JP2014104416A - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP2014104416A
JP2014104416A JP2012258824A JP2012258824A JP2014104416A JP 2014104416 A JP2014104416 A JP 2014104416A JP 2012258824 A JP2012258824 A JP 2012258824A JP 2012258824 A JP2012258824 A JP 2012258824A JP 2014104416 A JP2014104416 A JP 2014104416A
Authority
JP
Japan
Prior art keywords
tank
denitrification
water
nitrification
nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012258824A
Other languages
Japanese (ja)
Other versions
JP5984137B2 (en
Inventor
Hiroya Kimura
裕哉 木村
Kazuichi Isaka
和一 井坂
Masahiro Goto
正広 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012258824A priority Critical patent/JP5984137B2/en
Priority to KR1020130145170A priority patent/KR20140067941A/en
Publication of JP2014104416A publication Critical patent/JP2014104416A/en
Application granted granted Critical
Publication of JP5984137B2 publication Critical patent/JP5984137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment apparatus and a water treatment method each capable of stably removing nitrogen components.SOLUTION: The provided apparatus includes: a heterotrophic bacterium denitrification tank 10 including heterotrophic denitrification bacteria 11 for denitrifying nitrous acid by using organic matters; a nitrification tank 20 configured at a step posterior to the heterotrophic bacterium denitrification tank 10 and including nitrification bacteria 21 for generating nitrous acid from ammonia; a denitrification tank 30 configured at a step posterior to the nitrification tank 20 and including autotrophic denitrification bacteria 31 for denitrifying ammonia and nitrous acid; and circulating means (40, 45) for circulating the treated water of the nitrification tank 20 into the heterotrophic bacterium denitrification tank 10.

Description

本発明は、水処理装置および水処理方法に係り、特に、少なくともアンモニア態窒素を含有する含窒素原水を硝化細菌と独立栄養性脱窒細菌で脱窒して水質を改善する水処理装置および水処理方法に関する。   The present invention relates to a water treatment apparatus and a water treatment method, and in particular, a water treatment apparatus and water for improving water quality by denitrifying nitrogen-containing raw water containing at least ammonia nitrogen with nitrifying bacteria and autotrophic denitrifying bacteria. It relates to the processing method.

一般家庭や事業場から出る廃水(原水)には、アンモニア、アンモニウム化合物、亜硝酸化合物、硝酸化合物等の無機態窒素や、アミノ酸、タンパク質等の有機態窒素が含まれていることがある。このような窒素成分を含有する含窒素原水は、水環境の富栄養化や溶存酸素の低下を引き起こし水質汚染の悪化を招くため、公共用水域への排出量が排水基準に基づいて規制されている。そこで、含窒素原水を対象とした脱窒処理が、大規模事業場や水処理施設を中心に実施されている。   Wastewater (raw water) from ordinary households and business establishments may contain inorganic nitrogen such as ammonia, ammonium compounds, nitrite compounds, and nitrate compounds, and organic nitrogen such as amino acids and proteins. Nitrogen-containing raw water containing such nitrogen components causes eutrophication of the water environment and a decrease in dissolved oxygen, leading to deterioration of water pollution. Therefore, the amount of discharge to public water bodies is regulated based on wastewater standards. Yes. Therefore, denitrification treatment for nitrogen-containing raw water has been carried out mainly at large-scale business establishments and water treatment facilities.

一般に、低濃度の含窒素原水の脱窒処理としては、イオン交換を用いて硝酸態窒素を除去する方法や、オゾン等の酸化剤を用いて酸化分解する方法のような化学的処理が用いられることが多い。一方、高濃度の含窒素原水の脱窒処理には、微生物を用いた生物学的処理が行われる。   In general, as the denitrification treatment of low concentration nitrogen-containing raw water, chemical treatment such as a method of removing nitrate nitrogen using ion exchange or a method of oxidative decomposition using an oxidizing agent such as ozone is used. There are many cases. On the other hand, biological treatment using microorganisms is performed for denitrification treatment of high concentration nitrogen-containing raw water.

従来行われている含窒素原水の生物学的処理は、原水中の窒素成分の大半がアンモニア態窒素として存在していることから、硝化工程と脱窒工程を組み合わせた処理が主流となっている。硝化工程としては、ニトロソモナス(Nitrosomonas)属細菌、ニトロバクター(Nitrobacter)属細菌等の硝化細菌の酸化作用を利用して、好気的条件の下、アンモニア態窒素を、亜硝酸態窒素を経て硝酸態窒素へ変換する処理が行われ、その後行われる脱窒工程としては、シュードモナス(Pseudomonas)属細菌等の脱窒細菌の還元作用を利用して、嫌気的条件の下、硝酸態窒素を無害の窒素ガスに変換する処理が行われている。   In the conventional biological treatment of nitrogen-containing raw water, since most of the nitrogen components in the raw water exist as ammonia nitrogen, a combination of the nitrification process and the denitrification process is the mainstream. . Nitrosomonas bacteria, Nitrobacter bacteria and other nitrifying bacteria can be used in the nitrification process under the aerobic conditions, through ammonia nitrogen and nitrite nitrogen. The process of conversion to nitrate nitrogen is performed, and the subsequent denitrification process uses the reducing action of denitrifying bacteria such as Pseudomonas bacteria to harm the nitrate nitrogen under anaerobic conditions. The conversion to nitrogen gas is performed.

しかし、硝化工程と脱窒工程を組み合わせた水処理は、窒素処理速度を向上することが難しく、高濃度の含窒素原水の処理には大容量の処理槽を要している。また、脱窒工程において用いられる脱窒細菌が一般に従属栄養性であることから、炭素源(例えば、メタノール)の供給を必要とする等、運転コストが比較的高い処理方法である。   However, it is difficult for the water treatment combining the nitrification step and the denitrification step to improve the nitrogen treatment rate, and a large-capacity treatment tank is required for treatment of the high concentration nitrogen-containing raw water. Moreover, since the denitrifying bacteria used in the denitrification step are generally heterotrophic, it is a treatment method that requires a relatively high operating cost, such as requiring supply of a carbon source (for example, methanol).

近年、このような硝化工程と脱窒工程を組み合わせた水処理に代わる処理方法として、嫌気性アンモニア酸化(Anaerobic Ammonium Oxidation)を利用した水処理が進められている。嫌気性アンモニア酸化は、特定の微生物(後述する独立栄養性脱窒細菌)の作用で、嫌気的条件の下、アンモニア態窒素で亜硝酸態窒素を還元して窒素ガスに変換する方法である。この変換の反応式は、つぎの反応式(1)のように表される。
1.00NH4 + + 1.32NO2 - + 0.066HCO3 - + 0.13H+
→1.02N2 + 0.26NO3 - + 0.066CH2 0.5 0.15 + 2.03H2 O・・・(1)
In recent years, water treatment using anaerobic ammonia oxidation has been promoted as an alternative treatment method that combines such a nitrification step and a denitrification step. Anaerobic ammonia oxidation is a method in which nitrite nitrogen is reduced with ammonia nitrogen and converted into nitrogen gas under anaerobic conditions by the action of a specific microorganism (autotrophic denitrifying bacterium described later). The reaction formula of this conversion is expressed as the following reaction formula (1).
1.00NH 4 + + 1.32NO 2 - + 0.066HCO 3 - + 0.13H +
→ 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O (1)

嫌気性アンモニア酸化による処理においては、反応式(1)に示されるとおり、アンモニアを電子供与体とし、亜硝酸を電子受容体として、アンモニア態窒素と亜硝酸態窒素を同時に脱窒する。このため、基質として亜硝酸態窒素が必要であり、また、好適に脱窒するためにはアンモニア態窒素と亜硝酸態窒素が1.00:1.32の割合で含まれていることが望ましい。そこで、嫌気性アンモニア酸化を利用する独立栄養性脱窒工程の前段に、原水中のアンモニア態窒素の一部を亜硝酸態窒素に酸化する亜硝酸型硝化工程が組み合わされている。   In the treatment by anaerobic ammonia oxidation, as shown in the reaction formula (1), ammonia nitrogen and nitrite nitrogen are simultaneously denitrified using ammonia as an electron donor and nitrous acid as an electron acceptor. For this reason, nitrite nitrogen is required as a substrate, and ammonia nitrogen and nitrite nitrogen are desirably contained in a ratio of 1.00: 1.32 for suitable denitrification. Therefore, a nitrite-type nitrification step for oxidizing a part of ammonia nitrogen in raw water to nitrite nitrogen is combined with the preceding stage of the autotrophic denitrification step using anaerobic ammonia oxidation.

このような亜硝酸型硝化工程と独立栄養性脱窒工程を組み合せた水処理は、従来の硝化工程と脱窒工程を組み合わせた水処理と比較して、省スペースに構成することができ、運転コストの低減が可能な処理方法であると考えられている。   The water treatment that combines the nitrite type nitrification process and the autotrophic denitrification process can be configured to save space compared to the conventional water treatment that combines the nitrification process and the denitrification process. It is considered that the processing method can reduce the cost.

亜硝酸型硝化工程と独立栄養性脱窒工程を組み合せた水処理方法(脱窒方法)として、特許文献1(特許第3899848号公報)には、アンモニア源および有機物を含む原水を、有機物を電子供与体、亜硝酸イオンおよび/または硝酸イオンを電子受容体とする従属栄養性脱窒微生物と接触させて脱窒する従属栄養型脱窒工程と、従属栄養型脱窒工程の流出液をアンモニア酸化微生物と接触させ、アンモニアイオンを主に亜硝酸イオンに酸化する亜硝酸化工程と、亜硝酸化工程の流出液を、アンモニアイオンを電子供与体、亜硝酸イオンを電子受容体とする独立栄養性脱窒微生物と接触させて脱窒し、亜硝酸イオンを除去する独立栄養型脱窒工程と、独立栄養型脱窒工程の流出液の一部を前記従属栄養型脱窒工程に返送する返送工程と、独立栄養型脱窒工程の流出液の他の一部を処理水として排出する処理水排出工程とを有する脱窒方法が開示されている(請求項1参照)。このような構成を有することにより、独立栄養型脱窒工程の処理水を従属栄養型脱窒工程に循環させて、独立栄養型脱窒工程の嫌気性アンモニア酸化により生成された硝酸イオン(硝酸態窒素)を従属栄養型脱窒工程で処理(脱窒)するようになっている。   As a water treatment method (denitrification method) that combines a nitrite-type nitrification step and an autotrophic denitrification step, Patent Document 1 (Patent No. 3899848) discloses raw water containing an ammonia source and organic matter, and organic matter as an electron. Heterotrophic denitrification process for contact with heterotrophic denitrification microorganisms using donor, nitrite ion and / or nitrate ion as electron acceptor, and ammonia oxidation of effluent of heterotrophic denitrification process Nitritation process that contacts with microorganisms and oxidizes ammonia ion mainly to nitrite ion, and effluent of nitritation process is autotrophic with ammonia ion as electron donor and nitrite ion as electron acceptor An autotrophic denitrification process that removes nitrite ions by contacting with denitrifying microorganisms and a return process that returns a part of the effluent of the autotrophic denitrification process to the heterotrophic denitrification process And Germany Denitrification process with a treated water discharge step of discharging another portion of the effluent as vegetative denitrification as treated water has been disclosed (see claim 1). By having such a configuration, the treated water of the autotrophic denitrification process is circulated to the heterotrophic denitrification process, and nitrate ions (nitrate state) generated by anaerobic ammonia oxidation of the autotrophic denitrification process are circulated. Nitrogen) is treated (denitrified) in a heterotrophic denitrification process.

特許第3899848号公報Japanese Patent No. 3899848

亜硝酸型硝化工程では、アンモニア態窒素を亜硝酸態窒素に酸化するが、通常の硝化反応では、亜硝酸態窒素から硝酸態窒素まで酸化されてしまう。独立栄養性脱窒工程の嫌気性アンモニア酸化では、反応式(1)に示すように、基質として亜硝酸態窒素を使用し硝酸態窒素は使用できないため、亜硝酸態窒素という不安定な状態で反応を止める技術が必要となる。   In the nitrite type nitrification step, ammonia nitrogen is oxidized to nitrite nitrogen, but in a normal nitrification reaction, oxidation is performed from nitrite nitrogen to nitrate nitrogen. In anaerobic ammonia oxidation in the autotrophic denitrification process, as shown in Reaction Formula (1), nitrite nitrogen is used as a substrate and nitrate nitrogen cannot be used. A technology to stop the reaction is required.

ここで、特許文献1の水処理方法(脱窒方法)において、硝酸イオン(硝酸態窒素)を処理する従属栄養型脱窒工程の従属栄養性脱窒微生物は、硝酸イオン(硝酸態窒素)を亜硝酸イオン(亜硝酸態窒素)に還元する酵素を有しているものと考えられる。   Here, in the water treatment method (denitrification method) of Patent Document 1, the heterotrophic denitrification microorganisms in the heterotrophic denitrification step for treating nitrate ions (nitrate nitrogen) are nitrate ions (nitrate nitrogen). It is thought to have an enzyme that reduces to nitrite ions (nitrite nitrogen).

しかし、硝酸イオン(硝酸態窒素)を亜硝酸イオン(亜硝酸態窒素)に還元する酵素と、亜硝酸イオン(亜硝酸態窒素)を硝酸イオン(硝酸態窒素)に酸化する酵素とは同じである。従属栄養型脱窒工程の従属栄養性脱窒微生物が後段の亜硝酸化工程(亜硝酸型硝化工程)の処理槽に流入すると、亜硝酸化工程のアンモニア酸化微生物が生成した亜硝酸イオン(亜硝酸態窒素)を流入した従属栄養性脱窒微生物が硝酸イオン(硝酸態窒素)に酸化する反応が助長される。このため、アンモニアイオン(アンモニア態窒素)が硝酸イオン(硝酸態窒素)まで酸化され、亜硝酸化工程(亜硝酸型硝化工程)における亜硝酸イオン(亜硝酸態窒素)の生成が不安定となり、硝酸型硝化工程となるおそれがある。   However, the enzyme that reduces nitrate ion (nitrate nitrogen) to nitrite ion (nitrite nitrogen) and the enzyme that oxidizes nitrite ion (nitrite nitrogen) to nitrate ion (nitrate nitrogen) are the same. is there. When the heterotrophic denitrifying microorganisms in the heterotrophic denitrification process flow into the treatment tank in the subsequent nitrification process (nitrite nitrification process), nitrite ions (suboxide produced by the ammonia oxidizing microorganisms in the nitritation process) The reaction of heterotrophic denitrifying microorganisms that have flowed in (nitrate nitrogen) to nitrate ions (nitrate nitrogen) is promoted. For this reason, ammonia ions (ammonia nitrogen) are oxidized to nitrate ions (nitrate nitrogen), and the production of nitrite ions (nitrite nitrogen) in the nitritation process (nitrite type nitrification process) becomes unstable, There is a risk of a nitric acid type nitrification process.

このように、硝酸型硝化工程となると、嫌気性アンモニア酸化では基質として亜硝酸態窒素を使用し硝酸態窒素は使用できないため独立栄養性脱窒工程の脱窒性能が不安定となり、水処理装置全体の脱窒性能が低下するおそれがある。   In this way, in the nitric acid type nitrification process, anaerobic ammonia oxidation uses nitrite nitrogen as a substrate and nitrate nitrogen cannot be used, so the denitrification performance of the autotrophic denitrification process becomes unstable, and the water treatment device Overall denitrification performance may be reduced.

また、独立栄養性脱窒工程の独立栄養性脱窒細菌は、基質として使用する亜硝酸によって阻害を受けて、失活することが報告されている。独立栄養性脱窒細菌が失活することにより、独立栄養性脱窒工程の脱窒性能が低下して、水処理装置全体の脱窒性能が低下するおそれがある。   It has also been reported that autotrophic denitrifying bacteria in the autotrophic denitrification process are inactivated due to inhibition by nitrous acid used as a substrate. When the autotrophic denitrifying bacteria are deactivated, the denitrification performance of the autotrophic denitrification process may be reduced, and the denitrification performance of the entire water treatment apparatus may be reduced.

また、これらの水処理の対象とする原水には、アンモニアだけでなく、有機物も含有していることが多く、アンモニア態窒素や有機物成分を安定して除去して水質を改善することが求められている。   In addition, these raw waters that are subject to water treatment often contain not only ammonia but also organic matter, and it is required to stably remove ammonia nitrogen and organic components to improve water quality. ing.

そこで、本発明は、窒素成分を安定して除去できる水処理装置および水処理方法を提供することを課題とする。   Then, this invention makes it a subject to provide the water treatment apparatus and water treatment method which can remove a nitrogen component stably.

このような課題を解決するために、本発明は、有機物を用いて亜硝酸を脱窒する従属栄養性脱窒細菌を有する従属脱窒槽と、前記従属脱窒槽の後段に配置され、アンモニアから亜硝酸を生成する硝化細菌を有する硝化槽と、前記硝化槽の後段に配置され、アンモニアと亜硝酸を脱窒する独立栄養性脱窒細菌を有する脱窒槽と、前記硝化槽の処理水を前記従属脱窒槽に循環させる循環手段と、を備えることを特徴とする水処理装置である。   In order to solve such a problem, the present invention is a subordinate denitrification tank having a heterotrophic denitrification bacterium that denitrifies nitrous acid using organic matter, and is disposed downstream of the subordinate denitrification tank. A nitrification tank having a nitrifying bacterium for producing nitric acid, a denitrification tank having an autotrophic denitrifying bacterium which is disposed downstream of the nitrification tank and denitrifies ammonia and nitrous acid, and treated water from the nitrification tank A water treatment device characterized by comprising a circulation means for circulation to a denitrification tank.

また、本発明は、原水を従属栄養性脱窒細菌により有機物を用いて亜硝酸を脱窒する従属栄養性脱窒処理と、前記従属栄養性脱窒処理で処理された処理水を硝化細菌によりアンモニアから亜硝酸を生成する亜硝酸型硝化処理と、前記亜硝酸型硝化処理で処理された処理水の一部を前記従属栄養性脱窒処理へと循環させる循環処理と、前記亜硝酸型硝化処理で処理された処理水の残部を独立栄養性脱窒細菌によりアンモニアと亜硝酸を脱窒する独立栄養性脱窒処理と、を備えることを特徴とする水処理方法である。   The present invention also provides a heterotrophic denitrification treatment for denitrifying raw water from heterotrophic denitrification bacteria using organic matter with heterotrophic denitrification bacteria, and treated water treated by the heterotrophic denitrification treatment by nitrifying bacteria. A nitrite-type nitrification treatment for producing nitrite from ammonia, a circulation treatment for circulating a part of the treated water treated in the nitrite-type nitrification treatment to the heterotrophic denitrification treatment, and the nitrite-type nitrification A water treatment method comprising: an autotrophic denitrification treatment in which ammonia and nitrous acid are denitrified by autotrophic denitrifying bacteria in the remainder of the treated water treated in the treatment.

本発明によれば、窒素成分を安定して除去できる水処理装置および水処理方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the water treatment apparatus and water treatment method which can remove a nitrogen component stably can be provided.

第1実施形態に係る水処理装置の構成ブロック図である。It is a block diagram of the water treatment device according to the first embodiment. 第1実施形態に係る水処理装置における原水、硝化槽の処理水および脱窒槽の処理水の窒素濃度の関係の一例を示すグラフである。It is a graph which shows an example of the relationship of the nitrogen concentration of the raw water in the water treatment apparatus which concerns on 1st Embodiment, the treated water of a nitrification tank, and the treated water of a denitrification tank. 第2実施形態に係る水処理装置の構成ブロック図である。It is a block diagram of the water treatment apparatus according to the second embodiment. 比較例に係る水処理装置の構成ブロック図である。It is a block diagram of the configuration of a water treatment device according to a comparative example.

以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

≪第1実施形態≫
第1実施形態に係る水処理装置100について、図1を用いて説明する。図1は、第1実施形態に係る水処理装置100の構成ブロック図である。
<< First Embodiment >>
A water treatment apparatus 100 according to the first embodiment will be described with reference to FIG. FIG. 1 is a configuration block diagram of a water treatment apparatus 100 according to the first embodiment.

第1実施形態に係る水処理装置100は、原水を送水する原水ポンプ5と、従属栄養性脱窒細菌11を有する従属脱窒槽10と、硝化細菌21を有する硝化槽20と、独立栄養性脱窒細菌31を有する脱窒槽30と、硝化槽20の処理水を従属脱窒槽10へと戻す循環流路40と、循環流路40に設けられた循環ポンプ45と、制御手段50と、を備えている。なお、従属脱窒槽10における水処理を従属栄養性脱窒処理と称し、硝化槽20における水処理を亜硝酸型硝化処理と称し、脱窒槽30における水処理を独立栄養性脱窒処理と称する。   The water treatment apparatus 100 according to the first embodiment includes a raw water pump 5 for feeding raw water, a dependent denitrification tank 10 having heterotrophic denitrifying bacteria 11, a nitrification tank 20 having nitrifying bacteria 21, and an autotrophic denitrification. A denitrification tank 30 having nitrifying bacteria 31, a circulation passage 40 for returning treated water from the nitrification tank 20 to the sub-denitrification tank 10, a circulation pump 45 provided in the circulation passage 40, and a control means 50. ing. The water treatment in the dependent denitrification tank 10 is referred to as heterotrophic denitrification treatment, the water treatment in the nitrification tank 20 is referred to as nitrite type nitrification treatment, and the water treatment in the denitrification tank 30 is referred to as autotrophic denitrification treatment.

原水ポンプ5は、水処理装置100が処理する原水を従属脱窒槽10に送水することができるようになっている。ここで、水処理装置100が処理する原水は、少なくともアンモニア態窒素を含有する含窒素原水である。また、原水は、一般的に有機物を含有している。なお、原水のアンモニア態窒素濃度は限定しないが、10〜2000mg−N/Lが好ましく、特に40〜1000mg−N/Lが望ましい。また、原水中の有機物量も限定せず、有機物が含まれていなくてもよい。ちなみに、原水には、アンモニア態窒素の他に、窒素、リン、炭素、重金属類などの栄養塩が含まれていてもよい。   The raw water pump 5 can feed raw water to be treated by the water treatment apparatus 100 to the sub-denitrification tank 10. Here, the raw water to be treated by the water treatment apparatus 100 is nitrogen-containing raw water containing at least ammonia nitrogen. The raw water generally contains an organic substance. In addition, although the ammonia nitrogen concentration of raw | natural water is not limited, 10-2000 mg-N / L is preferable and especially 40-1000 mg-N / L is desirable. Further, the amount of organic matter in the raw water is not limited, and the organic matter may not be contained. Incidentally, the raw water may contain nutrient salts such as nitrogen, phosphorus, carbon, and heavy metals in addition to ammonia nitrogen.

従属脱窒槽10には、原水ポンプ5により送水されたアンモニア態窒素と有機物を含有する原水と、後述する循環流路40を介して循環ポンプ45により送水された硝化槽20の処理水とが、流入するようになっている。なお、図1において、原水と硝化槽20の処理水とが合流した後に従属脱窒槽10に流入するものとして図示されているが、これに限られるものではなく、含窒素原水と硝化槽20の処理水とが個別に従属脱窒槽10に流入する構成であってもよい。   In the sub-denitrification tank 10, the raw water containing ammonia nitrogen and organic substances fed by the raw water pump 5 and the treated water of the nitrification tank 20 fed by the circulation pump 45 through the circulation passage 40 described later, Inflow. In FIG. 1, the raw water and the treated water in the nitrification tank 20 are illustrated as flowing into the dependent denitrification tank 10, but the present invention is not limited to this, and the nitrogen-containing raw water and the nitrification tank 20 The structure which flows into the dependent denitrification tank 10 separately with a treated water may be sufficient.

従属脱窒槽10は、従属栄養性脱窒細菌11と、従属脱窒槽10内部の水を攪拌する攪拌手段12と、を有している。   The dependent denitrification tank 10 includes a heterotrophic denitrifying bacterium 11 and a stirring means 12 for stirring water in the dependent denitrification tank 10.

従属栄養性脱窒細菌11は、嫌気的条件の下、原水中の有機物を電子供与体とし、原水や硝化槽20の処理水に含まれる亜硝酸を電子受容体として反応させることにより、亜硝酸態窒素を脱窒し、従属脱窒槽10内部の水の窒素濃度を低減させることができるようになっている。なお、従属栄養性脱窒細菌11は、活性汚泥に存在してもよく、包括固定化担体に存在してもよく、これらに限られるものではない。   The heterotrophic denitrifying bacterium 11 reacts nitrous acid by reacting nitrous acid contained in raw water or treated water of the nitrification tank 20 as an electron acceptor under anaerobic conditions, using an organic substance in the raw water as an electron donor. The nitrogen concentration of the water in the sub-denitrification tank 10 can be reduced by denitrifying the state nitrogen. The heterotrophic denitrifying bacteria 11 may be present in the activated sludge or may be present in the entrapping immobilization carrier, but is not limited thereto.

なお、原水に含まれる有機物が少なく、従属脱窒槽10の脱窒処理における電子供与体が不足する場合、従属脱窒槽10に有機物(例えば、メタノール)を投入する有機物投入装置(図示せず)を追加して、有機物を従属脱窒槽10に投入するようにしてもよい。これにより、亜硝酸態窒素を好適に脱窒することができる。   In addition, when there are few organic substances contained in raw | natural water and the electron donor in the denitrification process of the subordinate denitrification tank 10 is insufficient, the organic substance input apparatus (not shown) which inputs an organic substance (for example, methanol) into the subordinate denitrification tank 10 is provided. In addition, the organic matter may be introduced into the sub-denitrification tank 10. Thereby, nitrite nitrogen can be suitably denitrified.

従属脱窒槽10で処理された処理水は、従属脱窒槽10から流出して硝化槽20に流入するようになっている。   The treated water treated in the dependent denitrification tank 10 flows out of the dependent denitrification tank 10 and flows into the nitrification tank 20.

硝化槽20は、硝化細菌21と、曝気手段22と、溶存酸素濃度検出手段23と、全窒素検出手段24と、アンモニア態窒素検出手段25と、を備えている。   The nitrification tank 20 includes nitrifying bacteria 21, aeration means 22, dissolved oxygen concentration detection means 23, total nitrogen detection means 24, and ammonia nitrogen detection means 25.

硝化細菌21は、好気的条件の下、アンモニア態窒素を亜硝酸態窒素に酸化させる。この反応式は、つぎの反応式(2)のように表される。
NH4 + + 1.5O2 →NO2 - +2H+ +H2O ・・・(2)
なお、硝化細菌21は、活性汚泥に存在してもよく、包括固定化担体に存在してもよく、これらに限られるものではない。
Nitrifying bacteria 21 oxidize ammonia nitrogen to nitrite nitrogen under aerobic conditions. This reaction formula is expressed as the following reaction formula (2).
NH 4 + + 1.5O 2 → NO 2 + 2H + + H 2 O (2)
The nitrifying bacteria 21 may be present in the activated sludge, may be present in the entrapping immobilization carrier, and is not limited thereto.

曝気手段22は、硝化槽20内部の水に酸素を含有する含酸素ガスを散気することができるようになっている。また、散気することにより、硝化槽20内部の水を攪拌することができるようになっている。   The aeration means 22 can diffuse oxygen-containing gas containing oxygen into the water inside the nitrification tank 20. Moreover, the water in the nitrification tank 20 can be agitated by aeration.

溶存酸素濃度検出手段23は、例えば、溶存酸素計(DO計)であり、硝化槽20内部の水の溶存酸素濃度を検出することができるようになっている。全窒素検出手段24は、例えば、ペルオキソ二硫化カリウム分解や接触熱分解に基づく吸光を計測する全窒素計であり、硝化槽20内部の全窒素濃度を検出することができるようになっている。アンモニア態窒素検出手段25は、例えば、イオン電極式や吸光度計測式の計測器であり、硝化槽20内部のアンモニア態窒素濃度を検出することができるようになっている。なお、溶存酸素濃度検出手段23、全窒素検出手段24、および、アンモニア態窒素検出手段25は、硝化槽20の流出側付近に設けられることが望ましい。   The dissolved oxygen concentration detection means 23 is a dissolved oxygen meter (DO meter), for example, and can detect the dissolved oxygen concentration of water inside the nitrification tank 20. The total nitrogen detection means 24 is a total nitrogen meter that measures light absorption based on, for example, potassium peroxodisulfide decomposition or catalytic pyrolysis, and can detect the total nitrogen concentration inside the nitrification tank 20. The ammonia nitrogen detection means 25 is, for example, an ion electrode type or absorbance measurement type measuring instrument, and can detect the ammonia nitrogen concentration inside the nitrification tank 20. The dissolved oxygen concentration detecting means 23, the total nitrogen detecting means 24, and the ammonia nitrogen detecting means 25 are desirably provided in the vicinity of the outflow side of the nitrification tank 20.

制御手段50は、全窒素検出手段24で検出した全窒素濃度とアンモニア態窒素検出手段25で検出したアンモニア態窒素濃度との差分に基づいて、亜硝酸態窒素濃度を算出することができるようになっている。そして、制御手段50は、硝化槽20から流出する処理水中のアンモニア態窒素濃度と亜硝酸態窒素濃度の割合が、所定の割合(例えば、1.00:1.32)に近づくように、溶存酸素濃度の設定値を設定する。例えば、アンモニア態窒素濃度に対する亜硝酸態窒素濃度の割合を大きくしたい場合には、設定値を現在の溶存酸素濃度よりも高く設定する。アンモニア態窒素濃度に対する亜硝酸態窒素濃度の割合を小さくしたい場合には、設定値を現在の溶存酸素濃度よりも低く設定する。そして、制御手段50は、溶存酸素濃度検出手段23で検出した溶存酸素濃度が、設定値に近づくように曝気手段22の散気量を制御する(DO制御)。なお、溶存酸素濃度の設定値は、0.1〜4.0mg/L程度が望ましい。   The control means 50 can calculate the nitrite nitrogen concentration based on the difference between the total nitrogen concentration detected by the total nitrogen detection means 24 and the ammonia nitrogen concentration detected by the ammonia nitrogen detection means 25. It has become. Then, the control means 50 sets the dissolved oxygen concentration so that the ratio of the ammonia nitrogen concentration and the nitrite nitrogen concentration in the treated water flowing out from the nitrification tank 20 approaches a predetermined ratio (for example, 1.00: 1.32). Set the value. For example, when it is desired to increase the ratio of the nitrite nitrogen concentration to the ammonia nitrogen concentration, the set value is set higher than the current dissolved oxygen concentration. When it is desired to reduce the ratio of the nitrite nitrogen concentration to the ammonia nitrogen concentration, the set value is set lower than the current dissolved oxygen concentration. And the control means 50 controls the amount of aeration of the aeration means 22 so that the dissolved oxygen concentration detected by the dissolved oxygen concentration detection means 23 approaches the set value (DO control). The set value of the dissolved oxygen concentration is preferably about 0.1 to 4.0 mg / L.

このように、溶存酸素濃度を制御することにより、反応式(2)を制御して、硝化槽20から流出する処理水中のアンモニア態窒素濃度と亜硝酸態窒素濃度の割合を制御することができるようになっている。また、溶存酸素濃度を適切に管理することにより、反応式(3)であらわされる亜硝酸態窒素を硝酸態窒素に酸化する反応を低減することができるようになっている。
NO2 - + 0.5O2 →NO3 - ・・・(3)
In this way, by controlling the dissolved oxygen concentration, the reaction formula (2) can be controlled to control the ratio of the ammonia nitrogen concentration and the nitrite nitrogen concentration in the treated water flowing out from the nitrification tank 20. It is like that. Moreover, the reaction which oxidizes nitrite nitrogen represented by Reaction Formula (3) to nitrate nitrogen can be reduced by appropriately managing the dissolved oxygen concentration.
NO 2 - + 0.5O 2 → NO 3 - ··· (3)

硝化槽20で処理された処理水は、硝化槽20から流出して、一部の処理水は循環ポンプ45により循環流路40を介して従属脱窒槽10に流入し、残部の処理水は脱窒槽30に流入するようになっている。   The treated water treated in the nitrification tank 20 flows out of the nitrification tank 20, a part of the treated water flows into the sub-denitrification tank 10 through the circulation channel 40 by the circulation pump 45, and the remaining treated water is dehydrated. It flows into the nitriding tank 30.

循環ポンプ45は、硝化槽20の処理水を、循環流路40を介して、従属脱窒槽10に送水することができるようになっている。なお、図1において、硝化槽20の処理水は、硝化槽20から流出した後に循環流路40を介して従属脱窒槽10に流入するものとして図示されているが、これに限られるものではなく、循環流路40の一端が硝化槽20に接続され、循環ポンプ45は、硝化槽20内部の処理水を吸い込んで、従属脱窒槽10に送水する構成であってもよい。   The circulation pump 45 can feed the treated water from the nitrification tank 20 to the dependent denitrification tank 10 via the circulation flow path 40. In FIG. 1, the treated water in the nitrification tank 20 is shown as flowing into the dependent denitrification tank 10 via the circulation channel 40 after flowing out of the nitrification tank 20, but is not limited thereto. Further, one end of the circulation channel 40 may be connected to the nitrification tank 20, and the circulation pump 45 may be configured to suck in the treated water inside the nitrification tank 20 and send it to the dependent denitrification tank 10.

脱窒槽30は、独立栄養性脱窒細菌31と、脱窒槽30内部の水を攪拌する攪拌手段32と、溶存酸素濃度検出手段33と、窒素検出手段34と、を備えている。   The denitrification tank 30 includes an autotrophic denitrification bacterium 31, a stirring means 32 for stirring water in the denitrification tank 30, a dissolved oxygen concentration detection means 33, and a nitrogen detection means 34.

独立栄養性脱窒細菌31は、嫌気的条件の下、アンモニアを電子供与体とし、亜硝酸を電子受容体として反応させることにより(前述した反応式(1)参照)、アンモニア態窒素と亜硝酸態窒素を同時に脱窒し(嫌気性アンモニア酸化)、脱窒槽30内部の水の窒素濃度を低減させることができるようになっている。なお、独立栄養性脱窒細菌31は、活性汚泥に存在してもよく、包括固定化担体に存在してもよく、これらに限られるものではない。   The autotrophic denitrifying bacterium 31 reacts with ammonia as an electron donor and nitrous acid as an electron acceptor under anaerobic conditions (see the above reaction formula (1)), whereby ammonia nitrogen and nitrous acid are reacted. The nitrogen concentration of water in the denitrification tank 30 can be reduced by simultaneously denitrifying the nitrogen (anaerobic ammonia oxidation). In addition, the autotrophic denitrifying bacteria 31 may be present in activated sludge or may be present in the entrapping immobilization carrier, but is not limited thereto.

溶存酸素濃度検出手段33は、脱窒槽30内部の水の溶存酸素濃度を検出することができるようになっている。窒素検出手段34は、脱窒槽30内部の全窒素濃度を検出することができるようになっている。なお、窒素検出手段34は、アンモニア態窒素濃度、亜硝酸態窒素濃度、硝酸態窒素濃度を検出することができるようになっていてもよい。なお、溶存酸素濃度検出手段33および窒素検出手段34は、脱窒槽30の流出側付近に設けられることが望ましい。   The dissolved oxygen concentration detection means 33 can detect the dissolved oxygen concentration of water inside the denitrification tank 30. The nitrogen detection means 34 can detect the total nitrogen concentration inside the denitrification tank 30. The nitrogen detector 34 may be configured to detect the ammonia nitrogen concentration, the nitrite nitrogen concentration, and the nitrate nitrogen concentration. The dissolved oxygen concentration detection means 33 and the nitrogen detection means 34 are preferably provided in the vicinity of the outflow side of the denitrification tank 30.

制御手段50は、前述したように、曝気手段22を制御することにより、硝化槽20を運転することができるようになっている。また、制御手段50は、原水ポンプ5や循環ポンプ45の運転を制御することができるようになっている。また、溶存酸素濃度検出手段33および窒素検出手段34の検出値により、水処理装置100で処理された処理水の状態を監視することができるようになっている。   The control means 50 can operate the nitrification tank 20 by controlling the aeration means 22 as described above. Further, the control means 50 can control the operation of the raw water pump 5 and the circulation pump 45. Further, the state of the treated water treated by the water treatment apparatus 100 can be monitored based on the detection values of the dissolved oxygen concentration detecting means 33 and the nitrogen detecting means 34.

なお、特に限定するものではないが、いずれの槽もpHは7付近とする制御が好ましい。また、通水方法は、限定されるものではなく、例えば、連続通水式や回分式であってもよい。   Although not particularly limited, it is preferable to control the pH of each tank to be around 7. Moreover, the water flow method is not limited, For example, a continuous water flow type and a batch type may be sufficient.

<作用・効果>
第1実施形態に係る水処理装置100の作用・効果について、図2の実施例を用いて説明する。図2は、第1実施形態に係る水処理装置100における原水、硝化槽の処理水および脱窒槽の処理水の窒素濃度の関係の一例を示すグラフである。
<Action and effect>
The operation and effect of the water treatment apparatus 100 according to the first embodiment will be described using the example of FIG. FIG. 2 is a graph showing an example of the relationship between nitrogen concentration of raw water, treated water in the nitrification tank, and treated water in the denitrification tank in the water treatment apparatus 100 according to the first embodiment.

アンモニア濃度約700mg−N/Lの原水(図2左側の棒グラフ参照)を従属脱窒槽10に流入させた。また、硝化槽20から従属脱窒槽10への循環を行った。この時の循環量は原水量と同じ量とした。この結果を図2に示す。   Raw water having an ammonia concentration of about 700 mg-N / L (see the bar graph on the left side of FIG. 2) was allowed to flow into the sub-denitrification tank 10. Further, circulation from the nitrification tank 20 to the dependent denitrification tank 10 was performed. The circulation amount at this time was the same as the raw water amount. The result is shown in FIG.

従属脱窒槽10では硝化槽20由来の亜硝酸のほとんどが除去され、一部アンモニアが残留した(図示省略)。   In the sub-denitrification tank 10, most of the nitrous acid derived from the nitrification tank 20 was removed, and a part of ammonia remained (not shown).

従属脱窒槽10の処理水に対して硝化槽20で硝化を行った。図2中央の棒グラフに示すように、約半量の亜硝酸が生成した。一方で硝酸の生成は確認しなく、安定した亜硝酸型硝化性能を確認した。この処理水の一部は、随時、従属脱窒槽10に循環され、残部は、脱窒槽30に流入された。   Nitrification was performed in the nitrification tank 20 on the treated water in the sub-denitrification tank 10. As shown in the bar graph in the center of FIG. 2, about half of the nitrous acid was produced. On the other hand, production of nitric acid was not confirmed, and stable nitrite type nitrification performance was confirmed. A part of this treated water was circulated to the sub-denitrification tank 10 as needed, and the remaining part flowed into the denitrification tank 30.

硝化槽20の処理水に対して脱窒槽30で嫌気性アンモニア酸化を行った。図2右側の棒グラフに示すように、窒素成分が除去できた。原水と脱窒槽30の処理水の窒素除去率は約85%であり、安定してこの性能を得た。   Anaerobic ammonia oxidation was performed on the treated water in the nitrification tank 20 in the denitrification tank 30. As shown in the bar graph on the right side of FIG. 2, the nitrogen component could be removed. The nitrogen removal rate of raw water and treated water in the denitrification tank 30 was about 85%, and this performance was stably obtained.

また、図2中央の棒グラフに示す硝化槽20の処理水、即ち、脱窒槽30に流入する処理水の亜硝酸態窒素濃度は約280mg−N/Lであり、独立栄養性脱窒細菌31が亜硝酸の影響を受けることはなかった。   Moreover, the concentration of nitrite nitrogen in the treated water in the nitrification tank 20 shown in the bar graph in FIG. 2, that is, the treated water flowing into the denitrification tank 30 is about 280 mg-N / L, and the autotrophic denitrifying bacteria 31 It was not affected by nitrous acid.

このように、第1実施形態に係る水処理装置100によれば、硝化槽20から循環流路40を介して従属脱窒槽10に処理水を循環させ、従属脱窒槽10で亜硝酸を除去することにより、窒素成分を低濃度化することができる。また、原水に有機物が含まれる場合、従属脱窒槽10で窒素成分とともに有機物も除去することができる。   Thus, according to the water treatment apparatus 100 according to the first embodiment, the treated water is circulated from the nitrification tank 20 to the dependent denitrification tank 10 via the circulation flow path 40, and nitrous acid is removed in the dependent denitrification tank 10. As a result, the concentration of the nitrogen component can be reduced. Moreover, when organic substance is contained in raw | natural water, an organic substance can also be removed with a nitrogen component with the subordinate denitrification tank 10. FIG.

ここで、図2の例において、図2左側の原水の全窒素濃度と図2中央の硝化槽の全窒素濃度との差分(約200mg−N/L)が、従属脱窒槽10で除去された亜硝酸態窒素濃度に相当する。このように、従属脱窒槽10で亜硝酸を除去することにより、硝化槽20に流入する処理水における全窒素濃度を低濃度化することができる。そして、硝化槽20から流出する処理水中のアンモニア態窒素濃度と亜硝酸態窒素濃度の割合は、所定の割合(例えば、1.00:1.32)となるように制御されるため、全窒素濃度(アンモニア態窒素濃度と亜硝酸態窒素濃度の合計)を低濃度化することにより、硝化槽20から流出する処理水(即ち、脱窒槽30に流入する処理水)の亜硝酸態窒素濃度を低濃度化することができる。これにより、独立栄養性脱窒細菌31が亜硝酸によって阻害を受けて、失活することを低減することができ、脱窒槽30の安定した独立栄養性脱窒性能を得ることができる。   Here, in the example of FIG. 2, the difference (about 200 mg-N / L) between the total nitrogen concentration of the raw water on the left side of FIG. 2 and the total nitrogen concentration of the nitrification tank in the center of FIG. Corresponds to nitrite nitrogen concentration. Thus, by removing nitrous acid in the dependent denitrification tank 10, the total nitrogen concentration in the treated water flowing into the nitrification tank 20 can be reduced. The ratio of the ammonia nitrogen concentration and the nitrite nitrogen concentration in the treated water flowing out of the nitrification tank 20 is controlled to be a predetermined ratio (for example, 1.00: 1.32). The concentration of nitrite nitrogen in the treated water flowing out from the nitrification tank 20 (that is, the treated water flowing into the denitrification tank 30) is reduced by reducing the concentration of the nitrogen concentration and the nitrite nitrogen concentration). be able to. Thereby, it can reduce that autotrophic denitrification bacteria 31 receive inhibition by nitrous acid, and can be deactivated, and can obtain the stable autotrophic denitrification performance of the denitrification tank 30.

ちなみに、循環ポンプ45による循環流量を増加させることにより、従属脱窒槽10で除去される亜硝酸態窒素は増加して、硝化槽20から流出する処理水(即ち、脱窒槽30に流入する処理水)の亜硝酸態窒素濃度を低濃度化することができる。このように、制御手段50は、全窒素検出手段24およびアンモニア態窒素検出手段25の検出値から算出した亜硝酸態窒素濃度が所定の範囲内となるように循環ポンプ45の流量を制御してもよい。なお、亜硝酸態窒素濃度は、50〜280mg−N/Lとすることが望ましい。亜硝酸態窒素濃度を50mg−N/L未満とすると、脱窒槽30の脱窒性能が低下して望ましくない。また、亜硝酸態窒素濃度を280mg−N/Lより高くとすると、独立栄養性脱窒細菌31が失活するおそれがあるため望ましくない。   Incidentally, by increasing the circulation flow rate by the circulation pump 45, the nitrite nitrogen removed in the dependent denitrification tank 10 increases, and the treated water flowing out from the nitrification tank 20 (that is, the treated water flowing into the denitrification tank 30). ) Nitrite nitrogen concentration can be reduced. Thus, the control means 50 controls the flow rate of the circulation pump 45 so that the nitrite nitrogen concentration calculated from the detection values of the total nitrogen detection means 24 and the ammonia nitrogen detection means 25 is within a predetermined range. Also good. The nitrite nitrogen concentration is desirably 50 to 280 mg-N / L. If the nitrite nitrogen concentration is less than 50 mg-N / L, the denitrification performance of the denitrification tank 30 is lowered, which is not desirable. Further, if the nitrite nitrogen concentration is higher than 280 mg-N / L, the autotrophic denitrifying bacteria 31 may be inactivated, which is not desirable.

また、従属脱窒槽10で窒素を除去する際に対象となる窒素成分は、硝酸(特許文献1参照)ではなく、亜硝酸であるため、硝化槽20において、亜硝酸が硝酸に酸化される反応(前述した反応式(3)参照)が助長される影響が少なく、硝化槽20の安定した亜硝酸型硝化性能を得ることができる。   Moreover, since the nitrogen component which becomes object when removing nitrogen with the subordinate denitrification tank 10 is not nitric acid (refer patent document 1) but nitrous acid, in the nitrification tank 20, reaction in which nitrous acid is oxidized to nitric acid (Refer to the above-mentioned reaction formula (3)) is less influenced and stable nitrite type nitrification performance of the nitrification tank 20 can be obtained.

以上のように、第1実施形態に係る水処理装置100によれば、各反応を安定的に運転し、窒素成分を低濃度に維持でき、効率のよい脱窒処理を実施することができる。   As described above, according to the water treatment apparatus 100 according to the first embodiment, each reaction can be stably operated, the nitrogen component can be maintained at a low concentration, and an efficient denitrification treatment can be performed.

<比較例>
ここで、比較例に係る水処理装置100Cについて、図4を用いて説明する。図4は、比較例に係る水処理装置100Cの構成ブロック図である。なお、比較例に係る水処理装置100Cは、特許文献1(特許第3899848号公報)に相当するものであり、循環流路40Cが、脱窒槽30の処理水を従属脱窒槽10Cに戻すようになっている。即ち、第1実施形態に係る水処理装置100(図1参照)は循環流路40により亜硝酸態窒素を従属脱窒槽10に戻すのに対し、比較例に係る水処理装置100C(図4参照)は循環流路40Cにより硝酸態窒素を従属脱窒槽10Cに戻す構成となっている。このため、従属脱窒槽10Cには、硝酸イオン(硝酸態窒素)を亜硝酸イオン(亜硝酸態窒素)に還元する酵素を有する細菌が存在する。なお、この細菌と従属栄養性脱窒細菌とは、同一の細菌であってもよく、異なる細菌であってもよい。以下の説明においては、従属栄養性脱窒細菌11Cが、硝酸イオン(硝酸態窒素)を亜硝酸イオン(亜硝酸態窒素)に還元する酵素を有するものとして説明する。
<Comparative example>
Here, the water treatment apparatus 100C according to the comparative example will be described with reference to FIG. FIG. 4 is a configuration block diagram of a water treatment apparatus 100C according to the comparative example. In addition, 100C of water treatment apparatuses which concern on a comparative example are equivalent to patent document 1 (patent 3899848 gazette), and the circulation flow path 40C returns the treated water of the denitrification tank 30 to the dependent denitrification tank 10C. It has become. That is, the water treatment apparatus 100 (see FIG. 1) according to the first embodiment returns the nitrite nitrogen to the dependent denitrification tank 10 by the circulation flow path 40, whereas the water treatment apparatus 100C according to the comparative example (see FIG. 4). ) Is configured to return nitrate nitrogen to the dependent denitrification tank 10C by the circulation channel 40C. For this reason, bacteria having an enzyme that reduces nitrate ions (nitrate nitrogen) to nitrite ions (nitrite nitrogen) exist in the dependent denitrification tank 10C. The bacterium and the heterotrophic denitrifying bacterium may be the same bacterium or different bacteria. In the following description, the heterotrophic denitrifying bacterium 11C will be described as having an enzyme that reduces nitrate ions (nitrate nitrogen) to nitrite ions (nitrite nitrogen).

比較例に係る水処理装置100Cにおいて、従属脱窒槽10Cの従属栄養性脱窒細菌11Cが後段の硝化槽20に流入した場合、硝化細菌21が生成した亜硝酸イオン(亜硝酸態窒素)を従属栄養性脱窒細菌11Cの酵素が硝酸イオン(硝酸態窒素)に酸化するため、硝化槽20における亜硝酸イオン(亜硝酸態窒素)の生成が不安定となるおそれがある。このように、亜硝酸イオン(亜硝酸態窒素)の生成が不安定となり、硝酸イオン(硝酸態窒素)が生成されると、脱窒槽30では、硝酸イオン(硝酸態窒素)を脱窒することができないため、水処理装置100C全体の脱窒性能が低下するおそれがある。   In the water treatment apparatus 100C according to the comparative example, when the heterotrophic denitrifying bacterium 11C of the dependent denitrification tank 10C flows into the nitrification tank 20 at the subsequent stage, the nitrite ions (nitrite nitrogen) generated by the nitrifying bacteria 21 are dependent. Since the enzyme of the nutritional denitrifying bacterium 11C is oxidized to nitrate ions (nitrate nitrogen), the production of nitrite ions (nitrite nitrogen) in the nitrification tank 20 may become unstable. Thus, when the production of nitrite ions (nitrite nitrogen) becomes unstable and nitrate ions (nitrate nitrogen) are produced, the denitrification tank 30 denitrifies nitrate ions (nitrate nitrogen). Therefore, the denitrification performance of the entire water treatment device 100C may be reduced.

また、比較例に係る水処理装置100Cでは、脱窒槽30に流入する処理水の亜硝酸態窒素濃度を低濃度化することは困難である。このため、脱窒槽30の独立栄養性脱窒細菌31の失活を防止するためには、原水を希釈する等の処理が必要であり、運転コストが増加するおそれがある。   In the water treatment apparatus 100C according to the comparative example, it is difficult to reduce the concentration of nitrite nitrogen in the treated water flowing into the denitrification tank 30. For this reason, in order to prevent inactivation of the autotrophic denitrifying bacteria 31 in the denitrification tank 30, a process such as diluting the raw water is necessary, which may increase the operating cost.

≪第2実施形態≫
第2実施形態に係る水処理装置200について、図3を用いて説明する。図3は、第2実施形態に係る水処理装置200の構成ブロック図である。
<< Second Embodiment >>
A water treatment apparatus 200 according to the second embodiment will be described with reference to FIG. FIG. 3 is a configuration block diagram of a water treatment device 200 according to the second embodiment.

第2実施形態に係る水処理装置200は、第1実施形態に係る水処理装置100(図1参照)と比較して、有機物除去槽60と、脱気槽70と、硝酸脱窒槽80と、を更に備えている。その他の構成は、第1実施形態に係る水処理装置100(図1参照)と同様であり、説明を省略する。   Compared with the water treatment apparatus 100 (refer FIG. 1) which concerns on 1st Embodiment, the water treatment apparatus 200 which concerns on 2nd Embodiment, the organic substance removal tank 60, the deaeration tank 70, the nitric acid denitrification tank 80, Is further provided. Other configurations are the same as those of the water treatment apparatus 100 (see FIG. 1) according to the first embodiment, and a description thereof will be omitted.

有機物除去槽60は、例えば、BOD酸化槽であって、BOD酸化細菌61と、有機物除去槽60内部の水に酸素を含有する含酸素ガスを散気する曝気手段62と、溶存酸素濃度検出手段63と、を備えている。BOD酸化細菌61は、酸素を用いて有機物を分解する。なお、BOD酸化細菌61は、活性汚泥に存在してもよく、包括固定化担体に存在してもよく、これらに限られるものではない。   The organic substance removal tank 60 is, for example, a BOD oxidation tank, and includes a BOD oxidation bacterium 61, an aeration means 62 that diffuses oxygen-containing gas containing oxygen in water inside the organic substance removal tank 60, and a dissolved oxygen concentration detection means. 63. The BOD oxidizing bacteria 61 decomposes organic substances using oxygen. The BOD oxidizing bacteria 61 may be present in the activated sludge or may be present in the entrapping immobilization carrier, but is not limited thereto.

有機物除去槽60の取り付け位置は、図3に示すように、従属脱窒槽10の後段に設けることが望ましい。従属脱窒槽10は、前述のように、有機物を利用して脱窒するため、従属脱窒槽10で処理し切れなかった過剰の有機物を有機物除去槽60で処理することができ、後段の処理(硝化槽20、脱窒槽30)の影響する場合を避けることができる。なお、有機物除去槽60の取り付け位置は、これに限られるものではなく、例えば、原水に有機物が多く含まれる場合などには、有機物除去槽60を従属脱窒槽10の前段に設けて、有機物の過剰分を予め処理する構成であってもよい。   As shown in FIG. 3, the attachment position of the organic substance removal tank 60 is desirably provided at the subsequent stage of the dependent denitrification tank 10. Since the dependent denitrification tank 10 denitrifies using organic matter as described above, excess organic matter that could not be treated in the dependent denitrification tank 10 can be treated in the organic matter removal tank 60, and the subsequent treatment ( The influence of the nitrification tank 20 and the denitrification tank 30) can be avoided. In addition, the attachment position of the organic matter removal tank 60 is not limited to this. For example, when a large amount of organic matter is contained in the raw water, the organic matter removal tank 60 is provided in the front stage of the sub-denitrification tank 10 to remove the organic matter. The structure which processes an excess part previously may be sufficient.

脱気槽70は、脱気手段72と、溶存酸素濃度検出手段73と、を備えている。脱気手段72は、脱気槽70内部の水に酸素を含まない無酸素ガスを散気して、溶存酸素濃度を低下させることができるようになっている。また、散気することにより、硝化槽20内部の水を攪拌することができるようになっている。脱気槽70は、好気的条件の硝化槽20と嫌気的条件の脱窒槽30との間に配置され、脱窒槽30に流入する処理水の溶存酸素濃度を低減させることができる。   The deaeration tank 70 includes a deaeration unit 72 and a dissolved oxygen concentration detection unit 73. The deaeration means 72 can reduce the dissolved oxygen concentration by aeration of oxygen-free oxygen-free gas in the water inside the deaeration tank 70. Moreover, the water in the nitrification tank 20 can be agitated by aeration. The deaeration tank 70 is disposed between the nitrification tank 20 under an aerobic condition and the denitrification tank 30 under an anaerobic condition, and can reduce the dissolved oxygen concentration of the treated water flowing into the denitrification tank 30.

ここで、循環流路40は、図3に示すように、硝化槽20から脱気槽70へ流入する流路から分岐する流路から(もしくは、直接、硝化槽20から)処理水を循環させるように構成することが望ましい。このように構成することにより、無酸素ガスの使用量を低減して、運転コストを低減することができる。なお、循環流路40の取り付け位置は、これに限られるものではなく、脱気槽70から脱窒槽30へ流入する流路から分岐する流路から(もしくは、直接、脱気槽70から)処理水を循環させるように構成してもよい。この場合、運転コストは増加するものの、嫌気的条件の従属脱窒槽10の溶存酸素濃度の上昇を低減することができる。   Here, as shown in FIG. 3, the circulation channel 40 circulates the treated water from a channel branched from the channel flowing into the deaeration tank 70 from the nitrification tank 20 (or directly from the nitrification tank 20). It is desirable to configure as follows. By comprising in this way, the usage-amount of oxygen-free gas can be reduced and an operating cost can be reduced. In addition, the attachment position of the circulation flow path 40 is not restricted to this, It processes from the flow path branched from the flow path which flows in from the deaeration tank 70 to the denitrification tank 30 (or directly from the deaeration tank 70). You may comprise so that water may be circulated. In this case, although the operating cost increases, an increase in the dissolved oxygen concentration in the sub-denitrification tank 10 under anaerobic conditions can be reduced.

硝酸脱窒槽80は、脱窒細菌81と、攪拌手段82と、溶存酸素濃度検出手段83と、を備えている。硝酸脱窒槽80は、脱窒槽30の後段に配置され、嫌気性アンモニア酸化による処理(前述した反応式(1)参照)により生成された硝酸態窒素を脱窒して、窒素濃度をさらに低減させることができる。なお、脱窒細菌81は、活性汚泥に存在してもよく、包括固定化担体に存在してもよく、これらに限られるものではない。また、硝酸脱窒槽80は、生物的処理により有機物を低減するものに限られず、化学的処理により脱窒処理をする構成であってもよい。   The nitric acid denitrification tank 80 includes denitrifying bacteria 81, stirring means 82, and dissolved oxygen concentration detecting means 83. The nitric acid denitrification tank 80 is disposed downstream of the denitrification tank 30 and denitrifies nitrate nitrogen generated by the treatment by anaerobic ammonia oxidation (see the above reaction formula (1)) to further reduce the nitrogen concentration. be able to. The denitrifying bacteria 81 may be present in the activated sludge, may be present in the entrapping immobilization carrier, and is not limited thereto. Moreover, the nitric acid denitrification tank 80 is not limited to the one that reduces organic matter by biological treatment, and may be configured to perform denitrification treatment by chemical treatment.

≪変形例≫
本実施形態に係る水処理装置(100,200)は、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。
≪Modification≫
The water treatment apparatus (100, 200) according to the present embodiment is not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention.

本実施形態に係る水処理装置(100,200)で処理される含窒素原水は、一般家庭や事業場から出る廃水に限られるものではない。例えば、富栄養化した水源の水質を改善するための水処理装置であってもよい。   The nitrogen-containing raw water to be treated by the water treatment apparatus (100, 200) according to the present embodiment is not limited to waste water from a general household or business establishment. For example, the water treatment apparatus for improving the water quality of the eutrophic water source may be used.

攪拌手段12,32,82は、水上側に設けられているものとして図示(図1、図3参照)しているが、これに限られるものではなく、例えば、槽底や槽壁に設けられているものであってもよい。
また、硝化槽20は、曝気手段22が散気することにより内部の水を攪拌するものとして説明したが、これに限られるものではなく、攪拌手段(図示せず)を別に設けてもよい。有機物除去槽60、脱気槽70についても同様である。
The agitation means 12, 32, and 82 are illustrated as being provided on the water side (see FIGS. 1 and 3), but are not limited thereto, and are provided, for example, on the tank bottom or the tank wall. It may be.
Moreover, although the nitrification tank 20 was demonstrated as what stirs an internal water when the aeration means 22 diffuses, it is not restricted to this, You may provide a stirring means (not shown) separately. The same applies to the organic matter removal tank 60 and the deaeration tank 70.

曝気手段22,62は、水中に含酸素ガスを散気するものとして説明したが、これに限られるものではなく、例えば、水面を機械的に攪拌して空気と混合させる装置(図示せず)であってもよい。
脱気手段72は、水中に無酸素ガスを散気するものとして説明したが、これに限られるものではなく、例えば、酸素を吸着する装置(図示せず)や脱酸素材を添加する装置(図示せず)であってもよい。
The aeration means 22 and 62 have been described as diffusing oxygen-containing gas into water, but the present invention is not limited to this. For example, a device (not shown) for mechanically stirring the water surface and mixing it with air. It may be.
Although the deaeration means 72 has been described as diffusing oxygen-free gas in water, the present invention is not limited to this. For example, a device for adsorbing oxygen (not shown) or a device for adding a deoxidizing material ( (Not shown).

硝化槽20は、全窒素検出手段24で検出した全窒素濃度とアンモニア態窒素検出手段25で検出したアンモニア態窒素濃度との差分に基づいて、亜硝酸態窒素濃度を算出するものとして説明したが、これに限られるものではない。例えば、亜硝酸態窒素検出手段(図示せず)を更に備えていてもよい。また、全窒素検出手段24と亜硝酸態窒素検出手段(図示せず)とを備え、全窒素検出手段24で検出した全窒素濃度と亜硝酸態窒素検出手段(図示せず)で検出した亜硝酸態窒素濃度との差分に基づいて、アンモニア態窒素濃度を算出するものであってもよい。   The nitrification tank 20 has been described as calculating the nitrite nitrogen concentration based on the difference between the total nitrogen concentration detected by the total nitrogen detector 24 and the ammonia nitrogen concentration detected by the ammonia nitrogen detector 25. However, it is not limited to this. For example, nitrite nitrogen detection means (not shown) may be further provided. In addition, a total nitrogen detection means 24 and a nitrite nitrogen detection means (not shown) are provided, and the total nitrogen concentration detected by the total nitrogen detection means 24 and the sub-phase detected by the nitrite nitrogen detection means (not shown). The ammonia nitrogen concentration may be calculated based on the difference from the nitrate nitrogen concentration.

100,200 水処理装置
5 原水ポンプ
10 従属脱窒槽
11 従属栄養性脱窒細菌
20 硝化槽
21 硝化細菌
22 曝気手段
23 溶存酸素濃度検出手段
24 全窒素検出手段(窒素濃度検出手段)
25 アンモニア態窒素検出手段(窒素濃度検出手段)
30 脱窒槽
31 独立栄養性脱窒細菌
40 循環流路(循環手段)
45 循環ポンプ(循環手段)
50 制御手段
60 有機物除去槽
70 脱気槽
80 硝酸脱窒槽
81 脱窒細菌
100,200 Water treatment apparatus 5 Raw water pump 10 Subordinate denitrification tank 11 Heterotrophic denitrification bacteria 20 Nitrification tank 21 Nitrification bacteria 22 Aeration means 23 Dissolved oxygen concentration detection means 24 Total nitrogen detection means (nitrogen concentration detection means)
25 Ammonia nitrogen detection means (nitrogen concentration detection means)
30 Denitrification tank 31 Autotrophic denitrification bacteria 40 Circulation channel (circulation means)
45 Circulation pump (circulation means)
50 Control means 60 Organic substance removal tank 70 Deaeration tank 80 Nitric acid denitrification tank 81 Denitrifying bacteria

Claims (6)

有機物を用いて亜硝酸を脱窒する従属栄養性脱窒細菌を有する従属脱窒槽と、
前記従属脱窒槽の後段に配置され、アンモニアから亜硝酸を生成する硝化細菌を有する硝化槽と、
前記硝化槽の後段に配置され、アンモニアと亜硝酸を脱窒する独立栄養性脱窒細菌を有する脱窒槽と、
前記硝化槽の処理水を前記従属脱窒槽に循環させる循環手段と、を備える
ことを特徴とする水処理装置。
A dependent denitrification tank having heterotrophic denitrifying bacteria for denitrifying nitrite using organic matter;
A nitrification tank that is disposed downstream of the sub-denitrification tank and has nitrifying bacteria that produce nitrous acid from ammonia;
A denitrification tank that is disposed downstream of the nitrification tank and has autotrophic denitrification bacteria that denitrify ammonia and nitrous acid;
Circulating means for circulating the treated water in the nitrification tank to the sub-denitrification tank.
前記従属脱窒槽の後段かつ前記硝化槽の前段に配置され、有機物を除去する有機物除去槽を更に備える
ことを特徴とする請求項1に記載の水処理装置。
The water treatment apparatus according to claim 1, further comprising an organic substance removal tank that is disposed downstream of the sub-denitrification tank and in front of the nitrification tank and removes organic substances.
前記従属硝化槽の後段かつ前記脱窒槽の前段に配置され、溶存酸素濃度を低減させる脱気槽を更に備える
ことを特徴とする請求項1に記載の水処理装置。
The water treatment apparatus according to claim 1, further comprising a deaeration tank disposed downstream of the dependent nitrification tank and upstream of the denitrification tank and reducing a dissolved oxygen concentration.
前記脱窒槽の後段に配置され、硝酸を脱窒する硝酸脱窒槽を更に備える
ことを特徴とする請求項1に記載の水処理装置。
The water treatment apparatus according to claim 1, further comprising a nitric acid denitrification tank that is disposed downstream of the denitrification tank and denitrifies nitric acid.
前記循環手段は、前記硝化槽の処理水を前記従属脱窒槽に循環させる循環流路と、該循環流路に配置された循環ポンプと、を有し、
前記硝化槽の処理水の亜硝酸態窒素濃度を検出する窒素濃度検出手段と、
前記循環ポンプの流量を制御する制御手段と、を更に備え、
前記制御手段は、
前記窒素濃度検出手段で検出した亜硝酸態窒素濃度が高いほど、前記循環ポンプの流量が大きくなるように制御する
ことを特徴とする請求項1に記載の水処理装置。
The circulation means has a circulation flow path for circulating the treated water of the nitrification tank to the sub-denitrification tank, and a circulation pump arranged in the circulation flow path,
Nitrogen concentration detection means for detecting the nitrite nitrogen concentration of the treated water of the nitrification tank;
Control means for controlling the flow rate of the circulation pump,
The control means includes
2. The water treatment apparatus according to claim 1, wherein the flow rate of the circulation pump is increased as the nitrite nitrogen concentration detected by the nitrogen concentration detection unit is higher.
原水を従属栄養性脱窒細菌により有機物を用いて亜硝酸を脱窒する従属栄養性脱窒処理と、
前記従属栄養性脱窒処理で処理された処理水を硝化細菌によりアンモニアから亜硝酸を生成する亜硝酸型硝化処理と、
前記亜硝酸型硝化処理で処理された処理水の一部を前記従属栄養性脱窒処理へと循環させる循環処理と、
前記亜硝酸型硝化処理で処理された処理水の残部を独立栄養性脱窒細菌によりアンモニアと亜硝酸を脱窒する独立栄養性脱窒処理と、を備える
ことを特徴とする水処理方法。
A heterotrophic denitrification treatment in which raw water is denitrified by heterotrophic denitrifying bacteria using organic matter and nitrite;
Nitrite-type nitrification treatment for producing nitrite from ammonia by nitrifying bacteria from the treated water treated by the heterotrophic denitrification treatment;
A circulation treatment for circulating a part of the treated water treated by the nitrite type nitrification treatment to the heterotrophic denitrification treatment;
A water treatment method, comprising: an autotrophic denitrification treatment in which ammonia and nitrous acid are denitrified by an autotrophic denitrifying bacterium in the remainder of the treated water treated by the nitrite type nitrification treatment.
JP2012258824A 2012-11-27 2012-11-27 Water treatment apparatus and water treatment method Active JP5984137B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012258824A JP5984137B2 (en) 2012-11-27 2012-11-27 Water treatment apparatus and water treatment method
KR1020130145170A KR20140067941A (en) 2012-11-27 2013-11-27 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012258824A JP5984137B2 (en) 2012-11-27 2012-11-27 Water treatment apparatus and water treatment method

Publications (2)

Publication Number Publication Date
JP2014104416A true JP2014104416A (en) 2014-06-09
JP5984137B2 JP5984137B2 (en) 2016-09-06

Family

ID=51026358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012258824A Active JP5984137B2 (en) 2012-11-27 2012-11-27 Water treatment apparatus and water treatment method

Country Status (2)

Country Link
JP (1) JP5984137B2 (en)
KR (1) KR20140067941A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016049512A (en) * 2014-09-01 2016-04-11 水ing株式会社 Anaerobic ammonia oxidation treatment method, anaerobic ammonia oxidation treatment apparatus, and denitrification method of organic waste water
JP2017144402A (en) * 2016-02-18 2017-08-24 水ing株式会社 Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
WO2019202756A1 (en) * 2018-04-18 2019-10-24 鹿島建設株式会社 Wastewater treatment device and method
JP2019180292A (en) * 2018-04-10 2019-10-24 株式会社環境技術研究所 Denitrification apparatus and denitrification method
CN111422993A (en) * 2020-03-12 2020-07-17 广东工业大学 Method for rapidly starting autotrophic ammonia oxidation by using heterotrophic denitrification granular sludge
JP2022082204A (en) * 2020-11-20 2022-06-01 日立造船株式会社 Solution treatment apparatus and solution treatment method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117789A (en) * 1994-10-26 1996-05-14 Meidensha Corp Operation control of two-stage activated sludge circulation variation
JPH09168796A (en) * 1995-12-19 1997-06-30 Nippon Steel Corp Removal of nitrogen in waste water
JP2003033790A (en) * 2001-07-23 2003-02-04 Kurita Water Ind Ltd Denitrification device and method therefor
JP2006272172A (en) * 2005-03-29 2006-10-12 Kurita Water Ind Ltd Method and apparatus for biologically treating nitrogen-containing water
JP2007117842A (en) * 2005-10-26 2007-05-17 Ebara Corp Method and apparatus for removing nitrogen of high concentration organic waste water
JP2010063987A (en) * 2008-09-10 2010-03-25 Hitachi Plant Technologies Ltd Waste water treatment device and treatment method
JP2012152674A (en) * 2011-01-24 2012-08-16 Meidensha Corp Liquid waste treatment device and liquid waste treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117789A (en) * 1994-10-26 1996-05-14 Meidensha Corp Operation control of two-stage activated sludge circulation variation
JPH09168796A (en) * 1995-12-19 1997-06-30 Nippon Steel Corp Removal of nitrogen in waste water
JP2003033790A (en) * 2001-07-23 2003-02-04 Kurita Water Ind Ltd Denitrification device and method therefor
JP2006272172A (en) * 2005-03-29 2006-10-12 Kurita Water Ind Ltd Method and apparatus for biologically treating nitrogen-containing water
JP2007117842A (en) * 2005-10-26 2007-05-17 Ebara Corp Method and apparatus for removing nitrogen of high concentration organic waste water
JP2010063987A (en) * 2008-09-10 2010-03-25 Hitachi Plant Technologies Ltd Waste water treatment device and treatment method
JP2012152674A (en) * 2011-01-24 2012-08-16 Meidensha Corp Liquid waste treatment device and liquid waste treatment method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016049512A (en) * 2014-09-01 2016-04-11 水ing株式会社 Anaerobic ammonia oxidation treatment method, anaerobic ammonia oxidation treatment apparatus, and denitrification method of organic waste water
JP2017144402A (en) * 2016-02-18 2017-08-24 水ing株式会社 Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP2019180292A (en) * 2018-04-10 2019-10-24 株式会社環境技術研究所 Denitrification apparatus and denitrification method
JP7036655B2 (en) 2018-04-10 2022-03-15 株式会社環境技術研究所 Denitrification device and denitrification method
JP2022066374A (en) * 2018-04-10 2022-04-28 株式会社環境技術研究所 Denitrification device, denitrification method, and water treatment system using denitrification device
WO2019202756A1 (en) * 2018-04-18 2019-10-24 鹿島建設株式会社 Wastewater treatment device and method
JP6616526B1 (en) * 2018-04-18 2019-12-04 鹿島建設株式会社 Apparatus and method for treating wastewater
CN111422993A (en) * 2020-03-12 2020-07-17 广东工业大学 Method for rapidly starting autotrophic ammonia oxidation by using heterotrophic denitrification granular sludge
CN111422993B (en) * 2020-03-12 2022-08-23 广东工业大学 Method for rapidly starting autotrophic ammonia oxidation by using heterotrophic denitrification granular sludge
JP2022082204A (en) * 2020-11-20 2022-06-01 日立造船株式会社 Solution treatment apparatus and solution treatment method
JP7437292B2 (en) 2020-11-20 2024-02-22 日立造船株式会社 Solution processing device and solution processing method

Also Published As

Publication number Publication date
JP5984137B2 (en) 2016-09-06
KR20140067941A (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP4951826B2 (en) Biological nitrogen removal method
US7329352B2 (en) Nitrifying method of treating water containing ammonium-nitrogen
JP5984137B2 (en) Water treatment apparatus and water treatment method
JP4632356B2 (en) Biological nitrogen removal method and system
JP4882175B2 (en) Nitrification method
US8323487B2 (en) Waste water treatment apparatus
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JP2005074253A (en) Biological treatment method for wastewater containing bod and nitrogen
JP5006845B2 (en) Method for suppressing generation of nitrous oxide
WO2013084973A1 (en) Processing system and processing method for nitrogen-containing organic waste water
JP4872171B2 (en) Biological denitrification equipment
JP2010000479A (en) Organic raw water denitrification method including scale prevention
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP2007125484A (en) Nitrogen-containing wastewater treatment method
JP5858763B2 (en) Nitrogen-containing organic wastewater treatment system and treatment method
JP4848144B2 (en) Waste water treatment equipment
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP2003126886A (en) Biological denitrification method and device of the same
JP2019217481A (en) Water treatment method
JP2005329399A (en) Method and apparatus for removing nitrogen
TWI846706B (en) Water treatment method and water treatment device
JP2006088057A (en) Method for treating ammonia-containing water
JPH08323391A (en) Treatment of selenium-containing water
JP6754863B1 (en) Water treatment equipment
JP6667030B2 (en) Water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160726

R150 Certificate of patent or registration of utility model

Ref document number: 5984137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150