JP6616526B1 - Apparatus and method for treating wastewater - Google Patents

Apparatus and method for treating wastewater Download PDF

Info

Publication number
JP6616526B1
JP6616526B1 JP2018555292A JP2018555292A JP6616526B1 JP 6616526 B1 JP6616526 B1 JP 6616526B1 JP 2018555292 A JP2018555292 A JP 2018555292A JP 2018555292 A JP2018555292 A JP 2018555292A JP 6616526 B1 JP6616526 B1 JP 6616526B1
Authority
JP
Japan
Prior art keywords
tank
anammox
organic matter
waste water
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018555292A
Other languages
Japanese (ja)
Other versions
JPWO2019202756A1 (en
Inventor
晴佳 柴田
晴佳 柴田
多田羅 昌浩
昌浩 多田羅
嘉之 上野
嘉之 上野
育子 坂本
育子 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Application granted granted Critical
Publication of JP6616526B1 publication Critical patent/JP6616526B1/en
Publication of JPWO2019202756A1 publication Critical patent/JPWO2019202756A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

本発明の課題は、簡便な工程で効率的に廃水中の窒素を除去できる技術を提供することである。本発明は、アンモニア態窒素及び有機物を含む廃水を処理する装置であって、前記装置は、前記廃水の上流側から、脱窒菌を含み、かつ、廃水中の有機物を嫌気的条件下で酸化する有機物酸化槽と、前記有機物酸化槽を経た廃水中のアンモニア態窒素の一部を好気的条件下で亜硝酸化する亜硝酸化槽と、アナモックス菌を含み、かつ、前記亜硝酸化槽を経た廃水をアナモックス反応に供するアナモックス槽と、を少なくともこの順に備え、かつ、前記アナモックス槽を経た廃水のうち少なくとも一部を前記有機物酸化槽に返送する手段を含む、装置を提供する。The subject of this invention is providing the technique which can remove nitrogen in wastewater efficiently with a simple process. The present invention is a device for treating waste water containing ammonia nitrogen and organic matter, the device containing denitrifying bacteria from the upstream side of the waste water and oxidizing organic matter in the waste water under anaerobic conditions. An organic matter oxidation tank, a nitritation tank that nitrites a portion of ammonia nitrogen in wastewater that has passed through the organic matter oxidation tank under an aerobic condition, an anammox bacterium, and the nitritation tank An apparatus including at least an anammox tank in which the waste water passed through the anammox reaction is provided in this order, and means for returning at least a part of the waste water passed through the anammox tank to the organic matter oxidation tank.

Description

本発明は、廃水を処理する装置及び方法に関する。   The present invention relates to an apparatus and method for treating wastewater.

工場、農場等から廃棄される水(廃水)には、有害物質や汚濁物質が含まれる。このような物質のとしては、例えば窒素が挙げられ、廃水中の窒素除去技術が各種提案されている。廃水中において、窒素は、通常、アンモニア態窒素として存在する。   Water (waste water) discarded from factories, farms, etc. contains harmful substances and pollutants. Examples of such substances include nitrogen, and various techniques for removing nitrogen from wastewater have been proposed. In wastewater, nitrogen usually exists as ammonia nitrogen.

廃水からの窒素除去技術としては、硝化脱窒法が知られる。硝化脱窒法とは、硝化反応及び脱窒反応を組み合わせた方法である。硝化反応は、好気的条件下で、アンモニア態窒素を酸素で酸化することで、亜硝酸態窒素が生成するか、又は、亜硝酸態窒素がさらに酸素で酸化されることで硝酸態窒素が生成する反応である(ただし、亜硝酸態窒素は不安定であるため、通常は、亜硝酸態窒素の全量が硝酸態窒素に酸化される。)。脱窒反応は、嫌気的条件下で、硝酸態窒素又は亜硝酸態窒素が、有機物により還元され、窒素ガスが生成する反応である。この反応によって、廃水から窒素を窒素ガスとして排出し、除去することができる。   A nitrification denitrification method is known as a technique for removing nitrogen from wastewater. The nitrification denitrification method is a method that combines a nitrification reaction and a denitrification reaction. In the nitrification reaction, ammonia nitrogen is oxidized with oxygen under aerobic conditions to produce nitrite nitrogen, or nitrate nitrogen is further oxidized with oxygen to produce nitrate nitrogen. (However, since nitrite nitrogen is unstable, the entire amount of nitrite nitrogen is usually oxidized to nitrate nitrogen.) The denitrification reaction is a reaction in which nitrate nitrogen or nitrite nitrogen is reduced by an organic substance to generate nitrogen gas under anaerobic conditions. By this reaction, nitrogen can be discharged from the wastewater as nitrogen gas and removed.

他方、硝化脱窒法には、硝化反応において酸素供給が必要であるため曝気に要するエネルギー消費が大きい点、脱窒反応において有機物を添加する必要があるため煩雑な操作やコストを要する点、等のデメリットがある。   On the other hand, the nitrification denitrification method requires a large amount of energy consumption for aeration because oxygen supply is required in the nitrification reaction, and requires complicated operations and costs because it is necessary to add organic substances in the denitrification reaction. There are disadvantages.

硝化脱窒法におけるデメリットを低減する方法としては、アナモックス菌による反応(アナモックス(anaerobic ammonium oxidation、嫌気性アンモニア酸化)反応)を取り入れた技術が知られる(例えば、特許文献1、非特許文献1を参照)。アナモックス反応は、嫌気的条件下で、アンモニア態窒素及び亜硝酸態窒素を基質として、窒素がガスとして除去され、副生成物として硝酸態窒素が生成する反応である。   As a method for reducing the demerit in the nitrification denitrification method, a technique incorporating a reaction by anammox bacteria (anaerobic ammonium oxidation (anaerobic ammonia oxidation) reaction) is known (for example, see Patent Document 1 and Non-Patent Document 1). ). The anammox reaction is a reaction in which ammonia nitrogen and nitrite nitrogen are used as substrates, nitrogen is removed as a gas, and nitrate nitrogen is generated as a by-product under anaerobic conditions.

特開2015−229131号公報JP 2015-229131 A

「窒素を除去するアナモックス菌 −畜産における可能性−」畜産環境情報 第56号 平成27年(2015年)2月"Anamox bacteria that remove nitrogen-Possibility in livestock-" Livestock environment information No. 56 February 2015

アナモックス反応を取り入れた従来の窒素除去技術においては、アナモックス反応後に脱窒反応を行うことで、アナモックス反応で生成した硝酸態窒素を還元し、廃水中の窒素を除去することができる。しかし、このような技術によっても、脱窒反応におけるデメリットは解決されない。   In the conventional nitrogen removal technology that incorporates the anammox reaction, by performing a denitrification reaction after the anammox reaction, nitrate nitrogen generated by the anammox reaction can be reduced and nitrogen in the wastewater can be removed. However, such a technique does not solve the disadvantages in the denitrification reaction.

本発明は、上記の状況に鑑みてなされたものであり、簡便な工程で効率的に廃水中の窒素を除去できる技術を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a technique capable of efficiently removing nitrogen in wastewater by a simple process.

本発明者らは、アナモックス反応を経た廃水を、未処理の廃水と合流させ、再度有機物による還元に供することで上記課題を解決できる点を見出し、本発明を完成するに至った。具体的には、本発明は以下のものを提供する。   The present inventors have found that the above-mentioned problems can be solved by joining wastewater that has undergone an anammox reaction with untreated wastewater and again subjecting it to reduction with organic matter, and have completed the present invention. Specifically, the present invention provides the following.

(1) アンモニア態窒素及び有機物を含む廃水を処理する装置であって、
前記装置は、前記廃水の上流側から、
脱窒菌を含み、かつ、廃水中の有機物を嫌気的条件下で酸化する有機物酸化槽と、
前記有機物酸化槽を経た廃水中のアンモニア態窒素の一部を好気的条件下で亜硝酸化する亜硝酸化槽と、
アナモックス菌を含み、かつ、前記亜硝酸化槽を経た廃水をアナモックス反応に供するアナモックス槽と、を少なくともこの順に備え、かつ、
前記アナモックス槽を経た廃水のうち少なくとも一部を前記有機物酸化槽に返送する手段を含む、装置。
(1) An apparatus for treating waste water containing ammonia nitrogen and organic matter,
From the upstream side of the waste water, the device
An organic matter oxidation tank containing denitrifying bacteria and oxidizing organic matter in wastewater under anaerobic conditions;
A nitritation tank that nitrites a part of ammonia nitrogen in wastewater that has passed through the organic matter oxidation tank under aerobic conditions;
An anammox tank containing anammox bacteria, and subjecting the wastewater passed through the nitritation tank to an anammox reaction, at least in this order, and
An apparatus comprising means for returning at least a part of waste water having passed through the anammox tank to the organic matter oxidation tank.

(2) アンモニア態窒素及び有機物を含む廃水を処理する装置であって、
前記装置は、前記廃水の上流側から、
脱窒菌が保持された固定床担体が配置された有機物酸化槽と、
前記有機物酸化槽を経た廃水中のアンモニア態窒素の一部を好気的条件下で亜硝酸化する亜硝酸化槽と、
アナモックス菌を含み、かつ、前記亜硝酸化槽を経た廃水をアナモックス反応に供するアナモックス槽と、を少なくともこの順に備え、かつ、
前記アナモックス槽を経た廃水のうち少なくとも一部を前記有機物酸化槽に返送する手段を含み、
前記固定床担体が、細長の芯部と、該芯部の外周全面にわたって多数立設され、それぞれが繊維糸を撓ませてその両端を閉じることにより形成された輪状体と、を備え、
前記有機物酸化槽内の溶存酸素量が0.0mg/L超2.0mg/L以下である、装置。
(2) An apparatus for treating waste water containing ammonia nitrogen and organic matter,
From the upstream side of the waste water, the device
An organic oxidation tank in which a fixed-bed carrier holding denitrifying bacteria is disposed;
A nitritation tank that nitrites a part of ammonia nitrogen in wastewater that has passed through the organic matter oxidation tank under aerobic conditions;
An anammox tank containing anammox bacteria, and subjecting the wastewater passed through the nitritation tank to an anammox reaction, at least in this order, and
Means for returning at least a portion of the wastewater that has passed through the anammox tank to the organic matter oxidation tank;
The fixed bed carrier includes a long and thin core part, and a ring-shaped body formed by bending a fiber yarn and closing both ends thereof, each of which is erected over the entire outer periphery of the core part,
The apparatus whose dissolved oxygen amount in the said organic substance oxidation tank is more than 0.0 mg / L and 2.0 mg / L or less.

(3) 前記亜硝酸化槽と、前記アナモックス槽とは別個の槽である、(1)又は(2)に記載の装置。   (3) The apparatus according to (1) or (2), wherein the nitritation tank and the anammox tank are separate tanks.

(4) 前記亜硝酸化槽と、前記アナモックス槽とは1つの槽である、(1)又は(2)に記載の装置。   (4) The apparatus according to (1) or (2), wherein the nitritation tank and the anammox tank are one tank.

(5) 前記アナモックス槽の下流に脱窒槽を備えない、(1)から(4)のいずれかに記載の装置。   (5) The apparatus according to any one of (1) to (4), wherein no denitrification tank is provided downstream of the anammox tank.

(6) 前記アナモックス槽はpH調整手段を備えない、(1)から(5)のいずれかに記載の装置。   (6) The apparatus according to any one of (1) to (5), wherein the anammox tank does not include pH adjusting means.

(7) 前記アナモックス槽から前記有機物酸化槽に返送される廃水の量は、前記亜硝酸化槽から前記アナモックス槽に流入する廃水の量の0.5倍量以上である、(1)から(6)のいずれかに記載の装置。   (7) The amount of waste water returned from the anammox tank to the organic matter oxidation tank is 0.5 times or more the amount of waste water flowing from the nitritation tank into the anammox tank. The apparatus according to any one of 6).

(8) アンモニア態窒素及び有機物を含む廃水を処理する方法であって、
前記方法は、前記廃水の上流側から、
脱窒菌を用いて、廃水中の有機物を嫌気的条件下で酸化する有機物酸化工程と、
前記有機物酸化工程を経た廃水中のアンモニア態窒素の一部を好気的条件下で亜硝酸化する亜硝酸化工程と、
アナモックス菌を用いて、前記亜硝酸化工程を経た廃水をアナモックス反応に供するアナモックス反応工程と、を少なくともこの順に備え、かつ、
前記アナモックス反応工程を経た廃水のうち少なくとも一部を有機物酸化工程に再度供する工程を含む、方法。
(8) A method for treating wastewater containing ammonia nitrogen and organic matter,
From the upstream side of the waste water, the method
An organic matter oxidation process that oxidizes organic matter in wastewater under anaerobic conditions using denitrifying bacteria,
A nitritation step of nitrating a portion of ammonia nitrogen in wastewater that has undergone the organic matter oxidation step under aerobic conditions;
Using an anammox bacterium, an anammox reaction step of subjecting the waste water that has undergone the nitritation step to an anammox reaction, and at least in this order, and
A method comprising the step of subjecting at least a part of the waste water that has undergone the Anammox reaction step to an organic matter oxidation step.

