JP2003047990A - Biological denitrifier - Google Patents

Biological denitrifier

Info

Publication number
JP2003047990A
JP2003047990A JP2001235030A JP2001235030A JP2003047990A JP 2003047990 A JP2003047990 A JP 2003047990A JP 2001235030 A JP2001235030 A JP 2001235030A JP 2001235030 A JP2001235030 A JP 2001235030A JP 2003047990 A JP2003047990 A JP 2003047990A
Authority
JP
Japan
Prior art keywords
raw water
concentration
nitrogen
nitrite nitrogen
nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001235030A
Other languages
Japanese (ja)
Other versions
JP4872171B2 (en
Inventor
Rei Imashiro
麗 今城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001235030A priority Critical patent/JP4872171B2/en
Publication of JP2003047990A publication Critical patent/JP2003047990A/en
Application granted granted Critical
Publication of JP4872171B2 publication Critical patent/JP4872171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To steadily and efficiently perform biological denitrification by preventing steadily a hindrance of nitrite nitrogen flowing in a denitrification vessel to ANAMMOX microorganisms even when the nitrite nitrogen concentration in raw water fluctuates, when biological denitrification of the raw water containing ammoniacal nitrogen and nitrite nitrogen is carried out by the action of autotrophic denitrifying microorganisms with the ammonia nitrogen as an electron donor and nitrite nitrogen as an acceptor. SOLUTION: The amount of raw water flowing into a reaction vessel 1 or the amount of dilution water diluting the raw water is adjusted on the basis of a measured value by measuring the concentration of the nitrite ion in the vicinity of a raw water flowing-in port of the reaction vessel 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アンモニア性窒素
と亜硝酸性窒素を含有する原水を、アンモニア性窒素を
電子供与体とし、亜硝酸性窒素を電子受容体とする脱窒
微生物の作用で生物脱窒する装置に係り、特に、この生
物脱窒において、原水中の高濃度亜硝酸性窒素による脱
窒微生物の阻害を防止して安定かつ効率的な生物脱窒を
行うための生物脱窒装置に関する。
TECHNICAL FIELD The present invention relates to the action of a denitrifying microorganism that uses raw water containing ammoniacal nitrogen and nitrite nitrogen as the electron donor for the ammoniacal nitrogen and the electron acceptor for the nitrite nitrogen. The present invention relates to a device for biological denitrification, and in particular, in this biological denitrification, a biological denitrification for preventing stable and efficient biological denitrification by preventing inhibition of denitrifying microorganisms by high concentration nitrite nitrogen in raw water. Regarding the device.

【0002】[0002]

【従来の技術】排液中に含まれるアンモニア性窒素は河
川、湖沼及び海洋などにおける富栄養化の原因物質の一
つであり、排液処理工程で効率的に除去する必要があ
る。一般に、排水中のアンモニア性窒素は、アンモニア
性窒素をアンモニア酸化細菌により亜硝酸性窒素に酸化
し、更にこの亜硝酸性窒素を亜硝酸酸化細菌により硝酸
性窒素に酸化する硝化工程と、これらの亜硝酸性窒素及
び硝酸性窒素を従属栄養性細菌である脱窒菌により、有
機物を電子供与体として利用して窒素ガスにまで分解す
る脱窒工程との2段階の生物反応を経て窒素ガスにまで
分解される。
2. Description of the Related Art Ammoniacal nitrogen contained in drainage is one of the causative substances of eutrophication in rivers, lakes and oceans, and it is necessary to remove it efficiently in the drainage treatment process. Generally, ammoniacal nitrogen in wastewater is a nitrification process in which ammoniacal nitrogen is oxidized to nitrite nitrogen by ammonia-oxidizing bacteria, and this nitrite nitrogen is further oxidized to nitrate nitrogen by nitrite-oxidizing bacteria. Nitrogen gas and nitrogen gas are transformed into nitrogen gas by a denitrification process in which organic substances are used as electron donors to decompose them into nitrogen gas by denitrifying bacteria, which are heterotrophic bacteria. Be disassembled.

【0003】しかし、このような従来の硝化脱窒法で
は、脱窒工程において電子供与体としてメタノールなど
の有機物を多量に必要とし、また硝化工程では多量の酸
素が必要であるため、ランニングコストが高いという欠
点がある。
However, in such a conventional nitrification denitrification method, a large amount of an organic substance such as methanol is required as an electron donor in the denitrification step, and a large amount of oxygen is required in the nitrification step, so that the running cost is high. There is a drawback that.

【0004】これに対して、近年、アンモニア性窒素を
電子供与体とし、亜硝酸性窒素を電子受容体とする独立
栄養性微生物(自己栄養細菌)を利用し、アンモニア性
窒素と亜硝酸性窒素とを反応させて脱窒する方法が提案
された。この方法であれば、有機物の添加は不要である
ため、従属栄養性の脱窒菌を利用する方法と比べて、コ
ストを低減することができる。また、独立栄養性の微生
物は収率が低く、汚泥の発生量が従属栄養性微生物と比
較すると著しく少ないので、余剰汚泥の発生量を抑える
ことができる。更に、従来の硝化脱窒法で観察されるN
Oの発生がなく、環境に対する負荷を低減できるとい
った特長もある。
On the other hand, in recent years, ammoniacal nitrogen and nitrite nitrogen have been utilized by utilizing an autotrophic microorganism (autotrophic bacterium) having ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. A method of denitrifying by reacting with was proposed. This method does not require addition of organic matter, and thus can reduce the cost as compared with the method using heterotrophic denitrifying bacteria. In addition, the yield of autotrophic microorganisms is low, and the amount of sludge generated is significantly smaller than that of heterotrophic microorganisms, so that the amount of excess sludge generated can be suppressed. Furthermore, N observed by the conventional nitrification denitrification method
It also has the feature that it does not generate 2 O and can reduce the load on the environment.

【0005】この独立栄養性脱窒微生物(以下「ANA
MMOX微生物」と称す場合がある。)を利用する生物
脱窒プロセスは、Strous, M, et al., Appl. Microbio
l. Biotechnol., 50, p.589-596 (1998) に報告されて
おり、以下のような反応でアンモニア性窒素と亜硝酸性
窒素が反応して窒素ガスに分解されると考えられてい
る。
This autotrophic denitrifying microorganism (hereinafter referred to as "ANA
Sometimes referred to as "MMOX microorganism". ) Is used in Strous, M, et al., Appl. Microbio
l. Biotechnol., 50, p.589-596 (1998), it is believed that ammoniacal nitrogen and nitrite nitrogen react with each other in the following reaction to decompose into nitrogen gas. .

