JP2005131451A - Nitrification method for ammonia nitrogen-containing wastewater - Google Patents

Nitrification method for ammonia nitrogen-containing wastewater Download PDF

Info

Publication number
JP2005131451A
JP2005131451A JP2003367160A JP2003367160A JP2005131451A JP 2005131451 A JP2005131451 A JP 2005131451A JP 2003367160 A JP2003367160 A JP 2003367160A JP 2003367160 A JP2003367160 A JP 2003367160A JP 2005131451 A JP2005131451 A JP 2005131451A
Authority
JP
Japan
Prior art keywords
nitrification tank
nitrification
ammonia
concentration
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003367160A
Other languages
Japanese (ja)
Inventor
Tomohiro Sato
朋弘 佐藤
Susumu Hasegawa
進 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2003367160A priority Critical patent/JP2005131451A/en
Publication of JP2005131451A publication Critical patent/JP2005131451A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which can efficiently treat nitrite-type nitrification at a low cost without requiring an extra additive and treatment process. <P>SOLUTION: A nitrification tank is divided into two tanks, a first notification tank 1 and a second nitrification tank 2. The flow direction of ammonia nitrogen-containing wastewater is alternately changed in the direction from the first nitrification tank 1 to the second nitrification tank 2 and the direction from the second nitrification tank 2 to the first nitrification tank 1 so that the concentration of free ammonia in water to be treated, in one nitrification tank on the upstream side, is made to be equal to or more than the concentration inhibiting the activities of nitrite-oxidizing bacteria and that residual ammonia nitrogen is converted into nitrous acid in the other nitrification tank on the downstream side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、アンモニア性窒素の生物学的処理方法に関し、特に、排水中に含まれる高濃度のアンモニア性窒素を生物学的に除去する方法に関する。   The present invention relates to a biological treatment method of ammonia nitrogen, and more particularly to a method of biologically removing high concentration ammoniacal nitrogen contained in waste water.

下水、屎尿、産業廃水等に含まれるアンモニア性窒素は、放流先の湖沼や内湾等の閉鎖性水域における溶存酸素の低下や富栄養化現象の原因とされている。従来、これらの廃水中から窒素成分を除去する窒素除去技術としては、微生物を利用した生物学的な硝化・脱窒処理が行われている。生物学的な硝化・脱窒処理は、独立栄養菌である硝化細菌のアンモニア酸化力と亜硝酸酸化力を利用して、廃水中のアンモニア性窒素を好気性状態で亜硝酸性窒素を経て硝酸性窒素まで酸化する。その後、従属栄養細菌である脱窒細菌の働きで廃水中の有機物を電子供与体として硝酸性窒素を嫌気状態で窒素ガスに還元することにより、廃水中のアンモニア性窒素を除去するものである。   Ammonia nitrogen contained in sewage, manure, industrial wastewater, etc. is considered to cause a decrease in dissolved oxygen and eutrophication in closed waters such as lakes and inner bays where it is discharged. Conventionally, as a nitrogen removal technique for removing nitrogen components from these wastewaters, biological nitrification / denitrification treatment using microorganisms has been performed. Biological nitrification and denitrification treatment uses ammonia oxidizing power and nitrite oxidizing power of nitrifying bacteria, which are autotrophic bacteria, to convert ammonia nitrogen in wastewater through nitrite nitrogen in an aerobic state. Oxidizes to neutral nitrogen. Thereafter, ammonia nitrogen in the wastewater is removed by reducing nitrate nitrogen to nitrogen gas in an anaerobic state using the organic matter in the wastewater as an electron donor by the action of denitrifying bacteria which are heterotrophic bacteria.

この微生物を利用した生物学的な硝化は、一般にアンモニア酸化細菌と亜硝酸酸化細菌が共同で行う酸化作用により、アンモニアが亜硝酸を経て硝酸にまで酸化されるが、何らかの理由で亜硝酸酸化細菌の活動が抑制されると亜硝酸の酸化速度は低下し、被処理液に亜硝酸が蓄積するようになる。前者は硝酸型硝化と呼ばれ、後者は亜硝酸型硝化と呼ばれている。   Biological nitrification using these microorganisms generally involves ammonia being oxidized to nitric acid through nitrite by an oxidative action jointly performed by ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. If this activity is suppressed, the oxidation rate of nitrous acid decreases, and nitrous acid accumulates in the liquid to be treated. The former is called nitrate-type nitrification, and the latter is called nitrite-type nitrification.

この硝化反応とこれに続く脱窒プロセスは次式に示すとおりである。   The nitrification reaction and the subsequent denitrification process are as shown in the following equation.

NH4 ++3/2O2 → NO2 -+H2O+2H+ (1)
NO2 -+1/2・O2 → NO3 - (2)
2NO2 -+6H → N2+2H2O+2OH- (3)
2NO3 -+10H → N2+4H2O+2OH- (4)
上記の如く、硝化・脱窒反応は亜硝酸型硝化脱窒と硝酸型硝化脱窒との2種類に分かれ、運転条件によりそのいずれかが優先して進行する。前者はアンモニア性窒素(NH4 − N)の酸化を(1)式の亜硝酸性窒素(NO2 −N)の段階でとどめておき、これを(3)式に示すように脱窒菌により脱窒する。後者は、アンモニア性窒素の酸化を(1)式を経由して(2)式の硝酸性窒素(NO3 −N)の段階まで硝化したのち、(4)式の如く 脱窒するものである。この2方式を比較した場合、前者の亜硝酸型硝化脱窒は硝化反応時の曝気量を削減することができ、ブロワーの運転動力費を大幅に低減することができるとともに、脱窒処理における電子供与体としてのメタノール等の有機物の添加量も低減することができる。さらには、硝酸性窒素まで反応させる必要がないので、硝化反応の所要時間を短縮することができる。このように、亜硝酸型硝化には有利な点が多いが、亜硝酸型硝化プロセスを安定して維持することは容易でない。そこで、亜硝酸型硝化技術に関するものとして、以下の方法が提案されている。
NH 4 + + 3 / 2O 2 → NO 2 + H 2 O + 2H + (1)
NO 2 - +1/2 · O 2 → NO 3 - (2)
2NO 2 + 6H → N 2 + 2H 2 O + 2OH (3)
2NO 3 + 10H → N 2 + 4H 2 O + 2OH (4)
As described above, the nitrification / denitrification reaction is divided into two types, nitrite-type nitrification-denitrification and nitrate-type nitrification-denitrification, and one of them proceeds with priority depending on the operating conditions. The former keeps oxidation of ammonia nitrogen (NH 4 -N) at the stage of nitrite nitrogen (NO 2 -N) in the formula (1), which is denitrified by denitrifying bacteria as shown in formula (3). Nitrogen. In the latter, the oxidation of ammonia nitrogen is nitrified to the stage of nitrate nitrogen (NO 3 -N) in formula (2) via formula (1) and then denitrified as in formula (4). . When these two methods are compared, the former nitrite-type nitrification denitrification can reduce the amount of aeration during the nitrification reaction, significantly reduce the operating power cost of the blower, and reduce the amount of electrons in the denitrification process. The addition amount of organic substances such as methanol as a donor can also be reduced. Furthermore, since it is not necessary to react to nitrate nitrogen, the time required for the nitrification reaction can be shortened. Thus, although there are many advantages for nitrite type nitrification, it is not easy to stably maintain the nitrite type nitrification process. Thus, the following methods have been proposed as related to nitrite type nitrification technology.