(9) アンモニア態窒素及び有機物を含む廃水を処理する方法であって、
前記方法は、前記廃水の上流側から、
固定床担体に保持された脱窒菌と、酸素と、を用いて、廃水中の有機物を酸化する有機物酸化工程と、
前記有機物酸化工程を経た廃水中のアンモニア態窒素の一部を好気的条件下で亜硝酸化する亜硝酸化工程と、
アナモックス菌を用いて、前記亜硝酸化工程を経た廃水をアナモックス反応に供するアナモックス反応工程と、を少なくともこの順に備え、かつ、
前記アナモックス反応工程を経た廃水のうち少なくとも一部を有機物酸化工程に再度供する工程を含み、
前記固定床担体が、細長の芯部と、該芯部の外周全面にわたって多数立設され、それぞれが繊維糸を撓ませてその両端を閉じることにより形成された輪状体と、を備え、
前記有機物酸化工程における溶存酸素量が0.0mg/L超2.0mg/L以下である、方法。
(9) A method for treating wastewater containing ammonia nitrogen and organic matter,
From the upstream side of the waste water, the method
An organic matter oxidation step of oxidizing organic matter in wastewater using denitrifying bacteria retained on a fixed bed carrier and oxygen;
A nitritation step of nitrating a portion of ammonia nitrogen in wastewater that has undergone the organic matter oxidation step under aerobic conditions;
Using an anammox bacterium, an anammox reaction step of subjecting the waste water that has undergone the nitritation step to an anammox reaction, and at least in this order, and
Including the step of subjecting at least a part of the wastewater that has undergone the Anammox reaction step to the organic matter oxidation step,
The fixed bed carrier includes a long and thin core part, and a ring-shaped body formed by bending a fiber yarn and closing both ends thereof, each of which is erected over the entire outer periphery of the core part,
The method in which the amount of dissolved oxygen in the organic matter oxidation step is more than 0.0 mg / L and not more than 2.0 mg / L.

(10) 前記亜硝酸化工程と前記アナモックス反応工程は、別個の槽内で行われる、(8)又は(9)に記載の方法。   (10) The method according to (8) or (9), wherein the nitritation step and the anammox reaction step are performed in separate tanks.

(11) 前記亜硝酸化工程と、前記アナモックス反応工程とは1つの槽内で行われる、(8)又は(9)に記載の方法。   (11) The method according to (8) or (9), wherein the nitritation step and the anammox reaction step are performed in one tank.

(12) 前記アナモックス反応工程の下流に脱窒工程を含まない、(8)から(11)のいずれかに記載の方法。   (12) The method according to any one of (8) to (11), wherein a denitrification step is not included downstream of the anammox reaction step.

(13) 前記アナモックス反応工程は、pHの調整工程を含まない、(8)から(12)のいずれかに記載の方法。   (13) The method according to any one of (8) to (12), wherein the anammox reaction step does not include a pH adjustment step.

(14) 前記アナモックス反応工程後に有機物酸化反応に再度供される廃水の量は、前記アナモックス反応工程に供される廃水の量の0.5倍量以上である、(8)から(13)のいずれかに記載の方法。   (14) The amount of waste water supplied again to the organic oxidation reaction after the Anammox reaction step is 0.5 times or more the amount of waste water supplied to the Anammox reaction step, from (8) to (13) The method according to any one.

本発明によれば、簡便な工程で効率的に廃水中の窒素を除去できる技術が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the technique which can remove nitrogen in wastewater efficiently with a simple process is provided.

従来の装置の概要を示す図である。It is a figure which shows the outline | summary of the conventional apparatus. 本発明の装置の一例の概要を示す図である。It is a figure which shows the outline | summary of an example of the apparatus of this invention. 本発明の装置の一例の概要を示す図である。It is a figure which shows the outline | summary of an example of the apparatus of this invention. 実施例で用いた装置の概要を示す図である。It is a figure which shows the outline | summary of the apparatus used in the Example. 本発明の装置の一例の概要を示す図である。It is a figure which shows the outline | summary of an example of the apparatus of this invention. 本発明の装置の一例の概要を示す図である。It is a figure which shows the outline | summary of an example of the apparatus of this invention. 本発明における固定床担体の一例の外観上方視模式図である。It is an external appearance upper view schematic diagram of an example of the fixed bed carrier in this invention. 本発明における固定床担体の一例の外観斜視模式図である。It is an appearance perspective schematic diagram of an example of a fixed bed carrier in the present invention.

以下、従来の技術と比較しながら、本発明の実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described in detail in comparison with conventional techniques. In addition, this invention is not limited to the following embodiment.

本明細書において「廃水」とは、窒素を除去するための処理対象であり、アンモニア態窒素(NH−N)及び有機物を少なくとも含む。廃水は、工場、農場、家庭等から排出された水であり得る。本明細書において、廃水に含まれる「有機物」とは、生物化学的酸素要求量(BOD)を指標として特定されるものである。In this specification, “waste water” is a treatment target for removing nitrogen, and includes at least ammonia nitrogen (NH 4 —N) and organic matter. Waste water can be water discharged from factories, farms, homes, and the like. In the present specification, the “organic matter” contained in the wastewater is specified using the biochemical oxygen demand (BOD) as an index.

<従来の装置の作用>
図1は、アナモックス槽を含む従来の装置の一例である。この装置は、廃水の流れの上流側から順に、有機物酸化槽、亜硝酸化槽、アナモックス槽、脱窒槽を少なくとも備える。この態様は、亜硝酸化槽及びアナモックス槽が別個の槽であるため二槽式として知られ、その他の態様として、亜硝酸化槽及びアナモックス槽が1つの槽である一槽式も知られる。
<Operation of conventional apparatus>
FIG. 1 is an example of a conventional apparatus including an anammox tank. This apparatus includes at least an organic matter oxidation tank, a nitritation tank, an anammox tank, and a denitrification tank in order from the upstream side of the wastewater flow. This aspect is known as a two-tank type because the nitritation tank and the anammox tank are separate tanks, and as another aspect, a one-tank type in which the nitritation tank and the anammox tank are one tank is also known.

(従来の装置における有機物酸化槽の作用)
有機物酸化槽においては、好気的条件下で、廃水中の有機物が酸化する(式(1−1))。この結果、廃水中の有機物の濃度が低下する。廃水中の有機物は後述するアナモックス反応を阻害し得るため、あらかじめ除去しておく必要があるためである。なお、本発明において「好気的条件」とは、酸素が存在する条件を意味する。
有機物+O→CO+HO 式(1−1)
(Operation of organic oxidation tank in conventional equipment)
In the organic matter oxidation tank, the organic matter in the wastewater is oxidized under an aerobic condition (Formula (1-1)). As a result, the concentration of organic matter in the wastewater decreases. This is because the organic matter in the wastewater needs to be removed in advance because it can inhibit the anammox reaction described later. In the present invention, the “aerobic condition” means a condition in which oxygen is present.
Organic matter + O 2 → CO 2 + H 2 O Formula (1-1)

(従来の装置における亜硝酸化槽の作用)
有機物酸化槽から亜硝酸化槽に流入した廃水は、少なくともアンモニア態窒素を含む。有機物酸化槽から流出した廃水は、亜硝酸化槽において、好気的条件下で、廃水中のアンモニア態窒素のうち一部(通常、約半分)が亜硝酸態窒素(NO−N)に酸化される(式(1−2))。この結果、廃水中のアンモニア態窒素の濃度が低下する一方、亜硝酸態窒素の濃度が増加する。この槽において全てのアンモニア態窒素を亜硝酸化すると、後述するアナモックス槽におけるアナモックス反応が進行しなくなるため、通常は温度、pH、廃水の滞留時間等を制御することで、酸化反応が制御される。
NH +O→NO +HO+H 式(1−2)
(Operation of nitritation tank in conventional equipment)
Waste water that has flowed into the nitritation tank from the organic oxidation tank contains at least ammonia nitrogen. Wastewater that has flowed out of the organic oxidation tank is partly (usually about half) of ammonia nitrogen in the wastewater converted to nitrite nitrogen (NO 2 -N) under aerobic conditions in the nitrification tank. It is oxidized (formula (1-2)). As a result, the concentration of ammonia nitrogen in the wastewater decreases while the concentration of nitrite nitrogen increases. If all ammonia nitrogen is nitritized in this tank, the anammox reaction in the anammox tank, which will be described later, does not proceed. Usually, the oxidation reaction is controlled by controlling the temperature, pH, residence time of waste water, etc. .
NH 4 + + O 2 → NO 2 + H 2 O + H + formula (1-2)

(従来の装置におけるアナモックス槽の作用)
亜硝酸化槽からアナモックス槽に流入した廃水は、少なくともアンモニア態窒素及び亜硝酸化態窒素を含む。亜硝酸化槽から流出した廃水は、アナモックス槽において、嫌気的条件下で、アナモックス菌の作用により、アナモックス反応が起きる(式(1−3))。アナモックス反応では、アンモニア態窒素及び亜硝酸態窒素を基質として、窒素がガスとして除去され、副生成物として硝酸態窒素(NO−N)が生じる。この結果、廃水中のアンモニア態窒素及び亜硝酸態窒素の濃度が低下する一方、硝酸態窒素の濃度が増加する。なお、本発明において「嫌気的条件」とは、酸素が存在しないか、又は、ごくわずかしか存在しない条件を意味する。
NH +NO →N+NO +HO 式(1−3)
(Operation of anammox tank in conventional equipment)
The waste water flowing into the anammox tank from the nitritation tank contains at least ammonia nitrogen and nitritation nitrogen. The effluent discharged from the nitritation tank undergoes an anammox reaction in the anammox tank under the anaerobic condition by the action of anammox bacteria (formula (1-3)). In the anammox reaction, ammonia nitrogen and nitrite nitrogen are used as substrates, nitrogen is removed as a gas, and nitrate nitrogen (NO 3 -N) is generated as a by-product. As a result, the concentration of ammonia nitrogen and nitrite nitrogen in the wastewater decreases, while the concentration of nitrate nitrogen increases. In the present invention, the “anaerobic condition” means a condition in which oxygen is not present or very little is present.
NH 4 + + NO 2 → N 2 + NO 3 + H 2 O Formula (1-3)

(従来の装置における脱窒槽の作用)
アナモックス槽から脱窒槽に流入した廃水は、少なくとも硝酸態窒素を含む。アナモックス槽から流出した廃水は、脱窒槽において、嫌気的条件下で、脱窒細菌の作用により、有機物の存在下で硝酸態窒素が還元され、窒素ガスを排出する(式(1−4))。ただし、脱窒槽に流入した廃水中には有機物がほぼ含まれないため、還元反応を進行させるために、脱窒槽内に有機物(通常は、メタノール等)を添加する必要がある。
NO +有機物→N+CO+HO 式(1−4)
(Operation of denitrification tank in conventional equipment)
Waste water that has flowed into the denitrification tank from the anammox tank contains at least nitrate nitrogen. In the denitrification tank, the waste water flowing out from the anammox tank is subjected to the action of denitrifying bacteria under the anaerobic condition, and nitrate nitrogen is reduced in the presence of organic matter, and nitrogen gas is discharged (formula (1-4)). . However, since the organic matter is not substantially contained in the wastewater flowing into the denitrification tank, it is necessary to add an organic substance (usually methanol or the like) to the denitrification tank in order to advance the reduction reaction.
NO 3 + organic matter → N 2 + CO 2 + H 2 O formula (1-4)

アナモックス槽を含む従来の装置によれば、以上のような機序によって廃水中から窒素が除去される。しかし、この装置においては、上述の脱窒槽への有機物の添加や、後述するアナモックス槽におけるpH調整等の、煩雑かつ処理コスト上昇の要因となる操作を要する。他方、本発明の装置によれば、このようなデメリットを低減しつつも、効率的に廃水中の窒素を除去することができる。以下に、本発明の装置の概要を説明する。   According to the conventional apparatus including the anammox tank, nitrogen is removed from the wastewater by the mechanism as described above. However, this apparatus requires complicated operations such as addition of organic substances to the above-mentioned denitrification tank and pH adjustment in the anammox tank described later, which cause an increase in processing costs. On the other hand, according to the apparatus of the present invention, nitrogen in wastewater can be efficiently removed while reducing such disadvantages. Below, the outline | summary of the apparatus of this invention is demonstrated.

<本発明の装置の作用>
本発明の装置は、アンモニア態窒素及び有機物を含む廃水を処理する装置であり、廃水の流れの上流側から順に、(1)脱窒菌を含み、かつ、廃水中の有機物を嫌気性条件下、又は、嫌気性条件及び好気性条件下で酸化する有機物酸化槽と、(2)有機物酸化槽を経た廃水中のアンモニア態窒素の一部を好気性条件下で亜硝酸化する亜硝酸化槽と、(3)アナモックス菌を含み、かつ、亜硝酸化槽を経た廃水をアナモックス反応に供するアナモックス槽と、を少なくとも備え、さらに、アナモックス槽を経た廃水のうち少なくとも一部を有機物酸化槽に返送する手段を含む。
<Operation of the device of the present invention>
The apparatus of the present invention is an apparatus for treating waste water containing ammonia nitrogen and organic matter, and in order from the upstream side of the waste water flow, (1) contains denitrifying bacteria, and the organic matter in the waste water is subjected to anaerobic conditions. Or, an organic matter oxidation tank that oxidizes under anaerobic and aerobic conditions, and (2) a nitritation tank that nitrites part of ammonia nitrogen in wastewater that has passed through the organic oxidation tank under aerobic conditions , (3) an anammox tank that contains anammox bacteria and passes wastewater that has passed through a nitritation tank to an anammox reaction, and further returns at least a portion of the wastewater that has passed through the anammox tank to an organic matter oxidation tank Including means.

図2及び図5は、本発明の装置の一例である。この装置は、廃水の流れの上流側から順に、有機物酸化槽、亜硝酸化槽、アナモックス槽を備える。該装置は、有機物酸化槽における反応が嫌気的条件下(図2)、又は、嫌気性条件及び好気性条件下(図5)で行われる点、アナモックス槽の下流に脱窒槽が設けられない点、アナモックス槽から流出した廃水の少なくとも一部が有機物酸化槽に返送される点において従来の装置とは少なくとも異なる。なお、図5に示す装置の構成は、有機物酸化槽の構成以外は図2と同様である。   2 and 5 are examples of the apparatus of the present invention. This apparatus includes an organic matter oxidation tank, a nitritation tank, and an anammox tank in order from the upstream side of the wastewater flow. The apparatus is such that the reaction in the organic matter oxidation tank is carried out under anaerobic conditions (FIG. 2), anaerobic conditions and aerobic conditions (FIG. 5), and no denitrification tank is provided downstream of the anammox tank. At least a part of the waste water flowing out from the anammox tank is returned to the organic oxidation tank at least different from the conventional apparatus. In addition, the structure of the apparatus shown in FIG. 5 is the same as that of FIG. 2 except the structure of an organic matter oxidation tank.

(本発明の装置におけるアナモックス槽の作用−1)
有機物酸化槽、次いで、亜硝酸化槽を経て、アナモックス槽に流入した廃水は、少なくともアンモニア態窒素及び亜硝酸態窒素を含む。亜硝酸化槽から流出した廃水は、アナモックス槽において、嫌気的条件下で、アナモックス菌の作用により、アナモックス反応が起きる(式(2−1))。アナモックス反応では、アンモニア態窒素及び亜硝酸態窒素を基質として、窒素がガスとして除去され、副生成物として硝酸態窒素が生じる。この結果、廃水中のアンモニア態窒素及び亜硝酸態窒素の濃度が低下する一方、硝酸態窒素の濃度が増加する。
NH +NO →N+NO +HO 式(2−1)
(Operation-1 of the anammox tank in the apparatus of the present invention)
The waste water that has flowed into the anammox tank through the organic matter oxidation tank and then the nitritation tank contains at least ammonia nitrogen and nitrite nitrogen. The effluent discharged from the nitritation tank undergoes an anammox reaction in the anammox tank under the anaerobic condition by the action of anammox bacteria (formula (2-1)). In the anammox reaction, ammonia nitrogen and nitrite nitrogen are used as substrates, nitrogen is removed as a gas, and nitrate nitrogen is generated as a by-product. As a result, the concentration of ammonia nitrogen and nitrite nitrogen in the wastewater decreases, while the concentration of nitrate nitrogen increases.
NH 4 + + NO 2 → N 2 + NO 3 + H 2 O Formula (2-1)

アナモックス反応を経た廃水のうち一部は、有機物酸化槽に戻される。この点は、本発明の装置が従来の装置と異なる点の1つである。本発明において、アナモックス槽を経た廃水のうち一部が有機物酸化槽に戻されることを「返送」ともいう。本発明において、「廃水が槽を経る」とは、廃水がその槽における目的とする反応(アナモックス反応等)に十分に供され、所定の反応が生じたことを意味する。また、アナモックス槽から有機物酸化槽に返送される廃水を「返送水」ともいう。   Part of the wastewater that has undergone the Anammox reaction is returned to the organic matter oxidation tank. This is one of the differences between the device of the present invention and the conventional device. In the present invention, returning a part of the wastewater that has passed through the anammox tank to the organic oxidation tank is also referred to as “returning”. In the present invention, “waste water passes through a tank” means that the waste water is sufficiently subjected to a target reaction (anammox reaction or the like) in the tank and a predetermined reaction occurs. In addition, the waste water returned from the anammox tank to the organic oxidation tank is also referred to as “return water”.

(本発明の装置における有機物酸化槽の作用)
アナモックス槽から有機物酸化槽の返送水は、少なくとも硝酸態窒素を含む。アナモックス槽から有機物酸化槽の返送水は、有機物酸化槽に流入した未処理の廃水(有機物及びアンモニア態窒素を少なくとも含む。)と合流する。
(Operation of the organic oxidation tank in the apparatus of the present invention)
The return water from the anammox tank to the organic oxidation tank contains at least nitrate nitrogen. The return water from the anammox tank to the organic substance oxidation tank merges with untreated waste water (including at least organic substances and ammonia nitrogen) that has flowed into the organic substance oxidation tank.

本発明における有機物酸化槽は、嫌気的条件、又は、嫌気性条件及び好気性条件に保たれる。以下、それぞれの態様における作用について説明する。   The organic matter oxidation tank in the present invention is kept under anaerobic conditions, or anaerobic conditions and aerobic conditions. Hereinafter, the operation in each aspect will be described.

第1の態様に係る有機物酸化槽(図2)においては、嫌気的条件下で、脱窒菌の作用により、返送水中の硝酸態窒素と、未処理の廃水中の有機物との間の反応が生じる(式(2−2))。この結果、有機物が酸化され、かつ、硝酸態窒素が還元される。その結果、廃水中の有機物及び硝酸態窒素の濃度が低下し、窒素ガスが排出される。つまり、本発明の装置によれば、廃水がアナモックス槽から有機物酸化槽に返送されることにより、従来の装置のように別途脱窒槽を設け、有機物を添加せずとも、硝酸態窒素を還元し、窒素ガスとして除去することができる。
有機物+NO →N+CO+HO 式(2−2−1)
In the organic matter oxidation tank (FIG. 2) according to the first aspect, a reaction between nitrate nitrogen in the return water and organic matter in untreated wastewater occurs under the anaerobic condition by the action of denitrifying bacteria. (Formula (2-2)). As a result, the organic matter is oxidized and nitrate nitrogen is reduced. As a result, the concentration of organic matter and nitrate nitrogen in the wastewater is reduced, and nitrogen gas is discharged. That is, according to the apparatus of the present invention, the waste water is returned from the anammox tank to the organic matter oxidation tank, so that a separate denitrification tank is provided as in the conventional apparatus, and nitrate nitrogen is reduced without adding organic matter. Can be removed as nitrogen gas.
Organic matter + NO 3 → N 2 + CO 2 + H 2 O Formula (2-2-1)

第2の態様に係る有機物酸化槽(図5)は、曝気されることで好気的条件に保たれつつ、かつ、後述する固定床担体を用いて部分的に嫌気的条件に保たれる。これにより、廃水を、上記の嫌気的条件下の反応(式(2−2−1))とともに、有機物の酸化反応(式(2−2−2))に供することができ、より効率的に有機物の酸化及び窒素ガスの除去を実現できる。第2の態様の有機物酸化槽を備える本発明の装置は、廃水中の有機物含量が高い場合(例えば、NH−Nに対するT−BODの質量比が1.0以上である場合)に特に有用である。
有機物+O→CO+HO 式(2−2−2)
The organic matter oxidation tank (FIG. 5) according to the second aspect is kept aerobic by being aerated and partially kept under anaerobic conditions using a fixed bed carrier described later. As a result, the waste water can be subjected to the organic matter oxidation reaction (formula (2-2-2)) together with the reaction under the anaerobic conditions (formula (2-2-1)), more efficiently. Organic substance oxidation and nitrogen gas removal can be realized. The apparatus of the present invention provided with the organic matter oxidation tank of the second aspect is particularly useful when the organic matter content in the wastewater is high (for example, when the mass ratio of T-BOD to NH 4 -N is 1.0 or more). It is.
Organic matter + O 2 → CO 2 + H 2 O Formula (2-2-2)

上記のとおり、本発明の装置においては、従来の装置のように別途脱窒槽を設けなくともよい。ただし、本発明において、アナモックス槽の下流に脱窒槽を設け、アナモックス槽から流出した廃水を脱窒反応(式(1−4))に供する態様は排除されない。   As described above, in the apparatus of the present invention, it is not necessary to provide a separate denitrification tank as in the conventional apparatus. However, in the present invention, a mode in which a denitrification tank is provided downstream of the anammox tank and the waste water flowing out from the anammox tank is subjected to a denitrification reaction (formula (1-4)) is not excluded.

(本発明の装置における亜硝酸化槽の作用)
有機物酸化槽から亜硝酸化槽に流入した廃水は、少なくともアンモニア態窒素を含む。亜硝酸化槽においては、好気的条件下で、廃水中のアンモニア態窒素のうち一部(通常、約半分)が亜硝酸態窒素に酸化する(式(2−3))。この結果、廃水中のアンモニア態窒素の濃度が低下する一方、亜硝酸態窒素の濃度が増加する。この槽において全てのアンモニア態窒素を亜硝酸化すると、後述するアナモックス槽におけるアナモックス反応が進行しなくなるため、通常は温度、pH、廃水の滞留時間等を制御することで、酸化反応が制御される。
NH +O→NO +HO+H 式(2−3)
(Operation of the nitritation tank in the apparatus of the present invention)
Waste water that has flowed into the nitritation tank from the organic oxidation tank contains at least ammonia nitrogen. In the nitritation tank, a part (usually about half) of the ammonia nitrogen in the wastewater is oxidized to nitrite nitrogen (formula (2-3)) under aerobic conditions. As a result, the concentration of ammonia nitrogen in the wastewater decreases while the concentration of nitrite nitrogen increases. If all ammonia nitrogen is nitritized in this tank, the anammox reaction in the anammox tank, which will be described later, does not proceed. Usually, the oxidation reaction is controlled by controlling the temperature, pH, residence time of waste water, etc. .
NH 4 + + O 2 → NO 2 + H 2 O + H + formula (2-3)

なお、有機物酸化槽から亜硝酸化槽に流入した廃水に有機物が含まれる場合、好気的条件下にある亜硝酸化槽においては、式(2−3)の反応よりも、有機物の酸化反応が優先的に進行する(式(2−4))。有機物の酸化が完了次第、式(2−3)の反応が進行する。
有機物+O→CO+HO 式(2−4)
In addition, when the organic matter is contained in the wastewater flowing into the nitritation tank from the organic matter oxidation tank, the oxidation reaction of the organic substance is more effective than the reaction of the formula (2-3) in the nitritation tank under the aerobic condition. Advances preferentially (Formula (2-4)). As soon as the organic matter is oxidized, the reaction of formula (2-3) proceeds.
Organic matter + O 2 → CO 2 + H 2 O Formula (2-4)

(本発明の装置におけるアナモックス槽の作用−2)
亜硝酸化槽からアナモックス槽に流入した廃水は、少なくともアンモニア態窒素及び亜硝酸態窒素を含む。亜硝酸化槽から流出した廃水は、アナモックス槽において、嫌気的条件下で、アナモックス菌の作用により、アナモックス反応が起きる(式(2−1))。次いで、(本発明の装置におけるアナモックス槽の作用−1)と同様に、アナモックス反応を経た廃水のうち一部が、有機物酸化槽に返送され、次いで、(本発明の装置における有機物酸化槽の作用)、(本発明の装置における亜硝酸化槽の作用)、及び(本発明の装置におけるアナモックス槽の作用−2)で説明したサイクルが繰り返され、廃水中から窒素が除去される。
(Operation-2 of the anammox tank in the apparatus of the present invention)
The waste water flowing from the nitrification tank into the anammox tank contains at least ammonia nitrogen and nitrite nitrogen. The effluent discharged from the nitritation tank undergoes an anammox reaction in the anammox tank under the anaerobic condition by the action of anammox bacteria (formula (2-1)). Next, in the same manner as in (Operation of Anammox Tank in the Apparatus of the Present Invention-1), a part of the waste water that has undergone the Anammox reaction is returned to the organic substance oxidation tank, and then (Operation of the organic substance oxidation tank in the apparatus of the present invention). ), (The action of the nitritation tank in the apparatus of the present invention), and (the action of the anammox tank in the apparatus of the present invention-2) are repeated, and nitrogen is removed from the wastewater.

アナモックス反応では、水素イオンを利用するため、反応の進行にともない、pHが上昇する傾向がある。ここで、アンモニア態窒素は、イオン態(NH )及びガス態(NH)の2形態が存在し、水中においてはこれらの2形態が共存している。これらのうち、ガス態はアナモックス反応を強く阻害することが知られる。pHが上昇するとガス態の割合が高くなってしまうので、アナモックス反応の進行にともなってpHが上昇すると、アナモックス反応が阻害されてしまうという問題が生じ得る。そのため、従来の装置においては、アナモックス反応を進行させるために、酸(硫酸等)等を用いてpHを調整(例えば、アナモックス反応の至適pHである6.5〜8.0になるようにpHを低下させる、等)する必要があった。In the anammox reaction, since hydrogen ions are used, the pH tends to increase as the reaction proceeds. Here, ammonia nitrogen has two forms of ionic (NH 4 + ) and gas (NH 3 ), and these two forms coexist in water. Of these, the gas state is known to strongly inhibit the anammox reaction. As the pH increases, the proportion of the gas state increases, so that when the pH increases with the progress of the anammox reaction, the problem that the anammox reaction is inhibited may occur. Therefore, in the conventional apparatus, in order to advance the anammox reaction, the pH is adjusted using an acid (such as sulfuric acid) or the like (for example, 6.5 to 8.0 which is the optimum pH of the anammox reaction). it was necessary to lower the pH, etc.).

他方で、上記のとおり、本発明の装置においては、廃水がアナモックス槽から有機物酸化槽に返送される。返送水は、アナモックス反応によってアンモニア態窒素の濃度が低減された状態で、未処理の廃水と合流する。そうすると、合流後の廃水中のアンモニア態窒素の濃度は、未処理の廃水のみにおけるアンモニア態窒素の濃度と比較して、相対的に低くなる。換言すると、返送を行うことで、装置を流れる廃水中のアンモニア態窒素の濃度が、従来の装置における濃度よりも低くなる。そのため、返送後にアナモックス槽に流入する廃水中のアンモニア態窒素の濃度は、従来の装置のアナモックス槽に流入する濃度よりも低くなる。これにより、本発明の装置においては、アナモックス槽中のアンモニア態窒素の濃度が過度とならず、pHが上昇しても、アンモニア態窒素(特に、ガス態)の濃度がアナモックス反応の阻害濃度以下となりやすい。したがって、本発明の装置においては、従来の装置で行われていた、アナモックス槽のpH調整を行わなくてもよい。ただし、本発明において、酸(硫酸等)等のpH調整手段を用いてアナモックス槽のpHを調整することは排除されない。   On the other hand, as described above, in the apparatus of the present invention, waste water is returned from the anammox tank to the organic matter oxidation tank. The return water merges with the untreated waste water in a state where the concentration of ammonia nitrogen is reduced by the anammox reaction. If it does so, the density | concentration of the ammonia nitrogen in the wastewater after a merge will become relatively low compared with the density | concentration of the ammonia nitrogen only in an untreated waste water. In other words, by returning, the concentration of ammonia nitrogen in the waste water flowing through the apparatus becomes lower than the concentration in the conventional apparatus. Therefore, the concentration of ammonia nitrogen in the wastewater flowing into the anammox tank after returning becomes lower than the concentration flowing into the anammox tank of the conventional apparatus. As a result, in the apparatus of the present invention, the concentration of ammonia nitrogen in the anammox tank does not become excessive, and even if the pH rises, the concentration of ammonia nitrogen (particularly gas state) is below the inhibition concentration of the anammox reaction. It is easy to become. Therefore, in the apparatus of this invention, it is not necessary to adjust pH of an anammox tank which was performed with the conventional apparatus. However, in the present invention, adjusting the pH of the anammox tank using pH adjusting means such as acid (sulfuric acid or the like) is not excluded.

本発明の装置によれば、以上のような機序によって廃水中から窒素が除去される。そして、この装置においては、上述のとおり、アナモックス槽におけるpH調整や、脱窒槽における有機物の添加等の煩雑な操作を行わなくてもよい。また、本発明の装置において曝気が必要なのは亜硝酸化槽である。そのため、従来の装置と比較して曝気を要する槽が少なく、稼働のためのエネルギーを低減することもできる。   According to the apparatus of the present invention, nitrogen is removed from wastewater by the mechanism described above. And in this apparatus, as above-mentioned, complicated operation, such as pH adjustment in an anammox tank and addition of the organic substance in a denitrification tank, does not need to be performed. In the apparatus of the present invention, it is a nitritation tank that requires aeration. Therefore, there are few tanks which require aeration compared with the conventional apparatus, and the energy for operation can also be reduced.

図2及び図5に基づき説明した本発明の装置は、亜硝酸化槽とアナモックス槽とが別個に設けられた二槽式の態様である。本発明の装置の構成としては、図3及び図6に示すように、亜硝酸化槽及びアナモックス槽が1つの槽である一槽式を採用してもよい。一槽式の場合、亜硝酸化槽及びアナモックス槽の反応が同一の槽内で行われる点以外は二槽式と同様である。なお、図6に示す装置の構成は、有機物酸化槽の構成以外は図3と同様である。   The apparatus of the present invention described based on FIGS. 2 and 5 is a two-tank type in which a nitritation tank and an anammox tank are separately provided. As a structure of the apparatus of this invention, as shown in FIG.3 and FIG.6, you may employ | adopt the 1 tank type which a nitritation tank and an anammox tank are one tank. In the case of the single tank type, it is the same as the two tank type except that the reactions of the nitritation tank and the anammox tank are performed in the same tank. In addition, the structure of the apparatus shown in FIG. 6 is the same as that of FIG. 3 except the structure of an organic matter oxidation tank.

一槽式における亜硝酸化槽及びアナモックス槽においては、式(3−1)及び式(3−2)の反応が両方進行する。式(3−2)は、後述する好気的反応(部分亜硝酸化反応)及び嫌気的反応(アナモックス反応)に相当する。
有機物+O→CO+HO 式(3−1)
NH →N+NO +HO 式(3−2)
In the nitritation tank and the anammox tank in the single tank type, both reactions of the formula (3-1) and the formula (3-2) proceed. Formula (3-2) corresponds to an aerobic reaction (partial nitritation reaction) and an anaerobic reaction (anammox reaction) described later.
Organic matter + O 2 → CO 2 + H 2 O Formula (3-1)
NH 4 + → N 2 + NO 3 + H 2 O Formula (3-2)

発明の装置が一槽式である場合、亜硝酸化槽及びアナモックス槽の構成としては、特開2015−229131に示された担体や装置を好ましく採用できる。   When the apparatus of the invention is of a single tank type, the carrier and apparatus disclosed in JP-A-2015-229131 can be preferably employed as the nitritation tank and the anammox tank.

以下、本発明の装置における各槽の詳細について説明する。なお、各槽の形状及び材料等、曝気の手段、各槽内への菌(汚泥等)の投入手段、各槽間の連結手段及び流路、並びにポンプ等としては、公知の廃水処理設備に用いられるものを採用でき、各槽は任意の撹拌手段、測定手段(水温計、pHメーター等)等を備えていてもよい。   Hereinafter, the detail of each tank in the apparatus of this invention is demonstrated. In addition, as the shape and material of each tank, means for aeration, means for introducing bacteria (sludge etc.) into each tank, means for connecting and flow paths between tanks, pumps, etc., well-known wastewater treatment facilities What is used can be employ | adopted and each tank may be equipped with arbitrary stirring means, a measurement means (water temperature meter, pH meter, etc.), etc.

<有機物酸化槽の構成>
有機物酸化槽は、3つの流路、すなわち、(1)未処理の廃水が有機物酸化槽に流入するための流路、(2)有機物が酸化された廃水が有機物酸化槽から亜硝酸化槽に流入するための流路、及び、(3)アナモックス槽からの返送水が有機物酸化槽に流入するための流路、を少なくとも備える。
<Configuration of organic oxidation tank>
The organic oxidation tank has three flow paths: (1) a flow path for untreated wastewater to flow into the organic oxidation tank; and (2) wastewater in which organic substances are oxidized from the organic oxidation tank to the nitritation tank. A flow path for flowing in, and (3) a flow path for returning water from the anammox tank to flow into the organic matter oxidation tank.

本発明における有機物酸化槽は、嫌気的条件に保たれる第1の態様、並びに、嫌気性条件及び好気性条件に保たれる第2の態様がある。以下、それぞれの態様における構成について説明する。   The organic matter oxidation tank in the present invention includes a first mode maintained under anaerobic conditions and a second mode maintained under anaerobic conditions and aerobic conditions. Hereinafter, the structure in each aspect is demonstrated.

(第1の態様に係る有機物酸化槽)
第1の態様に係る有機物酸化槽内は、嫌気的な条件に保たれる。有機物酸化槽内を嫌気的な条件に保つ手段としては、有機物酸化槽を密閉して空気に触れない状態とすること等が挙げられる。ただし、廃水には有機物が含まれるため、槽を完全に密閉しなくとも、槽の開口部を蓋(マンホールの蓋等)で覆うことによって嫌気的な状態にすることができる。
(Organic oxidation tank according to the first aspect)
The inside of the organic matter oxidation tank according to the first aspect is kept under anaerobic conditions. Examples of means for maintaining the inside of the organic oxidation tank under anaerobic conditions include sealing the organic oxidation tank so as not to come into contact with air. However, since the waste water contains organic substances, an anaerobic state can be obtained by covering the opening of the tank with a lid (manhole cover or the like) without completely sealing the tank.

有機物酸化槽には脱窒菌が含まれる。脱窒菌としては、嫌気的条件下で有機物を酸化できるものであれば特に限定されないが、具体的には、シュードモナス属(Pseudomonas)、マイクロコッカス属(Micrococcus)、スピリルム属(Spirillum)等の菌が挙げられる。脱窒菌としては、脱窒菌を含む活性汚泥等を用いることができる。有機物酸化槽への脱窒菌の投入量は、有機物酸化槽における酸化反応が進行すれば特に限定されないが、例えば、脱窒菌を含む活性汚泥を用いて、槽の容積1Lあたり、浮遊物質(SS)濃度で100〜1000mg投入してもよい。   The organic oxidation tank contains denitrifying bacteria. The denitrifying bacterium is not particularly limited as long as it can oxidize organic substances under anaerobic conditions. Specifically, there are bacteria such as Pseudomonas genus, Micrococcus genus, and Spirilum genus. Can be mentioned. As the denitrifying bacteria, activated sludge containing the denitrifying bacteria can be used. The amount of denitrifying bacteria input to the organic oxidation tank is not particularly limited as long as the oxidation reaction proceeds in the organic oxidation tank. For example, using activated sludge containing denitrifying bacteria, suspended matter (SS) per liter of tank volume The concentration may be 100 to 1000 mg.

有機物酸化槽内での反応条件は、有機物酸化槽における酸化反応が進行すれば特に限定されないが、例えば、温度条件は10〜40℃であってもよい。廃水の滞留時間は1〜8時間であってもよい。   The reaction conditions in the organic oxidation tank are not particularly limited as long as the oxidation reaction in the organic oxidation tank proceeds. For example, the temperature condition may be 10 to 40 ° C. The residence time of the waste water may be 1 to 8 hours.

(第2の態様に係る有機物酸化槽)
第2の態様に係る有機物酸化槽は、曝気することで好気的条件に保たれ、かつ、後述する固定床担体を用いて部分的に嫌気的条件に保たれる。
(Organic oxidation tank according to the second embodiment)
The organic matter oxidation tank according to the second aspect is kept in an aerobic condition by aeration, and partially kept in an anaerobic condition using a fixed bed carrier described later.

[固定床担体]
有機物酸化槽内には、曝気された状態で、細長の芯部と、該芯部の外周全面にわたって多数立設され、それぞれが繊維糸を撓ませてその両端を閉じることにより形成された輪状体と、を備える固定床担体が配置される。固定床担体には脱窒菌が保持される。このような固定床担体が、曝気された槽内に配置されることで、固定床担体の芯部側に脱窒菌が付着及び定着する結果、固定床担体の芯部側が嫌気的状態となる一方、固定床担体の外周側では好気的状態が維持される。その結果、槽内を好気的条件に保ちつつ、部分的に嫌気的条件に保つことができる。
[Fixed bed carrier]
In the organic oxidation tank, a ring-shaped body formed by aerating an elongated core portion and a large number of the entire outer periphery of the core portion by bending the fiber yarn and closing both ends thereof in an aerated state. And a fixed bed carrier comprising: Denitrifying bacteria are held on the fixed bed carrier. By arranging such a fixed bed carrier in the aerated tank, denitrifying bacteria adhere to and settle on the core side of the fixed bed carrier, so that the core side of the fixed bed carrier becomes anaerobic. The aerobic state is maintained on the outer peripheral side of the fixed bed carrier. As a result, it is possible to partially maintain an anaerobic condition while keeping the inside of the tank at an aerobic condition.

固定床担体の構成としては、特開2015−229131(日本国特許第6240029号)に記載されたものを採用できる。以下、図7及び8に示される固定床担体を例に説明する。   As a structure of the fixed bed carrier, one described in JP-A-2015-229131 (Japanese Patent No. 6240029) can be employed. Hereinafter, the fixed bed carrier shown in FIGS. 7 and 8 will be described as an example.

固定床担体1を形成する手段については特に限定されない。例えば、細長の布状部材上に輪状体12が多数形成されるように繊維糸121を編みつけた後、芯材11を捩じり形成することによって、芯部11を略円筒状に形成するとともに、その外周全面にわたって輪状体12が多数立設される形状を成形してもよい。また、繊維糸121を編みあげることで芯部11に該当する部分と輪状体12を形成してもよい。その他、あらかじめ輪状体12を形成しておき、棒状又は紐状部材の外周の全面にわたってその輪状体12を取着・固定することにより、本発明に係る固定床担体の形状を成形してもよい。   The means for forming the fixed bed carrier 1 is not particularly limited. For example, after knitting the fiber yarn 121 so that a large number of ring-shaped bodies 12 are formed on an elongated cloth-like member, the core portion 11 is twisted to form the core portion 11 in a substantially cylindrical shape. In addition, a shape in which a large number of ring-shaped bodies 12 are erected over the entire outer periphery thereof may be formed. Further, the ring-shaped body 12 and the portion corresponding to the core portion 11 may be formed by knitting the fiber yarn 121. In addition, the shape of the fixed bed carrier according to the present invention may be formed by forming the ring-shaped body 12 in advance and attaching and fixing the ring-shaped body 12 over the entire outer periphery of the rod-shaped or string-shaped member. .

芯部11は、多数の輪状体12を立設させる基材部分である。例えば、略棒状、略紐状等の形態を備える。   The core portion 11 is a base material portion on which a large number of ring-shaped bodies 12 are erected. For example, it is provided with a shape such as a substantially bar shape or a substantially string shape.

輪状体12は、略輪状(略ループ状)の形態を備える部位で、芯部11の外周(側壁面)の全面にわたって多数立設される。   The ring-shaped body 12 is a portion having a substantially ring-shaped (substantially loop-shaped) form, and a large number of the ring-shaped bodies 12 are provided over the entire outer periphery (side wall surface) of the core portion 11.

各輪状体12は、それぞれ、繊維糸121を撓ませてその両端を閉じることにより、略輪状に形成されている。繊維糸121の部分が輪状体12の実質部分であり、繊維糸121によって囲まれた輪穴部分は中空の流通可能な部分である。各輪状体12を繊維糸121により形成し、かつ略輪状に形成することにより、脱窒菌の凝集体が絡め取られるように引っかかっていき、脱窒菌が凝集体ごと固定床担体に付着・定着するため、短時間で、脱窒菌を処理槽内に高密度に保持させることができる。   Each ring-shaped body 12 is formed in a substantially ring shape by bending the fiber yarn 121 and closing both ends thereof. The portion of the fiber yarn 121 is a substantial portion of the ring-shaped body 12, and the ring hole portion surrounded by the fiber yarn 121 is a hollow portion that can be circulated. Each ring-shaped body 12 is formed of fiber yarns 121 and formed in a substantially ring shape, so that the aggregates of denitrifying bacteria are caught so as to be entangled, and the denitrifying bacteria adhere to and adhere to the fixed bed carrier together with the aggregates. Therefore, denitrifying bacteria can be held in the treatment tank at a high density in a short time.

形成された輪状体12の大きさは特に限定されないが、脱窒菌の凝集体が引っかかる程度の大きさ、すなわち、輪状体12の最大横幅d1が5〜20mm、最大長さd2が5〜30mmであることが好適であり、輪状体12の最大横幅d1が6〜15mm、最大長さd2が8〜25mmであることがより好適であり、輪状体12の最大横幅d1が8〜12mm、最大長さd2が10〜20mmであることが最も好適である。ここで、最大横幅d1は、繊維糸121を撓ませて輪状体12を形成した際に、対向する繊維間の最大距離であり、最大長さは、繊維糸121を撓ませて輪状体12を形成した際の根元部分(芯部表面)から先端部分(芯部から最も離れた部分)までの長さである。   The size of the formed ring-shaped body 12 is not particularly limited, but is large enough to catch the denitrifying aggregates, that is, the maximum width d1 of the ring-shaped body 12 is 5 to 20 mm and the maximum length d2 is 5 to 30 mm. It is preferable that the maximum width d1 of the ring-shaped body 12 is 6 to 15 mm and the maximum length d2 is 8 to 25 mm. The maximum width d1 of the ring-shaped body 12 is 8 to 12 mm and the maximum length is preferable. Most preferably, the length d2 is 10 to 20 mm. Here, the maximum lateral width d1 is the maximum distance between the opposing fibers when the fiber yarn 121 is bent to form the ring-shaped body 12, and the maximum length is the length of the ring-shaped body 12 by bending the fiber yarn 121. It is the length from the root portion (core surface) when formed to the tip portion (portion farthest from the core portion).

各輪状体12は、複数の繊維糸121、121、121の束として形成されたものであってもよい。例えば、1つの輪状体12を、2〜10本の繊維糸の束として形成することにより、脱窒菌の凝集体を固定床担体の輪状体により効率的に引っかかり、脱窒菌を凝集体ごと固定床担体に付着・定着させることができるため、より短時間で、脱窒菌を処理槽内に高密度に保持させることができる。   Each ring-shaped body 12 may be formed as a bundle of a plurality of fiber yarns 121, 121, 121. For example, by forming one ring-shaped body 12 as a bundle of 2 to 10 fiber yarns, the aggregates of denitrifying bacteria are efficiently caught by the ring-shaped body of the fixed bed carrier, and the denitrifying bacteria and the aggregates are fixed to the fixed bed. Since it can adhere and fix to the carrier, denitrifying bacteria can be held in the treatment tank at a high density in a shorter time.

輪状体12を形成する繊維糸121の材質については、公知のものを広く利用でき、狭く限定されないが、例えば、脱窒菌が付着・定着しやすく、かつ処理槽1内若しくは被処理水W1内に長時間設置されても担体性能を保持可能な高耐久性部材であることが好ましい。繊維糸121の材料として、例えば、合成繊維、天然繊維、無機繊維、金属繊維、若しくはそのうちの複数を組み合わせたもの等を使用できる。合成繊維としては、例えば、ポリエステル繊維、ナイロン繊維、アクリル繊維、ポリオレフィン繊維、ポリビニルアルコール繊維、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊維、ポリウレタン繊維、ポリアセタール繊維、ポリフロロエチレン繊維、フエノール繊維等が挙げられる。天然繊維としては、例えば、綿、絹、亜麻、黄麻等が挙げられる。無機繊維としては、例えば、炭素繊維、ガラス繊維等が挙げられる。金属繊維としては、例えば、鉄繊維、銅繊維等が挙げられる。   As the material of the fiber yarn 121 forming the ring-shaped body 12, known materials can be widely used and are not limited to a narrow one. For example, denitrifying bacteria are easily attached and fixed, and in the treatment tank 1 or the water to be treated W1. It is preferably a highly durable member that can maintain carrier performance even when installed for a long time. As a material of the fiber yarn 121, for example, synthetic fiber, natural fiber, inorganic fiber, metal fiber, or a combination of them can be used. Examples of the synthetic fiber include polyester fiber, nylon fiber, acrylic fiber, polyolefin fiber, polyvinyl alcohol fiber, polyvinyl chloride fiber, polyvinylidene chloride fiber, polyurethane fiber, polyacetal fiber, polyfluoroethylene fiber, and phenol fiber. . Examples of natural fibers include cotton, silk, flax, jute and the like. Examples of the inorganic fibers include carbon fibers and glass fibers. Examples of the metal fiber include iron fiber and copper fiber.

有機物酸化槽内における固定床担体の配置方法や位置は、該固定床担体を槽内に固定でき、廃水と接触できれば特に限定されない。   The arrangement method and position of the fixed bed carrier in the organic matter oxidation tank are not particularly limited as long as the fixed bed carrier can be fixed in the tank and contacted with waste water.

[曝気量]
第2の態様に係る有機物酸化槽は曝気され、槽内の溶存酸素量(DO)が0.0mg/L超2.0mg/L以下に保たれる。溶存酸素量がこのような範囲に保たれることで、固定床担体に保持された脱窒菌による反応を阻害せずに、廃水中の有機物の酸化反応をも進行させることができる。なお、本発明において「曝気」とは、廃水に空気が送りこまれることで、廃水に酸素が供給されることを意味する。
[Aeration volume]
The organic matter oxidation tank according to the second aspect is aerated, and the dissolved oxygen amount (DO) in the tank is maintained at more than 0.0 mg / L and not more than 2.0 mg / L. By maintaining the dissolved oxygen amount in such a range, the oxidation reaction of organic matter in the wastewater can be advanced without inhibiting the reaction caused by denitrifying bacteria held on the fixed bed carrier. In the present invention, “aeration” means that oxygen is supplied to the wastewater by sending air into the wastewater.

有機物酸化槽内の溶存酸素量の上限は、好ましくは5.0mg/L以下、より好ましくは3.0mg/L以下である。有機物酸化槽内の溶存酸素量の下限は、好ましくは0.1mg/L以上、より好ましくは1.0mg/L以上である。   The upper limit of the dissolved oxygen amount in the organic oxidation tank is preferably 5.0 mg / L or less, more preferably 3.0 mg / L or less. The lower limit of the dissolved oxygen amount in the organic oxidation tank is preferably 0.1 mg / L or more, more preferably 1.0 mg / L or more.

有機物酸化槽内の溶存酸素量は、溶存酸素計(溶存酸素濃度計、DO計等としても知られる)を用いた計測によって特定される。   The amount of dissolved oxygen in the organic matter oxidation tank is specified by measurement using a dissolved oxygen meter (also known as a dissolved oxygen concentration meter, DO meter, etc.).

有機物酸化槽の曝気手段は特に限定されず、散気管、ディフューザー等を採用できる。曝気手段の位置は、固定床担体と接しないことが好ましい。有機物酸化槽内において、固定床担体と曝気手段との間を仕切り板等で区切ってもよいし、区切らなくともよい。   The aeration means of the organic matter oxidation tank is not particularly limited, and an air diffuser, a diffuser or the like can be adopted. The position of the aeration means is preferably not in contact with the fixed bed carrier. In the organic matter oxidation tank, the fixed bed carrier and the aeration means may or may not be separated by a partition plate or the like.

有機物酸化槽内での反応条件は、有機物酸化槽における酸化反応が進行すれば特に限定されないが、例えば、温度条件は10〜40℃であってもよい。廃水の滞留時間は4〜24時間であってもよい。   The reaction conditions in the organic oxidation tank are not particularly limited as long as the oxidation reaction in the organic oxidation tank proceeds. For example, the temperature condition may be 10 to 40 ° C. The residence time of the waste water may be 4 to 24 hours.

脱窒菌の種類や投入量は、上記(第1の態様に係る有機物酸化槽)における条件と同様のものを採用できる。   As the type and amount of denitrifying bacteria, the same conditions as in the above (organic matter oxidation tank according to the first aspect) can be adopted.

<亜硝酸化槽及びアナモックス槽の構成>
亜硝酸化槽及びアナモックス槽は別個の槽(二槽式)であってもよく、1つの槽(一槽式)であってもよい。以下、それぞれの態様について説明する。
<Configuration of nitritation tank and anammox tank>
The nitritation tank and the anammox tank may be separate tanks (two tanks) or one tank (one tank). Each aspect will be described below.

(亜硝酸化槽(二槽式の場合)の構成)
亜硝酸化槽は、2つの流路、すなわち、(1)有機物酸化槽を経た廃水が亜硝酸化槽に流入するための流路、(2)アンモニア態窒素の一部が亜硝酸に酸化された廃水が、亜硝酸化槽からアナモックス槽に流入するための流路、を少なくとも備える。
(Configuration of nitritation tank (two tank type))
The nitritation tank has two flow paths: (1) a flow path for the waste water that has passed through the organic oxidation tank to flow into the nitritation tank, and (2) a portion of the ammonia nitrogen is oxidized to nitrous acid. The waste water is provided with at least a flow path for flowing into the anammox tank from the nitritation tank.

亜硝酸化槽内は、好気的な条件に保たれる。これにより、亜硝酸化槽内の反応が進行する。亜硝酸化槽内を好気的な条件に保つ手段としては、公知の散気装置等が挙げられる。   The inside of the nitritation tank is kept in an aerobic condition. Thereby, reaction in a nitritation tank advances. As a means for keeping the inside of the nitritation tank in an aerobic condition, a known air diffuser or the like can be mentioned.

亜硝酸化槽には、亜硝酸化菌が含まれる。亜硝酸化菌としては、一般的な廃水処理汚泥(活性汚泥等)を用いることができる。   The nitritation tank contains nitrite bacteria. As nitrifying bacteria, general wastewater treatment sludge (eg activated sludge) can be used.

亜硝酸化槽内での反応条件は、アンモニア態窒素の全てが亜硝酸化されないように制御される。そのため、亜硝酸化槽内の反応は、部分亜硝酸化反応とも呼ばれる。亜硝酸化槽内での反応条件は、例えば、温度条件は25〜35℃であってもよい。溶存酸素(DO)量は0〜1.5mg/Lであってもよい。廃水の滞留時間は0.4〜2日であってもよい。   The reaction conditions in the nitritation tank are controlled so that all of the ammonia nitrogen is not nitrified. Therefore, the reaction in the nitritation tank is also called partial nitritation reaction. The reaction condition in the nitritation tank may be, for example, a temperature condition of 25 to 35 ° C. The dissolved oxygen (DO) amount may be 0 to 1.5 mg / L. The residence time of the waste water may be 0.4 to 2 days.

(アナモックス槽(二槽式の場合)の構成)
アナモックス槽は、3つの流路、すなわち、(1)亜硝酸化槽を経た廃水がアナモックス槽に流入するための流路、(2)アナモックス反応に供された廃水(アナモックス槽を経た廃水)の一部がアナモックス槽から有機物酸化槽に返送されるための流路、及び、(3)アナモックス槽を経た廃水の一部が処理済み廃水として装置外に流出するための流路、を少なくとも備える。上記のうち、(2)の流路は、有機物酸化槽における「アナモックス槽からの返送水が有機物酸化槽に流入するための流路」と連結される。また、(2)の流路と、(3)の流路とは、別個の流路であってもよいが、途中に枝分かれ構造を有する一体の流路であってもよい。
(Configuration of Anammox tank (in the case of two tanks))
The anammox tank has three flow paths: (1) the flow path for the wastewater that has passed through the nitritation tank to flow into the anammox tank, and (2) the wastewater that has been subjected to the anammox reaction (wastewater that has passed through the anammox tank). At least a flow path for returning a part from the anammox tank to the organic matter oxidation tank, and (3) a flow path for allowing a part of the waste water that has passed through the anammox tank to flow out of the apparatus as treated waste water. Among the above, the flow path (2) is connected to the “flow path for returning water from the anammox tank to flow into the organic oxidation tank” in the organic oxidation tank. In addition, the flow path (2) and the flow path (3) may be separate flow paths, or may be integrated flow paths having a branching structure in the middle.

アナモックス反応は嫌気的反応であるため、アナモックス槽内は、嫌気的な条件に保たれる。アナモックス槽内を嫌気的な条件に保つ手段としては、アナモックス槽を密閉して空気に触れない状態とすること等が挙げられる。ただし、槽を完全に密閉しなくとも、槽の開口部を蓋(マンホールの蓋等)で覆うことによって嫌気的な状態にすることができる。   Since the anammox reaction is an anaerobic reaction, the inside of the anammox tank is kept under anaerobic conditions. Examples of means for maintaining the anammox tank in anaerobic conditions include sealing the anammox tank so that it does not come into contact with air. However, even if the tank is not completely sealed, an anaerobic state can be obtained by covering the opening of the tank with a lid (manhole cover or the like).

アナモックス槽にはアナモックス菌が含まれる。アナモックス菌としては、アナモックス菌を含む汚泥(アナモックス汚泥)等を用いることができる。アナモックス汚泥としては、特開2013−192465号公報に記載された混合微生物を使用できる。   The anammox tank contains anammox bacteria. As the anammox bacteria, sludge containing anammox bacteria (anammox sludge) or the like can be used. As the anammox sludge, mixed microorganisms described in JP2013-192465A can be used.

アナモックス槽へのアナモックス菌の投入量は、アナモックス反応が進行すれば特に限定されないが、例えば、アナモックス汚泥を用いて、槽の容積1Lあたり、浮遊物質(SS)濃度で10〜1000mg投入してもよい。   The amount of anammox bacteria introduced into the anammox tank is not particularly limited as long as the anammox reaction proceeds. For example, even if anammox sludge is used, 10 to 1000 mg of suspended matter (SS) concentration per liter of the tank volume is added. Good.

アナモックス槽内での反応条件は、アナモックス槽における酸化反応が進行すれば特に限定されないが、例えば、温度条件は15〜39℃であってもよい。廃水の滞留時間は3〜48時間であってもよい。   Although the reaction conditions in an anammox tank will not be specifically limited if the oxidation reaction in an anammox tank advances, For example, 15-39 degreeC may be sufficient as temperature conditions. The residence time of the waste water may be 3 to 48 hours.

アナモックス槽を経た廃水のうち少なくとも一部は有機物酸化槽に返送される。返送量は特に限定されず、処理対象である廃水の組成(アンモニア態窒素濃度、有機物濃度等)等に応じて適宜設定できる。例えば、有機物酸化槽に流入した未処理の廃水の0.5倍量以上、好ましくは1.0倍量以上、より好ましくは2.0倍量以上の廃水を有機物酸化槽に返送してもよい。返送量の上限は、特に限定されないが、廃水中のアンモニア態窒素濃度が400〜600mg/L、かつ、T−BOD(有機物の生物化学的酸化による酸素要求量と、硝化による酸素要求量との和)濃度が200〜500mg/Lである場合、有機物酸化槽に流入した未処理の廃水の5倍量以下、好ましくは4倍量以下、より好ましくは3倍量以下であってもよい。   At least a part of the wastewater that has passed through the anammox tank is returned to the organic matter oxidation tank. The amount of return is not particularly limited, and can be appropriately set according to the composition of wastewater to be treated (ammonia nitrogen concentration, organic matter concentration, etc.) and the like. For example, 0.5 times or more, preferably 1.0 times or more, more preferably 2.0 times or more of untreated wastewater that has flowed into the organic oxidation tank may be returned to the organic oxidation tank. . The upper limit of the return amount is not particularly limited, but the ammonia nitrogen concentration in the wastewater is 400 to 600 mg / L, and T-BOD (the oxygen demand due to biochemical oxidation of organic matter and the oxygen demand due to nitrification) When the concentration is 200 to 500 mg / L, it may be 5 times or less, preferably 4 times or less, more preferably 3 times or less, of untreated wastewater that has flowed into the organic oxidation tank.

アナモックス槽を経た廃水のうち一部は、そのまま装置外に流出させることができる。本発明の装置で処理された後、装置外に排出された廃水中の窒素濃度は、未処理の廃水と比較して顕著に低減されている。   A part of the wastewater that has passed through the anammox tank can be discharged out of the apparatus as it is. After being treated by the apparatus of the present invention, the nitrogen concentration in the wastewater discharged outside the apparatus is significantly reduced compared to untreated wastewater.

(亜硝酸化槽及びアナモックス槽(一槽式の場合)の構成)
一槽式の場合、亜硝酸化槽及びアナモックス槽は1つの槽である。以下、1つの槽である亜硝酸化槽及びアナモックス槽を、「一槽式の槽」ともいう。
(Configuration of nitritation tank and anammox tank (one tank type))
In the case of a single tank type, the nitritation tank and the anammox tank are one tank. Hereinafter, the nitritation tank and the anammox tank, which are one tank, are also referred to as “one tank type tank”.

一槽式の槽は、3つの流路、すなわち、(1)有機物酸化槽を経た廃水が一槽式の槽に流入するための流路、(2)アナモックス反応に供された廃水の一部が一槽式の槽から有機物酸化槽に返送されるための流路、及び、(3)一槽式の槽を経た廃水の一部が処理済み廃水として装置外に流出するための流路、を少なくとも備える。上記のうち、(2)の流路は、有機物酸化槽における「アナモックス槽からの返送水が有機物酸化槽に流入するための流路」と連結される。また、(2)の流路と、(3)の流路とは、別個の流路であってもよいが、途中に枝分かれ構造を有する一体の流路であってもよい。   One tank type tank has three flow paths, namely, (1) a flow path for the waste water that has passed through the organic matter oxidation tank to flow into the single tank type tank, and (2) a part of the waste water subjected to the anammox reaction. A flow path for returning the water from the one tank type tank to the organic matter oxidation tank, and (3) a flow path for allowing a part of the waste water that has passed through the one tank type tank to flow out of the apparatus as treated waste water, At least. Among the above, the flow path (2) is connected to the “flow path for returning water from the anammox tank to flow into the organic oxidation tank” in the organic oxidation tank. In addition, the flow path (2) and the flow path (3) may be separate flow paths, or may be integrated flow paths having a branching structure in the middle.

一槽式の槽の構成としては、例えば、特開2015−229131号公報に記載された装置を採用できる。   As a configuration of the single tank type tank, for example, an apparatus described in JP-A-2015-229131 can be employed.

特開2015−229131号公報に記載された装置は、槽内に固定床担体が配置され、該固定床担体は、細長の芯部と、該芯部の外周全面にわたって多数立設され、それぞれが繊維糸を撓ませてその両端を閉じることにより形成された輪状体と、を備える。この槽に、嫌気性のアナモックス菌とともに、好気性の亜硝酸化菌を投入することで、これらの菌が固定床担体に付着及び定着する。その結果、固定床担体の芯部側では嫌気的状態となって主にアナモックス菌が多く集積し、固定床担体の外周側では好気的状態がある程度維持されて主に亜硝酸化菌が多く集積するようになる。そして、アナモックス菌と亜硝酸化菌の両者による厚いバイオフィルムを、固定床担体を包むように形成させることができる。これにより、好気的反応(部分亜硝酸化反応)と嫌気的反応(アナモックス反応)とを1つの槽内で行うことができる。   In the apparatus described in Japanese Patent Application Laid-Open No. 2015-229131, a fixed bed carrier is disposed in a tank, and a plurality of the fixed bed carriers are erected over an elongated core part and the entire outer periphery of the core part. A ring-shaped body formed by bending the fiber yarn and closing both ends thereof. By putting anaerobic nitrite bacteria together with anaerobic anammox bacteria into this tank, these bacteria adhere and settle on the fixed bed carrier. As a result, the core side of the fixed bed carrier becomes anaerobic and mainly anammox bacteria are accumulated, and the aerobic state is maintained to some extent on the outer periphery of the fixed bed carrier and mainly nitrite bacteria are mostly concentrated. Accumulate. And the thick biofilm by both anammox bacteria and nitrite bacteria can be formed so that a fixed bed carrier may be wrapped. Thereby, an aerobic reaction (partial nitritation reaction) and an anaerobic reaction (anammox reaction) can be performed in one tank.

亜硝酸化菌による反応や有機物の酸化反応を進行させるため、一槽式の槽には、アナモックス反応を阻害しない態様で曝気手段を設けてもよい。   In order to advance the reaction by nitrifying bacteria and the oxidation reaction of organic matter, a single tank type tank may be provided with aeration means in a mode that does not inhibit the anammox reaction.

亜硝酸化菌としては、好気的条件下で、廃水中のアンモニア態窒素を亜硝酸態窒素に酸化させることができる菌であれば特に限定されず、亜硝酸化菌を含む汚泥(亜硝酸化汚泥)等を用いることができる。槽への亜硝酸化菌の投入量は、亜硝酸化槽における反応が進行すれば特に限定されないが、例えば、亜硝酸化汚泥を用いて、槽の容積1Lあたり、浮遊物質(SS)濃度で100〜1000mg投入してもよい。   Nitrite bacteria are not particularly limited as long as they are capable of oxidizing ammonia nitrogen in wastewater to nitrite nitrogen under aerobic conditions. Sludge containing nitrite bacteria (nitrite) (Sludge sludge) can be used. The amount of nitrifying bacteria introduced into the tank is not particularly limited as long as the reaction in the nitrifying tank proceeds, but, for example, using nitrite sludge, the suspended solid (SS) concentration per liter of tank volume 100 to 1000 mg may be added.

アナモックス菌の種類や投入量は、<アナモックス槽(二槽式の場合)の構成>において記載した条件を採用できる。   The conditions described in <Structure of Anammox tank (in the case of two tanks)> can be adopted as the type and input amount of Anammox bacteria.

一槽式の槽での反応条件は、部分亜硝酸化反応及びアナモックス反応の両方が十分に進行すれば特に限定されないが、例えば、温度条件は25〜35℃であってもよい。廃水の滞留時間は0.4〜2日であってもよい。   The reaction conditions in the single tank type tank are not particularly limited as long as both the partial nitritation reaction and the anammox reaction proceed sufficiently. For example, the temperature condition may be 25 to 35 ° C. The residence time of the waste water may be 0.4 to 2 days.

一槽式の槽を経た廃水の返送量は、<アナモックス槽(二槽式の場合)の構成>において記載した条件を採用できる。   The conditions described in <Structure of Anammox tank (in the case of two tanks)> can be adopted for the amount of wastewater returned through the single tank.

<本発明の廃水処理方法>
本発明の廃水処理方法は、アンモニア態窒素及び有機物を含む廃水を処理する方法であって、脱窒菌を用いて、廃水中の有機物を嫌気性条件下で酸化する有機物酸化工程と、有機物酸化工程を経た廃水中のアンモニア態窒素の一部を好気性条件下で亜硝酸化する亜硝酸化工程と、アナモックス菌を用いて、亜硝酸化工程を経た廃水をアナモックス反応に供するアナモックス反応工程と、アナモックス反応工程を経た廃水のうち少なくとも一部を有機物酸化工程に供する工程と、を含む。本発明において、「廃水が工程を経る」とは、廃水がその工程における目的とする反応(アナモックス反応等)に十分に供され、所定の反応が生じたことを意味する。
<Wastewater treatment method of the present invention>
The wastewater treatment method of the present invention is a method for treating wastewater containing ammonia nitrogen and organic matter, and uses an organic matter oxidation step that oxidizes organic matter in wastewater under anaerobic conditions using denitrifying bacteria, and an organic matter oxidation step A nitritation step of nitrating a part of ammonia nitrogen in wastewater subjected to nitrification under an aerobic condition, and an anammox reaction step of using anammox bacteria to subject the wastewater that has passed the nitritation step to an anammox reaction, And a step of subjecting at least a part of the waste water that has undergone the Anammox reaction step to an organic matter oxidation step. In the present invention, “waste water goes through a process” means that the waste water is sufficiently subjected to a target reaction (anammox reaction or the like) in the process and a predetermined reaction occurs.

本発明の廃水処理方法は、例えば、上述した本発明の装置を用いて好適に実施できる。具体的には、有機物酸化工程は、本発明の装置における有機物酸化槽によって実施できる。亜硝酸化工程は、本発明の装置における亜硝酸化槽によって実施できる。アナモックス反応工程は、本発明の装置におけるアナモックス槽によって実施できる。アナモックス反応工程を経た廃水の少なくとも一部を有機物酸化槽に返送することで、有機物酸化工程に供することができる。   The wastewater treatment method of the present invention can be suitably implemented using, for example, the above-described apparatus of the present invention. Specifically, the organic matter oxidation step can be performed by an organic matter oxidation tank in the apparatus of the present invention. The nitritation step can be performed by the nitritation tank in the apparatus of the present invention. The anammox reaction step can be performed by the anammox tank in the apparatus of the present invention. By returning at least a part of the wastewater that has passed through the anammox reaction step to the organic matter oxidation tank, it can be used for the organic matter oxidation step.

亜硝酸化工程とアナモックス反応工程とは、別個の槽(二槽式)内で行ってもよいし、1つの槽(一槽式)内で行ってもよい。   The nitritation step and the anammox reaction step may be performed in separate tanks (two tanks) or in one tank (one tank).

各工程における条件は、上述した本発明の装置において採用される条件を好適に適用できる。   The conditions employed in the above-described apparatus of the present invention can be suitably applied as the conditions in each step.

以下に、実施例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.

<実施例1>
図4に示す構成を備える装置を準備した。この装置においては、亜硝酸化槽と、アナモックス反応槽とが1つの槽(一槽式)である。亜硝酸化槽及びアナモックス槽には、特開2015−229131号の実施例に準じて作製した略円筒状の固定床担体(塩化ビニリデン製、外径25mm)を配置した。また、各槽間をチューブでつないで廃水が循環できるようにポンプ(図4中の「P」)を稼働させ、各槽内は常時スターラーで撹拌した。廃水の循環方向は、図4の矢印で示される。亜硝酸化槽及びアナモックス槽には、アナモックス反応を阻害しないように曝気手段を設けた(図4中の「Air」)。
<Example 1>
An apparatus having the configuration shown in FIG. 4 was prepared. In this apparatus, the nitritation tank and the anammox reaction tank are one tank (one tank type). In the nitritation tank and the anammox tank, a substantially cylindrical fixed bed carrier (made of vinylidene chloride, outer diameter 25 mm) prepared according to the example of JP-A-2015-229131 was disposed. Moreover, the pump ("P" in FIG. 4) was operated so that waste water could circulate by connecting between each tank with the tube, and the inside of each tank was always stirred with the stirrer. The direction of circulation of the waste water is indicated by arrows in FIG. The nitritation tank and the anammox tank were provided with aeration means so as not to inhibit the anammox reaction (“Air” in FIG. 4).

廃水として、焼酎粕を原料としたメタン発酵廃液を2倍希釈したものを用いた。該廃水の組成を表1(表中の数値の単位;mg/L)に示す。   As waste water, what diluted methane fermentation waste liquid made from shochu as a raw material twice was used. The composition of the wastewater is shown in Table 1 (unit of numerical values in the table; mg / L).

なお、廃水の組成は、JIS K 0102に規定された方法で測定した。   In addition, the composition of waste water was measured by the method prescribed | regulated to JISK0102.

Figure 0006616526
Figure 0006616526

各槽の構成の詳細は以下のとおりである。
(1)有機物酸化槽:100mlショット瓶に、脱窒菌含有活性汚泥(浮遊物質(SS)濃度3,000mg/L)10ml、水90mlを入れた。また、槽内への空気の流入を遮断して槽内を嫌気的状態にした。
(2)亜硝酸化槽及びアナモックス槽(一槽式の槽):ガラスビーカー(有効容積1.0L)に、廃水0.7L、亜硝酸化菌を含むアナモックス汚泥(SS濃度2,000mg/L)0.3Lを入れた。アナモックス汚泥は、特開2013−192465号公報におけるものと同様の汚泥を用いた。また、槽内のpHを、硫酸を用いて常時7.3に調整した。亜硝酸化菌は担体の外周側に集積するため、担体の外周側を曝気した。
Details of the configuration of each tank are as follows.
(1) Organic substance oxidation tank: 10 ml of activated sludge containing denitrifying bacteria (suspended substance (SS) concentration of 3,000 mg / L) and 90 ml of water were placed in a 100 ml shot bottle. Moreover, the inflow of the air into the tank was interrupted to make the inside of the tank anaerobic.
(2) Nitrite tank and anammox tank (one tank type tank): A glass beaker (effective volume 1.0 L), waste water 0.7 L, anammox sludge containing nitrite bacteria (SS concentration 2,000 mg / L) ) 0.3L was added. The anammox sludge used the same sludge as what is in Unexamined-Japanese-Patent No. 2013-192465. The pH in the tank was always adjusted to 7.3 using sulfuric acid. Since nitrite bacteria accumulate on the outer peripheral side of the carrier, the outer peripheral side of the carrier was aerated.

各槽内に廃水を流入させた状態で(流入量=1L/day)、温度36度に設定したインキュベータ内に装置を設置し、各槽内の水温が35℃となるように調整した。   The apparatus was installed in an incubator set at a temperature of 36 degrees with wastewater flowing into each tank (inflow rate = 1 L / day), and the water temperature in each tank was adjusted to 35 ° C.

28日間にわたって廃水を、1L/dayの流入速度で装置内に通水した。一槽式の槽から有機物酸化槽への返送量は、有機物酸化槽に流入した未処理の廃水と同量(1L/day)に設定した。   Over 28 days, wastewater was passed through the apparatus at an inflow rate of 1 L / day. The return amount from the one tank type tank to the organic matter oxidation tank was set to the same amount (1 L / day) as the untreated waste water that flowed into the organic matter oxidation tank.

28日間の循環後、一槽式の槽から流出した廃水における窒素除去率を以下の方法で測定した。すなわち、有機物酸化槽から一槽式の槽へ流入する廃水、及び、一槽式の槽から流出した廃水のそれぞれについて、イオン交換クロマトグラフィーを用いて、付属の電気伝導度検出器により、硝酸塩の濃度(硝酸態窒素の濃度に相当する。)を測定した。   After 28 days of circulation, the nitrogen removal rate in the wastewater flowing out from the single tank was measured by the following method. That is, for each of the wastewater flowing into the one-tank tank from the organic oxidation tank and the wastewater flowing out of the one-tank tank, the nitrate conductivity of the nitrate was detected by the attached electric conductivity detector using ion exchange chromatography. The concentration (corresponding to the concentration of nitrate nitrogen) was measured.

(結果)
アナモックス反応の反応式、及び、未処理の廃水の組成に基づくと、28日間の循環後の廃水中の硝酸態窒素濃度の理論値を算出は、「56mg/L」だった。しかし、循環後の廃水中の実際の硝酸態窒素濃度は「37mg/L」だった。このことは、一槽式の槽におけるアナモックス反応で生じた硝酸態窒素(理論値56mg/L)を、一槽式の槽から返送された有機物酸化槽における反応において低減できたことを意味する。
(result)
Based on the reaction formula of the anammox reaction and the composition of the untreated wastewater, the theoretical value of the nitrate nitrogen concentration in the wastewater after 28 days of circulation was “56 mg / L”. However, the actual nitrate nitrogen concentration in the wastewater after circulation was “37 mg / L”. This means that nitrate nitrogen (theoretical value 56 mg / L) generated by the anammox reaction in the single tank type tank can be reduced in the reaction in the organic matter oxidation tank returned from the single tank type tank.

<実施例2>
一槽式の槽から有機物酸化槽への返送量を変えて、実施例1と同様の試験を行った。具体的には、有機物酸化槽に流入した未処理の廃水量を「1」とし、該廃水量に対して返送量を増減させた。例えば、「返送倍率(Q)がゼロ」とは、一槽式の槽から有機物酸化槽への返送を行わなかったことを意味する。「返送倍率(Q)が3」とは、有機物酸化槽に流入した未処理の廃水量の3倍量の廃水を一槽式の槽から有機物酸化槽へ返送したことを意味する。
<Example 2>
The same test as in Example 1 was performed by changing the return amount from the single tank type to the organic matter oxidation tank. Specifically, the amount of untreated wastewater flowing into the organic oxidation tank was set to “1”, and the return amount was increased or decreased with respect to the amount of wastewater. For example, “the return magnification (Q) is zero” means that the return from the one tank type tank to the organic oxidation tank was not performed. “Return magnification (Q) is 3” means that waste water that is three times the amount of untreated waste water that has flowed into the organic oxidation tank is returned from the single tank type tank to the organic oxidation tank.

有機物酸化槽から一槽式の槽へ流入する廃水、及び、一槽式の槽から流出した廃水のそれぞれについて、イオン交換クロマトグラフィーを用いて、付属の電気伝導度検出器により、アンモニウム塩、亜硝酸塩及び硝酸塩の濃度を測定した。これらの測定結果、及び廃水の供給量に基づき、一槽式の槽における窒素除去率を自動算出した。その結果を表2に示す。   For each of the wastewater flowing from the organic matter oxidation tank to the one-tank tank and the wastewater flowing out from the one-tank tank, ammonium salt, The nitrate and nitrate concentrations were measured. Based on these measurement results and the amount of wastewater supplied, the nitrogen removal rate in a single tank type tank was automatically calculated. The results are shown in Table 2.

Figure 0006616526
Figure 0006616526

表2に示されるとおり、いずれの返送倍率であっても、廃水中の窒素濃度を効率的に低減することができた。本例では、返送倍率が3(Q=3)であると、特に良好に窒素濃度を低減することができたが、廃水の組成等に応じて最適な返送倍率は異なり得る。   As shown in Table 2, the nitrogen concentration in the wastewater could be efficiently reduced at any return magnification. In this example, when the return magnification is 3 (Q = 3), the nitrogen concentration can be reduced particularly well, but the optimum return magnification may vary depending on the composition of the waste water.

<実施例3>
実施例2の試験において、Q=3に設定し、一槽式の槽におけるpHの自動調整を停止した場合に、任意の時点におけるpH及び窒素除去率を測定した。窒素除去率は実施例2と同様に算出した。その結果を表3に示す。
<Example 3>
In the test of Example 2, when Q was set to 3 and automatic pH adjustment in a single tank type tank was stopped, pH and nitrogen removal rate at arbitrary time points were measured. The nitrogen removal rate was calculated in the same manner as in Example 2. The results are shown in Table 3.

Figure 0006616526
Figure 0006616526

表3に示されるとおり、pHが上昇しても、高い窒素除去率を維持することができた。このことは、アナモックス槽においてアンモニア態窒素濃度が低下した廃水を返送することで、未処理の廃水中に含まれるアンモニア態窒素濃度が希釈され、アンモニア態窒素(特に、ガス態)の濃度が、アナモックス反応の阻害濃度以下となったことを意味する。   As shown in Table 3, even when the pH increased, a high nitrogen removal rate could be maintained. This is because the ammonia nitrogen concentration contained in the untreated waste water is diluted by returning the waste water having a reduced ammonia nitrogen concentration in the anammox tank, and the concentration of ammonia nitrogen (particularly gas state) is It means that the concentration was below the inhibitory concentration of the anammox reaction.

<実施例3>
有機物酸化槽を以下のように改変した以外は、上記<実施例1>で使用した図4に示す構成を備える装置と同様の装置を準備した。
有機物酸化槽:500mlショット瓶に、特開2015−229131号の実施例に準じて作製した略円筒状の固定床担体(塩化ビニリデン製、外径25mm)を配置し、廃水0.5L、脱窒菌含有活性汚泥(浮遊物質(SS)濃度3000mg/L)50ml、水450mlを入れた。脱窒菌は担体の外周側に集積するため、担体の外周側を曝気した。この操作により、有機物酸化槽内の溶存酸素(DO)量を、0.0mg/L超1.5mg/L以下に維持した。
<Example 3>
An apparatus similar to the apparatus having the configuration shown in FIG. 4 used in the above <Example 1> was prepared except that the organic oxidation tank was modified as follows.
Organic substance oxidation tank: A substantially cylindrical fixed bed carrier (made of vinylidene chloride, outer diameter 25 mm) prepared according to the example of JP-A-2015-229131 is placed in a 500 ml shot bottle, and 0.5 L of waste water, denitrifying bacteria 50 ml of contained activated sludge (suspended substance (SS) concentration 3000 mg / L) and 450 ml of water were added. Since denitrifying bacteria accumulate on the outer peripheral side of the carrier, the outer peripheral side of the carrier was aerated. By this operation, the amount of dissolved oxygen (DO) in the organic matter oxidation tank was maintained at more than 0.0 mg / L and not more than 1.5 mg / L.

なお、有機物酸化槽内の溶存酸素(DO)量は溶存酸素計を用いて測定した。   In addition, the amount of dissolved oxygen (DO) in the organic matter oxidation tank was measured using a dissolved oxygen meter.

廃水として、焼酎粕を原料としたメタン発酵廃液を2倍希釈したものを用いた。該廃水の組成を表4(表中の数値の単位;mg/L)に示す。以下、廃水の組成は実施例1と同様の方法で測定した。   As waste water, what diluted methane fermentation waste liquid made from shochu as a raw material twice was used. The composition of the wastewater is shown in Table 4 (unit of numerical values in the table; mg / L). Hereinafter, the composition of wastewater was measured by the same method as in Example 1.

Figure 0006616526
Figure 0006616526

各槽内に廃水を流入させた状態で(流入量=1L/day)、温度36度に設定したインキュベータ内に装置を設置し、各槽内の水温が35℃となるように調整した。   The apparatus was installed in an incubator set at a temperature of 36 degrees with wastewater flowing into each tank (inflow rate = 1 L / day), and the water temperature in each tank was adjusted to 35 ° C.

28日間にわたって廃水を、1L/dayの流入速度で装置内に通水した。一槽式の槽から有機物酸化槽への返送量は、有機物酸化槽に流入した未処理の廃水と同量(1L/day)に設定した。   Over 28 days, wastewater was passed through the apparatus at an inflow rate of 1 L / day. The return amount from the single tank type tank to the organic matter oxidation tank was set to the same amount (1 L / day) as the untreated waste water that flowed into the organic matter oxidation tank.

28日間の循環後、有機物酸化槽、及び一槽式の槽(亜硝酸化槽+アナモックス槽)のそれぞれから流出した廃水の組成を実施例1と同様の方法で測定した。その結果を表5(表中の数値の単位;mg/L)に示す。   After the circulation for 28 days, the composition of waste water flowing out from each of the organic oxidation tank and the single tank type tank (nitritation tank + anammox tank) was measured in the same manner as in Example 1. The results are shown in Table 5 (unit of numerical values in the table; mg / L).

Figure 0006616526
Figure 0006616526

表5に示されるとおり、T−BOD濃度(有機物濃度)は、系に流入させた廃水中の濃度は1,051mg/Lであったのに対し、有機物酸化槽からの流出水では85mg/Lまで低下していた。窒素濃度に基づくと、硝酸態窒素(NO−N)による酸化に起因して低下した有機物量は約300mg/Lと算出されるため、残り((1,051−85)−約300=約700mg/L)は、酸素により酸化されたと推察される。As shown in Table 5, the T-BOD concentration (organic concentration) was 1,051 mg / L in the wastewater flowed into the system, whereas it was 85 mg / L in the effluent from the organic oxidation tank. It had dropped to. Based on the nitrogen concentration, the amount of organic matter decreased due to oxidation by nitrate nitrogen (NO 3 —N) is calculated to be about 300 mg / L, so the remaining ((1,051-85) −about 300 = about 700 mg / L) is presumed to have been oxidized by oxygen.

有機物酸化槽からの流出水中にNO−N及びNO−Nはほとんど含まれていなかった。このことから、有機物酸化槽においては、酸素による反応と、脱窒菌の作用による反応とが両方進行していたと考えられる。The effluent water from the organic oxidation tank contained almost no NO 2 -N and NO 3 -N. From this, it is considered that both the reaction by oxygen and the reaction by the action of denitrifying bacteria proceeded in the organic oxidation tank.

なお、有機物酸化槽内の溶存酸素量を、2.0mg/L超に調整すると、有機物酸化槽からの流出水中に硝酸態窒素(NO−N)が残留してしまうという不具合があった(データは示していない。)。In addition, when the amount of dissolved oxygen in the organic oxidation tank was adjusted to more than 2.0 mg / L, there was a problem that nitrate nitrogen (NO 3 -N) remained in the effluent from the organic oxidation tank ( Data not shown).

以上のことから、有機物酸化槽内の有機物酸化槽内の溶存酸素量を、0.0mg/L超1.5mg/L以下に維持することで、酸素による反応と、脱窒菌の作用による反応とを両方進行させ、効率的に廃水中の窒素を除去できることがわかった。   From the above, by maintaining the dissolved oxygen amount in the organic matter oxidation tank in the organic matter oxidation tank at more than 0.0 mg / L and not more than 1.5 mg / L, the reaction by oxygen and the reaction by the action of denitrifying bacteria It was found that nitrogen can be removed efficiently from the wastewater.

Claims (8)

アンモニア態窒素及び有機物を含む廃水を処理する装置であって、
前記装置は、前記廃水の上流側から、
脱窒菌が保持された固定床担体が配置された有機物酸化槽と、
前記有機物酸化槽を経た廃水中のアンモニア態窒素の一部を好気的条件下で亜硝酸化する亜硝酸化槽と、
アナモックス菌を含み、かつ、前記亜硝酸化槽を経た廃水をアナモックス反応に供し、脱窒するアナモックス槽と、を少なくともこの順に備え、かつ、
前記アナモックス槽を経た廃水のうち少なくとも一部を前記有機物酸化槽に返送する手段を含み、
前記固定床担体が、細長の芯部と、該芯部の外周全面にわたって多数立設され、それぞれが繊維糸を撓ませてその両端を閉じることにより形成された輪状体と、を備え、
前記有機物酸化槽内の溶存酸素量が0.0mg/L超2.0mg/L以下であり、
前記有機物酸化槽が曝気手段を備え、
前記亜硝酸化槽と、前記アナモックス槽とは1つの槽である、
装置。
An apparatus for treating waste water containing ammonia nitrogen and organic matter,
From the upstream side of the waste water, the device
An organic oxidation tank in which a fixed-bed carrier holding denitrifying bacteria is disposed;
A nitritation tank that nitrites a part of ammonia nitrogen in wastewater that has passed through the organic matter oxidation tank under aerobic conditions;
Comprises anammox bacteria and a waste water having passed through the nitritation vessel subjected to anammox reaction, comprising the anammox tank for denitrification, at least in this order, and,
Means for returning at least a portion of the wastewater that has passed through the anammox tank to the organic matter oxidation tank;
The fixed bed carrier includes a long and thin core part, and a ring-shaped body formed by bending a fiber yarn and closing both ends thereof, each of which is erected over the entire outer periphery of the core part,
The amount of dissolved oxygen in the organic oxidation tank is more than 0.0 mg / L and not more than 2.0 mg / L,
The organic oxidation tank includes aeration means,
The nitritation tank and the anammox tank are one tank.
apparatus.
前記アナモックス槽の下流に脱窒槽を備えない、請求項1に記載の装置。   The apparatus according to claim 1, wherein no denitrification tank is provided downstream of the anammox tank. 前記アナモックス槽はpH調整手段を備えない、請求項1又は2に記載の装置。   The apparatus according to claim 1, wherein the anammox tank does not include a pH adjusting unit. 前記アナモックス槽から前記有機物酸化槽に返送される廃水の量は、前記有機物酸化槽に流入した未処理の廃水の量の0.5倍量以上である、請求項1から3のいずれかに記載の装置。 The amount of waste water returned from the anammox tank to the organic oxidation tank is 0.5 or more times the amount of untreated waste water that has flowed into the organic oxidation tank. Equipment. アンモニア態窒素及び有機物を含む廃水を処理する方法であって、
前記方法は、前記廃水の上流側から、
固定床担体に保持された脱窒菌と、酸素と、を用いて、廃水中の有機物を酸化する有機物酸化工程と、
前記有機物酸化工程を経た廃水中のアンモニア態窒素の一部を好気的条件下で亜硝酸化する亜硝酸化工程と、
アナモックス菌を用いて、前記亜硝酸化工程を経た廃水をアナモックス反応に供し、脱窒するアナモックス反応工程と、を少なくともこの順に備え、かつ、
前記アナモックス反応工程を経た廃水のうち少なくとも一部を有機物酸化工程に再度供する工程を含み、
前記固定床担体が、細長の芯部と、該芯部の外周全面にわたって多数立設され、それぞれが繊維糸を撓ませてその両端を閉じることにより形成された輪状体と、を備え、
前記有機物酸化工程における溶存酸素量が0.0mg/L超2.0mg/L以下であり、
前記有機物酸化工程は曝気された状態で行われ、
前記亜硝酸化工程と、前記アナモックス反応工程とは1つの槽内で行われる、
方法。
A method for treating wastewater containing ammonia nitrogen and organic matter,
From the upstream side of the waste water, the method
An organic matter oxidation step of oxidizing organic matter in wastewater using denitrifying bacteria retained on a fixed bed carrier and oxygen;
A nitritation step of nitrating a portion of ammonia nitrogen in wastewater that has undergone the organic matter oxidation step under aerobic conditions;
With anammox bacteria, the waste water passed through the nitrite step subjected to anammox reaction, comprising the anammox reaction step of denitrification, at least in this order, and,
Including the step of subjecting at least a part of the wastewater that has undergone the Anammox reaction step to the organic matter oxidation step,
The fixed bed carrier includes a long and thin core part, and a ring-shaped body formed by bending a fiber yarn and closing both ends thereof, each of which is erected over the entire outer periphery of the core part,
The amount of dissolved oxygen in the organic matter oxidation step is more than 0.0 mg / L and not more than 2.0 mg / L,
The organic matter oxidation process is performed in an aerated state,
The nitritation step and the anammox reaction step are performed in one tank.
Method.
前記アナモックス反応工程の下流に脱窒工程を含まない、請求項5に記載の方法。   The method according to claim 5, wherein a denitrification step is not included downstream of the anammox reaction step. 前記アナモックス反応工程は、pHの調整工程を含まない、請求項5又は6に記載の方法。   The method according to claim 5 or 6, wherein the anammox reaction step does not include a pH adjustment step. 前記アナモックス反応工程後に有機物酸化反応に再度供される廃水の量は、前記アナモックス反応工程に供される廃水の量の0.5倍量以上である、請求項5から7のいずれかに記載の方法。   The amount of waste water supplied again to the organic oxidation reaction after the Anammox reaction step is 0.5 times or more of the amount of waste water supplied to the Anammox reaction step. Method.
JP2018555292A 2018-04-18 2018-10-11 Apparatus and method for treating wastewater Active JP6616526B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018080045 2018-04-18
JP2018080045 2018-04-18
PCT/JP2018/037993 WO2019202756A1 (en) 2018-04-18 2018-10-11 Wastewater treatment device and method

Publications (2)

Publication Number Publication Date
JP6616526B1 true JP6616526B1 (en) 2019-12-04
JPWO2019202756A1 JPWO2019202756A1 (en) 2020-04-30

Family

ID=68238857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018555292A Active JP6616526B1 (en) 2018-04-18 2018-10-11 Apparatus and method for treating wastewater

Country Status (2)

Country Link
JP (1) JP6616526B1 (en)
WO (1) WO2019202756A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141742A (en) * 2002-10-23 2004-05-20 Asahi Eng Co Ltd Waste water treatment equipment and waste water treatment method
JP2005066595A (en) * 2003-08-06 2005-03-17 Asahi Kasei Clean Chemical Co Ltd Fiber-made contact material, water treatment apparatus and water treating method
JP2006055739A (en) * 2004-08-19 2006-03-02 Kurita Water Ind Ltd Treating method of organic matter- and nitrogen-containing wastewater
JP2007196221A (en) * 2005-12-26 2007-08-09 N Ii T Kk Biological treatment apparatus of organic matter-containing wastewater
JP2013121564A (en) * 2011-12-09 2013-06-20 Kubota Corp Processing system and processing method for nitrogen-containing organic wastewater
JP2014104416A (en) * 2012-11-27 2014-06-09 Hitachi Ltd Water treatment apparatus and water treatment method
JP2015229131A (en) * 2014-06-04 2015-12-21 鹿島建設株式会社 Effluent treatment apparatus and effluent treatment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6880894B2 (en) * 2017-03-24 2021-06-02 栗田工業株式会社 Wastewater treatment method with ANAMMOX process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141742A (en) * 2002-10-23 2004-05-20 Asahi Eng Co Ltd Waste water treatment equipment and waste water treatment method
JP2005066595A (en) * 2003-08-06 2005-03-17 Asahi Kasei Clean Chemical Co Ltd Fiber-made contact material, water treatment apparatus and water treating method
JP2006055739A (en) * 2004-08-19 2006-03-02 Kurita Water Ind Ltd Treating method of organic matter- and nitrogen-containing wastewater
JP2007196221A (en) * 2005-12-26 2007-08-09 N Ii T Kk Biological treatment apparatus of organic matter-containing wastewater
JP2013121564A (en) * 2011-12-09 2013-06-20 Kubota Corp Processing system and processing method for nitrogen-containing organic wastewater
JP2014104416A (en) * 2012-11-27 2014-06-09 Hitachi Ltd Water treatment apparatus and water treatment method
JP2015229131A (en) * 2014-06-04 2015-12-21 鹿島建設株式会社 Effluent treatment apparatus and effluent treatment method

Also Published As

Publication number Publication date
JPWO2019202756A1 (en) 2020-04-30
WO2019202756A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
KR101875024B1 (en) Apparatus and Method for Parial Nitrification of Ammonia from Ammonia Containing Sewage and Wastewater
Han et al. Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification
Terada et al. Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment
MXPA06013187A (en) Methods and systems for total nitrogen removal.
JP5324269B2 (en) Waste water treatment method and waste water treatment apparatus
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JP4453397B2 (en) Biological nitrogen removal method
JP4632135B2 (en) Method and apparatus for treating ammonia-containing liquid
CN112912347A (en) MABR medium loaded with AOB and ANNAMOX bacteria and method for completely autotrophic nitrogen removal of wastewater
JP4600817B2 (en) Method for treating ammonia-containing water
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP2003047990A (en) Biological denitrifier
KR101761129B1 (en) Waste water treatment system and the method of waste water
JP5292658B2 (en) A method for nitrification of ammonia nitrogen-containing water
JP7133339B2 (en) Nitrogen treatment method
Garrido et al. Nitrous oxide production by nitrifying biofilms in a biofilm airlift suspension reactor
JPH11333496A (en) Microorganism carrier for denitrification
JP5451283B2 (en) Nitrogen-containing wastewater treatment method
JP6801415B2 (en) Wastewater treatment equipment and wastewater treatment method
JP6616526B1 (en) Apparatus and method for treating wastewater
She et al. Effect of salinity on nitrogen removal by simultaneous nitrification and denitrification in a sequencing batch biofilm reactor
JP4817056B2 (en) Method and apparatus for treating nitrogen-containing water
JP2007117842A (en) Method and apparatus for removing nitrogen of high concentration organic waste water
KR20110059692A (en) Apparatus for removing nitrogen from anaerobic digested waste water
KR101045975B1 (en) Method for removing nitrogen from anaerobic digested waste water

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190528

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190528

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191107

R150 Certificate of patent or registration of utility model

Ref document number: 6616526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250