 Hitachi Plant Technologies Ltd Treatment method of ammonia-containing liquid and its treatment apparatus
JP2007090148A (en) * 2005-09-27 2007-04-12 Hitachi Plant Technologies Ltd Method and apparatus for measuring reaction ratio

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039538A (en) * 2011-08-18 2013-02-28 Hitachi Plant Technologies Ltd Wastewater treatment apparatus
CN104609566A (en) * 2013-11-05 2015-05-13 中国石油化工股份有限公司 Method for processing ammonia-containing wastewater by synchronous nitrification and denitrification
CN104609566B (en) * 2013-11-05 2016-12-07 中国石油化工股份有限公司 The method of synchronous nitration and denitrification Ammonia-Containing Wastewater Treatment
CN104129847A (en) * 2014-06-06 2014-11-05 武汉风林环境科技有限公司 Method for one-step denitrification by utilizing wood and decayed wood for enrichment of denitrification environment microbial communities
JP2016055230A (en) * 2014-09-08 2016-04-21 株式会社日立製作所 Wastewater treatment apparatus and method
CN113321303A (en) * 2021-06-16 2021-08-31 浙江一谦生态农业科技有限责任公司 Method for efficiently removing ammonia nitrogen and total nitrogen in wastewater by using denitrifying bacteria
CN115594288A (en) * 2022-09-19 2023-01-13 北京工业大学(Cn) Method for realizing synchronous treatment of domestic sewage and nitrate wastewater by SPNAED integrated MBBR by adding hydroxylamine
CN115893655A (en) * 2022-11-18 2023-04-04 广东工业大学 Method for carrying out anaerobic ammonia oxidation denitrification on microorganisms by using biochar as filler
CN115893655B (en) * 2022-11-18 2024-04-16 广东工业大学 Method for performing microbial anaerobic ammonia oxidation denitrification by taking biochar as filler

Also Published As

Publication number Publication date
JP4671178B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4284700B2 (en) Nitrogen removal method and apparatus
CN102753487B (en) Simultaneous anoxic biological phosphorus and nitrogen removal
KR101613995B1 (en) System for advanced wastewater treatment using optimal micro-organism of pollutants and the method thereof
Mannina et al. Moving bed membrane bioreactors for carbon and nutrient removal: The effect of C/N variation
JP5324269B2 (en) Waste water treatment method and waste water treatment apparatus
JP4671178B2 (en) Nitrogen removal method and apparatus
US8323487B2 (en) Waste water treatment apparatus
JP6720100B2 (en) Water treatment method and water treatment device
KR100719434B1 (en) Method for removing high concentration of nitrogen from anaerobict-treated wastewater and apparatus for implementing the method
KR20110111291A (en) Method and device for removing biological nitrogen and support therefor
KR20120089495A (en) Wastewater Treatment Apparatus Using Biofilm and Aerobic Granule Sludge and Method for Treating Wastewater Using the Same
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JP5098183B2 (en) Waste water treatment method and apparatus
JP6445855B2 (en) Nitrogen treatment method and nitrogen treatment apparatus
EP2070880A1 (en) Treatment facility for wastewater containing ammonium
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
KR20190035277A (en) Sewage treatment system using granule
KR100783789B1 (en) Apparatus for wastewater treatment and method for wastewater treatment using the same
JP2005329399A (en) Method and apparatus for removing nitrogen
JP5126691B2 (en) Wastewater treatment method
JP3270652B2 (en) Wastewater nitrogen removal method
KR100202066B1 (en) Wastewater treatment method using biological 3 step digestion process in one reactor
JP2005131452A (en) Nitrification method for ammonia nitrogen-containing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees