JP6880894B2 - Wastewater treatment method with ANAMMOX process - Google Patents

Wastewater treatment method with ANAMMOX process Download PDF

Info

Publication number
JP6880894B2
JP6880894B2 JP2017059221A JP2017059221A JP6880894B2 JP 6880894 B2 JP6880894 B2 JP 6880894B2 JP 2017059221 A JP2017059221 A JP 2017059221A JP 2017059221 A JP2017059221 A JP 2017059221A JP 6880894 B2 JP6880894 B2 JP 6880894B2
Authority
JP
Japan
Prior art keywords
tank
anammox
nitrite
reaction tank
methane fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017059221A
Other languages
Japanese (ja)
Other versions
JP2018161607A (en
Inventor
将士 武川
将士 武川
俊洋 上野
俊洋 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017059221A priority Critical patent/JP6880894B2/en
Publication of JP2018161607A publication Critical patent/JP2018161607A/en
Application granted granted Critical
Publication of JP6880894B2 publication Critical patent/JP6880894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、窒素含有有機性排水を生物処理する方法に係り、特にANAMMOXプロセスを有する排水処理方法に関する。 The present invention relates to a method for biologically treating nitrogen-containing organic wastewater, and particularly to a wastewater treatment method having an ANAMMOX process.

ANAMMOXプロセスでは、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性微生物であるANAMMOX細菌を利用し、アンモニア性窒素と亜硝酸性窒素とを反応させて脱窒する。ANAMMOX反応は、式1に示すように、アンモニア性窒素と亜硝酸性窒素が1:1.32の比率で反応するものである。従って、ANAMMOX反応を用いた窒素処理技術は、被処理水中のアンモニア性窒素の約半量を亜硝酸性窒素に酸化し、ANAMMOX反応に供する。
1.0NH +1.32NO +0.066HCO →1.02N+0.26NO +0.066CH0.50.15+2.03HO+0.13OH …(1)
In the ANAMMOX process, ANAMMOX bacteria, which are autotrophic microorganisms that use ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, are used to react ammoniacal nitrogen with nitrite nitrogen for denitrification. To do. In the ANAMMOX reaction, as shown in Formula 1, ammoniacal nitrogen and nitrite nitrogen react at a ratio of 1: 1.32. Therefore, the nitrogen treatment technique using the ANAMMOX reaction oxidizes about half of the ammoniacal nitrogen in the water to be treated to nitrite nitrogen and subject it to the ANAMMOX reaction.
1.0NH 4 + + 1.32NO 2 + 0.066HCO 3 → 1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15 + 2.03H 2 O + 0.13OH … (1)

ANAMMOXプロセスには、亜硝酸型硝化処理とANAMMOX処理を別々の槽で行う二槽型ANAMMOXプロセスと、同一槽内で同時に行う一槽型ANAMMOXプロセスがある。 The ANAMMOX process includes a two-tank type ANAMMOX process in which the nitrite nitrification treatment and the ANAMMOX treatment are performed in separate tanks, and a one-tank type ANAMMOX process in which the nitrite-type nitrification treatment and the ANAMMOX treatment are simultaneously performed in the same tank.

いずれのANAMMOXプロセスにおいても、ANAMMOX反応槽内の亜硝酸性窒素濃度は、通常、ANAMMOX細菌の消費により低濃度(100mg−N/L以下)に維持されるが、運転条件の変動(水温、pH、窒素濃度、ANAMMOX槽流入水のアンモニア性窒素:亜硝酸性窒素比など)によりANAMMOX細菌の活性が低下した場合には、亜硝酸性窒素がANAMMOX反応で消費できなくなり、槽内の亜硝酸性窒素濃度が高くなることがある。 In any ANAMMOX process, the nitrite nitrogen concentration in the ANAMMOX reaction vessel is usually maintained at a low concentration (100 mg-N / L or less) due to the consumption of ANAMMOX bacteria, but fluctuations in operating conditions (water temperature, pH). , Nitrogen concentration, Ammonia nitrogen in the inflow water of the ANAMMOX tank: Nitrite nitrogen ratio, etc.) When the activity of ANAMMOX bacteria decreases, nitrite nitrogen cannot be consumed in the ANAMMOX reaction, and the nitrite in the tank becomes nitrite. Nitrogen concentration may be high.

亜硝酸性窒素は、ANAMMOX細菌の基質である一方で、ANAMMOX細菌の活性を阻害することが知られており、槽内の亜硝酸性窒素濃度が高くなると、阻害によってANAMMOX細菌の活性が低下し、さらに亜硝酸性窒素濃度が高くなってしまうといった悪循環に陥る。従って、ANAMMOX反応槽内で亜硝酸性窒素の蓄積が生じた場合には、速やかに槽内の亜硝酸性窒素濃度を下げることが望ましい。 While nitrite nitrogen is a substrate for ANAMMOX bacteria, it is known to inhibit the activity of ANAMMOX bacteria, and when the concentration of nitrite nitrogen in the tank increases, the inhibition reduces the activity of ANAMMOX bacteria. In addition, a vicious cycle occurs in which the concentration of nitrite nitrogen increases. Therefore, when nitrite nitrogen accumulates in the ANAMMOX reaction tank, it is desirable to promptly reduce the nitrite nitrogen concentration in the tank.

このために、例えば原水をANAMMOX反応槽に供給して反応槽内の液を希釈して反応槽内の亜硝酸性窒素濃度を低下させることが考えられる。しかしながら、このようにすると、高濃度の亜硝酸性窒素を含む、放流に適さない排水が反応槽から発生する。 For this purpose, for example, it is conceivable to supply raw water to the ANAMMOX reaction tank to dilute the liquid in the reaction tank to reduce the concentration of nitrite nitrogen in the reaction tank. However, in this way, wastewater unsuitable for discharge, which contains a high concentration of nitrite nitrogen, is generated from the reaction vessel.

従って、ANAMMOX槽内の亜硝酸性窒素濃度が高濃度になったときに、反応槽内の亜硝酸性窒素濃度を低下させる処置をする場合には、反応槽内に蓄積した亜硝酸性窒素を系外に排出することなく除去する必要がある。 Therefore, when the nitrite nitrogen concentration in the ANAMMOX tank becomes high, when taking measures to reduce the nitrite nitrogen concentration in the reaction tank, the nitrite nitrogen accumulated in the reaction tank is used. It is necessary to remove it without discharging it to the outside of the system.

なお、特開2003−39092には、回分式の亜硝酸化→ANAMMOX脱窒の2段処理において、亜硝酸の高濃度化によるANAMMOX菌の失活の課題があることが記載されている。 In addition, Japanese Patent Application Laid-Open No. 2003-39092 describes that there is a problem of inactivation of ANAMMOX bacteria due to high concentration of nitrite in the two-step treatment of batch type nitrite formation → ANAMMOX denitrification.

また、ANAMMOX菌の失活の課題解決について、特開2003−24984や特開2003−47990には、活性低下や処理効率の低下を検知して原水流量制御することが記載され、特開2003−33791には、活性低下や失活の際にヒドラジン添加により活性を回復することが記載され、特開2006−122839には、窒素ガス発生量により循環比調整することや所定値を超えたときに警報を鳴らすことが記載されている。 Further, regarding the solution of the problem of inactivation of ANAMMOX bacteria, JP-A-2003-24984 and JP-A-2003-47990 describe that the decrease in activity and the decrease in treatment efficiency are detected to control the flow rate of raw water, and JP-A-2003- 33791 describes that the activity is restored by adding hydrazine when the activity is decreased or deactivated, and Japanese Patent Application Laid-Open No. 2006-122839 describes that the circulation ratio is adjusted by the amount of nitrogen gas generated or when the predetermined value is exceeded. It is stated to sound an alarm.

特開2003−39092号公報Japanese Unexamined Patent Publication No. 2003-39092 特開2003−24984号公報JP-A-2003-24984 特開2003−47990号公報Japanese Unexamined Patent Publication No. 2003-47990 特開2003−33791号公報Japanese Unexamined Patent Publication No. 2003-333791 特開2006−122839号公報Japanese Unexamined Patent Publication No. 2006-122839

本発明は、窒素含有有機性排水を処理するためのANAMMOXプロセスを有する生物処理方法において、ANAMMOX反応槽内の亜硝酸性窒素濃度が高濃度になった場合に、該反応槽内の亜硝酸性窒素濃度を速やかに低下させると共に、この際、亜硝酸性窒素を系外に排出することなく処理することができるANAMMOXプロセスを有する排水処理方法を提供することを目的とする。 The present invention is a biological treatment method having an ANAMMOX process for treating nitrogen-containing organic wastewater, when the nitrite nitrogen concentration in the ANAMMOX reaction vessel becomes high, the nitrite in the reaction vessel. It is an object of the present invention to provide a wastewater treatment method having an ANAMMOX process capable of rapidly lowering the nitrogen concentration and treating nitrite nitrogen without discharging it from the system.

本発明は、次を要旨とする。 The gist of the present invention is as follows.

[1] 原水をメタン発酵槽にてメタン発酵処理する工程と、該メタン発酵槽からの消化液をANAMMOX反応槽に導入し、曝気することにより亜硝酸型硝化処理とANAMMOX処理とを該反応槽内にて行う工程とを有するANAMMOXプロセスを有する排水処理方法において、該ANAMMOX反応槽内の亜硝酸性窒素濃度又はその指標値が所定値よりも高くなった場合、前記曝気を停止し、該ANAMMOX反応槽内でグラニュール又は担体を沈降させる沈降工程と、次いで、前記曝気を停止した状態で該ANAMMOX反応槽の亜硝酸性窒素含有水を前記メタン発酵槽又はその上流側に返送する返送工程と
を行うことを特徴とするANAMMOXプロセスを有する排水処理方法。
[1] A step of methane fermentation treatment of raw water in a methane fermentation tank, and a nitrite-type nitrification treatment and an ANAMMOX treatment by introducing the digested liquid from the methane fermentation tank into the ANAMMOX reaction tank and aerating the reaction tank. In a wastewater treatment method having an ANAMMOX process having a step performed in-house, when the nitrite nitrogen concentration in the ANAMMOX reaction tank or its index value becomes higher than a predetermined value, the aeration is stopped and the ANAMMOX is stopped. A sedimentation step of precipitating granules or carriers in the reaction vessel, and then a return step of returning the nitrite nitrogen-containing water of the ANAMMOX reaction vessel to the methane fermentation vessel or its upstream side with the aeration stopped. A wastewater treatment method comprising an ANAMMOX process, characterized in that

[2] [1]において、前記ANAMMOX反応槽は、消化液が連続的に供給される連続型反応槽であり、前記沈降工程にあっては、該ANAMMOX反応槽からの処理水の流出を停止すると共にANAMMOX反応槽への消化液の供給を停止し、返送工程にあっては処理水の流出を停止したままで消化液の供給を再開し、前記返送工程後、前記ANAMMOX反応槽で曝気を行いながら該反応槽の亜硝酸性窒素含有水を前記メタン発酵槽又はその上流側に返送する工程を行うことを特徴とするANAMMOXプロセスを有する排水処理方法。 [2] In [1], the ANAMMOX reaction tank is a continuous reaction tank to which digestive juice is continuously supplied, and in the sedimentation step, the outflow of treated water from the ANAMMOX reaction tank is stopped. At the same time, the supply of the digestive juice to the ANAMMOX reaction tank was stopped, and in the return step, the supply of the digestive juice was restarted with the outflow of the treated water stopped, and after the return step, aeration was performed in the ANAMMOX reaction tank. A wastewater treatment method comprising an ANAMMOX process, which comprises a step of returning the nitrite nitrogen-containing water of the reaction tank to the methane fermentation tank or the upstream side thereof.

[3] [1]において、前記ANAMMOX反応槽は、消化液が回分式に供給される回分式反応槽であり、前記返送工程の後、前記ANAMMOX反応槽で曝気を行いながら、該反応槽の亜硝酸性窒素含有水を前記メタン発酵槽又はその上流側に返送し、かつメタン発酵槽からの消化液を該ANAMMOX反応槽に導入する工程を行うことを特徴とするANAMMOXプロセスを有する排水処理方法。 [3] In [1], the ANAMMOX reaction tank is a batch type reaction tank in which digestive juice is supplied in a batch manner, and after the return step, the reaction tank is exposed to air in the ANAMMOX reaction tank. A wastewater treatment method having an ANAMMOX process, which comprises a step of returning nitrite nitrogen-containing water to the methane fermenter or the upstream side thereof and introducing a digestive solution from the methane fermentation tank into the ANAMMOX reaction tank. ..

[4] 原水をメタン発酵槽にてメタン発酵処理する工程と、該メタン発酵槽からの消化液を亜硝酸型硝化槽に導入し、曝気することにより亜硝酸型硝化処理を行う工程と、亜硝酸型硝化槽の処理液をANAMMOX反応槽に導入してANAMMOX処理を行う工程とを有するANAMMOXプロセスを有する排水処理方法において、該ANAMMOX反応槽内の亜硝酸性窒素濃度又はその指標値が所定値よりも高くなった場合、前記曝気を停止し、該亜硝酸型硝化槽内でグラニュール又は担体を沈降させる沈降工程と、次いで、前記曝気を停止した状態で該ANAMMOX反応槽の亜硝酸性窒素含有水を前記メタン発酵槽又はその上流側に返送する返送工程とを行うことを特徴とするANAMMOXプロセスを有する排水処理方法。 [4] A step of methane fermentation treatment of raw water in a methane fermentation tank, a step of introducing nitrite-type nitrification liquid from the methane fermentation tank into a nitrite-type nitrification tank, and aeration to perform nitrite-type nitrification treatment. In a wastewater treatment method having an ANAMMOX process including a step of introducing a treatment liquid of a nitrate nitrification tank into an ANAMMOX reaction tank to perform the ANAMMOX treatment, the nitrite nitrogen concentration in the ANAMMOX reaction tank or its index value is a predetermined value. If it becomes higher than, a sedimentation step of stopping the aeration and precipitating the granule or carrier in the nitrite nitrification tank, and then nitrite nitrogen in the ANAMMOX reaction tank with the aeration stopped. A wastewater treatment method comprising an ANAMMOX process, which comprises a return step of returning the contained water to the methane fermenter or the upstream side thereof.

[5] [4]において、前記ANAMMOX反応槽は、消化液が連続的に供給される連続型反応槽であり、前記沈降工程にあっては、該ANAMMOX反応槽からの処理水の流出を停止すると共に亜硝酸型硝化槽への消化液の導入及び亜硝酸型硝化槽からの処理液の排出を停止し、返送工程にあってはANAMMOX反応槽からの処理水の流出を停止したままで亜硝酸型硝化槽への消化液の導入、及び亜硝酸型硝化槽からの処理液の排出を再開し、前記返送工程後、前記亜硝酸型硝化槽で曝気を行いながら該反応槽の亜硝酸性窒素含有水を前記メタン発酵槽又はその上流側に返送する工程を行うことを特徴とするANAMMOXプロセスを有する排水処理方法。 [5] In [4], the ANAMMOX reaction tank is a continuous reaction tank to which digestive juice is continuously supplied, and in the sedimentation step, the outflow of treated water from the ANAMMOX reaction tank is stopped. At the same time, the introduction of the digestive juice into the nitrite-type nitrification tank and the discharge of the treatment liquid from the nitrite-type nitrification tank were stopped, and in the return process, the outflow of the treatment water from the ANAMMOX reaction tank was stopped. The introduction of the digestive juice into the nitrite-type nitrification tank and the discharge of the treatment liquid from the nitrite-type nitrification tank are resumed, and after the return step, the nitrite property of the reaction tank is performed while aeration is performed in the nitrite-type nitrification tank. A wastewater treatment method comprising an ANAMMOX process, which comprises a step of returning nitrogen-containing water to the methane fermenter or the upstream side thereof.

ANAMMOX反応槽に亜硝酸性窒素が蓄積した際に、ANAMMOX細菌に強い阻害を示す亜硝酸性窒素濃度を速やかに低下させ、ANAMMOX活性を速やかに回復させることができる。また、メタン発酵槽の従属栄養細菌が原料のBODを消費して亜硝酸性窒素を脱窒することにより、亜硝酸性窒素は窒素ガスとなり液中から除去されるので、亜硝酸性窒素は系外に排出されない。 When nitrite nitrogen accumulates in the ANAMMOX reaction vessel, the concentration of nitrite nitrogen, which strongly inhibits ANAMMOX bacteria, can be rapidly reduced, and the ANAMMOX activity can be rapidly restored. In addition, the dependent vegetative bacteria in the methane fermenter consume the BOD of the raw material to denitrify the nitrite nitrogen, so that the nitrite nitrogen becomes nitrogen gas and is removed from the liquid. Not discharged to the outside.

実施の形態に係るANAMMOXプロセスを有する排水処理方法を説明するブロック図である。It is a block diagram explaining the wastewater treatment method which has the ANAMMOX process which concerns on embodiment. 実施の形態に係るANAMMOXプロセスを有する排水処理方法を説明するブロック図である。It is a block diagram explaining the wastewater treatment method which has the ANAMMOX process which concerns on embodiment. 実施の形態に係るANAMMOXプロセスを有する排水処理方法を説明するブロック図である。It is a block diagram explaining the wastewater treatment method which has the ANAMMOX process which concerns on embodiment. 実施の形態に係るANAMMOXプロセスを有する排水処理方法を説明するブロック図である。It is a block diagram explaining the wastewater treatment method which has the ANAMMOX process which concerns on embodiment. 実施の形態に係るANAMMOXプロセスを有する排水処理方法を説明するブロック図である。It is a block diagram explaining the wastewater treatment method which has the ANAMMOX process which concerns on embodiment.

本発明では、二槽型ANAMMOXプロセス(メタン発酵槽→亜硝酸型硝化槽→ANAMMOX反応槽)または一槽型ANAMMOXプロセス(メタン発酵槽→亜硝酸型硝化・ANAMMOX反応槽)による処理方法において、ANAMMOX反応槽内の亜硝酸性窒素濃度やそれに相当する指標値(窒素ガス発生量など)が所定値を超えたときに、ANAMMOX反応槽または亜硝酸型硝化・ANAMMOX反応槽の亜硝酸性窒素含有水をメタン発酵槽またはその上流側に返送すると共に、被処理水を該ANAMMOX反応槽に導入する。 In the present invention, in the treatment method by the two-tank type ANAMMOX process (methane fermentation tank → nitrite type nitrification tank → ANAMMOX reaction tank) or the one-tank type ANAMMOX process (methane fermentation tank → nitrite type nitrification / ANAMMOX reaction tank), ANAMMOX. When the nitrite nitrogen concentration in the reaction tank and the corresponding index value (nitrogen gas generation amount, etc.) exceed the predetermined value, the nitrite nitrogen-containing water in the ANAMMOX reaction tank or the nitrite-type nitrification / ANAMMOX reaction tank. Is returned to the methane fermenter or the upstream side thereof, and the water to be treated is introduced into the ANAMMOX reaction tank.

その際、亜硝酸型硝化槽または亜硝酸型硝化・ANAMMOX反応槽の曝気を停止して、亜硝酸性窒素の濃度を低下させる。 At that time, the aeration of the nitrite-type nitrification tank or the nitrite-type nitrification / ANAMMOX reaction tank is stopped to reduce the concentration of nitrite nitrogen.

これにより、ANAMMOX反応槽に亜硝酸性窒素が蓄積した際に、ANAMMOX細菌に強い阻害を示す亜硝酸性窒素濃度を速やかに低下させ、ANAMMOX活性を速やかに回復させることができる。また、メタン発酵槽の従属栄養細菌が原料のBODを消費して亜硝酸性窒素を脱窒することにより、亜硝酸性窒素は窒素ガスとなり液中から除去されるので、亜硝酸性窒素は系外に排出されない。 As a result, when nitrite nitrogen accumulates in the ANAMMOX reaction vessel, the concentration of nitrite nitrogen, which strongly inhibits ANAMMOX bacteria, can be rapidly reduced, and the ANAMMOX activity can be rapidly restored. In addition, the dependent vegetative bacteria in the methane fermenter consume the BOD of the raw material to denitrify the nitrite nitrogen, so that the nitrite nitrogen becomes nitrogen gas and is removed from the liquid. Not discharged to the outside.

本発明の一例では、亜硝酸性窒素濃度が20mg−N/L以上の所定値を超えたときに亜硝酸性窒素が蓄積したと判断する。この所定値は20mg−N/L以上、特に20〜400mg−N/L、好ましくは50〜200mg−N/L、さらに好ましくは100〜150mg−N/Lの間から選択された値であればよい。 In one example of the present invention, it is determined that nitrite nitrogen has accumulated when the nitrite nitrogen concentration exceeds a predetermined value of 20 mg-N / L or more. This predetermined value is 20 mg-N / L or more, particularly 20 to 400 mg-N / L, preferably 50 to 200 mg-N / L, and more preferably 100 to 150 mg-N / L. Good.

本発明の一態様では、亜硝酸性窒素含有水の返送のために、ANAMMOX槽とメタン発酵槽に液循環用のバイパスラインを設ける。このラインは通常運転時には使用しない。ANAMMOX槽内に高濃度の亜硝酸性窒素が蓄積した場合には、曝気を停止し、ANAMMOX細菌、アンモニア酸化細菌が付着したグラニュールまたは担体を沈降させる。その後、ANAMMOXプロセスの被処理水(後述の実施の形態では脱水濾液)を槽内に通水することで、亜硝酸濃度が0〜100mg−N/L、好ましくは20〜50mg−N/L程度(ただし、前記所定値より低い値)の規定値になるように希釈する。このとき、通水量はANAMMOXグラニュール又は担体の流出を避けるため、グラニュール又は担体の沈降速度を上回らないLVにする。または、スクリーンなどの分離手段を用いてグラニュール又は担体を分離する。 In one aspect of the present invention, a bypass line for liquid circulation is provided in the ANAMMOX tank and the methane fermentation tank for returning the nitrite nitrogen-containing water. This line is not used during normal operation. When a high concentration of nitrite nitrogen accumulates in the ANAMMOX tank, aeration is stopped and granules or carriers to which ANAMMOX bacteria and ammonia-oxidizing bacteria are attached are precipitated. After that, the water to be treated in the ANAMMOX process (dehydrated filtrate in the embodiment described later) is passed through the tank to bring the nitrite concentration to about 0 to 100 mg-N / L, preferably about 20 to 50 mg-N / L. Dilute to the specified value (however, the value is lower than the predetermined value). At this time, the amount of water flow is set to LV that does not exceed the sedimentation rate of the granule or the carrier in order to avoid the outflow of the ANAMMOX granule or the carrier. Alternatively, the granule or carrier is separated using a separation means such as a screen.

亜硝酸性窒素を含む水は、循環ラインにより嫌気性消化プロセスに投入する希釈水として、または直接、メタン発酵槽内に返送する。この水は、亜硝酸性窒素を含有するが、嫌気性消化プロセスに投入することで原料由来の有機物を電子供与体とした従属栄養性脱窒が生じ、亜硝酸性窒素が窒素ガスに還元され、液中から除去される。 Water containing nitrite nitrogen is returned to the methane fermentation tank as diluted water to be introduced into the anaerobic digestion process by a circulation line or directly. This water contains nitrite nitrogen, but when it is added to the anaerobic digestion process, heterotrophic denitrification occurs using organic matter derived from the raw material as an electron donor, and nitrite nitrogen is reduced to nitrogen gas. , Removed from the liquid.

以下に図面を参照して本発明の排水処理方法の実施の形態を詳細に説明する。 Hereinafter, embodiments of the wastewater treatment method of the present invention will be described in detail with reference to the drawings.

図1及び図2は一槽型ANAMMOXプロセスによる処理方法の実施の形態を示すブロック図であり、図1は連続式プロセスを示し、図2は回分式(バッチ式)プロセスを示す。 1 and 2 are block diagrams showing an embodiment of a processing method by a one-tank type ANAMMOX process, FIG. 1 shows a continuous process, and FIG. 2 shows a batch process.

図1,2のいずれにおいても、原水(BOD及び窒素含有排水、有機性廃棄物の場合は原料及び希釈水)は、まず、嫌気性メタン発酵槽1に導入され、嫌気性条件下でメタン発酵処理される。この嫌気性メタン発酵槽1の処理槽としては、嫌気性メタン発酵を行うことができるものであれば良く、任意の形式のものを採用することができる。例えば、浮遊式(懸濁式)嫌気性処理槽、固定床式嫌気性処理槽、上向流式スラッジブランケット型嫌気性処理槽などを用いることができ、酸発酵とメタン発酵とを1槽で行う1槽式であっても、これらを別々の槽で行う2槽式であっても良い。 In both FIGS. 1 and 2, the raw water (BOD and nitrogen-containing wastewater, raw materials and diluted water in the case of organic waste) is first introduced into the anaerobic methane fermentation tank 1 and methane fermentation under anaerobic conditions. It is processed. As the treatment tank of the anaerobic methane fermentation tank 1, any type can be adopted as long as it can perform anaerobic methane fermentation. For example, a floating type (suspension type) anaerobic treatment tank, a fixed bed type anaerobic treatment tank, an upward flow type sludge blanket type anaerobic treatment tank, etc. can be used, and acid fermentation and methane fermentation can be performed in one tank. It may be a one-tank type in which these are carried out, or a two-tank type in which these are carried out in separate tanks.

嫌気性メタン発酵槽1では、原水中のBOD成分が嫌気性メタン発酵処理されて通常その80〜90%程度が除去され、メタンガスと炭酸ガスを含むバイオガスが生成する。この嫌気性メタン発酵槽1で発生したバイオガスは、回収系(図示略)にて回収される。メタン発酵槽1からの処理水は、脱水機2で脱水処理され、脱水汚泥(又は濃縮液)と液分(濾液)とに分離される。脱水機2としては、遠心脱水機、スクリュープレス脱水機などを用いることができる。 In the anaerobic methane fermentation tank 1, the BOD component in the raw water is anaerobic methane fermentation treatment to remove about 80 to 90% of the BOD component, and biogas containing methane gas and carbon dioxide gas is generated. The biogas generated in the anaerobic methane fermentation tank 1 is recovered by a recovery system (not shown). The treated water from the methane fermentation tank 1 is dehydrated by the dehydrator 2 and separated into dehydrated sludge (or concentrated liquid) and liquid (filtrate). As the dehydrator 2, a centrifugal dehydrator, a screw press dehydrator, or the like can be used.

嫌気性消化液の脱水濾液は、一般的にアンモニア性窒素濃度が500〜7,000mg/L、pH7.7〜9.2、IC1,000〜3,000mg/Lである。 The dehydrated filtrate of the anaerobic digestive juice generally has an ammoniacal nitrogen concentration of 500 to 7,000 mg / L, a pH of 7.7 to 9.2, and an IC of 1,000 to 3,000 mg / L.

この脱水濾液は、ANAMMOX反応槽3に送られ、ANAMMOXプロセスによって脱窒処理される。このANAMMOX反応槽3にはANAMMOX細菌やアンモニア酸化細菌が付着したグラニュール又は担体が充填されている。また、この反応槽3には、アンモニア性窒素の一部を亜硝酸性窒素に酸化するための曝気装置3aが設けられている。 This dehydrated filtrate is sent to the ANAMMOX reaction tank 3 and denitrified by the ANAMMOX process. The ANAMMOX reaction tank 3 is filled with a granule or a carrier to which ANAMMOX bacteria and ammonia-oxidizing bacteria are attached. Further, the reaction vessel 3 is provided with an aeration device 3a for oxidizing a part of ammoniacal nitrogen to nitrite nitrogen.

[一槽型ANAMMOXプロセス(連続式)の場合(図1)]
図1(a)は、通常状態における一槽型・連続式ANAMMOXプロセスを示す。原水は連続的にメタン発酵槽1に供給され、メタン発酵槽処理水が脱水機2に連続的に供給され、脱水濾液が反応槽3に連続的に供給され、処理水が連続的に処理水取出配管(処理水排出ライン)4から取り出される。
[In the case of one-tank type ANAMMOX process (continuous type) (Fig. 1)]
FIG. 1A shows a one-tank continuous ANAMMOX process under normal conditions. The raw water is continuously supplied to the methane fermentation tank 1, the treated water in the methane fermentation tank is continuously supplied to the dehydrator 2, the dehydration filtrate is continuously supplied to the reaction tank 3, and the treated water is continuously treated water. It is taken out from the take-out pipe (treated water discharge line) 4.

反応槽3内の亜硝酸性窒素の濃度が所定値を超えたとき、図1(b)の通り反応槽3からの処理水排出(配管4の通水)を停止すると共に、反応槽への脱水濾液の供給を停止し、曝気装置3aによる曝気を停止し、ANAMMOX細菌、アンモニア酸化細菌が付着したグラニュールまたは担体を沈降させる。なお、反応槽の手前には図示はしないが脱水濾液貯留槽が設けられているのが通常であり、沈降工程に反応槽に供給されない脱水濾液を貯留することができる。 When the concentration of nitrite nitrogen in the reaction tank 3 exceeds a predetermined value, the discharge of treated water from the reaction tank 3 (water flow through the pipe 4) is stopped as shown in FIG. 1 (b), and the water flow to the reaction tank 3 is stopped. The supply of the dehydrated filtrate is stopped, the aeration by the aeration device 3a is stopped, and the granule or the carrier to which the ANAMMOX bacteria and the ammonia-oxidizing bacteria are attached is precipitated. Although not shown, a dehydration filtrate storage tank is usually provided in front of the reaction tank, and the dehydration filtrate that is not supplied to the reaction tank can be stored in the sedimentation step.

次いで、図1(c)の通り反応槽の脱水濾液の供給を再開すると共に、循環ライン5によって、反応槽3内の亜硝酸性窒素含有水のメタン発酵槽1への返送を開始する。このとき、メタン発酵槽1への原水の供給は継続する。これにより、反応槽3での亜硝酸性窒素の生成は停止する。また、反応槽3内で、生成済みの亜硝酸性窒素が、メタン発酵槽1に返送されると、脱窒菌によって脱窒され、窒素ガスとして排出される。これにより、系内の亜硝酸性窒素が徐々に低下する。ただし原水が連続的に供給されるので、原水由来のアンモニア性窒素は系内に徐々に蓄積される。 Then, as shown in FIG. 1 (c), the supply of the dehydrated filtrate of the reaction tank is restarted, and the return of the nitrite nitrogen-containing water in the reaction tank 3 to the methane fermentation tank 1 is started by the circulation line 5. At this time, the supply of raw water to the methane fermentation tank 1 continues. As a result, the production of nitrite nitrogen in the reaction vessel 3 is stopped. Further, when the produced nitrite nitrogen is returned to the methane fermentation tank 1 in the reaction tank 3, it is denitrified by the denitrifying bacteria and discharged as nitrogen gas. As a result, the nitrite nitrogen in the system gradually decreases. However, since raw water is continuously supplied, ammoniacal nitrogen derived from raw water is gradually accumulated in the system.

この図1(c)の工程は、反応槽3内の亜硝酸性窒素濃度が規定値(本例では100mg−N/L)以下になるまで継続する。なお、この規定値は、0〜100mg−N/L、好ましくは20〜50mg−N/L(ただし所定値より低い値)の範囲から選択される。以下の他の実施の形態でも同様である。 The step of FIG. 1 (c) is continued until the nitrite nitrogen concentration in the reaction vessel 3 becomes a specified value (100 mg-N / L in this example) or less. This specified value is selected from the range of 0 to 100 mg-N / L, preferably 20 to 50 mg-N / L (however, a value lower than a predetermined value). The same applies to the following other embodiments.

沈降工程や返送工程においては、反応槽からの処理水の排出を停止しているが、メタン発酵槽への原水の供給は継続するので系内の水量が経時的に増加するが、この増加した分は脱水濾液貯留槽に一時的に貯留することができる。ただし、脱水濾液貯留槽の容量が小さい、または原水の供給量が多い場合は、原水の供給量を制限または停止する必要がある。 In the settling process and the return process, the discharge of treated water from the reaction tank is stopped, but since the supply of raw water to the methane fermentation tank continues, the amount of water in the system increases over time, but this increased. Minutes can be temporarily stored in the dehydration filtrate storage tank. However, if the capacity of the dehydration filtrate storage tank is small or the amount of raw water supplied is large, it is necessary to limit or stop the amount of raw water supplied.

反応槽3内の亜硝酸性窒素の濃度が規定値以下になった場合、図1(d)の通り、反応槽3からのメタン発酵槽1への返送を継続した状態で曝気を再開する。これによりアンモニア性窒素が徐々に亜硝酸性窒素に酸化され、アンモニア性窒素および亜硝酸性窒素からANAMMOX反応が進行し始め、系内のアンモニア性窒素濃度が徐々に低下する。 When the concentration of nitrite nitrogen in the reaction tank 3 becomes equal to or lower than the specified value, aeration is restarted in a state where the return from the reaction tank 3 to the methane fermentation tank 1 is continued as shown in FIG. 1 (d). As a result, the ammoniacal nitrogen is gradually oxidized to nitrite nitrogen, the ANAMMOX reaction starts to proceed from the ammoniacal nitrogen and the nitrite nitrogen, and the ammoniacal nitrogen concentration in the system gradually decreases.

アンモニア性窒素濃度が所定値以下まで低下した段階で、循環ライン5の通水を停止すると共に処理水排出ライン(配管4)の通水を再開し、図1(a)に示す通常運転を再開する。 When the ammoniacal nitrogen concentration drops below a predetermined value, the water flow in the circulation line 5 is stopped, the water flow in the treated water discharge line (pipe 4) is restarted, and the normal operation shown in FIG. 1 (a) is restarted. To do.

[一槽型ANAMMOXプロセス(回分式)の場合(図2)]
図2(a)〜(c)は、通常状態における一槽型・回分式ANAMMOXプロセスを示すものである。
[In the case of one-tank type ANAMMOX process (batch type) (Fig. 2)]
FIGS. 2 (a) to 2 (c) show a one-tank type batch type ANAMMOX process under a normal state.

メタン発酵槽1においてメタン発酵処理された処理液は、回分式(バッチ式)に脱水機2で脱水され、脱水濾液が反応槽3に回分式に導入される(図2(a)の移送工程)。移送終了後、図2(b)の通り反応槽3で曝気が行われ、ANAMMOX反応が進行する。窒素濃度が所定値以下にまで低下した後、図2(c)の通り処理水が取り出される。その後、(a)の移送工程に戻り、(a)→(b)→(c)の各工程を繰り返し行う。 The treatment liquid subjected to the methane fermentation treatment in the methane fermentation tank 1 is dehydrated in a batch type by the dehydrator 2, and the dehydrated filtrate is introduced into the reaction tank 3 in a batch type (transfer step of FIG. 2A). ). After the transfer is completed, aeration is performed in the reaction vessel 3 as shown in FIG. 2 (b), and the ANAMMOX reaction proceeds. After the nitrogen concentration drops below a predetermined value, the treated water is taken out as shown in FIG. 2 (c). After that, the process returns to the transfer step of (a), and each step of (a) → (b) → (c) is repeated.

回分運転の1サイクルの図2(b)の工程において、反応槽3内の亜硝酸性窒素の濃度が所定値を超えたときには、図2(d)の通り曝気を停止し、ANAMMOX細菌、アンモニア酸化細菌が付着したグラニュールまたは担体を沈降させる。次いで、図2(e)の通り、循環ライン5の通水(反応槽3内の亜硝酸性窒素含有水のメタン発酵槽1への返送)を開始すると共に、メタン発酵槽1から脱水機2を介して濾液を反応槽3に送水する。メタン発酵槽1への原水の供給は継続する。 When the concentration of nitrite nitrogen in the reaction vessel 3 exceeds a predetermined value in the step of FIG. 2 (b) of one cycle of batch operation, aeration is stopped as shown in FIG. 2 (d), and ANAMMOX bacteria and ammonia are used. Precipitate granules or carriers to which oxidizing bacteria are attached. Next, as shown in FIG. 2 (e), water flow through the circulation line 5 (return of nitrite nitrogen-containing water in the reaction tank 3 to the methane fermentation tank 1) is started, and the dehydrator 2 is started from the methane fermentation tank 1. The filtrate is sent to the reaction vessel 3 via the above. The supply of raw water to the methane fermenter 1 will continue.

これにより、反応槽3における亜硝酸性窒素の生成は停止する。また、反応槽3内で生成済みの亜硝酸性窒素は、メタン発酵槽1に返送されて脱窒され、窒素ガスとして排出される。このため、系内の亜硝酸性窒素濃度が徐々に低下する。ただし、原料由来のアンモニア性窒素は系内に徐々に蓄積する。 As a result, the production of nitrite nitrogen in the reaction vessel 3 is stopped. Further, the nitrite nitrogen generated in the reaction tank 3 is returned to the methane fermentation tank 1, denitrified, and discharged as nitrogen gas. Therefore, the concentration of nitrite nitrogen in the system gradually decreases. However, the ammoniacal nitrogen derived from the raw material gradually accumulates in the system.

この図2(e)の工程は、反応槽3内の亜硝酸性窒素濃度が前記規定値以下(この例では100mg−N/L以下)、好ましくは20〜50mg−N/L(ただし所定値より低い値)になるまで継続する。 In the step of FIG. 2 (e), the nitrite nitrogen concentration in the reaction vessel 3 is equal to or less than the specified value (100 mg-N / L or less in this example), preferably 20 to 50 mg-N / L (however, a predetermined value). Continue until lower value).

反応槽3内の亜硝酸性窒素濃度が規定値以下になった場合、反応槽3からメタン発酵槽1への返送を停止すると共に、メタン発酵槽1から脱水機2を経ての反応槽3への濾液導入を停止し、図2(b)の通り反応槽3の曝気を再開する。これにより反応槽3内において、アンモニア性窒素から亜硝酸性窒素が徐々に生成され、アンモニア性窒素および亜硝酸性窒素からANAMMOX反応が進行し始め、アンモニア性窒素濃度が徐々に低下する。 When the concentration of nitrite nitrogen in the reaction tank 3 becomes less than the specified value, the return from the reaction tank 3 to the methane fermentation tank 1 is stopped, and the return from the methane fermentation tank 1 to the reaction tank 3 via the dehydrator 2 is stopped. The introduction of the filtrate from the above is stopped, and the aeration of the reaction vessel 3 is restarted as shown in FIG. 2 (b). As a result, nitrite nitrogen is gradually generated from the ammoniacal nitrogen in the reaction vessel 3, the ANAMMOX reaction starts to proceed from the ammoniacal nitrogen and the nitrite nitrogen, and the ammoniacal nitrogen concentration gradually decreases.

反応槽3内のアンモニア性窒素濃度が所定値以下まで低下した段階で、処理終了と判定して、処理水取出工程(図2(c))に移行する。その後、図2(a)→(b)→(c)の通常工程を繰り返す。 When the ammoniacal nitrogen concentration in the reaction vessel 3 drops to a predetermined value or less, it is determined that the treatment is completed, and the process proceeds to the treated water extraction step (FIG. 2C). After that, the normal process of FIG. 2A → (b) → (c) is repeated.

[二槽型ANAMMOXプロセス(連続式)の場合(図3)]
図3(a)に通常状態における二槽型・連続式ANAMMOXプロセスを示す。このプロセスでは、メタン発酵槽1からの反応水(消化液)が脱水機2で脱水され、濾液が亜硝酸型硝化槽7に連続的に導入され、曝気装置7aによって曝気され、亜硝酸型硝化が行われる。安定な亜硝酸型硝化を行うために、この亜硝酸型硝化槽7内のDO濃度が0.5〜4mg/Lとなるように曝気槽7aによる曝気量を調節することが好ましい。
[In the case of a two-tank type ANAMMOX process (continuous type) (Fig. 3)]
FIG. 3A shows a two-tank continuous ANAMMOX process under normal conditions. In this process, the reaction water (digestion liquid) from the methane fermentation tank 1 is dehydrated by the dehydrator 2, the filtrate is continuously introduced into the nitrite nitrification tank 7, aerated by the aeration device 7a, and nitrite nitrification. Is done. In order to perform stable nitrite-type nitrification, it is preferable to adjust the amount of aeration by the aeration tank 7a so that the DO concentration in the nitrite-type nitrification tank 7 is 0.5 to 4 mg / L.

亜硝酸型硝化槽7からの硝化液は、反応槽3に連続的に導入され、アンモニア性窒素を電子供与体とし亜硝酸性窒素を電子受容体として脱窒反応を行うANAMMOX菌の作用により脱窒処理される。このANAMMOX菌による脱窒処理で、アンモニア性窒素と亜硝酸性窒素とを効率的に反応させて残留窒素を低減するために、亜硝酸型硝化槽7からの硝化液は、アンモニア性窒素:亜硝酸性窒素=1:1.32〜1.4モル比の硝化液であることが好ましい。 The nitrifying solution from the nitrite-type nitrification tank 7 is continuously introduced into the reaction tank 3 and denitrified by the action of ANAMMOX bacteria that perform a denitrification reaction using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor. It is nitrified. In order to reduce residual nitrogen by efficiently reacting ammoniacal nitrogen and nitrite nitrogen in the denitrification treatment with this ANAMMOX bacterium, the nitrifying solution from the nitrite type nitrification tank 7 is composed of ammoniacal nitrogen: nitrite. Nitrite nitrogen = 1: 1.32 to 1.4 mol ratio nitrification solution is preferable.

反応槽3からの処理水は配管4を介して取り出される。 The treated water from the reaction tank 3 is taken out through the pipe 4.

この図3(a)のプロセスにおいて、反応槽3内の亜硝酸性窒素濃度が所定値を超えたときには、図3(b)の通り反応槽3からの処理水排出を停止すると共に、亜硝酸型硝化槽への脱水濾液の供給を停止し、亜硝酸型硝化槽から硝化液の排出を停止し、亜硝酸型硝化槽7の曝気を停止してアンモニア酸化細菌の付着担体を沈降させる。次いで、図3(c)の通り、脱水濾液の亜硝酸型硝化槽7への導入、及び亜硝酸型硝化槽7から反応槽3へのアンモニア及び亜硝酸性窒素含有水の導入を再開すると共に、反応槽3からメタン発酵槽1への循環ライン5の通水を開始する。このとき、メタン発酵槽1への原水の供給は継続する。 In the process of FIG. 3 (a), when the concentration of nitrite nitrogen in the reaction vessel 3 exceeds a predetermined value, the discharge of treated water from the reaction vessel 3 is stopped and nitrite is stopped as shown in FIG. 3 (b). The supply of the dehydrated filtrate to the nitrification tank is stopped, the discharge of the nitrification liquid from the nitrite nitrification tank is stopped, the aeration of the nitrite nitrification tank 7 is stopped, and the adherent carrier of ammonia-oxidizing bacteria is precipitated. Then, as shown in FIG. 3 (c), the introduction of the dehydration filtrate into the nitrite-type nitrification tank 7 and the introduction of ammonia and nitrite nitrogen-containing water from the nitrite-type nitrification tank 7 into the reaction tank 3 were resumed. , The water flow of the circulation line 5 from the reaction tank 3 to the methane fermentation tank 1 is started. At this time, the supply of raw water to the methane fermentation tank 1 continues.

これにより亜硝酸型硝化槽7における亜硝酸性窒素の生成は停止し、該亜硝酸型硝化槽7内で生成済みの亜硝酸性窒素は反応槽3及び循環ライン5を経由してメタン発酵槽1に返送され、脱窒され窒素ガスとして排出される。これにより、系内の亜硝酸性窒素濃度が徐々に低下する。ただし、原水由来のアンモニア性窒素は系内に蓄積される。この図3(c)の工程は、亜硝酸性窒素が規定値以下(例えば100mg−N/L以下)、好ましくは20〜50mg−N/L(ただし所定値より低い値)になるまで継続する。 As a result, the production of nitrite nitrogen in the nitrite-type nitrification tank 7 is stopped, and the nitrite nitrogen produced in the nitrite-type nitrification tank 7 passes through the reaction tank 3 and the circulation line 5 to the methane fermentation tank. It is returned to 1 and denitrified and discharged as nitrogen gas. As a result, the concentration of nitrite nitrogen in the system gradually decreases. However, ammoniacal nitrogen derived from raw water is accumulated in the system. The step of FIG. 3 (c) is continued until the nitrite nitrogen becomes a specified value or less (for example, 100 mg-N / L or less), preferably 20 to 50 mg-N / L (however, a value lower than a predetermined value). ..

反応槽3内の亜硝酸性窒素濃度が規定値以下になったときには、図3(d)の通り、反応槽3からメタン発酵槽1への返送を継続した状態で亜硝酸型硝化槽7の曝気を再開する。これにより反応槽3内の亜硝酸性窒素濃度が徐々に上昇し、ANAMMOX反応が進行し始め、アンモニア性窒素濃度が徐々に低下する。 When the nitrite nitrogen concentration in the reaction tank 3 becomes less than the specified value, as shown in FIG. 3D, the nitrite type nitrification tank 7 is continuously returned from the reaction tank 3 to the methane fermentation tank 1. Resume aeration. As a result, the nitrite nitrogen concentration in the reaction vessel 3 gradually increases, the ANAMMOX reaction begins to proceed, and the ammoniacal nitrogen concentration gradually decreases.

アンモニア性窒素濃度が所定値以下まで低下した段階で、循環ライン5の通水を停止すると共に配管4からの処理水排出を再開し、図3(a)に示す通常運転を再開する。 When the ammoniacal nitrogen concentration drops below a predetermined value, the water flow through the circulation line 5 is stopped, the treated water is restarted from the pipe 4, and the normal operation shown in FIG. 3A is restarted.

[別の態様]
上記説明では、循環ライン5によって反応槽3から循環される水は、メタン発酵槽1に直接供給されるものとなっているが、例えば図4に示されるように、少なくとも一部を嫌気性消化の原料廃棄物の希釈水ラインに供給するようにしてもよい。この場合は、循環運転を開始するときに希釈水の供給を停止する。いずれにしても原料の有機物を電子供与体とした従属栄養性の脱窒が生じ、亜硝酸性窒素が除去される。図4は一槽型であるが、二槽型であってもよい。
[Another aspect]
In the above description, the water circulated from the reaction tank 3 by the circulation line 5 is directly supplied to the methane fermentation tank 1, but at least a part of it is anaerobic digested as shown in FIG. 4, for example. It may be supplied to the diluted water line of the raw material waste. In this case, the supply of diluted water is stopped when the circulation operation is started. In any case, heterotrophic denitrification occurs using the organic matter as the raw material as an electron donor, and nitrite nitrogen is removed. Although FIG. 4 shows a one-tank type, it may be a two-tank type.

上記説明では、反応槽3内の亜硝酸性窒素濃度が所定値以上となった場合に、反応槽3内から亜硝酸性窒素含有水を返送するものとしているが、処理水ライン(配管4)から亜硝酸性窒素含有水を返送してもよい。また、図5のように、反応槽3内から処理水を受け入れる処理水槽9が設置されている場合には、反応槽3内の亜硝酸性窒素含有水を該処理水槽9を経て返送するようにしてもよい。図5は一槽型であるが、二槽型でも同様である。 In the above description, when the nitrite nitrogen concentration in the reaction tank 3 exceeds a predetermined value, the nitrite nitrogen-containing water is returned from the reaction tank 3, but the treated water line (pipe 4) The nitrite nitrogen-containing water may be returned from. Further, as shown in FIG. 5, when the treated water tank 9 that receives the treated water from the reaction tank 3 is installed, the nitrite nitrogen-containing water in the reaction tank 3 is returned via the treated water tank 9. It may be. FIG. 5 shows a one-tank type, but the same applies to a two-tank type.

[実験例1]
槽容積4LのSBR反応槽を用い、集積培養した一槽型ANAMMOXグラニュールを沈降体積で1.0L(SV25%)投入し、一槽型ANAMMOX装置の立ち上げを行った。
[Experimental Example 1]
Using an SBR reaction tank having a tank volume of 4 L, 1.0 L (SV25%) of the enrichment-cultured one-tank type ANAMMOX granule was charged, and the one-tank type ANAMMOX apparatus was started up.

原水としては、BOD成分として酢酸ナトリウムを用い、アンモニア性窒素成分として硫酸アンモニウムを用いて調製したBOD濃度360mg/L、アンモニア性窒素濃度2,000mg/Lの合成排水を用いた。 As the raw water, synthetic wastewater having a BOD concentration of 360 mg / L and an ammoniacal nitrogen concentration of 2,000 mg / L prepared by using sodium acetate as a BOD component and ammonium sulfate as an ammoniacal nitrogen component was used.

槽内の水温は32℃に設定し、pHは7.7になるようにpH調整剤(炭酸ナトリウム水溶液、80g/L)を用いて調整した。 The water temperature in the tank was set to 32 ° C., and the pH was adjusted to 7.7 using a pH adjuster (sodium carbonate aqueous solution, 80 g / L).

SBR反応槽の運転は、1バッチあたりの交換水量を0.8Lとし、流入工程10min、曝気工程6h、沈殿工程3min、排出工程10minとした。槽内の曝気は、0〜2.0L/minの範囲で行い、DOが0.5mg/Lになるようにマスフローコントローラーを用いて制御した。 The operation of the SBR reaction tank was such that the amount of exchanged water per batch was 0.8 L, the inflow step was 10 min, the aeration step was 6 hours, the settling step was 3 min, and the discharge step was 10 min. The aeration in the tank was carried out in the range of 0 to 2.0 L / min, and the DO was controlled using a mass flow controller so as to be 0.5 mg / L.

この条件で運転を行ったところ、アンモニア性窒素1〜3mg/L、亜硝酸性窒素4〜12mg/L、硝酸性窒素180〜210mg/Lまで除去され、窒素負荷1.5kg−N/m/d、窒素所除去速度1.3kg−N/m/dとなった。ここから1バッチだけ曝気量を4L/minに固定して運転を行い、槽内に亜硝酸性窒素を蓄積させた。その結果、槽内に360mg/Lの亜硝酸性窒素が蓄積した。ここで、装置の運転を一時的に停止し、グラニュールを完全に沈降させた後で、原水を送水して槽内の亜硝酸性窒素濃度を90mg/Lにした。その後、装置の運転を再度スタートさせた結果、窒素負荷1.5kg−N/m/d、窒素所除去速度1.3kg−N/m/dとなり、速やかに活性が回復することが確認された。 When the operation was performed under these conditions, ammonia nitrogen 1 to 3 mg / L, nitrite nitrogen 4 to 12 mg / L, and nitrate nitrogen 180 to 210 mg / L were removed, and the nitrogen load was 1.5 kg-N / m 3. / D, nitrogen removal rate was 1.3 kg-N / m 3 / d. From here, the aeration amount was fixed at 4 L / min for only one batch, and the operation was performed to accumulate nitrite nitrogen in the tank. As a result, 360 mg / L of nitrite nitrogen was accumulated in the tank. Here, the operation of the apparatus was temporarily stopped, and after the granule was completely settled, raw water was sent to bring the nitrite nitrogen concentration in the tank to 90 mg / L. After that, as a result of restarting the operation of the device, it was confirmed that the nitrogen load was 1.5 kg-N / m 3 / d and the nitrogen removal rate was 1.3 kg-N / m 3 / d, and the activity recovered quickly. Was done.

[実験例2]
メタン発酵槽内で亜硝酸性窒素が除去されることについて、メタン発酵汚泥と亜硝酸性窒素を含む原水を混合した回分試験により確認した。
[Experimental Example 2]
The removal of nitrite nitrogen in the methane fermentation tank was confirmed by a batch test in which raw water containing methane fermentation sludge and nitrite nitrogen was mixed.

バイアル瓶の中にメタン発酵汚泥350mL(TS43,000mg/L)、0.3Mリン酸緩衝液(pH7.5)50mLを混合し、35℃のインキュベーター内に設置したスターラーで撹拌し、メタンガス発生量を計測した。 350 mL (TS43,000 mg / L) of methane fermentation sludge and 50 mL of 0.3M phosphate buffer (pH 7.5) are mixed in a vial and stirred with a stirrer installed in an incubator at 35 ° C. to generate methane gas. Was measured.

汚泥からの基質持ち込みによるガス発生が無くなったことを確認した後、酢酸ナトリウムと亜硝酸性窒素の混合液50mLを添加した(終濃度CODcr3,000mg/L、亜硝酸性窒素濃度150mg/L)(系1)。また、同様に亜硝酸性窒素を含まない酢酸のみの系をブランク(系2)として用意し、メタンガス発生量の比較を行った。 After confirming that gas generation due to substrate carry-in from sludge was eliminated, 50 mL of a mixture of sodium acetate and nitrite nitrogen was added (final concentration CODcr 3,000 mg / L, nitrite nitrogen concentration 150 mg / L) ( System 1). Similarly, a system containing only acetic acid containing no nitrite nitrogen was prepared as a blank (system 2), and the amount of methane gas generated was compared.

系1では、5日間反応後、槽内の亜硝酸性窒素濃度を測定した結果、1mg/L以下となり、亜硝酸性窒素は実質的に全て除去されていた。メタンガス発生量は、系1では340mL、系2では330mLとなったことから、亜硝酸性窒素によるメタン生成菌への阻害は確認されなかった。 In system 1, after the reaction for 5 days, the concentration of nitrite nitrogen in the tank was measured and found to be 1 mg / L or less, and substantially all of the nitrite nitrogen was removed. Since the amount of methane gas generated was 340 mL in system 1 and 330 mL in system 2, no inhibition of methane-producing bacteria by nitrite nitrogen was confirmed.

[実験例3]
実験例1と同じ手順で、一槽型ANAMMOX装置を立ち上げ、槽内に亜硝酸性窒素を蓄積させた。槽内に亜硝酸が320mg/L蓄積した状態から、槽内の亜硝酸濃度の希釈を行わず、元の運転条件に戻したところ、亜硝酸によるANAMMOX細菌への阻害のため、処理水の亜硝酸性窒素濃度がバッチを繰り返すごとに上昇し、槽内の亜硝酸濃度が1,300mg/Lになったことから、ANAMMOX活性が回復しないことが認められた。
[Experimental Example 3]
In the same procedure as in Experimental Example 1, a one-tank type ANAMMOX device was started up, and nitrite nitrogen was accumulated in the tank. When 320 mg / L of nitrite was accumulated in the tank and the nitrite concentration in the tank was not diluted and returned to the original operating conditions, the treated water was sub-treated due to the inhibition of ANAMMOX bacteria by nitrite. Since the nitrate nitrogen concentration increased with each batch and the nitrite concentration in the tank reached 1,300 mg / L, it was confirmed that the ANAMMOX activity did not recover.

1 メタン発酵槽
2 脱水機
3 ANAMMOX反応槽
3a 曝気装置
5 循環ライン
7 亜硝酸型硝化槽
7a 曝気装置
1 Methane fermenter 2 Dehydrator 3 ANAMMOX reaction tank 3a Aeration device 5 Circulation line 7 Nitrite nitrification tank 7a Aeration device

Claims (5)

原水をメタン発酵槽にてメタン発酵処理する工程と、該メタン発酵槽からの消化液をANAMMOX反応槽に導入し、曝気することにより亜硝酸型硝化処理とANAMMOX処理とを該反応槽内にて行う工程と
を有するANAMMOXプロセスを有する排水処理方法において、
該ANAMMOX反応槽内の亜硝酸性窒素濃度又はその指標値が所定値よりも高くなった場合、
前記曝気を停止し、該ANAMMOX反応槽内でグラニュール又は担体を沈降させる沈降工程と、
次いで、前記曝気を停止した状態で該ANAMMOX反応槽の亜硝酸性窒素含有水を前記メタン発酵槽又はその上流側に返送する返送工程と
を行うことを特徴とするANAMMOXプロセスを有する排水処理方法。
A step of methane fermentation treatment of raw water in a methane fermentation tank and a nitrite-type nitrification treatment and an ANAMMOX treatment by introducing the digested liquid from the methane fermentation tank into an ANAMMOX reaction tank and aerating the raw water in the reaction tank. In a wastewater treatment method having an ANAMMOX process with steps to be performed
When the nitrite nitrogen concentration in the ANAMMOX reaction vessel or its index value becomes higher than the predetermined value,
A sedimentation step of stopping the aeration and sedimenting the granule or carrier in the ANAMMOX reaction vessel.
Next, a wastewater treatment method having an ANAMMOX process, which comprises a return step of returning the nitrite nitrogen-containing water of the ANAMMOX reaction tank to the methane fermentation tank or the upstream side thereof with the aeration stopped.
請求項1において、前記ANAMMOX反応槽は、消化液が連続的に供給される連続型反応槽であり、
前記沈降工程にあっては、該ANAMMOX反応槽からの処理水の流出を停止すると共にANAMMOX反応槽への消化液の供給を停止し、
返送工程にあっては処理水の流出を停止したままで消化液の供給を再開し、
前記返送工程後、前記ANAMMOX反応槽で曝気を行いながら該反応槽の亜硝酸性窒素含有水を前記メタン発酵槽又はその上流側に返送する工程を行うことを特徴とするANAMMOXプロセスを有する排水処理方法。
In claim 1, the ANAMMOX reaction tank is a continuous reaction tank to which digestive juice is continuously supplied.
In the sedimentation step, the outflow of the treated water from the ANAMMOX reaction tank is stopped, and the supply of the digestive juice to the ANAMMOX reaction tank is stopped.
In the return process, the supply of digestive juice was restarted while the outflow of treated water was stopped.
Wastewater treatment having an ANAMMOX process, which comprises returning the nitrite nitrogen-containing water in the reaction tank to the methane fermentation tank or the upstream side thereof while aerating in the ANAMMOX reaction tank after the return step. Method.
請求項1において、前記ANAMMOX反応槽は、消化液が回分式に供給される回分式反応槽であり、
前記返送工程の後、前記ANAMMOX反応槽で曝気を行いながら、該反応槽の亜硝酸性窒素含有水を前記メタン発酵槽又はその上流側に返送し、かつメタン発酵槽からの消化液を該ANAMMOX反応槽に導入する工程を行うことを特徴とするANAMMOXプロセスを有する排水処理方法。
In claim 1, the ANAMMOX reaction tank is a batch type reaction tank in which digestive juice is supplied in a batch manner.
After the return step, while aerating in the ANAMMOX reaction tank, the nitrite nitrogen-containing water in the reaction tank is returned to the methane fermentation tank or the upstream side thereof, and the digested liquid from the methane fermentation tank is returned to the ANAMMOX. A wastewater treatment method comprising an ANAMMOX process, which comprises performing a step of introducing into a reaction vessel.
原水をメタン発酵槽にてメタン発酵処理する工程と、該メタン発酵槽からの消化液を亜硝酸型硝化槽に導入し、曝気することにより亜硝酸化硝化処理を行う工程と、亜硝酸型硝化槽の処理液をANAMMOX反応槽に導入してANAMMOX処理を行う工程と
を有するANAMMOXプロセスを有する排水処理方法において、
該ANAMMOX反応槽内の亜硝酸性窒素濃度又はその指標値が所定値よりも高くなった場合、
前記曝気を停止し、該亜硝酸型硝化槽内でグラニュール又は担体を沈降させる沈降工程と、
次いで、前記曝気を停止した状態で該ANAMMOX反応槽の亜硝酸性窒素含有水を前記メタン発酵槽又はその上流側に返送する返送工程と
を行うことを特徴とするANAMMOXプロセスを有する排水処理方法。
A step of methane fermentation treatment of raw water in a methane fermentation tank, a step of introducing nitrite-type nitrification liquid from the methane fermentation tank into a nitrite-type nitrification tank, and performing nitrite-type nitrification treatment by aeration, and nitrite-type nitrification In a wastewater treatment method having an ANAMMOX process, which comprises a step of introducing the treatment liquid in the tank into an ANAMMOX reaction tank and performing the ANAMMOX treatment.
When the nitrite nitrogen concentration in the ANAMMOX reaction vessel or its index value becomes higher than the predetermined value,
A sedimentation step of stopping the aeration and precipitating the granule or carrier in the nitrite nitrification tank.
Next, a wastewater treatment method having an ANAMMOX process, which comprises a return step of returning the nitrite nitrogen-containing water of the ANAMMOX reaction tank to the methane fermentation tank or the upstream side thereof with the aeration stopped.
請求項4において、前記ANAMMOX反応槽は、消化液が連続的に供給される連続型反応槽であり、
前記沈降工程にあっては、該ANAMMOX反応槽からの処理水の流出を停止すると共に亜硝酸型硝化槽への消化液の導入及び亜硝酸型硝化槽からの処理液の排出を停止し、
返送工程にあってはANAMMOX反応槽からの処理水の流出を停止したままで亜硝酸型硝化槽への消化液の導入、及び亜硝酸型硝化槽からの処理液の排出を再開し、
前記返送工程後、前記亜硝酸型硝化槽で曝気を行いながら該反応槽の亜硝酸性窒素含有水を前記メタン発酵槽又はその上流側に返送する工程を行うことを特徴とするANAMMOXプロセスを有する排水処理方法。
In claim 4, the ANAMMOX reaction vessel is a continuous reaction vessel to which digestive juice is continuously supplied.
In the sedimentation step, the outflow of the treated water from the ANAMMOX reaction tank is stopped, the introduction of the digestive liquid into the nitrite-type nitrification tank and the discharge of the treatment liquid from the nitrite-type nitrification tank are stopped.
In the return process, the introduction of the digestive juice into the nitrite-type nitrification tank and the discharge of the treatment liquid from the nitrite-type nitrification tank were resumed while the outflow of the treated water from the ANAMMOX reaction tank was stopped.
The ANAMMOX process comprises a step of returning the nitrite nitrogen-containing water of the reaction tank to the methane fermentation tank or the upstream side thereof while aerating the nitrite type nitrification tank after the return step. Wastewater treatment method.
JP2017059221A 2017-03-24 2017-03-24 Wastewater treatment method with ANAMMOX process Active JP6880894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017059221A JP6880894B2 (en) 2017-03-24 2017-03-24 Wastewater treatment method with ANAMMOX process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017059221A JP6880894B2 (en) 2017-03-24 2017-03-24 Wastewater treatment method with ANAMMOX process

Publications (2)

Publication Number Publication Date
JP2018161607A JP2018161607A (en) 2018-10-18
JP6880894B2 true JP6880894B2 (en) 2021-06-02

Family

ID=63859425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017059221A Active JP6880894B2 (en) 2017-03-24 2017-03-24 Wastewater treatment method with ANAMMOX process

Country Status (1)

Country Link
JP (1) JP6880894B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6616526B1 (en) * 2018-04-18 2019-12-04 鹿島建設株式会社 Apparatus and method for treating wastewater
CN110451641B (en) * 2019-08-29 2020-09-18 南京大学 Starting method of short-cut denitrification and anaerobic ammonia oxidation coupling denitrification integrated system

Also Published As

Publication number Publication date
JP2018161607A (en) 2018-10-18

Similar Documents

Publication Publication Date Title
US20140367330A1 (en) Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
US8864993B2 (en) Process for removing ammonium from a wastewater stream
EP2740713B1 (en) Method for starting up and controlling a biological process for ammonium removal by the action of autotrophic bacteria in wastewater
JP3821011B2 (en) Wastewater treatment method and treatment apparatus
US8323487B2 (en) Waste water treatment apparatus
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
US20190315643A1 (en) Method and apparatus for biologically treating nitrogen
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
JP4872171B2 (en) Biological denitrification equipment
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
WO2011134011A1 (en) Production of nitrite
JP3937764B2 (en) Denitrification equipment
JP4426105B2 (en) Treatment process of wastewater containing specific components such as ammonia
JP6880894B2 (en) Wastewater treatment method with ANAMMOX process
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP5869208B2 (en) Waste water treatment method and waste water treatment apparatus
JP2013081881A (en) Apparatus for treating ammonia nitrogen content wastewater
KR101932611B1 (en) Advanced water treatment system using Heat-Recovery system for Prevention of Microorganism Activation Reduction by temperature difference of water treatment step
JP2012024707A (en) Denitrification method and denitrification device for ammoniacal nitrogen waste liquid
JP3844347B2 (en) Method and apparatus for removing and recovering phosphorus from organic wastewater
JP6919304B2 (en) Ammonia nitrogen-containing wastewater denitrification treatment equipment and denitrification treatment method
KR100440748B1 (en) High-Rate Live Stock Wastewater Treatment Method using Advanced Treatment Process Hybrid SBAR
JP2002172399A (en) Denitrification treatment method
KR101931346B1 (en) Membrane separation water treatment system with reverse osmosis membrane concentrated water treatment facility
JP5199794B2 (en) Nitrogen-containing organic wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R150 Certificate of patent or registration of utility model

Ref document number: 6880894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150