例えば、特許文献1には、曝気槽内の溶存酸素濃度を所定濃度に維持することにより、亜硝酸型硝化を優先させる活性汚泥処理方法が提案されている(従来方法1) 。   For example, Patent Document 1 proposes an activated sludge treatment method that prioritizes nitrite type nitrification by maintaining the dissolved oxygen concentration in the aeration tank at a predetermined concentration (conventional method 1).

また、特許文献2には、活性汚泥にアンモニア酸化細菌用培地と亜硝酸酸化細菌阻害剤とを添加するアンモニア含有廃水処理方法が提案されている(従来方法2)。   Patent Document 2 proposes an ammonia-containing wastewater treatment method in which a medium for ammonia-oxidizing bacteria and an inhibitor of nitrite-oxidizing bacteria are added to activated sludge (conventional method 2).

また、特許文献3には、硝化槽内のアンモニア性窒素濃度を250〜550mg/Lに維持することにより亜硝酸型の硝化反応を行うアンモニア性窒素の生物学的処理方法が提案されている(従来方法3)。   Patent Document 3 proposes a biological treatment method for ammonia nitrogen in which a nitrite type nitrification reaction is carried out by maintaining the ammonia nitrogen concentration in the nitrification tank at 250 to 550 mg / L ( Conventional method 3).

さらに、特許文献4には、硝化槽内の溶存酸素濃度を1.5mg/L以下となるように曝気風量を調整し、アンモニア酸化細菌をグラニュールの形や、担体表面に形成された微生物膜の形で硝化槽内に保持するアンモニア性窒素含有水の硝化方法が提案されている(従来方法4)。   Furthermore, in Patent Document 4, the aeration air volume is adjusted so that the dissolved oxygen concentration in the nitrification tank is 1.5 mg / L or less, and the ammonia oxidizing bacteria are in the form of granules or a microbial membrane formed on the surface of the carrier. There has been proposed a nitrification method of ammonia nitrogen-containing water retained in a nitrification tank in the form of (Method 4).

そして、特許文献5には、硝化槽内の溶存酸素濃度を最大6mg/L、最小0mg/Lとなるように濃度勾配を設け、溶存酸素濃度が0〜0.5mg/Lとなる時間が硝化槽の原水滞留時間の25〜50%となるように、硝化槽内の溶存酸素濃度に勾配を設ける排水の硝化方法が提案されている(従来方法5)。   In Patent Document 5, a concentration gradient is provided so that the dissolved oxygen concentration in the nitrification tank is 6 mg / L at the maximum and 0 mg / L at the minimum, and the time during which the dissolved oxygen concentration is 0 to 0.5 mg / L is nitrified. There has been proposed a nitrification method for waste water that provides a gradient in the dissolved oxygen concentration in the nitrification tank so that the raw water retention time in the tank is 25 to 50% (conventional method 5).

また、特許文献6には、アンモニア酸化細菌と亜硝酸酸化細菌の増殖速度の差を利用する高アンモニア含有廃水の生物学的処理方法が提案されている(従来方法6)。
特開平4−122498号公報 特開2001−170684号公報 特開2000−61494号公報 特開2003−24987号公報 特開2003−33787号公報 欧州特許第826639号明細書
Patent Document 6 proposes a biological treatment method for wastewater containing high ammonia that utilizes the difference in growth rate between ammonia-oxidizing bacteria and nitrite-oxidizing bacteria (conventional method 6).
Japanese Patent Laid-Open No. 4-122498 JP 2001-170684 A JP 2000-61494 A JP 2003-24987 A JP 2003-33787 A European Patent No. 826639

従来方法1によれば、溶存酸素濃度を低く維持することで、より酸化レベルが高いことが要求される亜硝酸酸化反応よりアンモニア酸化反応を優先的に進行させることは可能であるが、溶存酸素濃度を低くすると、アンモニア酸化反応自体が遅くなる。   According to the conventional method 1, it is possible to preferentially advance the ammonia oxidation reaction over the nitrite oxidation reaction that is required to have a higher oxidation level by keeping the dissolved oxygen concentration low. When the concentration is lowered, the ammonia oxidation reaction itself is delayed.

また、従来方法2のように、亜硝酸酸化細菌阻害剤の添加は、阻害剤添加費用が必要であり、また、阻害剤が処理水中に残留すると、その毒性により他の生物に悪影響を及ぼすことがある。   In addition, as in the conventional method 2, the addition of an inhibitor of nitrite oxidizing bacteria requires the cost of adding the inhibitor, and if the inhibitor remains in the treated water, it may adversely affect other organisms due to its toxicity. There is.

また、従来方法3では、処理水にアンモニア性窒素が高濃度に残留しやすくなるため、その後処理工程が必要である。   Further, in the conventional method 3, ammonia nitrogen tends to remain at a high concentration in the treated water, so that a subsequent treatment step is necessary.

さらに、従来方法4では、グラニュールの馴養・維持管理が必要であり、煩雑である。   Furthermore, in the conventional method 4, it is necessary to familiarize and maintain the granule, which is complicated.

そして、従来方法5では、溶存酸素濃度を低く維持する領域で、アンモニア酸化反応がが遅くなる。   In the conventional method 5, the ammonia oxidation reaction is delayed in the region where the dissolved oxygen concentration is kept low.

また、従来方法6は、ケモスタット運転のため、汚泥濃度を高く保持することが困難で、処理が不安定である。   Further, since the conventional method 6 is a chemostat operation, it is difficult to keep the sludge concentration high, and the treatment is unstable.

本発明は従来の技術の有するこのような問題点に鑑みてなされたものであって、その目的は、余分な添加剤や処理工程を必要とせず、低コストで亜硝酸型硝化を効率的に行うことができる方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and its object is to eliminate the need for extra additives and processing steps, and to efficiently perform nitrite type nitrification at low cost. It is to provide a method that can be performed.

上記目的を達成するために本発明は、硝化槽を第一硝化槽と第二硝化槽の2槽に分けて、上流側に位置する一方の硝化槽内の遊離アンモニア濃度を亜硝酸酸化細菌の活性を阻害する濃度以上とし、下流側に位置する他方の硝化槽で残留アンモニア性窒素を硝化しつつ、アンモニア性窒素含有排水を流通させる方向を、第一硝化槽から第二硝化槽に向かう方向か又は第二硝化槽から第一硝化槽に向かう方向かのいずれかの方向を交互に変更することを特徴としているので、第一硝化槽と第二硝化槽では周期的に高アンモニア負荷での硝化が行われ、亜硝酸酸化細菌の活性が阻害される環境が形成されることになる。高アンモニア負荷により、一旦亜硝酸型となった硝化槽では、槽内のアンモニア濃度が低下しても一定期間亜硝酸型を維持するという性質があるため、周期的に両槽において高アンモニア負荷での運転を行えば、下流側となった硝化槽において、遊離アンモニア濃度が亜硝酸酸化細菌の活性を阻害する濃度以下に低下しても、硝酸が実質的に生成されることはない。以上の理由により、処理水にアンモニア性窒素を高濃度に残留させることなく、高い亜硝酸化率を実現できる。ちなみに、上記の原理から、運転開始時、下流側硝化槽内の汚泥は亜硝酸酸化細菌の活性が抑制された状態であることが好ましい。   In order to achieve the above object, the present invention divides the nitrification tank into two tanks, a first nitrification tank and a second nitrification tank, and determines the concentration of free ammonia in one nitrification tank located upstream from the nitrite oxidizing bacteria. The direction in which the ammonia nitrogen-containing wastewater is circulated while the remaining ammonia nitrogen is nitrified in the other nitrification tank located on the downstream side is the direction from the first nitrification tank to the second nitrification tank. Or the direction from the second nitrification tank to the first nitrification tank is alternately changed, so that the first nitrification tank and the second nitrification tank periodically have high ammonia loads. Nitrification is performed, and an environment in which the activity of nitrite-oxidizing bacteria is inhibited is formed. The nitrification tank that once became nitrite type due to high ammonia load has the property of maintaining the nitrite type for a certain period even if the ammonia concentration in the tank decreases. In the nitrification tank on the downstream side, nitric acid is not substantially produced even if the concentration of free ammonia falls below the concentration that inhibits the activity of nitrite oxidizing bacteria. For the above reasons, a high nitritation rate can be realized without leaving ammonia nitrogen in the treated water at a high concentration. Incidentally, from the above principle, it is preferable that the sludge in the downstream nitrification tank is in a state in which the activity of the nitrite oxidizing bacteria is suppressed at the start of operation.

本発明によれば、次のような効果がある。
(1)請求項1記載の発明によれば、余分な添加剤や処理工程を必要とせず、しかもコスト増を招くことなく、上流側から下流側に至る硝化槽において常に亜硝酸酸化細菌の活性は抑制され、亜硝酸型硝化プロセスを確実に実行することができる。
(2)請求項2、3記載の発明によれば、亜硝酸型硝化のより好ましい運転条件を提供することができる。
(3)請求項4記載の発明によれば、第一硝化槽および第二硝化槽のアンモニア酸化細菌の菌体量を高濃度に保持し、原水の負荷変動や高負荷に対応することができる。
(4)請求項5記載の発明によれば、原水中のアンモニア性窒素は速やかに亜硝酸に酸化される。
(6)請求項6記載の発明によれば、アンモニア性窒素含有排水の流通方向の変更タイミングを的確に検知することが可能で、請求項1記載のプロセスの最適運転方法を効率的に実行することができる。
The present invention has the following effects.
(1) According to the first aspect of the present invention, the activity of nitrite-oxidizing bacteria is always maintained in the nitrification tank from the upstream side to the downstream side without requiring extra additives and processing steps and without increasing the cost. Is suppressed, and the nitrite type nitrification process can be carried out reliably.
(2) According to the second and third aspects of the invention, more preferable operating conditions for nitrite nitrification can be provided.
(3) According to the invention described in claim 4, the amount of ammonia-oxidizing bacteria in the first nitrification tank and the second nitrification tank can be maintained at a high concentration, and it is possible to cope with load fluctuations and high loads of raw water. .
(4) According to the invention described in claim 5, ammonia nitrogen in the raw water is rapidly oxidized to nitrous acid.
(6) According to the invention described in claim 6, it is possible to accurately detect the change timing of the flow direction of the ammoniacal nitrogen-containing wastewater, and the optimum operation method of the process according to claim 1 is efficiently executed. be able to.

遊離アンモニア濃度が高くなると亜硝酸酸化細菌の生育が阻害されるので、アンモニア性窒素はアンモニア酸化細菌により亜硝酸性窒素の段階の酸化で止められる。そのためには、上流側に位置する硝化槽内の遊離アンモニア濃度が10mg/L以上であることが好ましく、20mg/L以上であることがより好ましい。   Since the growth of nitrite-oxidizing bacteria is inhibited when the concentration of free ammonia increases, ammonia nitrogen is stopped by the oxidation of nitrite nitrogen by ammonia-oxidizing bacteria. For this purpose, the concentration of free ammonia in the nitrification tank located on the upstream side is preferably 10 mg / L or more, and more preferably 20 mg / L or more.

また、亜硝酸型硝化のより好ましい運転条件を実現するためには、第一硝化槽および第二硝化槽内のpHが7〜9であって、温度が25〜40℃であることが好ましく、pHは7.5〜9であって、温度は30〜40℃であることがより好ましい。   Moreover, in order to implement | achieve the more preferable operating condition of nitrite type nitrification, it is preferable that the pH in a 1st nitrification tank and a 2nd nitrification tank is 7-9, and temperature is 25-40 degreeC, More preferably, the pH is 7.5 to 9, and the temperature is 30 to 40 ° C.

本明細書において、「アンモニア性窒素」とは次式に示す「NH4 +」と「NH3」の合計をいい、「遊離アンモニア」とは次式に示す「NH3」をいう。 In this specification, “ammonia nitrogen” refers to the sum of “NH 4 + ” and “NH 3 ” represented by the following formula, and “free ammonia” refers to “NH 3 ” represented by the following formula.

Figure 2005131451
遊離アンモニアの濃度はアンモニア性窒素濃度を測定することにより、下記式により計算した。
Figure 2005131451
The concentration of free ammonia was calculated by the following equation by measuring the ammoniacal nitrogen concentration.

Figure 2005131451
第一硝化槽および第二硝化槽がアンモニア酸化細菌の担持担体を備えていることが好ましい。第一硝化槽および第二硝化槽のアンモニア酸化細菌の菌体量を高濃度に保持し、原水の負荷変動や高負荷に対応することができるからである。担体の材質としては、ポリプロピレン、ポリウレタン、セルロース、ポリエステル、ポリビニルアルコール、ポリエチレングリコール系樹脂、アクリル系樹脂、アクリルアミド系樹脂、オレフィン系樹脂、スチレン系樹脂、ポリエーテル等の有機高分子化合物からなる、内部に網目構造を有するプラスチック担体、スポンジ担体、繊維状担体、不織布、ゲル担体、その他に多孔性無機高分子化合物、活性炭などが挙げられる。担体の比重は0.8〜1.5、細孔の孔径は10〜1000μm、空隙率は30〜90%、比表面積は500〜10000m2/m3、粒径は1〜20mmのものが好ましい。
Figure 2005131451
The first nitrification tank and the second nitrification tank are preferably provided with a carrier for supporting ammonia-oxidizing bacteria. This is because the amount of the ammonia-oxidizing bacteria in the first nitrification tank and the second nitrification tank can be maintained at a high concentration, and it is possible to cope with load fluctuations and high loads of raw water. The material of the carrier is made of an organic polymer compound such as polypropylene, polyurethane, cellulose, polyester, polyvinyl alcohol, polyethylene glycol resin, acrylic resin, acrylamide resin, olefin resin, styrene resin, or polyether. In addition, a plastic carrier having a network structure, a sponge carrier, a fibrous carrier, a nonwoven fabric, a gel carrier, a porous inorganic polymer compound, activated carbon, and the like can be given. The specific gravity of the support is preferably 0.8 to 1.5, the pore diameter is 10 to 1000 μm, the porosity is 30 to 90%, the specific surface area is 500 to 10,000 m 2 / m 3 , and the particle diameter is preferably 1 to 20 mm. .

第一硝化槽および第二硝化槽の溶存酸素濃度は、2mg/L以上であることが好ましい。原水中のアンモニア性窒素が速やかに亜硝酸に酸化されるからである。そのためには、溶存酸素濃度は、4mg/L以上であることがより好ましい。   The dissolved oxygen concentration in the first nitrification tank and the second nitrification tank is preferably 2 mg / L or more. This is because ammonia nitrogen in the raw water is rapidly oxidized to nitrous acid. For that purpose, the dissolved oxygen concentration is more preferably 4 mg / L or more.

下流側に位置する硝化槽内の硝酸濃度を測定し、その測定した硝酸の濃度により、アンモニア性窒素含有排水を流通させる方向を、第一硝化槽から第二硝化槽に向かう方向か又は第二硝化槽から第一硝化槽に向かう方向かのいずれかの方向を交互に変更することが好ましい。これは以下の理由によるものである。   The concentration of nitric acid in the nitrification tank located downstream is measured, and the direction in which the ammonia-containing nitrogen-containing waste water is circulated is determined from the first nitrification tank toward the second nitrification tank or the second, depending on the measured concentration of nitric acid. It is preferable to alternately change any of the directions from the nitrification tank toward the first nitrification tank. This is due to the following reason.