【0006】[0006]

【化1】 [Chemical 1]

【0007】上記生物脱窒法で反応に関与するANAM
MOX微生物は、高濃度の亜硝酸性窒素の存在下では阻
害を受け、活性が低下する。脱窒槽内が不完全混合(例
えばプラグフロー型)である場合には、原水注入口付近
の亜硝酸性窒素濃度が局所的に高くなる場合がある。こ
のため、脱窒槽に流入する原水の亜硝酸性窒素濃度が高
い場合には、処理水を循環させるなどして原水を希釈
し、脱窒槽内の亜硝酸性窒素濃度を上記阻害濃度よりも
低く保つことが行われている。
ANAM involved in the reaction in the above-mentioned biological denitrification method
MOX microorganisms are inhibited and become less active in the presence of high concentrations of nitrite nitrogen. When the inside of the denitrification tank is incompletely mixed (for example, plug flow type), the concentration of nitrite nitrogen near the raw water inlet may be locally high. Therefore, when the nitrite nitrogen concentration of the raw water flowing into the denitrification tank is high, the raw water is diluted by circulating treated water, etc., and the nitrite nitrogen concentration in the denitrification tank is lower than the above-mentioned inhibitory concentration. It is being held.

【0008】[0008]

【発明が解決しようとする課題】原水の亜硝酸性窒素濃
度が一定であれば、所定量の処理水の循環により、脱窒
槽に高濃度亜硝酸性窒素が流入することによるANAM
MOX微生物の阻害を防止することができるが、原水の
亜硝酸性窒素濃度が変動する場合には、このような処理
水の循環では高濃度亜硝酸性窒素によるANAMMOX
微生物の阻害を防止し得ない。即ち、高い亜硝酸性窒素
濃度の原水が脱窒槽に流入することにより、脱窒槽の原
水流入口付近の亜硝酸性窒素濃度が上昇し、この部分の
ANAMMOX微生物が阻害を受ける。そして、脱窒槽
の原水流入口付近のANAMMOX微生物が阻害を受け
て、活性が低下することにより、分解し得ずに脱窒槽内
に残留した亜硝酸性窒素により脱窒槽内の亜硝酸性窒素
濃度が上昇し、更にANAMMOX微生物がこの高濃度
亜硝酸性窒素により阻害を受けてより一層活性が低下す
ることとなる。なお、このANAMMOX微生物が阻害
を受ける亜硝酸性窒素(NO−N)濃度の下限は約1
00mg−N/Lであるとされている。
If the concentration of nitrite nitrogen in the raw water is constant, circulation of a predetermined amount of treated water causes a high concentration of nitrite nitrogen to flow into the denitrification tank.
Although it is possible to prevent inhibition of MOX microorganisms, when the nitrite nitrogen concentration of the raw water fluctuates, the circulation of such treated water causes a high concentration of nitrite nitrogen in the ANAMMOX.
It cannot prevent the inhibition of microorganisms. That is, when raw water having a high nitrite nitrogen concentration flows into the denitrification tank, the nitrite nitrogen concentration near the raw water inlet of the denitrification tank rises, and the ANAMMOX microorganism in this part is inhibited. Then, the activity of the ANAMMOX microorganism near the inlet of the raw water of the denitrification tank is inhibited and the activity is reduced, so that the nitrite nitrogen concentration in the denitrification tank cannot be decomposed and remains in the denitrification tank. Is increased, and further, the ANAMMOX microorganism is inhibited by this high-concentration nitrite nitrogen, and the activity is further reduced. The lower limit of the nitrite nitrogen (NO 2 —N) concentration at which the ANAMMOX microorganism is inhibited is about 1
It is said to be 00 mg-N / L.

【0009】本発明は上記従来の問題点を解決し、原水
の亜硝酸性窒素濃度が変動する場合において、脱窒槽に
流入する亜硝酸性窒素によるANAMMOX微生物の阻
害を確実に防止して、安定かつ効率的な生物脱窒を行う
ための生物脱窒装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and reliably prevents the inhibition of the ANAMMOX microorganisms by the nitrite nitrogen flowing into the denitrification tank when the concentration of nitrite nitrogen in the raw water fluctuates and stabilizes. It is an object of the present invention to provide a biological denitrification device for performing efficient biological denitrification.

【0010】[0010]

【課題を解決するための手段】請求項1の生物脱窒装置
は、アンモニア性窒素と亜硝酸性窒素を含有する原水の
流入口と、処理液の流出口とを有し、アンモニア性窒素
を電子供与体とし、亜硝酸性窒素を電子受容体とする脱
窒微生物の作用により生物脱窒する脱窒槽と、該脱窒槽
内の原水流入口付近の液の亜硝酸性窒素濃度を測定する
亜硝酸性窒素濃度測定手段と、該亜硝酸性窒素濃度測定
手段の出力信号に基づいて該脱窒槽に流入する原水の流
量を調節する手段とを備えることを特徴とする。
The biological denitrification apparatus according to claim 1 has an inlet for raw water containing ammoniacal nitrogen and nitrite nitrogen and an outlet for the treatment liquid, and A denitrifying tank that performs biological denitrification by the action of a denitrifying microorganism that uses an electron donor and nitrite nitrogen as an electron acceptor, and a nitrite nitrogen concentration in the liquid near the raw water inlet in the denitrifying tank is measured. It is characterized by comprising a nitrate nitrogen concentration measuring means and means for adjusting a flow rate of raw water flowing into the denitrification tank based on an output signal of the nitrite nitrogen concentration measuring means.

【0011】請求項2の生物脱窒装置は、アンモニア性
窒素と亜硝酸性窒素を含有する原水の流入口と、処理液
の流出口とを有し、アンモニア性窒素を電子供与体と
し、亜硝酸性窒素を電子受容体とする脱窒微生物の作用
により生物脱窒する脱窒槽と、原水を希釈するための希
釈水を供給する希釈水供給手段と、前記脱窒槽内の原水
流入口付近の液の亜硝酸性窒素濃度を測定する亜硝酸性
窒素濃度測定手段と、該亜硝酸性窒素濃度測定手段の出
力信号に基づいて前記希釈水供給手段が供給する希釈水
の供給量を調節する手段とを備えることを特徴とする。
The biological denitrification apparatus of claim 2 has an inlet for raw water containing ammoniacal nitrogen and nitrite nitrogen, and an outlet for the treatment liquid, wherein the ammoniacal nitrogen is used as an electron donor. A denitrification tank for biological denitrification by the action of denitrifying microorganisms using nitrate nitrogen as an electron acceptor, a diluting water supply means for supplying diluting water for diluting raw water, and a raw water inlet near the denitrification tank. Nitrite nitrogen concentration measuring means for measuring the nitrite nitrogen concentration of the liquid, and means for adjusting the amount of dilution water supplied by the dilution water supply means based on the output signal of the nitrite nitrogen concentration measuring means And is provided.

【0012】脱窒槽内の原水流入口付近の液の亜硝酸性
窒素濃度に基づいて、この亜硝酸性窒素濃度が予め設定
された上限値を超える場合には亜硝酸性窒素の流入量を
低減させ、予め設定された下限値を下回る場合には亜硝
酸性窒素の流入量を増加させることにより、高濃度亜硝
酸性窒素が流入することによる脱窒槽内のANAMMO
X微生物の阻害を確実に防止して安定かつ効率的な生物
脱窒処理を行うことが可能となる。
Based on the concentration of nitrite nitrogen in the liquid near the inlet of raw water in the denitrification tank, when the concentration of nitrite nitrogen exceeds a preset upper limit value, the inflow amount of nitrite nitrogen is reduced. If the amount of nitrite nitrogen is below the preset lower limit, the inflow of high-concentration nitrite nitrogen is increased to increase the concentration of nitrite nitrogen.
It is possible to reliably prevent the inhibition of X microorganisms and perform stable and efficient biological denitrification.

【0013】請求項1の生物脱窒装置では、測定された
亜硝酸性窒素濃度に基づいて、脱窒槽に流入する原水の
流入量を制御することにより、脱窒槽に流入する亜硝酸
性窒素量を調節する。
In the biological denitrification apparatus of claim 1, the amount of nitrite nitrogen flowing into the denitrification tank is controlled by controlling the amount of raw water flowing into the denitrification tank based on the measured nitrite nitrogen concentration. Adjust.

【0014】請求項2の生物脱窒装置では、測定された
亜硝酸性窒素濃度に基づいて、原水を希釈する希釈水の
供給量を調節して脱窒槽の流入水の亜硝酸性窒素濃度を
制御し、これにより脱窒槽に流入する亜硝酸性窒素量を
調節する。
In the biological denitrification apparatus of claim 2, the amount of dilution water for diluting the raw water is adjusted based on the measured concentration of nitrite nitrogen to adjust the concentration of nitrite nitrogen in the inflow water of the denitrification tank. It controls the amount of nitrite nitrogen flowing into the denitrification tank.

【0015】[0015]

【発明の実施の形態】以下に図面を参照して本発明の生
物脱窒装置の実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the biological denitrification device of the present invention will be described in detail below with reference to the drawings.

【0016】図1は、本発明の生物脱窒装置の実施の形
態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the biological denitrification apparatus of the present invention.

【0017】図1に示す生物脱窒装置は、脱窒槽とし
て、内部にANAMMOX微生物のグラニュール汚泥床
が形成されたUSB(Upflow Sludge Bed;上向流汚泥
床)反応槽1を有し、この反応槽1の底部に原水の流入
配管2が接続されている。反応槽1の上部には気液固分
離装置3が設けられ、この気液固分離装置3から、処理
水の排出配管4が引き出されている。この処理水の排出
配管4に分岐して処理水の一部を循環水として原水流入
配管2に戻す循環配管5が設けられている。Pは原水
ポンプ、Pは循環ポンプである。
The biological denitrification apparatus shown in FIG. 1 has a USB (Upflow Sludge Bed) reaction tank 1 having a granulated sludge bed of ANAMMOX microorganisms formed therein as a denitrification tank. A raw water inflow pipe 2 is connected to the bottom of the reaction tank 1. A gas-liquid solid separation device 3 is provided above the reaction tank 1, and a treated water discharge pipe 4 is drawn out from the gas-liquid solid separation device 3. A circulation pipe 5 is provided which branches into the treated water discharge pipe 4 and returns a part of the treated water to the raw water inflow pipe 2 as circulating water. P 1 is a raw water pump and P 2 is a circulation pump.

【0018】この生物脱窒装置において、原水は、配管
5からの循環水と共に配管2からUSB反応槽1の底部
に導入される。USB反応槽1に導入された原水は、A
NAMMOX微生物のグラニュール汚泥床を上向流で上
昇する間に、ANAMMOX微生物により生物脱窒処理
され、処理水が配管4より系外へ排出される。また、処
理水の一部は配管5より原水導入配管2に循環される。
In this biological denitrification apparatus, the raw water is introduced from the pipe 2 to the bottom of the USB reaction tank 1 together with the circulating water from the pipe 5. The raw water introduced into the USB reaction tank 1 is A
While the NAMMOX microorganism granulated sludge bed is rising in the upward flow, the biological water is denitrified by the ANAMMOX microorganisms, and the treated water is discharged from the pipe 4 to the outside of the system. A part of the treated water is circulated from the pipe 5 to the raw water introduction pipe 2.

【0019】この生物脱窒装置では、USB反応槽1の
底部の原水流入部分から槽内液を引き抜き、この液の亜
硝酸性窒素濃度を測定した後、USB反応槽1に戻す配
管6A,6Bと亜硝酸イオンセンサー設置部6が設けら
れている。即ち、反応槽1の原水流入部から、配管6A
より引き抜いた槽内液の亜硝酸イオン濃度を亜硝酸イオ
ンセンサー設置部6で測定した後、測定後の液を配管6
Bより再び反応槽1に戻すように構成されている。
In this biological denitrification device, the liquid inside the tank is drawn out from the raw water inflow portion at the bottom of the USB reaction tank 1, the nitrite nitrogen concentration of this liquid is measured, and then the pipes 6A and 6B are returned to the USB reaction tank 1. And a nitrite ion sensor installation unit 6 is provided. That is, from the raw water inflow part of the reaction tank 1 to the pipe 6A
After measuring the nitrite ion concentration of the extracted liquid in the tank with the nitrite ion sensor installation part 6, the liquid after measurement is piped 6
It is configured to return from B to the reaction tank 1 again.

【0020】亜硝酸イオンセンサーとしては、市販品、
例えば電気化学計器(株)製の亜硝酸イオン電極等を用
いることができる。
As the nitrite ion sensor, a commercially available product,
For example, a nitrite ion electrode manufactured by Electrochemical Instruments Co., Ltd. or the like can be used.

【0021】図1の生物脱窒装置では、このような亜硝
酸イオンセンサーで測定した亜硝酸イオン濃度に基づい
て原水ポンプPの作動を制御する。
In the biological denitrification apparatus of FIG. 1, the operation of the raw water pump P 1 is controlled based on the nitrite ion concentration measured by such a nitrite ion sensor.

【0022】即ち、予め槽内液の亜硝酸イオン濃度の上
限値(以下「設定上限値」と称す場合がある。)と下限
値(以下「設定下限値」と称す場合がある。)を設定し
ておき、槽内液の亜硝酸イオン濃度がこの上限値を越え
た場合には原水流入量を低減させ、逆に下限値を下回る
場合には原水流入量を増加させる。
That is, an upper limit value (hereinafter sometimes referred to as "set upper limit value") and a lower limit value (hereinafter sometimes referred to as "set lower limit value") of the nitrite ion concentration of the liquid in the tank are set in advance. If the concentration of nitrite ion in the tank liquid exceeds the upper limit value, the raw water inflow amount is reduced, and if the concentration is lower than the lower limit value, the raw water inflow amount is increased.

【0023】前述の如く、ANAMMOX微生物はNO
−N濃度100mg/L以上で阻害を受け、200m
g/L以上で活性は殆ど失われる。従って、設定上限値
は200mg−N/Lよりも低い値に設定する必要があ
る。一方、槽内の微生物はフロック状、或いは生物膜状
に存在しており、フロック或いは生物膜中に基質を十分
に浸透させ、内部の微生物を有効に利用するためには、
バルク中の基質濃度は高い方が好ましい。設定上限値は
目標とする処理効率やその他の条件によっても異なる
が、一般的にはNO−N濃度で50〜200mg−N
/L程度、特に75〜150mg/Lとするのが好まし
い。一方、設定下限値が過度に低いとANAMMOX微
生物の活性阻害を確実に防止することができるが、処理
効率が悪くなることから、設定下限値は目標とする処理
効率やその他の条件によっても異なるが、一般的にはN
−N濃度で5〜70mg−N/L程度、特に20〜
50mg/Lとするのが好ましい。
As mentioned above, the ANAMMOX microorganism is NO
200 m after being inhibited at 2- N concentration of 100 mg / L or more
Almost no activity is lost at g / L or more. Therefore, the set upper limit value needs to be set to a value lower than 200 mg-N / L. On the other hand, the microorganisms in the tank are present in the form of flocs or biofilms, and in order to sufficiently permeate the substrate into the flocs or biofilms and effectively utilize the microbes inside,
Higher substrate concentration in the bulk is preferred. The set upper limit varies depending on the target processing efficiency and other conditions, but is generally 50 to 200 mg-N in NO 2 -N concentration.
/ L, preferably 75 to 150 mg / L. On the other hand, if the set lower limit value is excessively low, it is possible to reliably prevent the inhibition of the activity of the ANAMMOX microorganisms, but since the treatment efficiency deteriorates, the set lower limit value varies depending on the target treatment efficiency and other conditions. , Generally N
O 2 -N concentration is about 5 to 70 mg-N / L, especially 20 to
It is preferably 50 mg / L.

【0024】本発明では、例えば、次のようにして原水
流入量の調節を行うことができる。
In the present invention, for example, the raw water inflow amount can be adjusted as follows.

【0025】 予め原水流入量の基準値を定めてお
き、槽内液のNO−N濃度が設定上限値を超えた場合
には、原水流入量を基準値よりも若干、例えば5〜50
%低減し、槽内液のNO−N濃度が設定下限値を下回
った場合には原水流入量を基準値に戻す。
When the reference value of the raw water inflow is set in advance and the NO 2 —N concentration in the tank liquid exceeds the set upper limit value, the raw water inflow is slightly higher than the reference value, for example, 5 to 50.
%, And when the NO 2 —N concentration in the tank liquid falls below the lower limit value, the raw water inflow rate is returned to the standard value.

【0026】 槽内液のNO−N濃度が設定上限値
を超えた場合には、原水流入量を現状よりも若干、例え
ば5〜50%低減させ、槽内液のNO−N濃度が設定
下限値を下回った場合には原水流入量を現状よりも若
干、例えば5〜50%増加させる。
When the NO 2 —N concentration in the tank liquid exceeds the set upper limit value, the raw water inflow amount is slightly reduced from the current value, for example, by 5 to 50%, and the NO 2 —N concentration in the tank liquid is reduced. When it is below the set lower limit value, the raw water inflow amount is slightly increased from the current value, for example, 5 to 50%.

【0027】 上記,において、槽内液のNO
−N濃度と設定上限値又は設定下限値との差の大きさに
より、原水流入量の低減量又は増加量を変える。即ち、
例えば槽内液のNO−N濃度が設定上限値よりも大幅
に高い場合には、原水流入量を大幅に低減させ、槽内液
のNO−N濃度が設定上限値よりもわずかに高い場合
には原水流入量をわずかに低減させる。
In the above, NO 2 of the liquid in the tank
The amount of reduction or increase of the raw water inflow is changed depending on the magnitude of the difference between the N concentration and the set upper limit value or the set lower limit value. That is,
For example, when the NO 2 -N concentration in the tank liquid is significantly higher than the set upper limit value, the raw water inflow amount is significantly reduced, and the NO 2 -N concentration in the tank liquid is slightly higher than the set upper limit value. In some cases, the raw water inflow is reduced slightly.

【0028】図1の生物脱窒装置では、このような亜硝
酸イオンセンサーで測定した亜硝酸イオン濃度に基づい
て原水ポンプPの作動を制御するが、循環ポンプP
の作動を制御して、原水を希釈する循環水量を調節して
も良い。
In the biological denitrification apparatus of FIG. 1, the operation of the raw water pump P 1 is controlled based on the nitrite ion concentration measured by such a nitrite ion sensor, but the circulation pump P 2
The amount of circulating water for diluting the raw water may be adjusted by controlling the operation of.

【0029】この場合には、槽内液の亜硝酸イオン濃度
がこの設定上限値を超えた場合には循環水量を増加さ
せ、逆に設定値を下回る場合には循環水量を低減させ
る。
In this case, when the concentration of nitrite ions in the liquid in the tank exceeds the set upper limit value, the circulating water amount is increased, and conversely, when the concentration is lower than the set value, the circulating water amount is reduced.

【0030】例えば、次のようにして循環水量の調節を
行うことができる。
For example, the amount of circulating water can be adjusted as follows.

【0031】 予め循環水量の基準値を定めておき、
槽内液のNO−N濃度が設定上限値を超えた場合に
は、循環水量を基準値よりも若干、例えば5〜50%増
加させ、槽内液のNO−N濃度が設定下限値を下回っ
た場合には循環水量を基準値に戻す。
A reference value of the circulating water amount is set in advance,
When the NO 2 -N concentration in the bath within liquid exceeds the set upper limit value is slightly circulating water than the reference value, for example, it is increased 5-50%, the NO 2 -N concentration in the bath within the fluid set lower limit If it falls below the range, return the circulating water amount to the standard value.

【0032】 槽内液のNO−N濃度が設定上限値
を超えた場合には、循環水量を現状よりも若干、例えば
5〜50%増加させ、槽内液のNO−N濃度が設定下
限値を下回った場合には循環水量を現状よりも若干、例
えば5〜50%低減させる。
When the NO 2 —N concentration in the tank liquid exceeds the set upper limit value, the circulating water amount is slightly increased from the current value, for example, 5 to 50%, and the NO 2 —N concentration in the tank liquid is set. When the value is below the lower limit, the amount of circulating water is slightly reduced from the current value, for example, 5 to 50%.