高アンモニア性窒素負荷では亜硝酸酸化細菌の生育が阻害されるので、硝化槽内を高アンモニア性窒素負荷とすれば亜硝酸型硝化を優先的に進行させることができる。しかし、硝化槽内の被処理水のアンモニア濃度が高いと、硝化槽から排出される被処理水に高濃度のアンモニア性窒素が含まれる。アンモニア性窒素はそのまま排出されることになるため、別途アンモニア除去工程が必要である。   Since the growth of nitrite oxidizing bacteria is inhibited by high ammonia nitrogen load, nitrite type nitrification can be preferentially advanced if the nitrification tank is made high ammonia nitrogen load. However, when the ammonia concentration of the water to be treated in the nitrification tank is high, the water to be treated discharged from the nitrification tank contains a high concentration of ammoniacal nitrogen. Since ammonia nitrogen is discharged as it is, a separate ammonia removal step is required.

そこで、本発明によれば、硝化槽を第一硝化槽と第二硝化槽の2槽に分けて、上流側に位置する硝化槽内の遊離アンモニア濃度を亜硝酸酸化細菌の活性を阻害する濃度以上とすることで上流側の硝化槽ではアンモニア性窒素の硝酸化が阻まれ、上流側硝化槽内において硝酸は実質的に生成せず、アンモニア性窒素の一部が亜硝酸とされ、下流側硝化槽において残留したアンモニア性窒素が硝化される。   Therefore, according to the present invention, the nitrification tank is divided into two tanks, a first nitrification tank and a second nitrification tank, and the free ammonia concentration in the nitrification tank located upstream is a concentration that inhibits the activity of nitrite oxidizing bacteria. By doing so, nitrification of ammonia nitrogen is prevented in the upstream nitrification tank, nitric acid is not substantially generated in the upstream nitrification tank, and a part of the ammonia nitrogen is converted to nitrous acid, and the downstream side Ammonia nitrogen remaining in the nitrification tank is nitrified.

また、アンモニア性窒素含有排水を流通させる方向を第一硝化槽から第二硝化槽に向かう方向か又は第二硝化槽から第一硝化槽に向かう方向かのいずれかの方向を交互に変更することを特徴としているので、第一硝化槽及び第二硝化槽において周期的に高アンモニア負荷の硝化が行われ、両槽において常に亜硝酸酸化細菌は活性を失っている。そのため、下流側硝化槽内の遊離アンモニア濃度が亜硝酸酸化細菌の生育を阻害する濃度以下であっても、下流側硝化槽において亜硝酸酸化細菌がたちまち活性を回復するということはなく、アンモニア酸化細菌による亜硝酸生成が優先的に起こるため、硝酸の生成は実質的に起こりにくい。   In addition, the direction in which the ammonia-containing nitrogen-containing wastewater is circulated is alternately changed to either the direction from the first nitrification tank to the second nitrification tank or the direction from the second nitrification tank to the first nitrification tank. Therefore, nitrification with a high ammonia load is periodically performed in the first nitrification tank and the second nitrification tank, and the nitrite-oxidizing bacteria always lose activity in both tanks. Therefore, even if the free ammonia concentration in the downstream nitrification tank is below the concentration that inhibits the growth of nitrite-oxidizing bacteria, the nitrite-oxidizing bacteria do not immediately recover their activity in the downstream nitrification tank. Since nitrite production by bacteria occurs preferentially, nitric acid production is substantially less likely to occur.

このようにして、上流側硝化槽においてはアンモニア性窒素の一部が亜硝酸にされ、下流側硝化槽においては残留したアンモニア性窒素が亜硝酸にされ、ほとんど硝酸を生成することはなく、亜硝酸型硝化プロセスを確実且つ効率的に実行することができる。   In this way, in the upstream nitrification tank, a part of the ammonia nitrogen is converted to nitrous acid, and in the downstream nitrification tank, the remaining ammonia nitrogen is converted to nitrous acid, hardly generating nitric acid. The nitric acid type nitrification process can be carried out reliably and efficiently.

以下に、本発明の実施例を図面を参照しながら説明する。図1は、本発明のアンモニア性窒素含有排水の硝化方法を実施するに好適な装置の概念図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram of an apparatus suitable for carrying out the nitrification method for ammonia nitrogen-containing waste water of the present invention.

図1において、1は第一硝化槽、2は第二硝化槽であり、周期的に図1(a)(b)のように排水を流通させる方向を交互に切り換える。図1(a)においては、第一硝化槽1が上流側に位置し、第二硝化槽2が下流側に位置するので、上流側に位置する第一硝化槽1の被処理水の遊離アンモニア濃度を亜硝酸酸化細菌の活性を阻害する濃度以上とし、下流側に位置する第二硝化槽2で残留アンモニア性窒素を硝化する。   In FIG. 1, 1 is a 1st nitrification tank, 2 is a 2nd nitrification tank, and switches the direction which distribute | circulates waste_water | drain like FIG.1 (a) (b) periodically. In FIG. 1A, since the first nitrification tank 1 is located on the upstream side and the second nitrification tank 2 is located on the downstream side, free ammonia in the water to be treated in the first nitrification tank 1 located on the upstream side. The concentration is made higher than the concentration that inhibits the activity of nitrite-oxidizing bacteria, and residual ammoniacal nitrogen is nitrified in the second nitrification tank 2 located on the downstream side.

図1(a)では、例えば、第一硝化槽1の運転条件は、槽内の遊離アンモニア濃度を亜硝酸酸化細菌の活性を阻害する20mg/リットルとし、被処理水のpHを8.1とし、被処理水の温度を35℃とし、溶存酸素濃度を5mg/リットルとすることで、第一硝化槽1に流入したアンモニア性窒素含有排水は、第一硝化槽1では亜硝酸酸化細菌の活性が阻害されて、アンモニア性窒素の一部がアンモニア酸化細菌を保持した担体3により亜硝酸にされる。   In FIG. 1 (a), for example, the operating condition of the first nitrification tank 1 is that the concentration of free ammonia in the tank is 20 mg / liter that inhibits the activity of nitrite oxidizing bacteria, and the pH of the water to be treated is 8.1. By setting the temperature of the water to be treated to 35 ° C. and the dissolved oxygen concentration to 5 mg / liter, the ammonia-containing nitrogen-containing wastewater flowing into the first nitrification tank 1 Is inhibited, and a part of ammonia nitrogen is converted into nitrite by the carrier 3 holding ammonia oxidizing bacteria.

次ぎに、第二硝化槽2に被処理水は流入する。例えば、第二硝化槽2の運転条件は、槽内のpHを8.1とし、温度を35℃とし、溶存酸素濃度を5mg/リットルとすることで、被処理水中の残留アンモニア性窒素はアンモニア酸化細菌3により亜硝酸にされる。   Next, the water to be treated flows into the second nitrification tank 2. For example, the operating condition of the second nitrification tank 2 is that the pH in the tank is 8.1, the temperature is 35 ° C., and the dissolved oxygen concentration is 5 mg / liter. It is made nitrite by oxidizing bacteria 3.

上記した遊離アンモニア濃度、pH、水温および溶存酸素濃度は、もちろん上記以外の数値を選択することが可能であり、処理対象である被処理水の性状に応じて亜硝酸型硝化プロセスを実行するために必要な運転条件を選択することができる。   The above-mentioned free ammonia concentration, pH, water temperature and dissolved oxygen concentration can of course be selected from numerical values other than those described above, and the nitrite type nitrification process is performed according to the properties of the water to be treated. It is possible to select the necessary operating conditions.

下流側の第二硝化槽2内のアンモニア性窒素の濃度は低いが、排水の流通方向の周期的な切換運転操作により、亜硝酸酸化細菌は活性を失っている。そのため、下流側の第二硝化槽2内の遊離アンモニア濃度が亜硝酸酸化細菌の生育を阻害する濃度であっても、下流側の第二硝化槽2において硝酸の生成は起こりにくくなる。   Although the concentration of ammoniacal nitrogen in the second nitrification tank 2 on the downstream side is low, the nitrite-oxidizing bacteria have lost activity due to the periodic switching operation in the flow direction of the waste water. Therefore, even if the concentration of free ammonia in the second nitrification tank 2 on the downstream side is a concentration that inhibits the growth of nitrite-oxidizing bacteria, nitric acid is hardly generated in the second nitrification tank 2 on the downstream side.

しかし、時間の経過とともにアンモニア濃度の低い下流側の第二硝化槽2において亜硝酸酸化細菌は活性を取り戻して硝酸が生成されるため、ある期間経過した段階で、図1(b)に示すように、第二硝化槽2から第一硝化槽1に向かう方向にアンモニア性窒素含有排水の流通方向を変更すれば、第二硝化槽2が上流側に位置し、第一硝化槽1が下流側に位置することになる。   However, as the time passes, the nitrite-oxidizing bacteria regain activity in the downstream second nitrification tank 2 where the ammonia concentration is low, so that nitric acid is generated. As shown in FIG. If the flow direction of the ammonia nitrogen-containing waste water is changed from the second nitrification tank 2 to the first nitrification tank 1, the second nitrification tank 2 is located on the upstream side, and the first nitrification tank 1 is on the downstream side. Will be located.

例えば、上流側の第二硝化槽2の運転条件は、槽内の遊離アンモニア濃度を亜硝酸酸化細菌の生育を阻害する20mg/リットルとし、pHを8.1とし、温度を35℃とし、溶存酸素濃度を5mg/リットルとし、下流側の第一硝化槽1の運転条件は、槽内のpHを8.1とし、温度を35℃とし、溶存酸素濃度を5mg/リットルとすることで、第二硝化槽2に流入したアンモニア性窒素含有排水は、第二硝化槽2では亜硝酸酸化細菌の生育が阻害されて、アンモニア性窒素の一部はアンモニア酸化細菌を保持した担体3により亜硝酸にされる。   For example, the operating conditions of the upstream second nitrification tank 2 are: the concentration of free ammonia in the tank is 20 mg / liter which inhibits the growth of nitrite-oxidizing bacteria, the pH is 8.1, the temperature is 35 ° C., and dissolved. The operating condition of the first nitrification tank 1 on the downstream side is 5 mg / liter, and the pH in the tank is 8.1, the temperature is 35 ° C., and the dissolved oxygen concentration is 5 mg / liter. In the second nitrification tank 2, the growth of nitrite oxidizing bacteria is inhibited in the second nitrification tank 2, and a part of the ammonia nitrogen is converted to nitrite by the carrier 3 holding the ammonia oxidizing bacteria. Is done.

そして、下流側の第一硝化槽1において被処理水中の残留アンモニア性窒素はアンモニア酸化細菌3により亜硝酸にされる。また、下流側の第一硝化槽1においては先の高アンモニア濃度運転のために、亜硝酸酸化細菌の活性は阻害されており、一定期間、硝酸の生成はほとんど起こらない。   In the first nitrification tank 1 on the downstream side, residual ammonia nitrogen in the water to be treated is converted into nitrous acid by the ammonia oxidizing bacteria 3. Further, in the first nitrification tank 1 on the downstream side, the activity of the nitrite oxidizing bacteria is inhibited due to the above high ammonia concentration operation, and the production of nitric acid hardly occurs for a certain period.

この場合の硝化槽の運転条件も、亜硝酸型硝化プロセスを実行するために、処理対象である被処理水の性状に応じて上記した遊離アンモニア濃度、pH、水温および溶存酸素濃度以外の数値を選択できることはもちろんである。   The operating conditions of the nitrification tank in this case are also numerical values other than the above-mentioned free ammonia concentration, pH, water temperature and dissolved oxygen concentration according to the properties of the water to be treated in order to execute the nitrite type nitrification process. Of course you can choose.

このように、硝化槽を第一硝化槽1と第二硝化槽2の2槽に分けて、上流側に位置する一方の硝化槽内の遊離アンモニア濃度を亜硝酸酸化細菌の活性を阻害する濃度以上とし、下流側に位置する他方の硝化槽で残留アンモニア性窒素を亜硝酸にしつつ、アンモニア性窒素含有排水を流通させる方向を、第一硝化槽1から第二硝化槽2に向かう方向と第二硝化槽2から第一硝化槽1に向かう方向のいずれかの方向を交互に変更することにより、上流側に位置するいずれか一方の硝化槽においては亜硝酸酸化細菌の活性は阻害され、下流側に位置するいずれか一方の硝化槽内の硝酸濃度は一定レベル以下に保持される。このように、上流側および下流側のいずれの硝化槽においてもほとんど硝酸を生成することはなく、亜硝酸型硝化プロセスを確実且つ効率的に実行することができる。   In this way, the nitrification tank is divided into two tanks, the first nitrification tank 1 and the second nitrification tank 2, and the concentration of free ammonia in one nitrification tank located upstream is the concentration that inhibits the activity of nitrite oxidizing bacteria. The direction in which the ammonia nitrogen-containing wastewater is circulated while the residual ammonia nitrogen is converted to nitrous acid in the other nitrification tank located on the downstream side is the direction from the first nitrification tank 1 to the second nitrification tank 2 By alternately changing one of the directions from the two nitrification tanks 2 to the first nitrification tank 1, the activity of the nitrite oxidizing bacteria is inhibited in any one of the nitrification tanks located upstream, and the downstream The nitric acid concentration in one of the nitrification tanks located on the side is kept below a certain level. In this manner, nitric acid is hardly generated in both the upstream and downstream nitrification tanks, and the nitrite type nitrification process can be executed reliably and efficiently.

アンモニア性窒素含有排水の流通方向の変更時期は、例えば、下流側に位置する硝化槽内の硝酸性窒素濃度が20mg/リットルを超えた段階とすることができる。   The change timing of the flow direction of the ammonia-containing nitrogen-containing wastewater can be, for example, a stage where the nitrate nitrogen concentration in the nitrification tank located on the downstream side exceeds 20 mg / liter.

図2は硝化装置と脱窒装置を組み合わせた例を示す概略配置図である。図2(a)において、アンモニア性窒素含有排水は第一硝化槽1を上流側とし、第二硝化槽2を下流側とするように経路4から脱窒槽5に通入され、下流側に位置する第二硝化槽2においてアンモニア性窒素の大部分が亜硝酸化された被処理水の一部は経路6を経て脱窒槽5に送られ、脱窒される。残りの処理水は経路8から排出される。   FIG. 2 is a schematic layout showing an example in which a nitrification device and a denitrification device are combined. In FIG. 2 (a), the ammonia-containing nitrogen-containing wastewater is passed from the path 4 to the denitrification tank 5 so that the first nitrification tank 1 is on the upstream side and the second nitrification tank 2 is on the downstream side. In the second nitrification tank 2, a part of the water to be treated in which most of the nitrogenous nitrogen is nitritized is sent to the denitrification tank 5 via the path 6 and denitrified. The remaining treated water is discharged from the path 8.

そして、一定期間経過後、下流側の第二硝化槽2内の硝酸濃度がある濃度以上になると、図2(b)に示すように、アンモニア性窒素含有排水は第二硝化槽2を上流側とし、第一硝化槽1を下流側とするように流通方向を変更される。図2(b)において、下流側に位置する第一硝化槽1においてアンモニア性窒素の大部分が亜硝酸化された被処理水の一部は経路9を経て脱窒槽5に送られ、脱窒される。残りの処理水は経路11から排出される。   Then, when the concentration of nitric acid in the second nitrification tank 2 on the downstream side becomes equal to or higher than a certain concentration after the lapse of a certain period of time, the ammonia-containing nitrogen-containing waste water flows upstream from the second nitrification tank 2 as shown in FIG. The flow direction is changed so that the first nitrification tank 1 is on the downstream side. In FIG. 2 (b), in the first nitrification tank 1 located on the downstream side, a part of the water to be treated in which most of the ammonia nitrogen has been nitritized is sent to the denitrification tank 5 via the route 9, and denitrified. Is done. The remaining treated water is discharged from the path 11.

図3は硝化装置と脱窒装置を組み合わせた他の例を示す概略配置図である。図2は硝化装置と脱窒装置が別置型であるが、図3は硝化装置と脱窒装置が同一槽内に近接して配置された例を示す図である。図3(a)において、経路12から脱窒槽5に流入したアンモニア性窒素含有排水は、上流側の第一硝化槽1から下流側の第二硝化槽2を経て排水の一部は脱窒槽5に返送される。残りの排水は、経路13から排出される。   FIG. 3 is a schematic layout diagram showing another example in which a nitrification apparatus and a denitrification apparatus are combined. FIG. 2 is a diagram showing an example in which the nitrification device and the denitrification device are separately installed, while FIG. 3 is a diagram showing an example in which the nitrification device and the denitrification device are arranged close to each other in the same tank. In FIG. 3A, the ammonia nitrogen-containing wastewater that has flowed into the denitrification tank 5 from the path 12 passes from the first nitrification tank 1 on the upstream side to the second nitrification tank 2 on the downstream side, and a part of the wastewater is denitrification tank 5. Will be returned. The remaining waste water is discharged from the path 13.

そして、一定期間経過後、下流側の第二硝化槽2内の硝酸濃度がある濃度以上になると、図3(b)に示すように、アンモニア性窒素含有排水は第二硝化槽2を上流側とし、第一硝化槽1を下流側とするように流通方向を変更される。図3(b)において、経路12から脱窒槽5に流入したアンモニア性窒素含有排水は、上流側の第二硝化槽2から下流側の第二硝化槽1を経て排水の一部は脱窒槽5に返送される。排水の残りは経路14から排出される。   Then, after a certain period of time, when the concentration of nitric acid in the second nitrification tank 2 on the downstream side becomes a certain concentration or more, as shown in FIG. The flow direction is changed so that the first nitrification tank 1 is on the downstream side. In FIG. 3B, the ammonia nitrogen-containing wastewater that has flowed into the denitrification tank 5 from the path 12 passes from the second nitrification tank 2 on the upstream side to the second nitrification tank 1 on the downstream side, and a part of the wastewater is denitrification tank 5. Will be returned. The remainder of the waste water is discharged from the path 14.

次ぎに、アンモニア性窒素含有排水中の「遊離アンモニア濃度」と「NO3−NおよびNOX−N濃度」との関係を図4に示す。「NOX−N」とは、「NO3−N」と「NO2−N」を合計したものをいい、図4において、記号「○」は、「NO3−N」を示し、記号「×」は、「NOX−N」を示す。図4に明らかなように、遊離アンモニア濃度が高くなるに従ってNO3−Nの濃度は低くなっており、硝化槽内で亜硝酸酸化細菌の活性が阻害されている状況を読みとることができる。すなわち、遊離アンモニア濃度を20mg/リットルとすることで亜硝酸酸化細菌の活性は大幅に低下し、遊離アンモニア濃度を40mg/リットル以上とすることで、ほぼ完全に亜硝酸酸化細菌の活動は停止されることが分かる。ただし、硝化槽内の遊離アンモニア濃度を必要以上に高濃度に維持すると、下流側硝化槽において硝化されずにアンモニア性窒素が残留するおそれがあるため、上流側硝化槽処理水の遊離アンモニア濃度が下流側硝化槽の硝化能力を超えないような上流側硝化槽内遊離アンモニア濃度とすることが好ましい。 Next, FIG. 4 shows the relationship between the “free ammonia concentration” and the “NO 3 —N and NO X —N concentration” in the ammoniacal nitrogen-containing waste water. “NO X -N” means the sum of “NO 3 -N” and “NO 2 -N”. In FIG. 4, the symbol “◯” indicates “NO 3 -N”, and the symbol “ “ X ” indicates “NO X -N”. As is apparent from FIG. 4, the concentration of NO 3 —N decreases as the free ammonia concentration increases, and the situation where the activity of nitrite oxidizing bacteria is inhibited in the nitrification tank can be read. That is, the activity of nitrite oxidizing bacteria is greatly reduced by setting the free ammonia concentration to 20 mg / liter, and the activity of nitrite oxidizing bacteria is almost completely stopped by setting the free ammonia concentration to 40 mg / liter or more. I understand that However, if the free ammonia concentration in the nitrification tank is kept higher than necessary, ammonia nitrogen may remain without being nitrified in the downstream nitrification tank. It is preferable to set the concentration of free ammonia in the upstream nitrification tank so as not to exceed the nitrification capacity of the downstream nitrification tank.

次ぎに、本発明の方法によりアンモニア性窒素含有排水を硝化処理した場合に得られた水質について説明する。   Next, the water quality obtained when the ammonia nitrogen-containing wastewater is nitrified by the method of the present invention will be described.

本発明の方法を適用した装置の概略構成は図1に示すとおりであって、第一硝化槽1と第二硝化槽2はそれぞれ4リットルの透明塩化ビニル樹脂製の角槽からなる。   The schematic configuration of an apparatus to which the method of the present invention is applied is as shown in FIG. 1, and the first nitrification tank 1 and the second nitrification tank 2 are each composed of a 4-liter square tank made of transparent vinyl chloride resin.

そして、図5に示すように、アンモニア性窒素(NH4−N)濃度が870mg/リットル である人工アンモニア性窒素含有排水を、第一硝化槽1から第二硝化槽2に向けて6リットル/日通入した。その際、第一硝化槽および第二硝化槽内はpH8.1とし、温度は35℃とし、溶存酸素濃度が5mg/リットルとなるようにした。15は不織布からなる細菌担持担体を示す。アンモニア性窒素含有排水の通入開始から二日目の第一硝化槽1のNH4−N濃度は260mg/リットル、NO2−N濃度は610mg/リットル、NO3−N 濃度は2.6mg/リットルであり、第二硝化槽2のNH4−N 濃度は7.8mg/リットル、NO2−N濃度は850mg/リットル、NO3−N 濃度は9.4mg/リットルであった。第一硝化槽1内のNH4−N濃度は200mg/リットル前後に保たれ、第一硝化槽内での硝酸の生成はほとんどないが、第二硝化槽内のNO3−N 濃度は時間経過とともに上昇し、アンモニア性窒素含有排水の通入開始から1箇月後に、NO3−N 濃度は21mg/リットルとなった。そこで、これ以上の第二硝化槽内の亜硝酸酸化細菌の活性の回復を防ぐために、上記アンモニア性窒素含有排水の流通方向を、第二硝化槽2から第一硝化槽1に向けて変更した。その際、第一硝化槽および第二硝化槽内はpH8.1とし、温度は35℃とし、溶存酸素濃度が5mg/リットルとなるようにした。その結果、流通方向を変更後二日目の第二硝化槽2のNH4−N 濃度は400mg/リットル、NO2−N濃度は460mg/リットル、NO3−N 濃度は8.4mg/リットルであり、第一硝化槽1のNH4−N 濃度は15mg/リットル、NO2−N濃度は840mg/リットル、NO3−N 濃度は12mg/リットルであった。 Then, as shown in FIG. 5, artificial ammonia nitrogen-containing waste water having an ammonia nitrogen (NH 4 —N) concentration of 870 mg / liter is transferred from the first nitrification tank 1 to the second nitrification tank 2 at 6 liter / liter. I went through the day. At that time, the inside of the first nitrification tank and the second nitrification tank was set to pH 8.1, the temperature was set to 35 ° C., and the dissolved oxygen concentration was set to 5 mg / liter. Reference numeral 15 denotes a bacteria-supporting carrier made of a nonwoven fabric. The NH 4 -N concentration in the first nitrification tank 1 on the second day after the start of the introduction of the ammonia-containing wastewater is 260 mg / liter, the NO 2 -N concentration is 610 mg / liter, and the NO 3 -N concentration is 2.6 mg / liter. The NH 4 —N concentration in the second nitrification tank 2 was 7.8 mg / liter, the NO 2 —N concentration was 850 mg / liter, and the NO 3 —N concentration was 9.4 mg / liter. The NH 4 -N concentration in the first nitrification tank 1 is kept around 200 mg / liter, and nitric acid is hardly produced in the first nitrification tank, but the NO 3 -N concentration in the second nitrification tank is time-lapsed. One month after the start of the introduction of the ammoniacal nitrogen-containing wastewater, the NO 3 —N concentration became 21 mg / liter. Therefore, in order to prevent further recovery of the activity of the nitrite oxidizing bacteria in the second nitrification tank, the flow direction of the ammoniacal nitrogen-containing wastewater was changed from the second nitrification tank 2 to the first nitrification tank 1. . At that time, the inside of the first nitrification tank and the second nitrification tank was set to pH 8.1, the temperature was set to 35 ° C., and the dissolved oxygen concentration was set to 5 mg / liter. As a result, the NH 4 -N concentration in the second nitrification tank 2 on the second day after changing the flow direction is 400 mg / liter, the NO 2 -N concentration is 460 mg / liter, and the NO 3 -N concentration is 8.4 mg / liter. In the first nitrification tank 1, the NH 4 —N concentration was 15 mg / liter, the NO 2 —N concentration was 840 mg / liter, and the NO 3 —N concentration was 12 mg / liter.

このように、アンモニア性窒素含有排水の流通方向を変更することで、硝酸の発生を抑え、亜硝酸を優先的に生成することができた。   Thus, by changing the flow direction of the ammoniacal nitrogen-containing wastewater, it was possible to suppress the generation of nitric acid and preferentially generate nitrous acid.

本発明は、アンモニア性窒素含有排水をほとんど硝酸化することなく、効率よく亜硝酸化する装置に適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to an apparatus that efficiently nitrites ammoniated nitrogen-containing wastewater with little nitrification.

本発明のアンモニア性窒素含有排水の硝化方法を実施するに好適な装置の概念図である。It is a conceptual diagram of the apparatus suitable for implementing the nitrification method of the ammonia nitrogen containing waste_water | drain of this invention. 本発明のアンモニア性窒素含有排水の硝化方法および後続する脱窒方法を実施するに好適な装置の一実施例の概略配置図である。1 is a schematic layout view of an embodiment of an apparatus suitable for carrying out the nitrification method for ammonia nitrogen-containing waste water and the subsequent denitrification method of the present invention. FIG. 本発明のアンモニア性窒素含有排水の硝化方法および後続する脱窒方法を実施するに好適な装置の他の実施例の概略配置図である。It is a schematic arrangement view of another embodiment of an apparatus suitable for carrying out the nitrification method for ammonia nitrogen-containing waste water and the subsequent denitrification method of the present invention. アンモニア性窒素含有排水中の「遊離アンモニア濃度」と「NO3−NおよびNOX−N濃度」との関係を示す図である。It is a diagram showing the relationship between the "free ammonia concentration" of ammonium nitrogen-containing wastewater as "NO 3 -N and NO X -N concentration". 本発明のアンモニア性窒素含有排水の硝化方法を実施するに好適な装置のさらに他の実施例の概略構成図である。It is a schematic block diagram of the further another Example of the apparatus suitable for implementing the nitrification method of ammonia nitrogen containing waste_water | drain of this invention.

符号の説明Explanation of symbols

1 第一硝化槽
2 第二硝化槽
5 脱窒槽
15 細菌担持担体
















1 First nitrification tank 2 Second nitrification tank 5 Denitrification tank 15 Bacterial carrier
















Claims (6)

アンモニア性窒素を含有する排水を硝化槽に供給してアンモニア酸化細菌の存在下に曝気して硝化処理する方法であって、硝化槽を第一硝化槽と第二硝化槽の2槽に分けて、上流側に位置する一方の硝化槽内の遊離アンモニア濃度を亜硝酸酸化細菌の活性を阻害する濃度以上とし、下流側に位置する他方の硝化槽で残留アンモニア性窒素を硝化しつつ、アンモニア性窒素含有排水を流通させる方向を、第一硝化槽から第二硝化槽に向かう方向か又は第二硝化槽から第一硝化槽に向かう方向かのいずれかの方向を交互に変更することを特徴とするアンモニア性窒素含有排水の硝化方法。   A method of supplying wastewater containing ammonia nitrogen to a nitrification tank and aeration in the presence of ammonia-oxidizing bacteria to nitrify the nitrification tank into two tanks, a first nitrification tank and a second nitrification tank The concentration of free ammonia in one nitrification tank located upstream is higher than the concentration that inhibits the activity of nitrite-oxidizing bacteria, while the remaining ammonia nitrogen is nitrified in the other nitrification tank located downstream, The direction in which the nitrogen-containing wastewater is circulated is characterized by alternately changing either the direction from the first nitrification tank to the second nitrification tank or the direction from the second nitrification tank to the first nitrification tank. A method for nitrifying wastewater containing ammonia nitrogen. 上流側に位置する硝化槽内の遊離アンモニア濃度が10mg/L以上であることを特徴とする請求項1記載のアンモニア性窒素含有排水の硝化方法。 The method for nitrifying ammonia-containing nitrogen-containing wastewater according to claim 1, wherein the concentration of free ammonia in the nitrification tank located on the upstream side is 10 mg / L or more. 第一硝化槽および第二硝化槽内のpHが7以上であって、温度が25℃以上であることを特徴とする請求項1または2記載のアンモニア性窒素含有排水の硝化方法。 The method for nitrifying ammonia nitrogen-containing wastewater according to claim 1 or 2, wherein the pH in the first nitrification tank and the second nitrification tank is 7 or more and the temperature is 25 ° C or more. 第一硝化槽および第二硝化槽が菌体を保持するための担体を備えていることを特徴とする請求項1、2または3記載のアンモニア性窒素含有排水の硝化方法。 The method for nitrifying ammonia-containing nitrogen-containing wastewater according to claim 1, 2 or 3, wherein the first nitrification tank and the second nitrification tank are provided with a carrier for holding cells. 第一硝化槽および第二硝化槽の溶存酸素濃度が2mg/L以上であることを特徴とする請求項1、2、3または4記載のアンモニア性窒素含有排水の硝化方法。 The method for nitrifying ammonia nitrogen-containing wastewater according to claim 1, wherein the dissolved oxygen concentration in the first nitrification tank and the second nitrification tank is 2 mg / L or more. 下流側に位置する硝化槽内の硝酸濃度を測定し、その測定した硝酸濃度により、アンモニア性窒素含有排水を流通させる方向を変更することを特徴とする請求項1、2、3、4または5記載のアンモニア性窒素含有排水の硝化方法。



The nitric acid concentration in the nitrification tank located downstream is measured, and the direction in which the ammoniacal nitrogen-containing wastewater is circulated is changed according to the measured nitric acid concentration. The nitrification method of the ammonia nitrogen containing waste_water | drain of description.



JP2003367160A 2003-10-28 2003-10-28 Nitrification method for ammonia nitrogen-containing wastewater Pending JP2005131451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367160A JP2005131451A (en) 2003-10-28 2003-10-28 Nitrification method for ammonia nitrogen-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367160A JP2005131451A (en) 2003-10-28 2003-10-28 Nitrification method for ammonia nitrogen-containing wastewater

Publications (1)

Publication Number Publication Date
JP2005131451A true JP2005131451A (en) 2005-05-26

Family

ID=34645251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367160A Pending JP2005131451A (en) 2003-10-28 2003-10-28 Nitrification method for ammonia nitrogen-containing wastewater

Country Status (1)

Country Link
JP (1) JP2005131451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2016107219A (en) * 2014-12-08 2016-06-20 株式会社日立製作所 Nitrogen treatment method and nitrogen treatment apparatus

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370551A (en) * 1976-12-03 1978-06-23 Sumitomo Chem Co Ltd Method of nitrifying ammonia contained in sewage
JPS5992096A (en) * 1982-11-19 1984-05-28 Fuji Electric Co Ltd Biological nitrification of waste water
JPS62286598A (en) * 1986-06-04 1987-12-12 Ebara Infilco Co Ltd Biological nitration and denitrification of high temperature ammonia-containing waste water
JPS6316100A (en) * 1986-07-07 1988-01-23 Ebara Infilco Co Ltd Biological nitraification and denitrification for drainage containing ammonia
JPS6323795A (en) * 1986-07-16 1988-02-01 Ebara Infilco Co Ltd Biological nitrification of ammonia-containing aqueous solution
JPH02198695A (en) * 1989-01-25 1990-08-07 Kurita Water Ind Ltd Nitrite type nitrification method
JPH08323379A (en) * 1995-06-02 1996-12-10 Chiyoda Corp Treatment of nitrogen-containing waste water
JPH0975984A (en) * 1995-09-11 1997-03-25 Hitachi Plant Eng & Constr Co Ltd Biological nitrogen removing device
JPH09234492A (en) * 1996-02-29 1997-09-09 Mitsubishi Heavy Ind Ltd Biological nitrogen removing method for waste water
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2002172399A (en) * 2000-12-06 2002-06-18 Kurita Water Ind Ltd Denitrification treatment method
JP2003010883A (en) * 2001-07-04 2003-01-14 Kurita Water Ind Ltd Nitration method of ammonia nitrogen-containing water
JP2003033787A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for nitrifying drainage
JP2003033788A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for treating raw water containing phosphorus and ammoniacal nitrogen
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen
JP2003053382A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Nitrification-denitrification treatment method
JP2003211177A (en) * 2002-01-25 2003-07-29 Hitachi Plant Eng & Constr Co Ltd Nitrous acid type nitrification carrier, method for manufacturing the same and denitrification method and apparatus using the same
JP2003326297A (en) * 2002-05-09 2003-11-18 Hitachi Plant Eng & Constr Co Ltd Nitrification method for waste water
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370551A (en) * 1976-12-03 1978-06-23 Sumitomo Chem Co Ltd Method of nitrifying ammonia contained in sewage
JPS5992096A (en) * 1982-11-19 1984-05-28 Fuji Electric Co Ltd Biological nitrification of waste water
JPS62286598A (en) * 1986-06-04 1987-12-12 Ebara Infilco Co Ltd Biological nitration and denitrification of high temperature ammonia-containing waste water
JPS6316100A (en) * 1986-07-07 1988-01-23 Ebara Infilco Co Ltd Biological nitraification and denitrification for drainage containing ammonia
JPS6323795A (en) * 1986-07-16 1988-02-01 Ebara Infilco Co Ltd Biological nitrification of ammonia-containing aqueous solution
JPH02198695A (en) * 1989-01-25 1990-08-07 Kurita Water Ind Ltd Nitrite type nitrification method
JPH08323379A (en) * 1995-06-02 1996-12-10 Chiyoda Corp Treatment of nitrogen-containing waste water
JPH0975984A (en) * 1995-09-11 1997-03-25 Hitachi Plant Eng & Constr Co Ltd Biological nitrogen removing device
JPH09234492A (en) * 1996-02-29 1997-09-09 Mitsubishi Heavy Ind Ltd Biological nitrogen removing method for waste water
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2002172399A (en) * 2000-12-06 2002-06-18 Kurita Water Ind Ltd Denitrification treatment method
JP2003010883A (en) * 2001-07-04 2003-01-14 Kurita Water Ind Ltd Nitration method of ammonia nitrogen-containing water
JP2003033787A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for nitrifying drainage
JP2003033788A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Method for treating raw water containing phosphorus and ammoniacal nitrogen
JP2003053382A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Nitrification-denitrification treatment method
JP2003053387A (en) * 2001-08-10 2003-02-25 Kurita Water Ind Ltd Method for biologically removing nitrogen
JP2003211177A (en) * 2002-01-25 2003-07-29 Hitachi Plant Eng & Constr Co Ltd Nitrous acid type nitrification carrier, method for manufacturing the same and denitrification method and apparatus using the same
JP2003326297A (en) * 2002-05-09 2003-11-18 Hitachi Plant Eng & Constr Co Ltd Nitrification method for waste water
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for ammonia nitrogen-containing wastewater
JP2016107219A (en) * 2014-12-08 2016-06-20 株式会社日立製作所 Nitrogen treatment method and nitrogen treatment apparatus

Similar Documents

Publication Publication Date Title
JP4284700B2 (en) Nitrogen removal method and apparatus
KR101875024B1 (en) Apparatus and Method for Parial Nitrification of Ammonia from Ammonia Containing Sewage and Wastewater
JP4997460B2 (en) Wastewater treatment system
US20140367330A1 (en) Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
JP2000005795A (en) Water treatment device having denitrogen performance
JP5115908B2 (en) Waste water treatment apparatus and treatment method
US8323487B2 (en) Waste water treatment apparatus
JP4872171B2 (en) Biological denitrification equipment
JP2006325512A (en) Waste water-treating system
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP3925902B2 (en) Biological nitrogen removal method and apparatus
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
JP4671178B2 (en) Nitrogen removal method and apparatus
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP2013081881A (en) Apparatus for treating ammonia nitrogen content wastewater
JP2003053384A (en) Method for removing nitrogen and phosphorus from waste water and facility therefor
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP2000308900A (en) Treatment of ammonia-containing waste water
JP3269957B2 (en) How to remove nitrogen from wastewater
JPH08141597A (en) Apparatus for treating waste water containing nitrogen and fluorine
JP2005131451A (en) Nitrification method for ammonia nitrogen-containing wastewater
JP4031597B2 (en) How to remove nitrogen from wastewater
JP2006320831A (en) Apparatus for treating ammonia-containing liquid
JP2002018479A (en) Method for removing nitrogen from water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428