【0033】 上記,において、槽内液のNO
−N濃度と設定上限値又は設定下限値との差の大きさに
より、循環水量の低減量又は増加量を変える。即ち、例
えば槽内液のNO−N濃度が設定上限値よりも大幅に
高い場合には、循環水量を大幅に増加させ、槽内液のN
−N濃度が設定上限値よりもわずかに高い場合には
循環水量をわずかに増加させる。
In the above, NO 2 of the liquid in the tank
-The reduction amount or increase amount of circulating water is changed according to the magnitude of the difference between the N concentration and the set upper limit value or the set lower limit value. That is, for example, when the NO 2 —N concentration in the tank liquid is significantly higher than the set upper limit value, the circulating water amount is significantly increased to increase the N 2 in the tank liquid.
Slightly increase the circulating amount of water when O 2 -N concentration is slightly higher than the set upper limit value.

【0034】このようにして循環水量を調節することに
より、反応槽1の流入水の亜硝酸性窒素濃度を調整し、
反応槽1の原水流入部の亜硝酸性窒素濃度を好適な濃度
範囲に維持することができる。
By adjusting the amount of circulating water in this way, the concentration of nitrite nitrogen in the inflow water of the reaction tank 1 is adjusted,
The concentration of nitrite nitrogen in the raw water inflow portion of the reaction tank 1 can be maintained within a suitable concentration range.

【0035】なお、循環水とは別の希釈水の供給手段を
設け、この希釈水の供給ポンプの作動を制御するように
しても良い。また、希釈水(循環水)量と原水量とを共
に制御しても良い。この場合には、原水量を増加すると
共に希釈水量を低減するか、或いは原水量を低減すると
共に希釈水量を増加させて、反応槽に流入する流入水量
を一定とすることもでき、好ましい。
It is also possible to provide a diluting water supply means different from the circulating water and control the operation of the diluting water supply pump. Further, both the amount of dilution water (circulation water) and the amount of raw water may be controlled together. In this case, it is possible to increase the amount of raw water and reduce the amount of dilution water, or to reduce the amount of raw water and increase the amount of dilution water so that the amount of inflow water flowing into the reaction tank can be made constant, which is preferable.

【0036】亜硝酸イオンセンサーによる測定は連続測
定であっても間欠的な測定であっても良い。間欠的に測
定を行う場合、測定頻度には特に制限はなく、原水の水
質やその他の処理条件の変動による槽内液の亜硝酸イオ
ン濃度の変動の可能性に基づいて適宜測定されるが、一
般的には0.1〜24hrに1回の頻度で測定すること
が好ましい。
The measurement with the nitrite ion sensor may be continuous measurement or intermittent measurement. When performing intermittent measurement, there is no particular limitation on the measurement frequency, and it is appropriately measured based on the possibility of fluctuation of the nitrite ion concentration in the tank liquid due to fluctuations of raw water quality and other treatment conditions. Generally, it is preferable to measure once every 0.1 to 24 hours.

【0037】なお、図1に示す生物脱窒装置では、亜硝
酸イオンセンサー設置部を反応槽1の外部に設け、反応
槽1から槽内液を引き抜いて亜硝酸性窒素濃度を測定し
ているが、亜硝酸イオンセンサー設置部を反応槽1内の
原水流入口部分に設け、反応槽1内において槽内液の亜
硝酸性窒素濃度を直接測定しても良い。
In the biological denitrification apparatus shown in FIG. 1, a nitrite ion sensor installation unit is provided outside the reaction tank 1, and the in-tank liquid is drawn from the reaction tank 1 to measure the nitrite nitrogen concentration. However, a nitrite ion sensor installation portion may be provided at the raw water inlet of the reaction tank 1 to directly measure the nitrite nitrogen concentration of the solution in the reaction tank 1.

【0038】また、図1に示す生物脱窒装置は、脱窒槽
としてANAMMOX微生物のグラニュール汚泥を保持
するUSB反応槽を用いたものであるが、本発明におい
て、脱窒槽の型式に特に制限はなく、汚泥懸濁法、固定
床、流動床、担体添加法などのいずれの型式のものであ
っても良い。
Further, the biological denitrification apparatus shown in FIG. 1 uses a USB reaction tank for holding granulated sludge of ANAMMOX microorganisms as a denitrification tank, but in the present invention, the type of denitrification tank is not particularly limited. Alternatively, any type such as a sludge suspension method, a fixed bed, a fluidized bed, and a carrier addition method may be used.

【0039】例えば、生物脱窒装置として、汚泥懸濁式
の脱窒槽を用いる場合には、脱窒槽の後段に沈殿槽等の
固液分離手段が設けられ、分離汚泥が脱窒槽に返送され
るが、このような場合、亜硝酸イオンセンサーは脱窒槽
の原水の流入口付近に設ければ良い。
For example, when a sludge suspension type denitrification tank is used as the biological denitrification device, a solid-liquid separation means such as a sedimentation tank is provided in the subsequent stage of the denitrification tank, and the separated sludge is returned to the denitrification tank. However, in such a case, the nitrite ion sensor may be provided near the inflow port of the raw water of the denitrification tank.

【0040】本発明の生物脱窒方法において、処理対象
となる原水は、アンモニア性窒素及び亜硝酸性窒素を含
む水であり、有機物及び有機性窒素を含むものであって
もよいが、これらは脱窒処理前に予めアンモニア性窒素
になる程度まで分解しておくことが好ましく、また、溶
存酸素濃度が高い場合には、必要に応じて溶存酸素を除
去しておくことが好ましい。原水は無機物を含んでいて
もよい。また、原水はアンモニア性窒素を含む液と亜硝
酸性窒素を含む液を混合したものであってもよい。例え
ば、アンモニア性窒素を含む排水をアンモニア酸化微生
物の存在下に好気性処理を行い、アンモニア性窒素の一
部、好ましくはその1/2を亜硝酸に部分酸化したもの
を原水とすることができる。更には、アンモニア性窒素
を含む排水の一部をアンモニア酸化微生物の存在下に好
気性処理を行い、アンモニア性窒素を亜硝酸に酸化し、
アンモニア性窒素を含む排水の残部と混合したものを原
水としても良い。
In the biological denitrification method of the present invention, the raw water to be treated is water containing ammoniacal nitrogen and nitrite nitrogen, and may contain organic matter and organic nitrogen. Prior to the denitrification treatment, it is preferable to decompose it to the extent that it becomes ammoniacal nitrogen, and if the dissolved oxygen concentration is high, it is preferable to remove the dissolved oxygen as necessary. Raw water may contain an inorganic substance. Further, the raw water may be a mixture of a liquid containing ammoniacal nitrogen and a liquid containing nitrite nitrogen. For example, wastewater containing ammoniacal nitrogen can be subjected to aerobic treatment in the presence of ammonia-oxidizing microorganisms, and a part of the ammoniacal nitrogen, preferably one-half of which can be partially oxidized to nitrous acid, can be used as raw water. . Furthermore, a part of the wastewater containing ammoniacal nitrogen is subjected to aerobic treatment in the presence of ammonia-oxidizing microorganisms to oxidize the ammoniacal nitrogen to nitrous acid,
The raw water may be a mixture with the rest of the wastewater containing ammoniacal nitrogen.

【0041】一般的には、下水、し尿、嫌気性硝化脱離
液等のアンモニア性窒素、有機性窒素及び有機物を含む
排水が処理対象となる場合が多いが、この場合、これら
を好気性又は嫌気性処理して有機物を分解し、有機性窒
素をアンモニア性窒素に分解し、さらに部分亜硝酸化或
いは、一部についての亜硝酸化を行った液を原水とする
ことが好ましい。
In general, wastewater containing ammonia nitrogen, organic nitrogen, and organic matter such as sewage, night soil, anaerobic nitrifying and desorbing liquid, etc. is often treated, but in this case, these are aerobic or It is preferable to use anaerobic treatment to decompose organic substances, decompose organic nitrogen into ammonia nitrogen, and further perform partial nitrite oxidation or partial nitrite oxidation as raw water.

【0042】原水のアンモニア性窒素と亜硝酸性窒素の
割合はモル比でアンモニア性窒素1に対して亜硝酸性窒
素0.5〜2、特に1〜1.5とするのが好ましい。原
水中のアンモニア性窒素及び亜硝酸性窒素の濃度はそれ
ぞれ5〜1000mg/L、5〜200mg/Lである
ことが好ましいが、処理水を循環して希釈すればこの限
りではない。
The ratio of the ammoniacal nitrogen to the nitrite nitrogen in the raw water is preferably 0.5 to 2 and more preferably 1 to 1.5, in molar ratio, to 1 ammoniacal nitrogen. The concentrations of ammoniacal nitrogen and nitrite nitrogen in the raw water are preferably 5 to 1000 mg / L and 5 to 200 mg / L, respectively, but not limited to this if the treated water is circulated and diluted.

【0043】原水の生物脱窒条件としては、例えば反応
槽内液の温度が10〜40℃、特に20〜35℃、pH
が5〜9、特に6〜8、溶存酸素濃度が0〜2.5mg
/L、特に0〜0.2mg/L、BOD濃度が0〜50
mg/L、特に0〜20mg/L、窒素負荷が0.1〜
10kg−N/m・day、特に0.2〜5kg−N
/m・dayの範囲とするのが好ましい。
The biological denitrification conditions of the raw water include, for example, the temperature of the liquid in the reaction tank is 10 to 40 ° C., especially 20 to 35 ° C., and the pH.
5-9, especially 6-8, dissolved oxygen concentration 0-2.5 mg
/ L, especially 0-0.2 mg / L, BOD concentration 0-50
mg / L, especially 0-20 mg / L, nitrogen load 0.1-
10 kg-N / m 3 · day, especially 0.2 to 5 kg-N
It is preferably in the range of / m 3 · day.

【0044】図1に示す如く、UASB反応槽1内にグ
ラニュール汚泥を形成する場合、微生物だけではグラニ
ュール形成に期間を要するので、核となる物質を添加
し、その核の周りにANAMMOX微生物の生物膜を形
成させることが望ましい。この場合、核として、例えば
微生物グラニュールや非生物的な単体を挙げることがで
きる。
As shown in FIG. 1, when the granule sludge is formed in the UASB reaction tank 1, it takes a long time to form the granules only with the microorganisms. Therefore, a substance to be the core is added, and the ANAMMOX microorganism is added around the nucleus. It is desirable to form a biofilm. In this case, examples of the nucleus include microbial granules and abiotic simple substances.

【0045】核として用いられる微生物グラニュールと
しては、メタン菌グラニュール等の嫌気性微生物や従属
栄養性脱窒菌グラニュール等を挙げることができる。メ
タン菌グラニュールは、UASB法もしくはEGSB法
でメタン発酵が行われているメタン発酵槽で使用されて
いるものを適用できる。また、従属栄養性脱窒グラニュ
ールは、UASB又はEGSB等の通常の脱窒槽で利用
されるものを適用できる。これらのグラニュールはその
ままの状態で、又はその破砕物として用いることができ
る。独立栄養性脱窒微生物はこのような微生物グラニュ
ールに付着しやすく、グラニュールの形成に要する時間
が短縮される。また、核として非生物的な材料を用いる
よりも経済的である。
Examples of the microbial granules used as nuclei include anaerobic microbes such as methane bacterium granules and heterotrophic denitrifying bacterium granules. As the methane bacteria granule, those used in a methane fermentation tank in which methane fermentation is performed by the UASB method or the EGSB method can be applied. As the heterotrophic denitrification granule, those used in a normal denitrification tank such as UASB or EGSB can be applied. These granules can be used as they are or as a crushed product. The autotrophic denitrifying microorganisms are likely to attach to such microbial granules, shortening the time required for granule formation. It is also more economical than using abiotic materials as the core.

【0046】核として用いられる非生物的な材料として
は、例えば、活性炭、ゼオライト、ケイ砂、ケイソウ
土、焼成セラミック、イオン交換樹脂等、好ましくは活
性炭、ゼオライト等よりなる、粒径50〜200μm、
好ましくは50〜100μmで、平均比重1.01〜
2.5、好ましくは1.1〜2.0の担体を挙げること
ができる。
As the abiotic material used as the core, for example, activated carbon, zeolite, silica sand, diatomaceous earth, calcined ceramics, ion exchange resin, etc., preferably activated carbon, zeolite, etc., having a particle size of 50 to 200 μm,
It is preferably 50 to 100 μm, and the average specific gravity is 1.01 to 1.01.
2.5, preferably 1.1 to 2.0 carriers can be mentioned.

【0047】このようにして形成されるANAMMOX
微生物のグラニュール汚泥は、平均粒径が0.25〜3
mm、好ましくは0.25〜2mm、より好ましくは
0.25〜1.5mm程度、平均比重が1.01〜2.
5、好ましくは1.1〜2.0であることが望ましい。
グラニュールの粒度が小さいほど比表面積が大きくなる
ので、高い汚泥濃度を維持し、脱窒処理を効率よく行う
点で好ましい。
ANAMMOX formed in this way
The microbial granule sludge has an average particle size of 0.25 to 3
mm, preferably 0.25 to 2 mm, more preferably about 0.25 to 1.5 mm and having an average specific gravity of 1.01 to 2.
It is desirable that it is 5, preferably 1.1 to 2.0.
Since the smaller the particle size of the granule, the larger the specific surface area, it is preferable from the viewpoint of maintaining a high sludge concentration and efficiently performing the denitrification treatment.

【0048】[0048]

【発明の効果】以上詳述した通り、本発明の生物脱窒装
置によれば、ANAMMOX微生物による生物脱窒処理
において、原水の亜硝酸性窒素濃度が変動する場合であ
っても、脱窒槽に流入する亜硝酸性窒素によるANAM
MOX微生物の阻害を確実に防止して、安定かつ効率的
な生物脱窒を行うことができる。
As described above in detail, according to the biological denitrification apparatus of the present invention, in the biological denitrification treatment by the ANAMMOX microorganism, even if the nitrite nitrogen concentration of the raw water changes, the denitrification tank can be used. ANAM due to inflowing nitrite nitrogen
Stable and efficient biological denitrification can be performed by reliably preventing the inhibition of MOX microorganisms.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の生物脱窒装置の実施の形態を示す系統
図である。
FIG. 1 is a system diagram showing an embodiment of a biological denitrification device of the present invention.

【符号の説明】[Explanation of symbols]

1 USB反応槽 3 気液固分離装置 6 亜硝酸イオンセンサー設置部 1 USB reaction tank 3 Gas-liquid separation device 6 Nitrite ion sensor installation section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アンモニア性窒素と亜硝酸性窒素を含有
する原水の流入口と、処理液の流出口とを有し、アンモ
ニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容
体とする脱窒微生物の作用により生物脱窒する脱窒槽
と、 該脱窒槽内の原水流入口付近の液の亜硝酸性窒素濃度を
測定する亜硝酸性窒素濃度測定手段と、 該亜硝酸性窒素濃度測定手段の出力信号に基づいて該脱
窒槽に流入する原水の流量を調節する手段とを備えるこ
とを特徴とする生物脱窒装置。
1. An inlet for raw water containing ammoniacal nitrogen and nitrite nitrogen, and an outlet for a treatment solution, wherein the ammoniacal nitrogen serves as an electron donor and the nitrite nitrogen serves as an electron acceptor. A denitrification tank for biological denitrification by the action of denitrifying microorganisms, a nitrite nitrogen concentration measuring means for measuring the concentration of nitrite nitrogen in the liquid near the inlet of raw water in the denitrification tank, and the nitrite nitrogen concentration Means for adjusting the flow rate of raw water flowing into the denitrification tank based on the output signal of the measuring means.
【請求項2】 アンモニア性窒素と亜硝酸性窒素を含有
する原水の流入口と、処理液の流出口とを有し、アンモ
ニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容
体とする脱窒微生物の作用により生物脱窒する脱窒槽
と、 原水を希釈するための希釈水を供給する希釈水供給手段
と、 前記脱窒槽内の原水流入口付近の液の亜硝酸性窒素濃度
を測定する亜硝酸性窒素濃度測定手段と、 該亜硝酸性窒素濃度測定手段の出力信号に基づいて前記
希釈水供給手段が供給する希釈水の供給量を調節する手
段とを備えることを特徴とする生物脱窒装置。
2. An inlet for raw water containing ammonia nitrogen and nitrite nitrogen, and an outlet for a treatment liquid, wherein ammonia nitrogen serves as an electron donor and nitrite nitrogen serves as an electron acceptor. The denitrification tank for biological denitrification by the action of the denitrifying microorganisms, the dilution water supply means for supplying the dilution water for diluting the raw water, and the nitrite nitrogen concentration of the liquid near the raw water inlet in the denitrification tank. It is characterized by comprising: nitrite nitrogen concentration measuring means for measuring; and means for adjusting the amount of dilution water supplied by the dilution water supplying means based on the output signal of the nitrite nitrogen concentration measuring means. Biological denitrification equipment.
JP2001235030A 2001-08-02 2001-08-02 Biological denitrification equipment Expired - Fee Related JP4872171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001235030A JP4872171B2 (en) 2001-08-02 2001-08-02 Biological denitrification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235030A JP4872171B2 (en) 2001-08-02 2001-08-02 Biological denitrification equipment

Publications (2)

Publication Number Publication Date
JP2003047990A true JP2003047990A (en) 2003-02-18
JP4872171B2 JP4872171B2 (en) 2012-02-08

Family

ID=19066536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235030A Expired - Fee Related JP4872171B2 (en) 2001-08-02 2001-08-02 Biological denitrification equipment

Country Status (1)

Country Link
JP (1) JP4872171B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185925A (en) * 2003-12-25 2005-07-14 昭彦 ▲吉▼田 Treatment method of organic waste liquid of high concentration, circulation treatment method of organic waste liquid and circulating treatment apparatus therefor
JP2005238166A (en) * 2004-02-27 2005-09-08 Kurita Water Ind Ltd Anaerobic ammonoxidation treatment method
JP2005246136A (en) * 2004-03-01 2005-09-15 Kurita Water Ind Ltd Nitration method for ammonia nitrogen-containing water and treatment method therefor
WO2005095289A1 (en) * 2004-03-30 2005-10-13 Kumamoto Technology And Industry Foundation Method for treating ammonia-containing wastewater
JP2006110511A (en) * 2004-10-18 2006-04-27 Hitachi Plant Eng & Constr Co Ltd Operation method for anaerobic ammonia oxidation apparatus
WO2006049322A1 (en) * 2004-11-05 2006-05-11 Ebara Corporation Biological denitrification method and apparatus
JP2006122839A (en) * 2004-10-29 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Anaerobic ammonia oxidation apparatus and its operation method
JP2006272321A (en) * 2005-03-04 2006-10-12 Hitachi Plant Technologies Ltd Treatment method of ammonia-containing liquid and its treatment apparatus
JP2007136367A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
JP2007190510A (en) * 2006-01-20 2007-08-02 Hitachi Zosen Corp Biological wastewater treatment method
EP2070880A1 (en) * 2007-12-04 2009-06-17 Hitachi Plant Technologies, Ltd. Treatment facility for wastewater containing ammonium
JP2009285640A (en) * 2008-06-02 2009-12-10 Ishigaki Co Ltd Microorganism carrier and biological denitrifying device
CN102336472A (en) * 2011-09-08 2012-02-01 大连理工大学 Electrically enhanced ANAMMOX biologic nitrogen removal method
JP2015229150A (en) * 2014-06-06 2015-12-21 住友重機械工業株式会社 Anaerobic treatment apparatus, anaerobic treatment method, and display device of anaerobic treatment apparatus
CN108046426A (en) * 2018-01-03 2018-05-18 北京交通大学 Reduce the method that nitrate nitrogen generates in anaerobic ammonium oxidation process
CN109761453A (en) * 2019-03-20 2019-05-17 哈尔滨工业大学(威海) The method that marine culture wastewater is handled by denitrifying ammoxidation approach using ocean anaerobic ammonia oxidizing bacteria
CN109809558A (en) * 2019-03-19 2019-05-28 东北大学 A kind of Composite denitrification reactor and denitrification treatment process based on sulfenyl filler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108037257B (en) * 2017-11-23 2020-01-31 南京大学 test method and device for researching influence of iron ions on anaerobic ammonia oxidation energy efficiency

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155999A (en) * 1985-12-27 1987-07-10 Hitachi Plant Eng & Constr Co Ltd Method for controlling biological nitrification and denitrification process
JPH08108195A (en) * 1994-10-14 1996-04-30 Meidensha Corp Method and apparatus for removing nitrogen in water
JPH08126897A (en) * 1994-10-28 1996-05-21 Kurita Water Ind Ltd Nitrifying treatment device
JPH08192185A (en) * 1995-01-17 1996-07-30 Ebara Corp Biologically nitrifying and denitrifying method
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2001170684A (en) * 1999-12-14 2001-06-26 Meidensha Corp Ammonia-containing waste water treatment method and device therefor
JP2003024984A (en) * 2001-07-17 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP2003024986A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155999A (en) * 1985-12-27 1987-07-10 Hitachi Plant Eng & Constr Co Ltd Method for controlling biological nitrification and denitrification process
JPH08108195A (en) * 1994-10-14 1996-04-30 Meidensha Corp Method and apparatus for removing nitrogen in water
JPH08126897A (en) * 1994-10-28 1996-05-21 Kurita Water Ind Ltd Nitrifying treatment device
JPH08192185A (en) * 1995-01-17 1996-07-30 Ebara Corp Biologically nitrifying and denitrifying method
JP2001104992A (en) * 1999-10-12 2001-04-17 Kurita Water Ind Ltd Method and apparatus for bilogically removing nitrogen
JP2001170684A (en) * 1999-12-14 2001-06-26 Meidensha Corp Ammonia-containing waste water treatment method and device therefor
JP2003024986A (en) * 2001-07-16 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus
JP2003024984A (en) * 2001-07-17 2003-01-28 Kurita Water Ind Ltd Biological denitrification method and biological denitrification apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005185925A (en) * 2003-12-25 2005-07-14 昭彦 ▲吉▼田 Treatment method of organic waste liquid of high concentration, circulation treatment method of organic waste liquid and circulating treatment apparatus therefor
JP2005238166A (en) * 2004-02-27 2005-09-08 Kurita Water Ind Ltd Anaerobic ammonoxidation treatment method
JP2005246136A (en) * 2004-03-01 2005-09-15 Kurita Water Ind Ltd Nitration method for ammonia nitrogen-containing water and treatment method therefor
JPWO2005095289A1 (en) * 2004-03-30 2008-02-21 財団法人くまもとテクノ産業財団 Ammonia-containing wastewater treatment method
WO2005095289A1 (en) * 2004-03-30 2005-10-13 Kumamoto Technology And Industry Foundation Method for treating ammonia-containing wastewater
JP4519836B2 (en) * 2004-03-30 2010-08-04 財団法人くまもとテクノ産業財団 Ammonia-containing wastewater treatment method
JP2006110511A (en) * 2004-10-18 2006-04-27 Hitachi Plant Eng & Constr Co Ltd Operation method for anaerobic ammonia oxidation apparatus
JP4688059B2 (en) * 2004-10-29 2011-05-25 株式会社日立プラントテクノロジー Anaerobic ammonia oxidation apparatus and operation method thereof
JP2006122839A (en) * 2004-10-29 2006-05-18 Hitachi Plant Eng & Constr Co Ltd Anaerobic ammonia oxidation apparatus and its operation method
JP2008518753A (en) * 2004-11-05 2008-06-05 株式会社荏原製作所 Biological denitrification method and apparatus
WO2006049322A1 (en) * 2004-11-05 2006-05-11 Ebara Corporation Biological denitrification method and apparatus
JP2006272321A (en) * 2005-03-04 2006-10-12 Hitachi Plant Technologies Ltd Treatment method of ammonia-containing liquid and its treatment apparatus
JP2007136367A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Biological wastewater treatment apparatus and biological wastewater treatment method
JP2007190510A (en) * 2006-01-20 2007-08-02 Hitachi Zosen Corp Biological wastewater treatment method
EP2070880A1 (en) * 2007-12-04 2009-06-17 Hitachi Plant Technologies, Ltd. Treatment facility for wastewater containing ammonium
JP2009285640A (en) * 2008-06-02 2009-12-10 Ishigaki Co Ltd Microorganism carrier and biological denitrifying device
CN102336472A (en) * 2011-09-08 2012-02-01 大连理工大学 Electrically enhanced ANAMMOX biologic nitrogen removal method
JP2015229150A (en) * 2014-06-06 2015-12-21 住友重機械工業株式会社 Anaerobic treatment apparatus, anaerobic treatment method, and display device of anaerobic treatment apparatus
CN108046426A (en) * 2018-01-03 2018-05-18 北京交通大学 Reduce the method that nitrate nitrogen generates in anaerobic ammonium oxidation process
CN109809558A (en) * 2019-03-19 2019-05-28 东北大学 A kind of Composite denitrification reactor and denitrification treatment process based on sulfenyl filler
CN109809558B (en) * 2019-03-19 2021-08-17 东北大学 Composite denitrification reactor based on sulfur-based filler and denitrification treatment process
CN109761453A (en) * 2019-03-20 2019-05-17 哈尔滨工业大学(威海) The method that marine culture wastewater is handled by denitrifying ammoxidation approach using ocean anaerobic ammonia oxidizing bacteria

Also Published As

Publication number Publication date
JP4872171B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP4951826B2 (en) Biological nitrogen removal method
JP4284700B2 (en) Nitrogen removal method and apparatus
US7329352B2 (en) Nitrifying method of treating water containing ammonium-nitrogen
JP4872171B2 (en) Biological denitrification equipment
JP2005238166A (en) Anaerobic ammonoxidation treatment method
JP4224951B2 (en) Denitrification method
US8323487B2 (en) Waste water treatment apparatus
JP4882175B2 (en) Nitrification method
JP2006289311A (en) Method for treating drainage
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP2014097478A (en) Effluent treatment method and effluent treatment apparatus
JP4775944B2 (en) Wastewater treatment method and apparatus
JP4915036B2 (en) Denitrification method and denitrification apparatus
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP4867098B2 (en) Biological denitrification method and apparatus
JP4923348B2 (en) Biological denitrification method
JP2003024984A (en) Biological denitrification method and biological denitrification apparatus
JP5581872B2 (en) Method and apparatus for denitrification treatment of ammoniacal nitrogen waste liquid
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP2004298841A (en) Method for treating nitrogen-containing wastewater
JP2003024987A (en) Nitrification method for ammonia nitrogen-containing water
JP5240465B2 (en) Storage system and storage method for anaerobic microorganism-immobilized carrier
JP2004255269A (en) Denitrification method and denitrification apparatus
JP2003039092A (en) Biological denitrification treatment method
JP2006346536A (en) Method and apparatus for treating waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4872171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees