JP5325124B2 - Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water - Google Patents

Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water Download PDF

Info

Publication number
JP5325124B2
JP5325124B2 JP2010001317A JP2010001317A JP5325124B2 JP 5325124 B2 JP5325124 B2 JP 5325124B2 JP 2010001317 A JP2010001317 A JP 2010001317A JP 2010001317 A JP2010001317 A JP 2010001317A JP 5325124 B2 JP5325124 B2 JP 5325124B2
Authority
JP
Japan
Prior art keywords
hydrogen donor
water
amount
reaction tank
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010001317A
Other languages
Japanese (ja)
Other versions
JP2011139982A (en
Inventor
裕章 目黒
吉昭 長谷部
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2010001317A priority Critical patent/JP5325124B2/en
Publication of JP2011139982A publication Critical patent/JP2011139982A/en
Application granted granted Critical
Publication of JP5325124B2 publication Critical patent/JP5325124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for treating nitrogen-containing water biologically, in which the treated water having stable quality can be secured even when the concentration of nitrogen in the water to be treated or the flow rate of the water to be treated is fluctuated. <P>SOLUTION: The method for treating the nitrogen-containing water biologically comprises a step of intermittently adding a hydrogen donor to a reaction tank, into which the water that is to be treated and includes nitric acid or nitrous acid is made to flow, to reduce the nitric acid or nitrous acid into nitrogen gas. The addition rate (v) of the hydrogen donor is set so as to satisfy expression: v=X&times;T&times;(100-D)/(N&times;S<SB>T</SB>&times;D&times;M) (wherein X is the amount of the hydrogen donor to be added per unit time; T is hydraulic residence time; N is a number of intermittent addition cycles of the hydrogen donor; M is the concentration of the hydrogen donor to be added; D is the ratio of the addition time of the hydrogen donor to the time of one cycle of intermittent addition of the hydrogen donor; S<SB>T</SB>is the time to stop the hydrogen donor in the time of one cycle of intermittent addition of the hydrogen donor). <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、被処理水中の硝酸若しくは亜硝酸を窒素ガスに還元する窒素含有水の生物処理方法及び窒素含有水の生物処理装置に関する。   The present invention relates to a biological treatment method for nitrogen-containing water that reduces nitric acid or nitrous acid in water to be treated into nitrogen gas, and a biological treatment apparatus for nitrogen-containing water.

近年、排水処理の分野においては、微生物の生理活性を利用して排水中の汚濁物質を無害な物質に変化させて処理を行う生物化学的な水処理が多用されている。そして、排水中に含まれる窒素成分の生物処理法としては、活性汚泥法が主流である。活性汚泥法は、例えば、窒素成分を微生物によって酸化させて硝酸又は亜硝酸体窒素まで処理し、その後嫌気状態において水素供与体の存在下で、微生物によって窒素ガスまで脱窒処理を行うものである。これら一連の処理において使用される微生物は、フロック状の凝集体である。この微生物は、反応系内に留まらせる必要があるため、処理水と凝集体とを分離させる必要がある。   In recent years, in the field of wastewater treatment, biochemical water treatment has been frequently used in which treatment is performed by changing the pollutants in wastewater to harmless substances using the physiological activity of microorganisms. And the activated sludge method is the mainstream as a biological treatment method of the nitrogen component contained in waste water. In the activated sludge method, for example, a nitrogen component is oxidized by a microorganism to treat it to nitric acid or nitrite nitrogen, and then, in an anaerobic state, denitrification treatment is performed to the nitrogen gas by the microorganism in the presence of a hydrogen donor. . The microorganisms used in these series of treatments are floc-like aggregates. Since this microorganism needs to remain in the reaction system, it is necessary to separate the treated water and the aggregate.

微生物の分離方法としては、古くから沈降分離が用いられているが、最近では膜分離による手法も採用されている(例えば、特許文献1参照)。さらに分離操作を簡便にするために、微生物の凝集体を予め沈降性の良好な担体に付着させる技術が知られている(例えば、特許文献2参照)。   As a method for separating microorganisms, sedimentation separation has been used for a long time, but recently, a method using membrane separation has also been adopted (see, for example, Patent Document 1). Further, in order to simplify the separation operation, a technique is known in which microbial aggregates are attached in advance to a carrier having good sedimentation (see, for example, Patent Document 2).

脱窒処理には、水素供与体が必要であるため、水素供与体が反応系内で不足すると脱窒処理が停止する。一方、水素供与体を過剰に添加すると、処理コストの点から望ましくないばかりか、処理水に水素供与体がリークして水質の悪化に繋がる。このような観点から、反応系内へ添加する水素供与体量を過不足なく添加するために、水素供与体の添加量を制御する方法が提案されている(例えば、特許文献3〜6参照)。   Since the denitrification process requires a hydrogen donor, the denitrification process stops when the hydrogen donor is insufficient in the reaction system. On the other hand, when an excessive amount of hydrogen donor is added, not only is the treatment cost undesirable, but the hydrogen donor leaks into the treated water, leading to deterioration of water quality. From such a viewpoint, a method for controlling the amount of hydrogen donor added in order to add the amount of hydrogen donor added to the reaction system without excess or deficiency has been proposed (see, for example, Patent Documents 3 to 6). .

特開平11−165182号公報Japanese Patent Laid-Open No. 11-165182 特開2007−296499号公報JP 2007-296499 A 特許第2643478号公報Japanese Patent No. 2634478 特開平7−328678号公報JP 7-328678 A 特開2003−71492号公報JP 2003-71492 A 特開平11−104691号公報Japanese Patent Laid-Open No. 11-104691

ところで、生物処理においての処理能力は、反応槽内の汚泥濃度が高いほど高くなる。しかし、活性汚泥法の場合(特に浮遊式の場合)、汚泥濃度が高まると、処理水と汚泥との分離が困難になるという問題がある。   By the way, the treatment capacity in biological treatment increases as the sludge concentration in the reaction tank increases. However, in the case of the activated sludge method (especially in the case of the floating type), there is a problem that separation of treated water and sludge becomes difficult when the sludge concentration increases.

本発明者らは鋭意検討の結果、活性汚泥法による脱窒処理において、必要量の水素供与体を間欠添加することにより、槽内に水素供与体の時間的濃度勾配を与え(例えば、TOC濃度で10mg/L以上)、汚泥の沈降性を改善し、沈降分離によって容易に処理水と微生物を分離できることを見出した。   As a result of intensive studies, the present inventors have given a time concentration gradient of the hydrogen donor in the tank by intermittently adding a necessary amount of the hydrogen donor in the denitrification treatment by the activated sludge method (for example, TOC concentration). 10 mg / L or more), it was found that the settleability of sludge was improved, and treated water and microorganisms could be easily separated by sedimentation separation.

しかし、原水中の窒素濃度や流量等の変動によって、水素供与体の必要量が変化する場合に、水素供与体の間欠添加を規則的に行っただけでは、槽内に水素供与体の時間的濃度勾配を与えることが困難となり、汚泥の沈降性が低下したり、処理水質が不安定になったりする場合がある。   However, when the required amount of the hydrogen donor changes due to fluctuations in the nitrogen concentration and flow rate in the raw water, if the hydrogen donor is intermittently added only by regular addition, the time of the hydrogen donor in the tank will increase. It becomes difficult to give a concentration gradient, and the sedimentation property of sludge may decrease, or the quality of treated water may become unstable.

そこで、本発明は、被処理水中の窒素濃度や流量等が変動しても、安定な処理水質を確保することができる窒素含有水の生物処理方法及び生物処理装置を提供することにある。   Then, this invention is providing the biological treatment method and biological treatment apparatus of nitrogen-containing water which can ensure the stable treated water quality, even if the nitrogen concentration, flow volume, etc. in to-be-treated water fluctuate.

(1)本発明は、硝酸若しくは亜硝酸を含む被処理水が流入する反応槽に、水素供与体を間欠添加して、前記硝酸若しくは前記亜硝酸を窒素ガスに還元する窒素含有水の生物処理方法であって、前記反応槽に流入する被処理水中の硝酸若しくは亜硝酸の濃度と前記反応槽に流入する被処理水量との積から求められる硝酸若しくは亜硝酸量の増加又は減少に応じて、以下の式(1)を満たすように、水素供与体添加速度(v)、単位時間当たりに必要な水素供与体の添加量(X)、前記反応槽の総容量/前記反応槽に流入する水流量で求められる水理学的滞留時間(T)、前記水理学的滞留時間(T)を水素供与体の添加及び停止からなる間欠添加1サイクル当たりの時間で除した水素供与体の間欠添加サイクル数(N)、添加する水素供与体の濃度(M)、前記間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)、及び前記間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)を設定することを特徴とする窒素含有水の生物処理方法。
v=X・T・(100−D)/(N・S・D・M) (1)
(1) The present invention is a biological treatment of nitrogen-containing water in which nitric acid or nitrite-containing water to be treated flows into a reactor into which hydrogen donor is intermittently added to reduce the nitric acid or nitrous acid to nitrogen gas. According to an increase or decrease in the amount of nitric acid or nitrous acid determined from the product of the concentration of nitric acid or nitrous acid in the water to be treated flowing into the reaction tank and the amount of water to be treated flowing into the reaction tank, Hydrogen donor addition rate (v), hydrogen donor addition amount (X) required per unit time, total volume of the reaction tank / water flowing into the reaction tank so as to satisfy the following formula (1) The hydraulic residence time (T) determined by the flow rate, the number of intermittent addition cycles of the hydrogen donor obtained by dividing the hydraulic residence time (T) by the time per cycle of intermittent addition consisting of addition and termination of the hydrogen donor. (N), hydrogen donor to be added To set the concentration (M), the intermittent rate of the hydrogen donor addition time for the time of addition per cycle (D), and the intermittent addition of hydrogen donor supply stop time of 1 per cycle time (S T) A biological treatment method for nitrogen-containing water.
v = X · T · (100−D) / (N · S T · D · M) (1)

(2)また、上記(1)に記載の窒素含有水の生物処理方法において、前記水素供与体添加速度(v)が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記間欠添加回数(N)と前記水素供与体添加時間の割合(D)をそれぞれ増加又は減少させることが好ましい。   (2) In the biological treatment method for nitrogen-containing water described in (1) above, the nitric acid or the nitrous acid in the water to be treated flowing into the reaction tank under a constant hydrogen donor addition rate (v). When the amount of nitric acid or nitrous acid obtained from the product of the concentration of nitric acid and the amount of water to be treated flowing into the reaction vessel is increased or decreased, the intermittentness is proportional to the increase or decrease in the amount of nitric acid or nitrous acid. It is preferable to increase or decrease the number of additions (N) and the ratio (D) of the hydrogen donor addition time, respectively.

(3)上記(2)に記載の窒素含有水の生物処理方法において、さらに、前記反応槽に流入する被処理水量が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度が増加又は減少したことにより、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記間欠添加回数(N)と前記水素供与体添加時間の割合(D)をそれぞれ増加又は減少させることが好ましい。   (3) In the biological treatment method for nitrogen-containing water described in (2) above, the nitric acid or the nitrous acid in the water to be treated flowing into the reaction tank while the amount of water to be treated flowing into the reaction tank is constant. The nitric acid or nitrous acid obtained from the product of the concentration of the nitric acid or nitrous acid in the treated water flowing into the reaction tank and the amount of treated water flowing into the reaction tank due to the increase or decrease in the concentration of nitric acid When the amount increases or decreases, the number of intermittent additions (N) and the proportion of the hydrogen donor addition time (D) are increased or decreased in proportion to the increase or decrease in the amount of nitric acid or nitrous acid, respectively. Is preferred.

(4)上記(1)に記載の窒素含有水の生物処理方法において、前記間欠添加回数(N)、前記水素供与体添加時間の割合(D)が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記水素供与体添加速度(v)を増加又は減少させることが好ましい。   (4) In the biological treatment method for nitrogen-containing water described in (1) above, the amount of intermittent addition (N) and the ratio (D) of the hydrogen donor addition time are constant, and the amount of water that flows into the reaction vessel is constant. When the concentration of nitric acid or nitrous acid determined from the product of the concentration of nitric acid or nitrous acid in treated water and the amount of water to be treated flowing into the reaction tank increases or decreases, It is preferable to increase or decrease the hydrogen donor addition rate (v) in proportion to the decrease.

(5)上記(4)に記載の窒素含有水の生物処理方法において、さらに、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度が一定の下、前記反応槽に流入する被処理水量が増加又は減少したことにより、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記水素供与体添加速度(v)を増加又は減少させることが好ましい。   (5) In the biological treatment method for nitrogen-containing water described in (4) above, the nitrogen-containing water further flows into the reaction tank under a constant concentration of nitric acid or nitrous acid in the water to be treated flowing into the reaction tank. The nitric acid or nitrous acid obtained from the product of the concentration of the nitric acid or nitrous acid in the water to be treated flowing into the reaction tank and the amount of water to be treated flowing into the reaction tank due to the increase or decrease in the amount of treated water When the amount increases or decreases, it is preferable to increase or decrease the hydrogen donor addition rate (v) in proportion to the increase or decrease in the amount of nitric acid or nitrous acid.

(6)上記(1)に記載の窒素含有水の生物処理方法において、前記水素供与体添加速度(v)、前記間欠添加回数(N)が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記水素供与体添加時間の割合(D)を増加又は減少させることが好ましい。   (6) In the biological treatment method for nitrogen-containing water according to (1), the water to be treated flows into the reaction tank with the hydrogen donor addition rate (v) and the number of intermittent additions (N) being constant. When the amount of nitric acid or nitrous acid obtained from the product of the concentration of nitric acid or nitrous acid and the amount of water to be treated flowing into the reaction vessel increases or decreases, the amount of nitric acid or nitrous acid increases or decreases. In proportion, it is preferable to increase or decrease the proportion (D) of the hydrogen donor addition time.

(7)上記(1)〜(6)のいずれか1つに記載の窒素含有水の生物処理方法において、前記間欠添加回数(N)が2.5以上とすることが好ましい。   (7) In the biological treatment method for nitrogen-containing water according to any one of (1) to (6) above, the number of intermittent additions (N) is preferably 2.5 or more.

(8)上記(2)又は(3)に記載の窒素含有水の生物処理方法において、前記間欠添加回数(N)を減少させた結果、前記間欠添加回数(N)が2.5未満となる場合、前記間欠添加回数(N)を2.5以上として、前記式(1)を満たすように、前記水素供与体供給停止時間(S)及び前記水素供与体添加速度(v)を再設定することが好ましい。 (8) In the biological treatment method for nitrogen-containing water according to (2) or (3) above, as a result of reducing the number of intermittent additions (N), the number of intermittent additions (N) is less than 2.5. In this case, the number of intermittent additions (N) is set to 2.5 or more, and the hydrogen donor supply stop time (S T ) and the hydrogen donor addition rate (v) are reset so as to satisfy the formula (1). It is preferable to do.

(9)本発明は、硝酸若しくは亜硝酸を含む被処理水が流入する反応槽と、前記反応槽に水素供与体を間欠添加する水素供与体添加手段と、を備え、前記反応槽で前記硝酸若しくは亜硝酸を窒素ガスに還元する窒素含有水の生物処理装置であって、前記反応槽に流入する被処理水中の硝酸若しくは亜硝酸の濃度と前記反応槽に流入する被処理水量との積から求められる硝酸若しくは亜硝酸量の増加又は減少に応じて、以下の式(1)を満たすように、水素供与体添加速度(v)、単位時間当たりに必要な水素供与体の添加量(X)、前記反応槽の総容量/前記反応槽に流入する水流量で求められる水理学的滞留時間(T)、前記水理学的滞留時間(T)を水素供与体の添加及び停止からなる間欠添加1サイクル当たりの時間で除した水素供与体の間欠添加サイクル数(N)、添加する水素供与体の濃度(M)、前記間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)、及び前記間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)を設定する制御手段を備えることを特徴とする窒素含有水の生物処理装置。
v=X・T・(100−D)/(N・S・D・M) (1)
(9) The present invention comprises a reaction tank into which treated water containing nitric acid or nitrous acid flows, and hydrogen donor addition means for intermittently adding a hydrogen donor to the reaction tank, Alternatively, a biological treatment apparatus for nitrogen-containing water that reduces nitrous acid to nitrogen gas, the product of the concentration of nitric acid or nitrous acid in the treated water flowing into the reaction tank and the amount of treated water flowing into the reaction tank Depending on the required increase or decrease in the amount of nitric acid or nitrous acid , the hydrogen donor addition rate (v) and the hydrogen donor addition amount (X) required per unit time so as to satisfy the following formula (1) The hydraulic residence time (T) determined by the total capacity of the reaction tank / the flow rate of water flowing into the reaction tank, and the hydraulic residence time (T) is defined as intermittent addition 1 consisting of addition and stop of a hydrogen donor. Hydrogen donation divided by time per cycle The number of intermittent addition cycles (N), the concentration of hydrogen donor to be added (M), the ratio of hydrogen donor addition time to the time per cycle of intermittent addition (D), and the time per cycle of intermittent addition A biological treatment apparatus for nitrogen-containing water, comprising control means for setting a hydrogen donor supply stop time (S T ).
v = X · T · (100−D) / (N · S T · D · M) (1)

(10)上記(9)に記載の窒素含有水の生物処理装置において、前記制御手段は、前記水素供与体添加速度(v)が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記間欠添加回数(N)と前記水素供与体添加時間の割合(D)をそれぞれ増加又は減少させることが好ましい。   (10) In the biological treatment apparatus for nitrogen-containing water as described in (9) above, the control means is configured such that the nitric acid in the water to be treated flowing into the reaction tank with the hydrogen donor addition rate (v) constant. Alternatively, when the nitric acid or the amount of nitrous acid obtained from the product of the concentration of nitrous acid and the amount of water to be treated flowing into the reaction tank increases or decreases, it is proportional to the increase or decrease of the nitric acid or the amount of nitrous acid. It is preferable to increase or decrease the number of intermittent additions (N) and the ratio (D) of the hydrogen donor addition time, respectively.

(11)上記(10)に記載の窒素含有水の生物処理装置において、前記制御手段は、さらに、前記反応槽に流入する被処理水量が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度が増加又は減少したことにより、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記間欠添加回数(N)と前記水素供与体添加時間の割合(D)をそれぞれ増加又は減少させることが好ましい。   (11) In the biological treatment apparatus for nitrogen-containing water according to (10), the control unit further includes a treatment water flowing into the reaction tank with a constant amount of water to be treated flowing into the reaction tank. The concentration obtained by increasing or decreasing the concentration of nitric acid or nitrous acid is determined from the product of the concentration of nitric acid or nitrous acid in the water to be treated flowing into the reaction tank and the amount of water to be treated flowing into the reaction tank. When the amount of nitric acid or nitrous acid increases or decreases, the number of intermittent additions (N) and the ratio (D) of the hydrogen donor addition time are proportional to the increase or decrease in the amount of nitric acid or nitrous acid, respectively. It is preferable to increase or decrease.

(12)上記(9)に記載の窒素含有水の生物処理装置において、前記制御手段は、前記間欠添加回数(N)、前記水素供与体添加時間の割合(D)が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記水素供与体添加速度(v)を増加又は減少させることが好ましい。   (12) In the biological treatment apparatus for nitrogen-containing water as described in (9) above, the control means performs the reaction under the condition that the number of intermittent additions (N) and the ratio (D) of the hydrogen donor addition time are constant. When the amount of nitric acid or nitrous acid determined from the product of the concentration of nitric acid or nitrous acid in the water to be treated flowing into the tank and the amount of water to be treated flowing into the reaction tank increases or decreases, It is preferable to increase or decrease the hydrogen donor addition rate (v) in proportion to an increase or decrease in the amount of nitric acid.

(13)上記(12)に記載の窒素含有水の生物処理装置において、前記制御手段は、さらに、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度が一定の下、前記反応槽に流入する被処理水量が増加又は減少したことにより、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記水素供与体添加速度(v)を増加又は減少させることが好ましい。   (13) In the biological treatment apparatus for nitrogen-containing water according to (12), the control means is further configured so that the concentration of nitric acid or nitrous acid in the water to be treated flowing into the reaction tank is constant. Since the amount of water to be treated flowing into the reaction tank is increased or decreased, the concentration of nitric acid or nitrous acid in the water to be treated flowing into the reaction tank and the product of the amount of water to be treated flowing into the reaction tank are determined. When the amount of nitric acid or nitrous acid increases or decreases, it is preferable to increase or decrease the hydrogen donor addition rate (v) in proportion to the increase or decrease of the amount of nitric acid or nitrous acid.

(14)上記(9)に記載の窒素含有水の生物処理装置において、前記制御手段は、前記水素供与体添加速度(v)、前記間欠添加回数(N)が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記水素供与体添加時間の割合(D)を増加又は減少させることが好ましい。   (14) In the biological treatment apparatus for nitrogen-containing water as described in (9) above, the control means is provided in the reaction tank with the hydrogen donor addition rate (v) and the intermittent addition number (N) being constant. When the amount of nitric acid or nitrous acid obtained from the product of the concentration of nitric acid or nitrous acid in the treated water flowing in and the amount of treated water flowing into the reaction tank increases or decreases, the amount of nitric acid or nitrous acid It is preferable to increase or decrease the proportion (D) of the hydrogen donor addition time in proportion to the increase or decrease of the hydrogen donor.

(15)上記(9)〜(14)のいずれか1つに記載の窒素含有水の生物処理装置において、前記制御手段は、前記間欠添加回数(N)を2.5以上に設定することが好ましい。   (15) In the biological treatment apparatus for nitrogen-containing water according to any one of (9) to (14), the control unit may set the number of intermittent additions (N) to 2.5 or more. preferable.

(16)上記(10)又は(11)に記載の窒素含有水の生物処理装置において、前記制御手段は、前記間欠添加回数(N)を減少させた結果、前記間欠添加回数(N)が2.5未満となる場合、前記間欠添加回数(N)を2.5以上として、前記式(1)を満たすように、前記水素供与体供給停止時間(S)及び前記水素供与体添加速度(v)を再設定することが好ましい。 (16) In the biological treatment apparatus for nitrogen-containing water according to (10) or (11), the control means decreases the intermittent addition number (N), so that the intermittent addition number (N) is 2. When the number of intermittent additions (N) is 2.5 or more, the hydrogen donor supply stop time (S T ) and the hydrogen donor addition rate (S T ) are satisfied so that the formula (1) is satisfied. It is preferable to reset v).

本発明によれば、被処理水中の窒素濃度や流量等が変動しても、安定な処理水質を確保することができる。   According to the present invention, stable treated water quality can be ensured even if the nitrogen concentration or flow rate in the water to be treated fluctuates.

本実施形態に係る窒素含有水の生物処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the biological treatment apparatus of nitrogen-containing water which concerns on this embodiment. 本実施形態に係る窒素含有水の生物処理装置の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of the biological treatment apparatus of nitrogen-containing water which concerns on this embodiment. 本実施形態に係る窒素含有水の生物処理装置の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of the biological treatment apparatus of nitrogen-containing water which concerns on this embodiment. 実施例1の試験経過日数に対するMLSS濃度の変化を示す図である。It is a figure which shows the change of the MLSS density | concentration with respect to the test elapsed days of Example 1. FIG. 実施例1の試験経過日数に対する脱窒処理の処理速度の変化を示す図である。It is a figure which shows the change of the process speed of the denitrification process with respect to the test elapsed days of Example. (A)は、第1脱窒反応槽のメタノール及び硝酸イオンの濃度変化を表す図であり、(B)は、第2脱窒反応槽のメタノール及び硝酸イオンの濃度変化を表す図である。(A) is a figure showing the density | concentration change of the methanol and nitrate ion of a 1st denitrification reaction tank, (B) is a figure showing the density | concentration change of the methanol and nitrate ion of a 2nd denitrification reaction tank. 実施例3〜5の処理水中の窒素濃度の結果を示す図である。It is a figure which shows the result of the nitrogen concentration in the treated water of Examples 3-5. 水素供与体の間欠添加サイクル数と処理水質との関係を示す図である。It is a figure which shows the relationship between the intermittent addition cycle number of a hydrogen donor, and a treated water quality.

以下、 本発明の実施の形態について説明する。なお、本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る窒素含有水の生物処理装置の一例を示す概略構成図である。図1に示す窒素含有水の生物処理装置1は、脱窒反応槽10と、酸化槽12と、沈殿処理槽14と、水素供与体添加手段としてのポンプ16と、タンク18と、水素供与体添加ライン20と、被処理水流入ライン22a,22b,22cと、処理水排出ライン24と、汚泥返送ライン26と、流量センサ28と、T−N(全窒素)センサ30と、制御部32と、を備えるものである。流量センサ28及びT−Nセンサ30と制御部32とは電気的に接続されている。また制御部32とポンプ16も電気的に接続されている。   FIG. 1 is a schematic configuration diagram illustrating an example of a biological treatment apparatus for nitrogen-containing water according to the present embodiment. A biological treatment apparatus 1 for nitrogen-containing water shown in FIG. 1 includes a denitrification reaction tank 10, an oxidation tank 12, a precipitation treatment tank 14, a pump 16 as a hydrogen donor addition means, a tank 18, and a hydrogen donor. Addition line 20, treated water inflow lines 22a, 22b, 22c, treated water discharge line 24, sludge return line 26, flow rate sensor 28, TN (total nitrogen) sensor 30, and control unit 32 , Are provided. The flow rate sensor 28 and the TN sensor 30 and the control unit 32 are electrically connected. The control unit 32 and the pump 16 are also electrically connected.

脱窒反応槽10の被処理水入口(不図示)には、被処理水流入ライン22aが接続されている。脱窒反応槽10の水素供与体入口(不図示)とタンク18の出口(不図示)との間は、ポンプ16を介して水素供与体添加ライン20が接続されている。脱窒反応槽10の出口(不図示)と酸化槽12の入口(不図示)との間は、被処理水流入ライン22bが接続され、酸化槽12の出口(不図示)と沈殿処理槽14の入口(不図示)との間は、被処理水流入ライン22cが接続されている。沈殿処理槽14の処理水出口(不図示)には処理水排出ライン24が接続されている。沈殿処理槽14の汚泥出口(不図示)と被処理水流入ライン22aとの間には、汚泥返送ライン26が接続されている。   A treated water inflow line 22 a is connected to a treated water inlet (not shown) of the denitrification reaction tank 10. A hydrogen donor addition line 20 is connected via a pump 16 between a hydrogen donor inlet (not shown) of the denitrification reaction tank 10 and an outlet (not shown) of the tank 18. A treated water inflow line 22b is connected between the outlet (not shown) of the denitrification reaction tank 10 and the inlet (not shown) of the oxidation tank 12, and the outlet (not shown) of the oxidation tank 12 and the precipitation processing tank 14 are connected. The inflow line 22c to be treated is connected to the inlet (not shown). A treated water discharge line 24 is connected to a treated water outlet (not shown) of the precipitation treatment tank 14. A sludge return line 26 is connected between the sludge outlet (not shown) of the settling tank 14 and the treated water inflow line 22a.

以下に、本実施形態の窒素含有水の生物処理装置1の動作について説明する。   Below, operation | movement of the biological treatment apparatus 1 of nitrogen-containing water of this embodiment is demonstrated.

硝酸(硝酸イオン)、亜硝酸(亜硝酸イオン)を含む被処理水が、被処理水流入ライン22aを通り、脱窒反応槽10へ供給される。被処理水が被処理水流入ライン22aを通る際に、流量センサ28、T−Nセンサ30により、脱窒反応槽10に供給される被処理水(返送汚泥も含む)の水流量及び被処理水中の全窒素濃度が検出され、制御部32にデータが送信される。詳細は後述するが、そのデータに基づいて、制御部32はポンプの稼働・停止等の運転条件をコントロールし、水素供与体が脱窒反応槽10に間欠添加される。   The treated water containing nitric acid (nitrate ions) and nitrous acid (nitrite ions) is supplied to the denitrification reaction tank 10 through the treated water inflow line 22a. When the treated water passes through the treated water inflow line 22a, the flow rate of the treated water (including return sludge) supplied to the denitrification reaction tank 10 by the flow sensor 28 and the TN sensor 30 and the treated water. The total nitrogen concentration in the water is detected, and data is transmitted to the control unit 32. Although details will be described later, based on the data, the control unit 32 controls operating conditions such as operation and stoppage of the pump, and the hydrogen donor is intermittently added to the denitrification reaction tank 10.

水素供与体としてメタノールを使用した場合、脱窒反応槽10では、被処理水中の硝酸、亜硝酸は、下記反応式に示す反応により、窒素ガスに還元される。   When methanol is used as the hydrogen donor, in the denitrification reaction tank 10, nitric acid and nitrous acid in the water to be treated are reduced to nitrogen gas by the reaction shown in the following reaction formula.

2NO + CHOH → N + CO + HO + 2OH
6NO + 5CHOH → 3N + 5CO + 7HO + 6OH
2NO 2 + CH 3 OH → N 2 + CO 2 + H 2 O + 2OH
6NO 3 - + 5CH 3 OH → 3N 2 + 5CO 2 + 7H 2 O + 6OH -

脱窒反応槽10で処理された第1処理水は、被処理水流入ライン22bを通り、酸化槽12に供給される。多くの場合、水素供与体は脱窒反応槽10にやや過剰に添加されるため、被処理水中には水素供与体が残存している場合がある。酸化槽12では、曝気により酸素が供給され、主に被処理水中の水素供与体が酸化処理される。   The first treated water treated in the denitrification reaction tank 10 is supplied to the oxidation tank 12 through the treated water inflow line 22b. In many cases, since the hydrogen donor is added to the denitrification reaction tank 10 in a slightly excessive amount, the hydrogen donor may remain in the water to be treated. In the oxidation tank 12, oxygen is supplied by aeration, and mainly the hydrogen donor in the water to be treated is oxidized.

酸化槽12で処理された第2処理水は、被処理水流入ライン22cを通り、沈殿処理槽14に供給される。沈殿処理槽14では、被処理水中の汚泥が分離され、処理水排出ライン24から(最終)処理水が得られ、分離された汚泥は、汚泥返送ライン26を通り、脱窒反応槽10へ供給される。なお、後述する実施形態のように、被処理水中に有機体窒素やアンモニアが含まれている場合には、脱窒反応槽10の前段に硝化反応槽が設置され、上記分離した汚泥は硝化槽に返送されることが好ましい。   The second treated water treated in the oxidation tank 12 passes through the treated water inflow line 22c and is supplied to the precipitation treatment tank 14. In the sedimentation treatment tank 14, sludge in the water to be treated is separated and (final) treated water is obtained from the treated water discharge line 24, and the separated sludge is supplied to the denitrification reaction tank 10 through the sludge return line 26. Is done. In the case where organic nitrogen or ammonia is contained in the water to be treated as in the embodiment described later, a nitrification reaction tank is installed in the previous stage of the denitrification reaction tank 10, and the separated sludge is stored in the nitrification tank. Preferably returned.

以下に、脱窒反応槽10における、水素供与体の間欠添加条件の設定方法について説明する。   Below, the setting method of the intermittent addition conditions of a hydrogen donor in the denitrification reaction tank 10 is demonstrated.

例えば、1mの脱窒反応槽10に、10m/dの被処理水量で、100g(NO/NO)−N/mの濃度の排水(被処理水)が流入している場合に、硝酸・亜硝酸をすべて除去する場合は、水素供与体をメタノールとすると、メタノールの添加量は一般的に、流入する硝酸イオン、亜硝酸イオンに含まれる窒素量の2.4〜3.0倍(重量比)であるので、ここでは、メタノールの添加量を3.0倍と設定する。そして、本実施形態では、制御部32により、下式(1)を満たすように、水素供与体添加速度(v)、単位時間当たりに必要な水素供与体の添加量(X)、脱窒反応槽の総容量/脱窒反応槽に流入する水流量で求められる水理学的滞留時間(T)、水理学的滞留時間(T)を水素供与体の添加及び停止からなる間欠添加1サイクル当たりの時間で除した水素供与体の間欠添加サイクル数(N)、添加する水素供与体の濃度(M)、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)、及び間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)が設定される。本明細書中の水素供与体添加速度(v)は、添加する水素供与体の平均流量と同義である。
v=X・T・(100−D)/(N・S・D・M) (1)
For example, when waste water (treated water) having a concentration of 100 g (NO 3 / NO 2 ) −N / m 3 flows into the 1 m 3 denitrification reaction tank 10 with the amount of treated water of 10 m 3 / d. In addition, when all of nitric acid and nitrous acid are removed, if the hydrogen donor is methanol, the amount of methanol added is generally 2.4 to 3.3 of the amount of nitrogen contained in the inflowing nitrate ions and nitrite ions. Since it is 0 times (weight ratio), the addition amount of methanol is set to 3.0 times here. In the present embodiment, the control unit 32 causes the hydrogen donor addition rate (v), the amount of hydrogen donor to be added per unit time (X), and the denitrification reaction so as to satisfy the following formula (1). Hydraulic retention time (T) and hydraulic retention time (T) determined by the total capacity of the tank / the flow rate of water flowing into the denitrification reaction tank are calculated per cycle of intermittent addition consisting of hydrogen donor addition and stoppage. Number of hydrogen donor intermittent addition cycles divided by time (N), concentration of hydrogen donor to be added (M), ratio of hydrogen donor addition time to time per cycle of intermittent addition (D), and intermittent addition 1 A hydrogen donor feed stop time (S T ) in time per cycle is set. The hydrogen donor addition rate (v) in this specification is synonymous with the average flow rate of the hydrogen donor to be added.
v = X · T · (100−D) / (N · S T · D · M) (1)

また、水素供与体の添加はポンプ18により行ってもよいし、ポンプ18を設置せず、単に重力落下により行ってもよい。重力落下添加の場合には、ポンプ18の代わりにバルブを設置し、該バルブにより水素供与体添加速度(v)を調節する。   Further, the hydrogen donor may be added by the pump 18 or may be simply dropped by gravity without installing the pump 18. In the case of gravity drop addition, a valve is installed in place of the pump 18, and the hydrogen donor addition rate (v) is adjusted by the valve.

単位時間当たりに必要な水素供与体の添加量(X)は、10m/d×100g(NO/NO)−N/m×3倍=3kg/dとなり、水理学的滞留時間(T)は、1m÷10m/d=0.1dとなる。また、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)を5%、間欠添加サイクル数(N)を4サイクルと設定すると、間欠添加1サイクルの時間は、0.1d÷4サイクル=0.025dであるから、間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)は、0.025d×(1−5÷100)=0.02375dとなる。そして、添加する水素供与体の濃度(M)を500kg/mとすると、上記(1)式により、水素供与体添加速度(v)は、3×0.1×(100−5)÷(4×0.02375×5×500)=0.12m/dとなる。以上により、水素供与体の間欠添加条件(実質的にはポンプ運転条件)が決定される。このように決定した水素供与体の間欠添加条件に基づいて、水素供与体の間欠添加を行うことにより、処理水の水質をより良くすることが可能となる。 The amount (X) of hydrogen donor required per unit time is 10 m 3 / d × 100 g (NO 3 / NO 2 ) −N / m 3 × 3 times = 3 kg / d, and the hydraulic residence time ( T) is 1 m 3 ÷ 10 m 3 /d=0.1d. Further, when the ratio (D) of the hydrogen donor addition time to the time per cycle of intermittent addition is set to 5% and the number of intermittent addition cycles (N) is set to 4 cycles, the time of one cycle of intermittent addition is 0.1 d ÷ Since 4 cycles = 0.025d, the hydrogen donor supply stop time (S T ) in the time per cycle of intermittent addition is 0.025d × (1-5 ÷ 100) = 0.02375d. When the concentration (M) of the hydrogen donor to be added is 500 kg / m 3 , the hydrogen donor addition rate (v) is 3 × 0.1 × (100−5) ÷ ( 4 × 0.02375 × 5 × 500) = 0.12 m 3 / d. As described above, conditions for intermittent addition of hydrogen donor (substantially pump operating conditions) are determined. Based on the intermittent addition conditions of the hydrogen donor determined in this manner, the quality of the treated water can be improved by intermittently adding the hydrogen donor.

次に、被処理水の硝酸・亜硝酸濃度や被処理水量が変動した場合について説明する。例えば、被処理水量が一定の下、上記条件から被処理水の硝酸・亜硝酸濃度が2倍の200g(NO/NO)−N/mになった場合、本実施形態(制御方法1)では、水素供与体添加速度(v)を一定とし、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)及び間欠添加サイクル数(N)を、被処理水の硝酸・亜硝酸濃度と被処理水量との積により求められる硝酸・亜硝酸量の増加(被処理水量が一定のため、実質的には硝酸・亜硝酸濃度の増加)に比例して増加させる。すなわち、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)は、上記設定値5%×2(倍)=10%、間欠添加サイクル数(N)は、上記設定値4サイクル×2(倍)=8と設定する。単位時間当たりに必要な水素供与体の添加量(X)は、10m/d×200g(NO/NO)−N/m×3倍=6kg/dである。また、被処理水の硝酸・亜硝酸濃度が増加しても水理学的滞留時間(T)は変化しないから、添加する水素供与体の濃度(M)を変えない場合は、上記(1)式により、間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)は、6×0.1×(100−10)÷(8×0.12×10×500=0.01125dとなる。一方、添加する水素供与体の濃度(M)を変える場合は、Mの値に応じて上記(1)式を満たすように間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)を設定すればよい。このように決定した水素供与体の間欠添加条件に基づいて、水素供与体の間欠添加を行うことにより、安定した処理水質を確保することができる。 Next, the case where the nitric acid / nitrous acid concentration of the water to be treated and the amount of the water to be treated are changed will be described. For example, when the amount of water to be treated is constant and the concentration of nitric acid and nitrous acid in the water to be treated is 200 g (NO 3 / NO 2 ) −N / m 3 , which is twice the above condition, the present embodiment (control method) In 1), the hydrogen donor addition rate (v) is constant, the ratio (D) of the hydrogen donor addition time to the time per cycle of intermittent addition (D) and the number of cycles of intermittent addition (N) are set as nitric acid. Increase in proportion to the increase in the amount of nitric acid and nitrous acid determined by the product of the concentration of nitrous acid and the amount of water to be treated (because the amount of water to be treated is constant, the concentration of nitric acid and nitrous acid is substantially increased). That is, the ratio (D) of the hydrogen donor addition time to the time per cycle of intermittent addition is the above set value 5% × 2 (times) = 10%, and the number of intermittent addition cycles (N) is the above set value 4 cycles. X2 (times) = 8 is set. The addition amount (X) of the hydrogen donor required per unit time is 10 m 3 / d × 200 g (NO 3 / NO 2 ) −N / m 3 × 3 times = 6 kg / d. In addition, since the hydraulic retention time (T) does not change even if the nitric acid / nitrite concentration of the water to be treated increases, if the concentration (M) of the hydrogen donor to be added is not changed, the above formula (1) Thus, the hydrogen donor supply stop time (S T ) per cycle of intermittent addition is 6 × 0.1 × (100−10) ÷ (8 × 0.12 × 10 × 500 = 0.01125d). . on the other hand, when changing the concentration (M) of the hydrogen donor to be added, according to the value of M (1) wherein the hydrogen donor supply stop time in the time per intermittent addition cycle so as to satisfy the (S T Stable treated water quality can be ensured by performing intermittent addition of the hydrogen donor based on the intermittent addition condition of the hydrogen donor thus determined.

上記では、硝酸・亜硝酸量(実質的には硝酸・亜硝酸濃度)が増加した場合を例に説明したが、硝酸・亜硝酸量が減少した場合では、水素供与体添加速度(v)を一定として、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)及び間欠添加サイクル数(N)を硝酸・亜硝酸量の減少に比例して減少させればよい。   In the above description, the case where the amount of nitric acid / nitrous acid (substantially nitric acid / nitrous acid concentration) is increased is described as an example. However, when the amount of nitric acid / nitrous acid decreases, the hydrogen donor addition rate (v) is increased. As a constant, the ratio (D) of the hydrogen donor addition time to the time per cycle of intermittent addition (D) and the number of intermittent addition cycles (N) may be reduced in proportion to the decrease in the amount of nitric acid and nitrous acid.

また、被処理水の硝酸・亜硝酸濃度が一定のまま、被処理水量が増加又は減少した場合でも、水素供与体添加速度(v)を一定として、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)及び間欠添加サイクル数(N)を、被処理水の硝酸・亜硝酸濃度と被処理水量との積により求められる硝酸・亜硝酸量の増加又は減少(硝酸・亜硝酸濃度が一定のため、実質的には被処理水量の増加又は減少)に比例して、それぞれ増加又は減少させればよい。   Further, even when the amount of water to be treated is increased or decreased while the nitric acid / nitrite concentration of the water to be treated is constant, the hydrogen donor addition rate (v) is constant, and the hydrogen donor with respect to the time per cycle of intermittent addition Increase or decrease in the amount of nitric acid / nitrous acid determined by the product of the nitric acid / nitrous acid concentration of the water to be treated and the amount of water to be treated (Nitrate / nitrous acid) Since the concentration is constant, it may be increased or decreased substantially in proportion to the increase or decrease in the amount of water to be treated.

また、別の実施形態(制御方法2)では、例えば、被処理水量が一定の下、上記条件から被処理水の硝酸・亜硝酸濃度が2倍の200g(NO/NO)−N/mになった場合、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)、間欠添加サイクル数(N)を一定とし、水素供与体添加速度(v)を、被処理水の硝酸・亜硝酸濃度と被処理水量との積により求められる硝酸・亜硝酸量の増加(被処理水量が一定のため、実質的には硝酸・亜硝酸濃度の増加)に比例して増加させる。すなわち、水素供与体添加速度(v)を上記設定値0.12m/d×2(倍)=0.24m/dと設定する。単位時間当たりに必要な水素供与体の添加量(X)は、10m/d×200g(NO/NO)−N/m×3倍=6kg/dである。また、被処理水の硝酸・亜硝酸濃度が増加しても水理学的滞留時間は変化しないから、添加する水素供与体の濃度(M)を変えない場合は、上記(1)式により、間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)は、6×0.1×(100−5)÷(4×0.24×5×500=0.02375dとなる。一方、添加する水素供与体の濃度(M)を変える場合は、水素供与体の濃度(M)の値に応じて上記(1)式を満たすように間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)を設定すればよい。このように決定した水素供与体の間欠添加条件に基づいて、水素供与体の間欠添加を行うことにより、安定した処理水質を確保することができる。 In another embodiment (control method 2), for example, the nitric acid / nitrite concentration of treated water is doubled 200 g (NO 3 / NO 2 ) −N / If it becomes m 3, the intermittent ratio of the hydrogen donor addition time for the time of addition per cycle (D), and intermittent addition number of cycles (N) constant, a hydrogen donor additive rate (v), the water to be treated In proportion to the increase in the amount of nitric acid and nitrous acid determined by the product of the concentration of nitric acid and nitrous acid and the amount of treated water (the amount of treated water is constant, so the concentration of nitric acid and nitrous acid increases substantially) . That is, the hydrogen donor addition rate (v) is set to the above set value 0.12 m 3 / d × 2 (times) = 0.24 m 3 / d. The addition amount (X) of the hydrogen donor required per unit time is 10 m 3 / d × 200 g (NO 3 / NO 2 ) −N / m 3 × 3 times = 6 kg / d. In addition, since the hydraulic residence time does not change even if the concentration of nitric acid and nitrous acid in the water to be treated is increased, if the concentration (M) of the hydrogen donor to be added is not changed, the above equation (1) The hydrogen donor supply stop time (S T ) in the time per one addition cycle is 6 × 0.1 × (100−5) ÷ (4 × 0.24 × 5 × 500 = 0.02375d. When changing the concentration (M) of the hydrogen donor to be added, the hydrogen donor supply is stopped at the time per cycle of intermittent addition so as to satisfy the above formula (1) according to the value of the hydrogen donor concentration (M). Time (S T ) may be set, and stable treatment water quality can be ensured by performing intermittent addition of the hydrogen donor based on the intermittent addition condition of the hydrogen donor thus determined.

上記では、硝酸・亜硝酸量(実質的には硝酸・亜硝酸濃度)が増加した場合を例に説明したが、硝酸・亜硝酸量が減少した場合では、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)、間欠添加サイクル数(N)を一定として、水素供与体添加速度(v)を硝酸・亜硝酸量の減少に比例して減少させればよい。   In the above description, the case where the amount of nitric acid / nitrous acid (substantially nitric acid / nitrous acid concentration) increases is described as an example. However, when the amount of nitric acid / nitrous acid decreases, the hydrogen with respect to the time per cycle of intermittent addition The ratio (D) of the donor addition time and the number of intermittent addition cycles (N) may be constant, and the hydrogen donor addition rate (v) may be decreased in proportion to the decrease in the amount of nitric acid / nitrite.

また、被処理水の硝酸・亜硝酸濃度が一定のまま、被処理水量が増加又は減少した場合でも、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)、間欠添加サイクル数(N)を一定として、水素供与体添加速度(v)を、被処理水の硝酸・亜硝酸濃度と被処理水量との積により求められる硝酸・亜硝酸量の増加又は減少(硝酸・亜硝酸濃度が一定のため、実質的には被処理水量の増加又は減少)に比例して、増加又は減少させればよい。   Further, even when the amount of water to be treated is increased or decreased while the nitric acid / nitrite concentration of the water to be treated is constant, the ratio (D) of the hydrogen donor addition time to the time per cycle of intermittent addition, the number of intermittent addition cycles (N) is constant, and the hydrogen donor addition rate (v) is increased or decreased (nitric acid / nitrous acid) determined by the product of the nitric acid / nitrous acid concentration of the water to be treated and the amount of water to be treated. Since the concentration is constant, it may be increased or decreased substantially in proportion to the increase or decrease in the amount of water to be treated.

また、別の実施形態(制御方法3)では、例えば、被処理水量が一定の下、上記条件から被処理水の硝酸・亜硝酸濃度が2倍の200g(NO/NO)−N/mになった場合、水素供与体添加速度(v)、間欠添加サイクル数(N)を一定とし、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)を、被処理水の硝酸・亜硝酸濃度と被処理水量との積により求められる硝酸・亜硝酸量の増加(被処理水量が一定のため、実質的には硝酸・亜硝酸濃度の増加)に比例して増加させる。すなわち、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)を上記設定値5%×2(倍)=10%と設定する。単位時間当たりに必要な水素供与体の添加量(X)は、10m/d×200g(NO/NO)−N/m×3倍=6kg/dである。また、被処理水の硝酸・亜硝酸濃度が増加しても水理学的滞留時間は変化しないから、添加する水素供与体の濃度(M)を変えない場合は、上記(1)式により、間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)は、6×0.1×(100−10)÷(4×0.12×10×500=0.0225dとなる。一方、添加する水素供与体の濃度(M)を変える場合は、水素供与体の濃度(M)の値に応じて上記(1)式を満たすように、間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)を設定すればよい。このように決定した水素供与体の間欠添加条件に基づいて、水素供与体の間欠添加を行うことにより、安定した処理水質を確保することができる。 In another embodiment (control method 3), for example, the nitric acid / nitrous acid concentration of the treated water is doubled from the above conditions by 200 g (NO 3 / NO 2 ) −N / m 3 , the hydrogen donor addition rate (v) and the number of intermittent addition cycles (N) were constant, and the ratio (D) of the hydrogen donor addition time to the time per cycle of intermittent addition was determined as the water to be treated. In proportion to the increase in the amount of nitric acid and nitrous acid determined by the product of the concentration of nitric acid and nitrous acid and the amount of treated water (the amount of treated water is constant, so the concentration of nitric acid and nitrous acid increases substantially) . That is, the ratio (D) of the hydrogen donor addition time to the time per cycle of intermittent addition is set to the above set value 5% × 2 (times) = 10%. The addition amount (X) of the hydrogen donor required per unit time is 10 m 3 / d × 200 g (NO 3 / NO 2 ) −N / m 3 × 3 times = 6 kg / d. In addition, since the hydraulic residence time does not change even if the concentration of nitric acid and nitrous acid in the water to be treated is increased, if the concentration (M) of the hydrogen donor to be added is not changed, the above equation (1) The hydrogen donor supply stop time (S T ) in the time per addition cycle is 6 × 0.1 × (100−10) ÷ (4 × 0.12 × 10 × 500 = 0.0225d. When changing the concentration (M) of the hydrogen donor to be added, supply of the hydrogen donor at a time per cycle of intermittent addition so as to satisfy the above formula (1) according to the value of the hydrogen donor concentration (M). A stop time (S T ) may be set, and stable treatment water quality can be ensured by performing intermittent addition of the hydrogen donor based on the intermittent addition condition of the hydrogen donor thus determined.

上記では、硝酸・亜硝酸量(実質的には硝酸・亜硝酸濃度)が増加した場合を例に説明したが、硝酸・亜硝酸量が減少した場合では、水素供与体添加速度(v)、間欠添加サイクル数(N)を一定とし、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)を硝酸・亜硝酸量の減少に比例して減少させればよい。   In the above, the case where the amount of nitric acid / nitrous acid (substantially nitric acid / nitrous acid concentration) is increased is described as an example. However, when the amount of nitric acid / nitrous acid decreases, the hydrogen donor addition rate (v), The number of intermittent addition cycles (N) may be constant, and the ratio (D) of the hydrogen donor addition time to the time per cycle of intermittent addition may be reduced in proportion to the decrease in the amount of nitric acid / nitrite.

また、被処理水の硝酸・亜硝酸濃度が一定のまま被処理水量が増加又は減少した場合でも、水素供与体添加速度(v)、間欠添加サイクル数(N)を一定として、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)を、被処理水の硝酸・亜硝酸濃度と被処理水量との積により求められる硝酸・亜硝酸量の増加又は減少(硝酸・亜硝酸濃度が一定のため、実質的には被処理水量の増加又は減少)に比例して増加又は減少させればよい。   In addition, even if the amount of water to be treated increases or decreases while the concentration of nitric acid and nitrous acid is constant, the hydrogen donor addition rate (v) and the number of intermittent addition cycles (N) are constant and one cycle of intermittent addition is performed. Increase or decrease in the amount of nitric acid / nitrous acid determined by the product of the nitric acid / nitrous acid concentration of the water to be treated and the amount of water to be treated (the nitric acid / nitrous acid concentration) Therefore, it may be increased or decreased in proportion to the increase or decrease of the amount of water to be treated.

ここで、被処理水の硝酸・亜硝酸濃度と被処理水量の積から求められる硝酸・亜硝酸量が増加又は減少した場合、上記制御方法1〜3のいずれかの方法によっても、安定した処理水質を確保することができる。しかし、被処理水量が一定の下、被処理水の硝酸・亜硝酸濃度が増加した場合、上記制御方法1を実施する方が、制御方法2,3より安定した処理水質を確保することができる。また、被処理水の硝酸・亜硝酸濃度が一定の下、被処理水量が増加又は減少した場合は、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)及び間欠添加サイクル数(N)を一定として制御し易い点で、上記制御方法2を実施する方が好ましい。   Here, when the amount of nitric acid / nitrite obtained from the product of the nitric acid / nitrite concentration of the water to be treated and the amount of water to be treated is increased or decreased, stable treatment can be achieved by any of the above control methods 1 to 3. Water quality can be ensured. However, when the concentration of treated water increases and the concentration of nitric acid and nitrous acid in treated water increases, it is possible to secure more stable treated water quality than the control methods 2 and 3 when the control method 1 is performed. . In addition, when the amount of water to be treated is increased or decreased while the concentration of nitric acid and nitrous acid is constant, the ratio of hydrogen donor addition time to the time per cycle of intermittent addition (D) and the number of intermittent addition cycles It is preferable to implement the control method 2 in that it is easy to control with (N) being constant.

次に、水素供与体の間欠添加サイクル数(N)について説明する。間欠添加サイクル数(N)において、脱窒反応層10の水理学的滞留時間(T)内に添加する水素供与体量が同じとき、間欠添加サイクル数(N)が多いほど良好な処理水質を確保することができる一方、間欠添加サイクル数(N)が少ないほど処理水質が悪化することとなる。これは、水素供与体の間欠添加より、脱窒反応層10内で水素供与体の時間的濃度勾配ができるとき、間欠添加サイクル数(N)が少ないと、水素供与体の濃度が零(零近辺も含む)となる時間が長くなり、脱窒処理が行われないからである。例えば、脱窒処理された処理水中の窒素濃度を10mgN/L以下にする場合には、間欠添加サイクル数(N)を2.5以上とすることが望ましく、さらにより処理水質を重視するならば、3.5以上とすることがより望ましい。一方、間欠添加サイクル数(N)が多いと水素供与体の濃度が零になる時間が短くなり、水質はよくなるが、脱窒反応層10内で水素供与体の時間的濃度勾配の幅が減少し、汚泥の沈降性が悪くなる。なお、汚泥の沈降性を考慮すると、脱窒反応槽10内での水素供与体の時間的濃度勾配の幅はTOC濃度で10mg/L以上とすることが望ましいため、間欠添加サイクル数(N)の上限は、脱窒反応槽10内での水素供与体の時間的濃度勾配の幅がTOC濃度で10mg/L以上となるように設定されることが好ましい。   Next, the number of intermittent addition cycles (N) of the hydrogen donor will be described. In the intermittent addition cycle number (N), when the amount of hydrogen donor added within the hydraulic retention time (T) of the denitrification reaction layer 10 is the same, the higher the intermittent addition cycle number (N), the better the treated water quality. On the other hand, as the number of intermittent addition cycles (N) is smaller, the quality of the treated water is worsened. This is because when the hydrogen donor has a temporal concentration gradient in the denitrification reaction layer 10 than the intermittent addition of the hydrogen donor, the concentration of the hydrogen donor becomes zero (zero) if the intermittent addition cycle number (N) is small. This is because the time required for the denitrification process is not performed. For example, when the nitrogen concentration in the denitrified treated water is 10 mg N / L or less, it is desirable to set the number of intermittent addition cycles (N) to 2.5 or more, and if the treated water quality is more important. 3.5 or more is more desirable. On the other hand, when the number of intermittent addition cycles (N) is large, the time when the hydrogen donor concentration becomes zero is shortened and the water quality is improved, but the width of the temporal concentration gradient of the hydrogen donor is reduced in the denitrification reaction layer 10. And the sedimentation property of sludge becomes worse. In consideration of the sedimentation property of the sludge, the width of the temporal concentration gradient of the hydrogen donor in the denitrification reaction tank 10 is desirably 10 mg / L or more in terms of the TOC concentration. Therefore, the number of intermittent addition cycles (N) Is preferably set such that the width of the temporal concentration gradient of the hydrogen donor in the denitrification reaction tank 10 is 10 mg / L or more in terms of the TOC concentration.

また、沈降性の改善には水素供与体濃度が零(零近辺も含む)になっている時間も必要である。間欠添加サイクル数(N)が多いと連続注入に近づくため、水素供与体濃度を零付近にコントロールすることが困難になる。従って、この観点でも間欠添加サイクル数(N)の上限は決定される。通常、水素供与体は理論的な消費量よりも1〜20%程度多く添加する。例えば、水素供与体の必要量に対して10%多く水素供与体を添加した場合、10%分の水素供与体が、間欠添加1サイクル当たりの時間において、流入する被処理水によって後段へ流出すれば、水素供与体濃度が零(零近辺も含む)となる。つまり、間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)が、脱窒反応槽の総容量/脱窒反応槽に流入する水流量で求められる水理学的滞留時間(T)の10%を下回るような、間欠添加サイクル数(N)や間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)に設定することは好ましくない。従ってこの例の場合は、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)が5%だった場合、サイクル数を(100−5)/10%=9.5以下とすることが望ましい。必要な水素供与体に対して5%多く水素供与体を添加していた場合は、19以下とすることが望ましい。このように、間欠添加サイクル数(N)は、水素供与体の時間的濃度勾配の幅がTOC濃度で10mg/L以上且つ、上記水素供与体濃度が零(零近辺も含む)になっている時間を含む範囲で決定されることが望ましい。 In addition, it takes time for the hydrogen donor concentration to be zero (including near zero) in order to improve sedimentation. When the number of intermittent addition cycles (N) is large, continuous injection is approached, making it difficult to control the hydrogen donor concentration to near zero. Therefore, also from this viewpoint, the upper limit of the number of intermittent addition cycles (N) is determined. Usually, the hydrogen donor is added about 1 to 20% more than the theoretical consumption. For example, when 10% more hydrogen donors are added to the required amount of hydrogen donors, 10% of the hydrogen donors are discharged to the subsequent stage by the incoming treated water during the time per cycle of intermittent addition. In this case, the hydrogen donor concentration becomes zero (including near zero). That is, the hydrogen donor supply stop time (S T ) in the time per cycle of intermittent addition is determined by the total capacity of the denitrification reaction tank / the flow rate of water flowing into the denitrification reaction tank (T) It is not preferable to set the number of intermittent addition cycles (N) or the ratio (D) of the hydrogen donor addition time with respect to the time per one cycle of intermittent addition, which is less than 10%. Therefore, in this example, when the ratio (D) of the hydrogen donor addition time to the time per cycle of intermittent addition is 5%, the number of cycles is set to (100-5) /10%=9.5 or less. It is desirable. In the case where 5% more hydrogen donor is added to the required hydrogen donor, it is desirable to set it to 19 or less. Thus, the number of intermittent addition cycles (N) is such that the width of the temporal concentration gradient of the hydrogen donor is 10 mg / L or more in terms of the TOC concentration, and the hydrogen donor concentration is zero (including near zero). It is desirable to be determined within a range including time.

また、上記例示したように、被処理水の硝酸・亜硝酸濃度と被処理水量の積から求められる硝酸・亜硝酸の量の減少に比例して間欠添加サイクル数(N)を減少させた場合に、間欠添加サイクル数(N)が2.5未満となった場合には、間欠添加サイクル数(N)を2.5以上に設定して、上記(1)式を満たすように各パラメータを再設定することが好ましい。また、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)及び間欠添加サイクル数(N)が前述した零(零近辺も含む)の時間を形成することができない値となった場合、零(零近辺も含む)になっている時間を含む範囲となるように、上記(1)式を満たすようにパラメータを再設定する。   In addition, as exemplified above, when the number of intermittent addition cycles (N) is decreased in proportion to the decrease in the amount of nitric acid / nitrous acid obtained from the product of the nitric acid / nitrous acid concentration of the water to be treated and the amount of water to be treated When the number of intermittent addition cycles (N) is less than 2.5, the number of intermittent addition cycles (N) is set to 2.5 or more, and each parameter is set so as to satisfy the above formula (1). It is preferable to reset. Further, the ratio (D) of the hydrogen donor addition time with respect to the time per one cycle of intermittent addition and the number (N) of the intermittent addition cycles become values that cannot form the above-described time of zero (including near zero). In this case, the parameters are reset so as to satisfy the above-described expression (1) so that the range including the time that is zero (including the vicinity of zero) is included.

また、水素供与体の間欠添加においては、上記制御方法1〜3を組み合わせて制御してもよい。例えば、被処理水の硝酸・亜硝酸濃度が減少した場合に上記制御方法1を実施すると間欠添加サイクル数(N)は減少する。そこで、間欠添加サイクル数(N)が2.5となった時点で、それ以上の被処理水の硝酸・亜硝酸濃度の減少が認められる場合は、制御方法2又は3を実施する。   The intermittent addition of the hydrogen donor may be controlled by combining the above control methods 1 to 3. For example, when the control method 1 is performed when the concentration of nitric acid and nitrous acid in the water to be treated is reduced, the number of intermittent addition cycles (N) is reduced. Therefore, when the number of intermittent addition cycles (N) reaches 2.5, if a further decrease in the concentration of nitric acid / nitrous acid in the water to be treated is recognized, control method 2 or 3 is performed.

また、被処理水の硝酸・亜硝酸濃度と被処理水量が同時に増減する場合も、上記制御方法1〜3のいずれか若しくは組み合わせによる制御が可能である。例えば、被処理水量10m/d、被処理水の硝酸・亜硝酸濃度100g(NO/NO)−N/mが被処理水量20m/d、被処理水の硝酸・亜硝酸濃度200g(NO/NO)−N/mに変動した場合、上記制御方法1を実施すると、被処理水の硝酸・亜硝酸濃度と被処理水量の積から求められる硝酸・亜硝酸量は4倍増加したことになるから、上記(1)式において、水素供与体添加速度(v)を一定として、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)及び間欠添加サイクル数(N)を被処理水の硝酸・亜硝酸濃度の増加に比例して増加させる。すなわち、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)は、上記設定値5%×4(倍)=20%、間欠添加サイクル数(N)は、上記設定値4サイクル×4(倍)=16と設定する。単位時間当たりに必要な水素供与体の添加量(X)は、3kg/d×4(倍)=12kg/dである。また、水理学的滞留時間(T)は0.1d÷2=0.05dである。そして、添加する水素供与体の濃度(M)を変えない場合は、上記(1)式により、間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)は、12×0.05×(100−20)÷(16×0.12×20×500=0.0025dとなる。 Moreover, also when the nitric acid and nitrous acid density | concentration of to-be-processed water and the to-be-processed water quantity increase / decrease simultaneously, control by the said control methods 1-3, or a combination is possible. For example, the amount of water to be treated is 10 m 3 / d, the concentration of nitric acid / nitrite in treated water is 100 g (NO 3 / NO 2 ) -N / m 3, the amount of water to be treated is 20 m 3 / d, and the concentration of nitric acid and nitrous acid in treated water When the control method 1 is carried out when the amount is changed to 200 g (NO 3 / NO 2 ) −N / m 3 , the amount of nitric acid / nitrite obtained from the product of the nitric acid / nitrite concentration of the water to be treated and the amount of water to be treated is In the above formula (1), the hydrogen donor addition rate (v) is constant, and the ratio (D) of the hydrogen donor addition time to the time per cycle of intermittent addition and the intermittent addition cycle The number (N) is increased in proportion to the increase in the concentration of nitric acid and nitrous acid in the water to be treated. That is, the ratio (D) of the hydrogen donor addition time to the time per cycle of intermittent addition is the above set value 5% × 4 (times) = 20%, and the number of intermittent addition cycles (N) is the above set value 4 cycles. X4 (times) = 16 is set. The amount (X) of hydrogen donor required per unit time is 3 kg / d × 4 (times) = 12 kg / d. The hydraulic retention time (T) is 0.1d / 2 = 0.05d. When the concentration (M) of the hydrogen donor to be added is not changed, the hydrogen donor supply stop time (S T ) in the time per cycle of intermittent addition is 12 × 0.05 according to the above formula (1). X (100-20) / (16 * 0.12 * 20 * 500 = 0.0005d).

また、例えば、制御方法1及び2の組み合わせにより制御する場合は、まず、被処理水量を一定とし、被処理水の硝酸・亜硝酸濃度が2倍になったと仮定して、制御方法1を実施した場合の各パラメータを求める。そして、次に被処理水量が2倍になったと改定して制御方法2を実施した場合の各パラメータを求める。この場合のパラメータは、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)は10%、間欠添加サイクル数(N)は8サイクル、間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)は0.0056dである。 For example, when controlling by a combination of the control methods 1 and 2, first, the control method 1 is performed on the assumption that the amount of water to be treated is constant and the concentration of nitric acid and nitrous acid in the water to be treated has doubled. Each parameter is obtained. And each parameter at the time of implementing the control method 2 by amending that the amount of to-be-processed water doubled is calculated | required. The parameters in this case are as follows: the ratio of hydrogen donor addition time to the time per cycle of intermittent addition (D) is 10%, the number of intermittent addition cycles (N) is 8 cycles, and the hydrogen donor at the time per cycle of intermittent addition The supply stop time (S T ) is 0.0056d.

このように制御方法1を実施した場合と、制御方法1及び2の組み合わせを実施した場合とでは、算出したパラメータの値が異なるが、このような場合は、間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)を小さくすることができ、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)及び間欠添加サイクル数(N)の値がなるべく変動しない制御方法を採用することが好ましい。間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)の値が大きくなると、脱窒反応層10内の水素供与体の濃度が零になる時間が長くなり、その零の時間に処理水として流出してしまう硝酸・亜硝酸量が多くなってしまう。また、間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)及び間欠添加サイクル数(N)の値が大きく変動すると、汚泥の沈降性が低下する。 Thus, when the control method 1 is implemented and when the combination of the control methods 1 and 2 is implemented, the calculated parameter values are different. In such a case, the hydrogen in the time per cycle of intermittent addition is different. Control method in which the donor supply stop time (S T ) can be reduced, and the ratio (D) of the hydrogen donor addition time to the time per cycle of intermittent addition and the value of the number of intermittent addition cycles (N) do not vary as much as possible. Is preferably adopted. When the value of the hydrogen donor supply stop time ( ST ) per cycle of intermittent addition increases, the time during which the concentration of the hydrogen donor in the denitrification reaction layer 10 becomes zero becomes longer, and the zero time is reached. The amount of nitric acid and nitrous acid that flows out as treated water will increase. Moreover, if the ratio of the hydrogen donor addition time to the time per one cycle of intermittent addition (D) and the value of the number of intermittent addition cycles (N) vary greatly, the sedimentation property of sludge decreases.

なお、一般的な手法である水素供与体の連続添加の場合、硝酸・亜硝酸濃度の上昇に応じた水素供与体量の増加方法は、水素供与体の添加速度を増加させることしかできない。しかし、間欠添加においては、上記パラメータを組み合わせた制御が可能である。   In the case of continuous addition of a hydrogen donor, which is a general technique, the method of increasing the amount of hydrogen donor according to the increase in the concentration of nitric acid and nitrous acid can only increase the addition rate of the hydrogen donor. However, in intermittent addition, control combining the above parameters is possible.

また、水素供与体の時間的濃度勾配の幅については、脱窒反応槽10を複数に分割することによっても、改善することができる(例えば、図3参照)。脱窒反応槽10を複数に分割する場合、前段の脱窒反応槽10を小さくし、単一の脱窒反応槽10における水素供与体の間欠添加の条件で前段槽へ水素供与体を間欠添加することにより、水素供与体の時間的濃度勾配を大きくすることができる。また、前段槽の大きさを後段槽の大きさと等しくすると、水素供与体の時間的濃度勾配は小さくなるが、処理水質が改善する。これらの観点から、前段槽の大きさは後段槽の大きさの1/3以下となるように設定することが好ましい。また、分割数を多くするほど、それぞれの効果はより顕著に表れることとなるが、反応槽に必要な運転動力が増すため処理コストが増加する場合がある。したがって、分割数は5以下が好ましく、3以下がより好ましい。   Further, the width of the temporal concentration gradient of the hydrogen donor can also be improved by dividing the denitrification reaction tank 10 into a plurality of parts (for example, see FIG. 3). When the denitrification reaction tank 10 is divided into a plurality of parts, the preceding denitrification reaction tank 10 is made smaller and the hydrogen donor is intermittently added to the previous stage under the condition of intermittent addition of the hydrogen donor in the single denitrification reaction tank 10. By doing so, the temporal concentration gradient of the hydrogen donor can be increased. In addition, when the size of the front tank is equal to the size of the rear tank, the temporal concentration gradient of the hydrogen donor is reduced, but the quality of the treated water is improved. From these viewpoints, the size of the front tank is preferably set to be 1/3 or less of the size of the rear tank. In addition, as the number of divisions increases, the respective effects become more prominent, but the processing cost may increase because the operating power required for the reaction vessel increases. Therefore, the number of divisions is preferably 5 or less, and more preferably 3 or less.

また、水素供与体濃度が零(零近辺も含む)になっている時間についても、脱窒反応槽10を複数に分割することによって、改善することができる(例えば、図3参照)。脱窒反応槽10を複数に分割する場合、前段の脱窒反応槽10を小さくし、単一の脱窒反応槽10における水素供与体の間欠添加の条件で前段槽へ水素供与体を間欠添加することにより、前段反応槽の総容量/前段反応槽に流入する水流量で求められる水理学的滞留時間が短くなることから、後段へ押し出しやすくなり、水素供与体濃度が零(零近辺も含む)となり易くなる。   Further, the time during which the hydrogen donor concentration is zero (including near zero) can be improved by dividing the denitrification reaction tank 10 into a plurality of parts (see, for example, FIG. 3). When the denitrification reaction tank 10 is divided into a plurality of parts, the preceding denitrification reaction tank 10 is made smaller and the hydrogen donor is intermittently added to the previous stage under the condition of intermittent addition of the hydrogen donor in the single denitrification reaction tank 10. As a result, the hydraulic retention time required by the total volume of the previous reaction tank / the flow rate of water flowing into the previous reaction tank is shortened, so that it is easy to push out to the subsequent stage, and the hydrogen donor concentration is zero (including near zero). ).

本実施形態で水素供与体の間欠運転を制御するにあたり、脱窒反応槽10内の水素供与体の濃度を直接検出するセンサを用いて、水素供与体濃度を検出してもよいが、処理対象である硝酸・亜硝酸の濃度を測定して、その結果に基づき水素供与体の間欠運転を制御することもできる。また、pHを測定して、その結果に基づき水素供与体の間欠運転を制御することもできる。   In controlling the intermittent operation of the hydrogen donor in the present embodiment, the hydrogen donor concentration may be detected using a sensor that directly detects the concentration of the hydrogen donor in the denitrification reaction tank 10, The intermittent operation of the hydrogen donor can also be controlled based on the result of measuring the concentration of nitric acid and nitrous acid. It is also possible to measure the pH and control the intermittent operation of the hydrogen donor based on the result.

例えば、硝酸・亜硝酸濃度を測定して、水素供与体の間欠運転を制御する場合、本実施形態における被処理水中の硝酸・亜硝酸濃度は、例えば脱窒反応槽10に流入する硝酸・亜硝酸濃度を直接検出する方法により測定されてもよいが、T−Nセンサ30(アンモニアセンサ等でもよい)等によって間接的に推定されてもよい。また、被処理水流量は、例えば流量センサ28により検出される。そして、それらの各データが制御部32に送信される。制御部32により、被処理水中の硝酸・亜硝酸濃度と被処理水量との積から硝酸・亜硝酸量が求められる。被処理水中の硝酸・亜硝酸濃度データ及び被処理水量データは所定の時間間隔で制御部32に送られ、所定の経過時間に対する硝酸・亜硝酸量の増加量又は減少量が算出される。そして、制御部32により、その算出された硝酸・亜硝酸量の増加または減少に応じて、上記説明したように各種パラメータが設定され、水素供与体の間欠添加が制御される(実質的には、ポンプ16の運転条件が制御される)。   For example, when the nitric acid / nitrous acid concentration is measured to control the intermittent operation of the hydrogen donor, the nitric acid / nitrous acid concentration in the water to be treated in this embodiment is, for example, the nitric acid / nitrous acid flowing into the denitrification reaction tank 10. Although it may be measured by a method of directly detecting the nitric acid concentration, it may be indirectly estimated by a TN sensor 30 (which may be an ammonia sensor or the like). The treated water flow rate is detected by, for example, the flow rate sensor 28. These pieces of data are transmitted to the control unit 32. The control unit 32 determines the amount of nitric acid / nitrous acid from the product of the concentration of nitric acid / nitrite in the water to be treated and the amount of water to be treated. The nitric acid / nitrous acid concentration data in the for-treatment water and the amount of the for-treatment water are sent to the control unit 32 at predetermined time intervals, and an increase or decrease in the amount of nitric acid / nitrite for a predetermined elapsed time is calculated. Then, according to the increase or decrease in the calculated amount of nitric acid / nitrite, the control unit 32 sets various parameters as described above, and controls the intermittent addition of the hydrogen donor (substantially) The operating conditions of the pump 16 are controlled).

また、pHを測定して、水素供与体の間欠運転を制御する場合、本実施形態では、脱窒反応槽10内の水素供与体の濃度を直接検出するセンサを用いて、水素供与体濃度を検出してもよいが、pHセンサ等を用いて、脱窒反応槽10内のpHの値から水素供与体の濃度を間接的に検出してもよい。脱窒反応槽10内に水素供与体が十分にあり脱窒反応が進行しているときは、アルカリ度が反応により供給されるのでpHが高くなる傾向にあり、脱窒反応槽10内に水素供与体が不足すると脱窒反応が停止しているためアルカリ度が供給されず、脱窒反応が進んでいる時よりもpHが低くなる。このpHの変動をpHセンサにより検出することで、水素供与体の濃度を間接的に検出することが可能となる。   In the present embodiment, when the pH is measured to control the intermittent operation of the hydrogen donor, in this embodiment, the hydrogen donor concentration is determined using a sensor that directly detects the hydrogen donor concentration in the denitrification reaction tank 10. Although it may be detected, the concentration of the hydrogen donor may be indirectly detected from the pH value in the denitrification reaction tank 10 using a pH sensor or the like. When there is sufficient hydrogen donor in the denitrification reaction tank 10 and the denitrification reaction proceeds, the alkalinity is supplied by the reaction, so the pH tends to increase. If the donor is insufficient, the denitrification reaction is stopped, so the alkalinity is not supplied, and the pH is lower than when the denitrification reaction is in progress. By detecting this change in pH with a pH sensor, the concentration of the hydrogen donor can be indirectly detected.

なお、脱窒反応槽10内における水素供与体濃度を測定して、水素供与体の間欠運転を制御する場合は、水素供与体の添加開始時点と脱窒反応槽10内において水素供与体濃度が零近辺になった時点、すなわちモニタリングされた水素供与体の濃度減少勾配は水素供与体が十分にあるときは、0次反応である脱窒反応速度に従い一定値を示すが、零近辺に近づくとミカエリス・メンテン式に示されるように基質濃度の減少にしたがって反応速度が小さくなるので、その変曲点を検出した時点との時間差を水素供与体の間欠添加1サイクル当たりの時間に読み替え、水素供与体濃度が零近辺になったら、ポンプ16を起動させ水素供与体を添加する。そして、脱窒反応槽10の水理学的滞留時間を上記読み替えた間欠添加1サイクル当たりの時間で除した間欠添加サイクル数(N)の値が2.5以上(好ましくは3.5以上)となるように、水素供与体の添加時間及び水素供与体の添加速度を、任意に設定した(サイクル数5等)サイクル数よりもサイクル数が多い場合は増加させ、サイクル数が少ない場合は減少させて制御を行う。このように制御を行うことで、零近辺の時間をコントロールして水質を改善させつつ、間欠添加を制御することができる。   When the hydrogen donor concentration in the denitrification reaction tank 10 is measured to control the intermittent operation of the hydrogen donor, the hydrogen donor concentration in the denitrification reaction tank 10 at the start of hydrogen donor addition and in the denitrification reaction tank 10 is determined. When the hydrogen donor is close to zero, that is, when the concentration gradient of the monitored hydrogen donor is sufficient, it shows a constant value according to the denitrification reaction rate of the zeroth order reaction. As shown in the Michaelis-Menten equation, the reaction rate decreases as the substrate concentration decreases, so the time difference from when the inflection point is detected is read as the time per cycle of intermittent hydrogen donor addition, and hydrogen is donated. When the body concentration is near zero, the pump 16 is activated and a hydrogen donor is added. And the value of the number of intermittent addition cycles (N) obtained by dividing the hydraulic residence time of the denitrification reaction tank 10 by the time per cycle of the intermittent addition described above is 2.5 or more (preferably 3.5 or more). Thus, the hydrogen donor addition time and the hydrogen donor addition rate are increased when the number of cycles is larger than the number of cycles set arbitrarily (5 cycles, etc.), and decreased when the number of cycles is small. Control. By controlling in this way, intermittent addition can be controlled while improving the water quality by controlling the time near zero.

図2は、本実施形態に係る窒素含有水の生物処理装置の他の一例を示す概略構成図である。図2に示す窒素含有水の生物処理装置2は、硝化反応槽34を備えていること以外は、図1に示す窒素含有水の生物処理装置1と同様の構成である。図2に示す窒素含有水の生物処理装置2は、被処理水中に有機体窒素、アンモニウムイオン等が含まれている場合に好適であり、硝化反応槽34で有機体窒素、アンモニウムイオンを好気的(酸素の存在下で)に硝酸若しくは亜硝酸に酸化することができる。T−Nセンサ30は硝化反応槽34に設置されているが、脱窒反応槽10内に流入する被処理水中の硝酸、亜硝酸濃度を検出することができれば、何れに設置されていてもよい。   FIG. 2 is a schematic configuration diagram illustrating another example of the biological treatment apparatus for nitrogen-containing water according to the present embodiment. The biological treatment apparatus 2 for nitrogen-containing water shown in FIG. 2 has the same configuration as the biological treatment apparatus 1 for nitrogen-containing water shown in FIG. 1 except that a nitrification reaction tank 34 is provided. The biological treatment apparatus 2 for nitrogen-containing water shown in FIG. 2 is suitable when the water to be treated contains organic nitrogen, ammonium ions, etc., and the organic nitrogen and ammonium ions are aerobic in the nitrification reaction tank 34. Can be oxidized (in the presence of oxygen) to nitric acid or nitrous acid. Although the TN sensor 30 is installed in the nitrification reaction tank 34, the TN sensor 30 may be installed anywhere as long as it can detect the concentration of nitric acid and nitrous acid in the water to be treated flowing into the denitrification reaction tank 10. .

硝化反応槽34の被処理水入口(不図示)には、被処理水流入ライン22aが接続されている。硝化反応槽34の被処理水出口(不図示)と脱窒反応槽10の被処理水入口(不図示)との間には、被処理水流入ライン22bが接続されている。脱窒反応槽10の水素供与体入口(不図示)とタンク18の出口(不図示)との間は、ポンプ16を介して水素供与体添加ライン20が接続されている。脱窒反応槽10の出口(不図示)と酸化槽12の入口(不図示)との間は、被処理水流入ライン22cが接続され、酸化槽12の出口(不図示)と沈殿処理槽14の入口(不図示)との間は、被処理水流入ライン22dが接続されている。沈殿処理槽14の処理水出口には処理水排出ライン24が接続されている。沈殿処理槽14の汚泥出口と被処理水流入ライン22aとの間には、汚泥返送ライン26が接続されている。   A treated water inflow line 22 a is connected to a treated water inlet (not shown) of the nitrification reaction tank 34. A treated water inflow line 22b is connected between the treated water outlet (not shown) of the nitrification reaction tank 34 and the treated water inlet (not shown) of the denitrification reaction tank 10. A hydrogen donor addition line 20 is connected via a pump 16 between a hydrogen donor inlet (not shown) of the denitrification reaction tank 10 and an outlet (not shown) of the tank 18. A treated water inflow line 22c is connected between the outlet (not shown) of the denitrification reaction tank 10 and the inlet (not shown) of the oxidation tank 12, and the outlet (not shown) of the oxidation tank 12 and the precipitation treatment tank 14 are connected. An inlet line (22d) to be treated is connected to the inlet (not shown). A treated water discharge line 24 is connected to the treated water outlet of the precipitation treatment tank 14. A sludge return line 26 is connected between the sludge outlet of the sedimentation tank 14 and the treated water inflow line 22a.

以下に、本実施形態の窒素含有水の生物処理装置2の動作について説明する。   Below, operation | movement of the biological treatment apparatus 2 of nitrogen-containing water of this embodiment is demonstrated.

被処理水は、被処理水流入ライン22aから硝化反応槽34に供給される。そして、硝化反応槽34では、主に被処理水中の有機体窒素、アンモニア等が好気的(酸素の存在下で)に硝酸若しくは亜硝酸に酸化される。   The treated water is supplied to the nitrification reaction tank 34 from the treated water inflow line 22a. In the nitrification reaction tank 34, organic nitrogen, ammonia and the like in the water to be treated are mainly oxidized aerobically (in the presence of oxygen) to nitric acid or nitrous acid.

硝化反応槽34内には、担体に硝化菌を含む微生物膜を担持させてなる微生物担持担体が充填されている。また、硝化反応槽34内には、空気導入管(不図示)が接続されており、硝化部内の被処理水に空気を供給することができる構造になっている。そして、硝化反応槽34内で、微生物担持担体の硝化菌の働きにより、被処理水中のアンモニウムイオンを硝酸、亜硝酸に硝化させる。硝化菌は、被処理水中に含まれるアンモニウムイオンを亜硝酸に硝化する独立栄養性細菌のアンモニア酸化細菌、アンモニウムイオンを硝酸に硝化する独立栄養性細菌の亜硝酸酸化細菌等である。   The nitrification reaction tank 34 is filled with a microorganism-supporting carrier obtained by supporting a microorganism film containing nitrifying bacteria on a carrier. In addition, an air introduction pipe (not shown) is connected in the nitrification reaction tank 34 so that air can be supplied to the water to be treated in the nitrification unit. Then, in the nitrification reaction tank 34, ammonium ions in the water to be treated are nitrified into nitric acid and nitrous acid by the action of the nitrifying bacteria of the microorganism-supporting carrier. The nitrifying bacteria include ammonia-oxidizing bacteria, which are autotrophic bacteria that nitrify ammonium ions contained in the water to be treated into nitrite, and nitrite-oxidizing bacteria, which are autotrophic bacteria that nitrify ammonium ions into nitric acid.

硝酸にまで硝化されるとpHが低下する。そこで硝化反応槽34内にpHセンサを設置し、該pHセンサによって測定されたpHデータに基づき、細菌の活性が高いpH6〜8となるようアルカリをポンプによって添加する。使用するアルカリは水酸化ナトリウム、水酸化カリウムなどが挙げられるが特に限定はない。この時、硝化反応槽34の処理速度が0.6kg/m/d以上で運転される場合は、硝化反応槽34へ無機炭素を供給するラインを設置し、無機炭素を供給する。供給する無機炭素としては、炭酸水素ナトリウム、炭酸ナトリウム、二酸化炭素などが挙げられるが特に限定はない。流入する原水にリンが含まれない場合は、最終処理水中にリンが1mgP/L程度残留するように硝化反応槽34、もしくは原水槽にてリンを添加する。添加するリンとしては、リン酸、その他リン酸塩が挙げられるが特に限定はない。 When nitrified to nitric acid, the pH decreases. Therefore, a pH sensor is installed in the nitrification reaction tank 34, and alkali is added by a pump based on the pH data measured by the pH sensor so that the pH of the bacteria is high 6-8. Examples of the alkali used include sodium hydroxide and potassium hydroxide, but are not particularly limited. At this time, when the processing speed of the nitrification reaction tank 34 is operated at 0.6 kg / m 3 / d or more, a line for supplying inorganic carbon to the nitrification reaction tank 34 is installed to supply inorganic carbon. Examples of the inorganic carbon to be supplied include sodium hydrogen carbonate, sodium carbonate, carbon dioxide and the like, but are not particularly limited. When phosphorus is not contained in the incoming raw water, phosphorus is added in the nitrification reaction tank 34 or the raw water tank so that about 1 mg P / L of phosphorus remains in the final treated water. Examples of phosphorus to be added include phosphoric acid and other phosphates, but there is no particular limitation.

硝化反応槽34で処理された第1処理水は、被処理水流入ライン22bから脱窒反応槽10に供給される。また、流量センサ28、T−Nセンサ30により、検出された水流量及び硝酸、亜硝酸濃度データが、制御部32に送信される。上記説明したとおり、そのデータに基づいて硝酸・亜硝酸量が所定時間間隔で算出される。そして、硝酸・亜硝酸量の増加または減少に応じて、上記説明したように各種パラメータを設定し、水素供与体の間欠添加が制御される。   The first treated water treated in the nitrification reaction tank 34 is supplied to the denitrification reaction tank 10 from the treated water inflow line 22b. Further, the detected water flow rate and nitric acid and nitrous acid concentration data are transmitted to the control unit 32 by the flow rate sensor 28 and the TN sensor 30. As described above, the amounts of nitric acid and nitrous acid are calculated at predetermined time intervals based on the data. Then, according to the increase or decrease in the amount of nitric acid / nitrous acid, various parameters are set as described above, and intermittent addition of the hydrogen donor is controlled.

硝酸が脱窒反応により減少するとpHが上昇する。そこで脱窒反応槽10内に設置されたpHセンサによって測定されたpHデータに基づき、細菌の活性が高いpH6〜8となるよう酸をポンプによって添加する。使用する酸は塩酸、硫酸などが挙げられるが特に限定はない。脱窒反応槽10が分割されている場合、水素供与体は最も前段の槽のみに添加してもよいし、すべての槽に分割して添加してもよい。pHセンサとそのコントロールは、最も大きな槽のみに設置してもよいし、すべての槽に設置してもよい。   When nitric acid is reduced by the denitrification reaction, the pH rises. Therefore, based on the pH data measured by the pH sensor installed in the denitrification reaction tank 10, an acid is added by a pump so that the pH of the bacteria is high 6-8. Examples of the acid used include hydrochloric acid and sulfuric acid, but are not particularly limited. In the case where the denitrification reaction tank 10 is divided, the hydrogen donor may be added only to the frontmost tank or may be divided and added to all the tanks. The pH sensor and its control may be installed only in the largest tank or in all tanks.

脱窒反応槽10で処理された第2処理水は、被処理水流入ライン22cを通り、酸化槽12に供給され、被処理水中の水素供与体が酸化処理される。   The second treated water treated in the denitrification reaction tank 10 is supplied to the oxidation tank 12 through the treated water inflow line 22c, and the hydrogen donor in the treated water is oxidized.

酸化槽12で処理された第3処理水は、被処理水流入ライン22dを通り、沈殿処理槽14に供給される。沈殿処理槽14では、被処理水中の汚泥が分離され、処理水排出ライン24から(最終)処理水が得られ、分離された汚泥は、汚泥返送ライン26を通り、硝化反応槽34へ供給される。このように汚泥を硝化反応槽34に返送することにより、硝化菌を含んだ汚泥が形成されるため、硝化反応、脱窒反応を同一の汚泥によって処理することが可能となる。   The third treated water treated in the oxidation tank 12 passes through the treated water inflow line 22d and is supplied to the precipitation treatment tank 14. In the sedimentation treatment tank 14, sludge in the water to be treated is separated, and (final) treated water is obtained from the treated water discharge line 24, and the separated sludge is supplied to the nitrification reaction tank 34 through the sludge return line 26. The By returning the sludge to the nitrification reaction tank 34 in this way, sludge containing nitrifying bacteria is formed, so that the nitrification reaction and denitrification reaction can be treated with the same sludge.

酸化槽12ではpHのコントロールは必要ないが、曝気により無機炭素がCOとなって排出されることでpHが上昇する。そして、処理水のpHが排水基準や環境基準が満たされない場合は、酸化槽12にpHセンサを設置して、測定されたpHデータに基づき、処理水の基準値となるように酸を添加することによって調整する。もしくは、酸化槽12でpHコントロールを行うと返送流量に含まれる無機炭素の量が減少し、硝化反応槽34において無機炭素不足が起こりやすくなるので、処理水槽にpHセンサを設置してコントロールする。使用する酸は塩酸、硫酸などが挙げられるが特に限定はない。 In the oxidation tank 12, it is not necessary to control the pH, but the pH rises when inorganic carbon is discharged as CO 2 by aeration. If the pH of the treated water does not satisfy the drainage standard or the environmental standard, a pH sensor is installed in the oxidation tank 12 and an acid is added so that the treated water becomes a reference value based on the measured pH data. Adjust by. Alternatively, when pH control is performed in the oxidation tank 12, the amount of inorganic carbon contained in the return flow rate is reduced, and shortage of inorganic carbon easily occurs in the nitrification reaction tank 34. Therefore, a pH sensor is installed in the treated water tank for control. Examples of the acid used include hydrochloric acid and sulfuric acid, but are not particularly limited.

図3は、本実施形態に係る窒素含有水の生物処理装置の他の一例を示す概略模式図である。図3に示す窒素含有水の生物処理装置3は、脱窒反応槽が複数に分割されていること以外は、図2に示す窒素含有水の生物処理装置2と同様の構成である。図3に示す脱窒反応槽は、第1脱窒反応槽10aと第2脱窒反応槽10bとから構成されている。   FIG. 3 is a schematic diagram illustrating another example of the biological treatment apparatus for nitrogen-containing water according to the present embodiment. The biological treatment apparatus 3 for nitrogen-containing water shown in FIG. 3 has the same configuration as the biological treatment apparatus 2 for nitrogen-containing water shown in FIG. 2 except that the denitrification reaction tank is divided into a plurality of parts. The denitrification reaction tank shown in FIG. 3 includes a first denitrification reaction tank 10a and a second denitrification reaction tank 10b.

硝化反応槽34の被処理水入口(不図示)には、被処理水流入ライン22aが接続されている。硝化反応槽34の被処理水出口(不図示)と第1脱窒反応槽10aの被処理水入口(不図示)との間には、被処理水流入ライン22bが接続されている。第1脱窒反応槽10aの水素供与体入口(不図示)とタンク18の出口(不図示)との間は、ポンプ16を介して水素供与体添加ライン20が接続されている。第1脱窒反応槽10aの出口(不図示)と第2脱窒反応槽10bの入口(不図示)との間は被処理水流入ライン22cが接続されており、第2脱窒反応槽10bの出口(不図示)と酸化槽12の入口(不図示)との間は、被処理水流入ライン22dが接続されており、酸化槽12の出口(不図示)と沈殿処理槽14の入口(不図示)との間は、被処理水流入ライン22eが接続されている。沈殿処理槽14の処理水出口(不図示)には処理水排出ライン24が接続されている。沈殿処理槽14の汚泥出口(不図示)と被処理水流入ライン22aとの間には、汚泥返送ライン26が接続されている。   A treated water inflow line 22 a is connected to a treated water inlet (not shown) of the nitrification reaction tank 34. A treated water inflow line 22b is connected between the treated water outlet (not shown) of the nitrification reaction tank 34 and the treated water inlet (not shown) of the first denitrification reaction tank 10a. A hydrogen donor addition line 20 is connected via a pump 16 between the hydrogen donor inlet (not shown) of the first denitrification reaction tank 10 a and the outlet (not shown) of the tank 18. A treated water inflow line 22c is connected between the outlet (not shown) of the first denitrification reaction tank 10a and the inlet (not shown) of the second denitrification reaction tank 10b, and the second denitrification reaction tank 10b. A treated water inflow line 22d is connected between the outlet (not shown) and the inlet (not shown) of the oxidation tank 12, and the outlet (not shown) of the oxidation tank 12 and the inlet of the precipitation tank 14 (not shown) The untreated water inflow line 22e is connected to the unillustrated). A treated water discharge line 24 is connected to a treated water outlet (not shown) of the precipitation treatment tank 14. A sludge return line 26 is connected between the sludge outlet (not shown) of the settling tank 14 and the treated water inflow line 22a.

以下に、本実施形態の窒素含有水の生物処理装置3の動作について説明する。   Below, operation | movement of the biological treatment apparatus 3 of the nitrogen-containing water of this embodiment is demonstrated.

被処理水は、被処理水流入ライン22aから硝化反応槽34に供給される。そして、硝化反応槽34では、主に被処理水中の有機体窒素、アンモニア等が好気的(酸素の存在下で)に硝酸若しくは亜硝酸に酸化される。   The treated water is supplied to the nitrification reaction tank 34 from the treated water inflow line 22a. In the nitrification reaction tank 34, organic nitrogen, ammonia and the like in the water to be treated are mainly oxidized aerobically (in the presence of oxygen) to nitric acid or nitrous acid.

硝化反応槽34で処理された第1処理水は、被処理水流入ライン22bから第1脱窒反応槽10aに供給される。また、流量センサ28、T−Nセンサ30により、検出された水流量及び硝酸、亜硝酸濃度データが、制御部32に送信される。上記説明したとおり、そのデータに基づいて硝酸・亜硝酸量が所定時間間隔で算出される。そして、硝酸・亜硝酸量の増加または減少に応じて、上記説明したように各種パラメータを設定し、水素供与体の間欠添加が制御される。   The first treated water treated in the nitrification reaction tank 34 is supplied from the treated water inflow line 22b to the first denitrification reaction tank 10a. Further, the detected water flow rate and nitric acid and nitrous acid concentration data are transmitted to the control unit 32 by the flow rate sensor 28 and the TN sensor 30. As described above, the amounts of nitric acid and nitrous acid are calculated at predetermined time intervals based on the data. Then, according to the increase or decrease in the amount of nitric acid / nitrous acid, various parameters are set as described above, and intermittent addition of the hydrogen donor is controlled.

第1脱窒反応槽10aには、脱窒菌を含む汚泥が収容されており、第1脱窒反応槽10aで、被処理水を脱窒菌に接触させた後、被処理水、脱窒菌、水素供与体を被処理水流入ライン22cから第2脱窒反応槽10bに送液する。そして、第2脱窒反応槽10b(及び第1脱窒反応槽10a)内では、脱窒菌の働きによって、被処理水中の硝酸若しくは亜硝酸が窒素ガスに還元される。   Sludge containing denitrifying bacteria is accommodated in the first denitrifying reaction tank 10a. After the treated water is brought into contact with the denitrifying bacteria in the first denitrifying reaction tank 10a, the treated water, denitrifying bacteria, hydrogen The donor is fed from the treated water inflow line 22c to the second denitrification reaction tank 10b. And in the 2nd denitrification reaction tank 10b (and 1st denitrification reaction tank 10a), nitric acid or nitrous acid in to-be-treated water is reduced to nitrogen gas by the action of denitrifying bacteria.

上記でも説明したように、脱窒反応槽を分割することにより、例えば第1脱窒反応槽10aと第2脱窒反応槽10bとの間で、水素供与体の時間的濃度勾配を形成することが容易となり、その後の沈殿処理における汚泥の沈降性を改善することができる。   As described above, by dividing the denitrification reaction tank, for example, a temporal concentration gradient of the hydrogen donor is formed between the first denitrification reaction tank 10a and the second denitrification reaction tank 10b. It becomes easy, and the sedimentation property of the sludge in the subsequent sedimentation treatment can be improved.

第1及び第2脱窒反応槽(10a,10b)で処理された第2処理水は、被処理水流入ライン22dを通り、酸化槽12に供給され、被処理水中の水素供与体が酸化処理される。   The second treated water treated in the first and second denitrification reaction tanks (10a, 10b) is supplied to the oxidation tank 12 through the treated water inflow line 22d, and the hydrogen donor in the treated water is oxidized. Is done.

酸化槽12で処理された第3処理水は、被処理水流入ライン22eを通り、沈殿処理槽14に供給される。沈殿処理槽14では、被処理水中の汚泥が分離され、処理水排出ライン24から(最終)処理水が得られ、分離された汚泥は、汚泥返送ライン26を通り、硝化反応槽34へ供給される。このように汚泥を硝化反応槽34に返送することにより、硝化菌を含んだ汚泥が形成されるため、硝化反応、脱窒反応を同一の汚泥によって処理することが可能となる。   The third treated water treated in the oxidation tank 12 passes through the treated water inflow line 22e and is supplied to the precipitation treatment tank 14. In the sedimentation treatment tank 14, sludge in the water to be treated is separated, and (final) treated water is obtained from the treated water discharge line 24, and the separated sludge is supplied to the nitrification reaction tank 34 through the sludge return line 26. The By returning the sludge to the nitrification reaction tank 34 in this way, sludge containing nitrifying bacteria is formed, so that the nitrification reaction and denitrification reaction can be treated with the same sludge.

本実施形態で用いられる水素供与体は、例えば、メタノール、エタノール、イソプロパノール、酢酸、水素ガス、アセトン、グルコース、エチルメチルケトン、テトラメチルアンモニウムハイドロオキサイド(TMAH)等が挙げられるが、これに制限されるものではなく、水素供与体として従来公知のもの全てを使用することができる。   Examples of the hydrogen donor used in the present embodiment include methanol, ethanol, isopropanol, acetic acid, hydrogen gas, acetone, glucose, ethyl methyl ketone, tetramethyl ammonium hydroxide (TMAH), and the like, but are not limited thereto. However, any conventionally known hydrogen donor can be used.

本実施形態における処理対象となる排水は、アンモニア態窒素化合物若しくは有機態窒素化合物を含んだ被処理水であり、特に生活排水、食品工場排水、発電所排水、電子産業排水等の産業排水である。ここで、電子産業排水は、様々な薬品が含まれており、また製造する製品によっても排水中の成分は大きく異なるが、窒素含有排水としては、例えばウェハー洗浄排水等が挙げられる。この排水中には、アンモニアの他、TMAH(水酸化テトラメチルアンモニウム)、過酸化水素、フッ素イオン、IPA(イソプロピルアルコール)等を含むことが多い。   The wastewater to be treated in this embodiment is treated water containing ammonia nitrogen compounds or organic nitrogen compounds, especially industrial wastewater such as domestic wastewater, food factory wastewater, power plant wastewater, and electronic industrial wastewater. . Here, the electronic industrial wastewater contains various chemicals, and the components in the wastewater vary greatly depending on the product to be manufactured, but examples of the nitrogen-containing wastewater include wafer cleaning wastewater. This waste water often contains TMAH (tetramethylammonium hydroxide), hydrogen peroxide, fluorine ions, IPA (isopropyl alcohol) and the like in addition to ammonia.

なお、このような排水を生物学的に処理するにあたり、過酸化水素やフッ素イオンは生物に対し阻害性を有するため、硝化反応や脱窒反応を行う前に、予め除去しておくことが好ましい。これらの阻害性物質の処理方法としては、既存の技術を使用することができ、過酸化水素の処理においては、酵素を添加する方法、還元剤を注入する方法、活性炭に接触させる方法等が挙げられる。また、フッ素イオンの処理においては、カルシウムを添加してフッ化カルシウムとして除去する方法、イオン交換樹脂にて処理する方法等が挙げられる。   In biological treatment of such wastewater, since hydrogen peroxide and fluorine ions have an inhibitory effect on living organisms, it is preferable to remove them in advance before performing a nitrification reaction or a denitrification reaction. . As a method for treating these inhibitory substances, existing techniques can be used, and in the treatment of hydrogen peroxide, a method of adding an enzyme, a method of injecting a reducing agent, a method of contacting with activated carbon and the like can be mentioned. It is done. Further, in the treatment of fluoride ions, a method of adding calcium and removing it as calcium fluoride, a method of treating with ion exchange resin, and the like can be mentioned.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

<実施例1>
容積50Lの脱窒反応槽、容積8Lの沈殿槽を備える窒素含有水の生物処理装置を用いて試験を行った。
<Example 1>
The test was conducted using a biological treatment apparatus for nitrogen-containing water equipped with a 50 L capacity denitrification reactor and a 8 L capacity sedimentation tank.

脱窒反応槽に汚泥濃度500mg/Lとなるように脱窒汚泥を添加し、被処理水の連続通水処理を行った。脱窒反応槽への汚泥の返送には、エアリフトを用いて被処理水の流量の2倍の流量で返送を行った。被処理水は、工業用水にリンを2mgP/Lとなるように添加したものに対し、硝酸ナトリウムを100mgNO−N/Lになるように添加したものを用いた。脱窒反応槽に塩酸を添加し、脱窒反応槽内のpHを7.0に調整し脱窒反応を行った。脱窒反応槽に添加する水素供与体の濃度(M)100mL/L(79g/L)のメタノールを用い、水素供与体の添加量は流入する硝酸性窒素(NO−N)の3倍量とし、水素供与体の間欠添加サイクル数を5サイクル、間欠添加1サイクル当たりの時間に対する水素供与体の添加時間の割合を5%に設定した。流入する被処理水量から水理学的滞留時間及び間欠添加1サイクル当たりの時間における水素供与体供給停止時間を設定した。これらを上記(1)式に当てはめて、水素供与体添加速度を求めた。 The denitrification sludge was added to the denitrification reaction tank so that the sludge concentration was 500 mg / L, and the water to be treated was continuously passed through. The sludge was returned to the denitrification reactor using an air lift at a flow rate twice that of the water to be treated. The water to be treated was prepared by adding sodium nitrate at 100 mg NO 3 -N / L to industrial water with phosphorus added at 2 mg P / L. Hydrochloric acid was added to the denitrification reaction tank, and the pH in the denitrification reaction tank was adjusted to 7.0 to carry out the denitrification reaction. The concentration of hydrogen donor to be added to the denitrification reactor (M) 100 mL / L (79 g / L) of methanol was used, and the amount of hydrogen donor added was three times the amount of inflowing nitrate nitrogen (NO 3 -N) The number of hydrogen donor intermittent addition cycles was set to 5 and the ratio of the hydrogen donor addition time to the time per cycle of intermittent addition was set to 5%. From the amount of treated water flowing in, the hydraulic residence time and the hydrogen donor supply stop time in the time per cycle of intermittent addition were set. These were applied to the above equation (1) to determine the hydrogen donor addition rate.

実施例1では、処理水中の硝酸濃度が10mgNO−N/L以下となったことを確認した後、段階的に被処理水量を上昇させていき、上記制御方法2にしたがって各パラメータを設定した。試験は26日間行った。 In Example 1, after confirming that the nitric acid concentration in the treated water was 10 mg NO 3 −N / L or less, the amount of treated water was increased stepwise, and each parameter was set according to the control method 2 described above. . The test was conducted for 26 days.

<比較例>
比較例では、間欠添加1サイクル当たりの時間における水素供与体供給停止時間を零、すなわち水素供与体供給停止時間を設けない連続添加の系で試験した。メタノールは、流入する硝酸性窒素(NO−N)の3倍量となるように連続添加した。試験は26日間行った。
<Comparative example>
In the comparative example, the hydrogen donor supply stop time in the time per cycle of intermittent addition was zero, that is, a continuous addition system in which no hydrogen donor supply stop time was provided was tested. Methanol was continuously added so as to be three times the amount of inflowing nitrate nitrogen (NO 3 —N). The test was conducted for 26 days.

比較例においては、試験開始から26日目で、MLSS濃度が3000mgMLSS/L程度までしか達せず、脱窒処理の処理速度も、0.6kgN/m/day程度であった。図4は、実施例1の試験経過日数に対するMLSS濃度の変化を示す図である。図5は、実施例1の試験経過日数に対する脱窒処理の処理速度の変化を示す図である。図4に示すように、実施例1では、日数の経過と共にMLSS濃度が上昇し、試験開始から26日目には、MLSS濃度が8000mgMLSS/Lに達した。また、図5に示すように、MLSS濃度の上昇と共に、脱窒処理の処理速度も上昇し、試験開始から26日目には、約2kgN/m/dayまで達し、高い処理速度が得られることを確認した。また、実施例1では、試験開始から約2週間経過後には脱窒菌を含む汚泥のグラニュール化が確認され、約3週間後には脱窒菌を含む汚泥のほぼ全体がグラニュール化することを確認した。実施例1のように上記(1)式にしたがってメタノールの間欠添加を制御することにより、汚泥の沈降性が改善され、高い処理能力を有する汚泥を作成することができた。 In the comparative example, on the 26th day from the start of the test, the MLSS concentration reached only about 3000 mgMLSS / L, and the treatment speed of the denitrification treatment was about 0.6 kgN / m 3 / day. FIG. 4 is a diagram showing a change in MLSS concentration with respect to the number of days elapsed in the test of Example 1. FIG. 5 is a diagram illustrating a change in the processing speed of the denitrification process with respect to the elapsed test days of Example 1. As shown in FIG. 4, in Example 1, the MLSS concentration increased with the passage of days, and the MLSS concentration reached 8000 mg MLSS / L on the 26th day from the start of the test. Further, as shown in FIG. 5, with the increase of the MLSS concentration, the processing speed of the denitrification process increases, and reaches about 2 kgN / m 3 / day on the 26th day from the start of the test, and a high processing speed is obtained. It was confirmed. In Example 1, granulation of sludge containing denitrifying bacteria was confirmed after about 2 weeks from the start of the test, and almost all sludge containing denitrifying bacteria was granulated after about 3 weeks. did. By controlling the intermittent addition of methanol according to the above formula (1) as in Example 1, the sedimentation property of the sludge was improved, and a sludge having a high treatment capacity could be created.

<実施例2>
容積10Lの第1脱窒槽、容積90Lの第2脱窒反応槽、容積20Lの酸化槽、容積8Lの沈殿槽を備える窒素含有水の生物処理装置を用いて試験を行った。
<Example 2>
The test was carried out using a biological treatment apparatus for nitrogen-containing water comprising a 10 L first denitrification tank, a 90 L second denitrification reaction tank, a 20 L oxidation tank, and a 8 L precipitation tank.

脱窒反応槽に汚泥濃度3000mg/Lとなるように脱窒汚泥を添加し、被処理水の連続通水処理を行った。第1脱窒反応槽への汚泥の返送には、エアリフトを用いて被処理水の流量の0.5倍の流量で返送を行った。被処理水は、工業用水にリンを2mgP/Lとなるように添加したものに対し、硝酸ナトリウムを80mgNO−N/Lになるように添加したものを用いた。脱窒反応槽に塩酸を添加し、脱窒反応槽内のpHを7.0に調整し脱窒反応を行った。その他の条件として、流入窒素負荷を0.6kg/m/dとし、第1脱窒反応槽に供給する水素供与体として濃度100mL/Lのメタノールを用い、水素供与体の添加量は流入する硝酸性窒素(NO−N)の2.8倍量とし、水素供与体の間欠添加サイクル数を4回、間欠添加1サイクル当たりの水素供与体の添加時間を5%に設定した。 Denitrification sludge was added to the denitrification reaction tank so that the sludge concentration was 3000 mg / L, and continuous water treatment was performed on the water to be treated. The sludge was returned to the first denitrification reaction tank using an air lift at a flow rate of 0.5 times the flow rate of the water to be treated. The water to be treated was prepared by adding sodium nitrate to 80 mg NO 3 —N / L to industrial water to which phosphorus was added to 2 mg P / L. Hydrochloric acid was added to the denitrification reaction tank, and the pH in the denitrification reaction tank was adjusted to 7.0 to carry out the denitrification reaction. As other conditions, the inflow nitrogen load is 0.6 kg / m 3 / d, methanol having a concentration of 100 mL / L is used as the hydrogen donor to be supplied to the first denitrification reaction tank, and the added amount of the hydrogen donor flows. The amount of nitrate nitrogen (NO 3 —N) was 2.8 times, the number of hydrogen donor intermittent addition cycles was set to four, and the hydrogen donor addition time per cycle of intermittent addition was set to 5%.

図6(A)は、第1脱窒反応槽のメタノール及び硝酸イオンの濃度変化を表す図であり、図6(B)は、第2脱窒反応槽のメタノール及び硝酸イオンの濃度変化を表す図である。図6(A)に示すように、第1脱窒反応槽の最大メタノール濃度は600mg/Lであった。これは計算による値(80(mgNO−N/L)×2.8(倍)×10(倍)×4(回)=560mg/L)とほぼ一致した。また、図6(B)に示すように第2脱窒反応槽のメタノール濃度が零の間(脱窒反応が停止し)、硝酸イオン濃度が上昇していることがわかる。したがって、メタノール濃度が零の時間を短くし、安定した処理水質を確保するためには、間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)を出来るだけ短く設定することが重要であると云える。 FIG. 6A is a diagram showing changes in the concentrations of methanol and nitrate ions in the first denitrification reaction tank, and FIG. 6B is a diagram showing changes in the concentrations of methanol and nitrate ions in the second denitrification reaction tank. FIG. As shown in FIG. 6 (A), the maximum methanol concentration in the first denitrification reaction tank was 600 mg / L. This almost coincided with the calculated value (80 (mgNO 3 −N / L) × 2.8 (times) × 10 (times) × 4 (times) = 560 mg / L). In addition, as shown in FIG. 6B, it can be seen that the nitrate ion concentration is increasing while the methanol concentration in the second denitrification reaction tank is zero (denitrification reaction is stopped). Therefore, in order to shorten the time when the methanol concentration is zero and to ensure stable treated water quality, it is important to set the hydrogen donor supply stop time (S T ) as short as possible in the time per cycle of intermittent addition. It can be said that.

<実施例3>
容積10Lの第1脱窒槽、容積90Lの第2脱窒反応槽、容積20Lの酸化槽、容積8Lの沈殿槽を備える窒素含有水の生物処理装置を用いて試験を行った。
<Example 3>
The test was carried out using a biological treatment apparatus for nitrogen-containing water comprising a 10 L first denitrification tank, a 90 L second denitrification reaction tank, a 20 L oxidation tank, and a 8 L precipitation tank.

脱窒反応槽に汚泥濃度3000mg/Lとなるように脱窒汚泥を添加し、被処理水の連続通水処理を行った。第1脱窒反応槽への汚泥の返送には、エアリフトを用いて被処理水の流量の0.5倍の流量で返送を行った。被処理水は、工業用水にリンを2mgP/Lとなるように添加したものに対し、硝酸ナトリウムを60mgNO−N/Lから20hかけて80mgNO−N/Lまで、時間と共に比例させて濃度を上昇させた。また、流入窒素の初期負荷を0.4kg/m/dとした。脱窒反応槽内のpHを7.0に調整し脱窒反応を行うために、脱窒反応槽に塩酸を添加した。実施例3では、上記窒素濃度の上昇に合わせて、間欠添加1サイクル当たりの水素供与体の添加時間を一定とし、水素供与体の供給停止時間を減少させることにより間欠添加サイクル数を増加させて、水理学的滞留時間当たりのメタノールの添加量を増加させた。なお、水素供与体の添加量は流入する硝酸性窒素(NO−N)の2.6倍量に設定した。 Denitrification sludge was added to the denitrification reaction tank so that the sludge concentration was 3000 mg / L, and continuous water treatment was performed on the water to be treated. The sludge was returned to the first denitrification reaction tank using an air lift at a flow rate of 0.5 times the flow rate of the water to be treated. The water to be treated, to which was added phosphorus so that 2mgP / L in industrial water and sodium nitrate 60MgNO 3 from -N / L 20h until 80mgNO 3 -N / L over, in proportion with time concentration Was raised. The initial load of inflowing nitrogen was 0.4 kg / m 3 / d. In order to adjust the pH in the denitrification reaction tank to 7.0 and perform the denitrification reaction, hydrochloric acid was added to the denitrification reaction tank. In Example 3, as the nitrogen concentration increased, the hydrogen donor addition time per cycle of intermittent addition was made constant, and the number of intermittent addition cycles was increased by reducing the supply stop time of the hydrogen donor. The amount of methanol added per hydraulic residence time was increased. The addition amount of the hydrogen donor was set to 2.6 times the amount of nitrate nitrogen (NO 3 —N) flowing in.

実施例3の初期の水素供与体の間欠添加条件は、水素供与体の添加時間を水素供与体の間欠添加1サイクル当たりの時間の5%に設定し、間欠添加サイクル数を3.5回に設定した。また、水素供与体の間欠添加1サイクル当たりの時間は、(水理学的滞留時間)/(間欠添加サイクル数)で求めた。間欠添加1サイクル当たりの水素供与体の添加時間は、(1サイクル当たりの時間)×(5%)に設定し、間欠添加1サイクル当たりの水素供与体の供給停止時間は、(間欠添加1サイクル当たりの時間)−(間欠添加1サイクル当たりの水素供与体の添加時間)で求めた。また、水素供与体の添加時間、水素供与体の間欠添加サイクル数、間欠添加1サイクル当たりの時間内に必要なメタノールの量、メタノールの濃度から、水素供与体の添加速度を決定した。   The initial hydrogen donor intermittent addition conditions of Example 3 were set such that the hydrogen donor addition time was set to 5% of the time per cycle of hydrogen donor intermittent addition, and the number of intermittent addition cycles was set to 3.5. Set. Further, the time per cycle of intermittent addition of the hydrogen donor was determined by (hydraulic residence time) / (number of intermittent addition cycles). The hydrogen donor addition time per cycle of intermittent addition is set to (time per cycle) × (5%), and the supply stop time of hydrogen donor per cycle of intermittent addition is (one cycle of intermittent addition) Per hour)-(hydrogen donor addition time per cycle of intermittent addition). Also, the hydrogen donor addition rate was determined from the hydrogen donor addition time, the number of intermittent hydrogen donor addition cycles, the amount of methanol required within the time per cycle of intermittent addition, and the methanol concentration.

<実施例4>
実施例4では、上記窒素濃度の上昇に合わせて、間欠添加1サイクル当たりの水素供与体の添加時間を増加させ、水素供与体の供給停止時間を減少させて(但し間欠添加サイクル数は3.5回に固定)、水理学的滞留時間当たりのメタノールの添加量を増加させたこと以外は、実施例3と同様の条件で試験を行った。
<Example 4>
In Example 4, in accordance with the increase in the nitrogen concentration, the hydrogen donor addition time per cycle of intermittent addition was increased and the hydrogen donor supply stop time was decreased (however, the number of intermittent addition cycles was 3. The test was conducted under the same conditions as in Example 3 except that the amount of methanol added per hydraulic residence time was increased.

<実施例5>
実施例5では、上記窒素濃度の上昇に合わせて、水素供与体の添加速度を増加させ(但し、間欠添加サイクル数は3.5回に固定し、間欠添加1サイクル当たりの水素供与体の添加時間及び停止時間を一定)、水理学的滞留時間当たりのメタノールの添加量を増加させたこと以外は、実施例3と同様の条件で試験を行った。
<Example 5>
In Example 5, the hydrogen donor addition rate was increased as the nitrogen concentration increased (however, the number of intermittent addition cycles was fixed at 3.5, and the hydrogen donor addition per cycle of intermittent addition was increased). The test was conducted under the same conditions as in Example 3 except that the amount of methanol added per hydraulic residence time was increased).

実施例3〜5の結果を表1にまとめた。また、図7は、実施例3〜5の処理水中の窒素濃度の結果を示す図である。   The results of Examples 3-5 are summarized in Table 1. Moreover, FIG. 7 is a figure which shows the result of the nitrogen concentration in the treated water of Examples 3-5.

Figure 0005325124
Figure 0005325124

表1及び図7から判るように、窒素濃度の上昇に合わせて、間欠添加1サイクル当たりの水素供与体の供給停止時間を減少させ、間欠添加サイクル数を増加させた実施例3では、間欠添加サイクル数を固定させ、窒素濃度の上昇に合わせて、間欠添加1サイクル当たりの水素供与体の添加時間を増加させ、水素供与体の供給停止時間を減少させた実施例4、水素供与体の添加速度を上昇させた実施例5は、被処理水の窒素濃度が上昇しても、処理水の窒素濃度は低い値を維持していた。また、実施例3〜5の中で、最も安定した処理水質を確保することができるのは、窒素濃度の上昇に合わせて、間欠添加1サイクル当たりの水素供与体の供給停止時間を減少させ、間欠添加サイクル数を増加させた実施例3であった。   As can be seen from Table 1 and FIG. 7, in Example 3 in which the hydrogen donor supply stop time per cycle of intermittent addition was decreased and the number of intermittent addition cycles was increased in accordance with the increase in nitrogen concentration, intermittent addition was performed. Example 4 in which the number of cycles was fixed, the hydrogen donor addition time per cycle of intermittent addition was increased, and the hydrogen donor supply stoppage time was decreased in accordance with the increase in nitrogen concentration. In Example 5 in which the speed was increased, the nitrogen concentration of the treated water was maintained at a low value even if the nitrogen concentration of the treated water was increased. In Examples 3 to 5, the most stable treated water quality can be ensured by decreasing the hydrogen donor supply stop time per cycle of intermittent addition in accordance with the increase in nitrogen concentration. In Example 3, the number of intermittent addition cycles was increased.

<実施例6>
容積10Lの第1脱窒槽、容積90Lの第2脱窒反応槽、容積20Lの酸化槽、容積8Lの沈殿槽を備える窒素含有水の生物処理装置を用いて試験を行った。
<Example 6>
The test was carried out using a biological treatment apparatus for nitrogen-containing water comprising a 10 L first denitrification tank, a 90 L second denitrification reaction tank, a 20 L oxidation tank, and a 8 L precipitation tank.

脱窒反応槽に汚泥濃度3000mg/Lとなるように脱窒汚泥を添加し、被処理水の連続通水処理を行った。第1脱窒反応槽への汚泥の返送には、エアリフトを用いて被処理水の流量の0.5倍の流量で返送を行った。被処理水は、工業用水にリンを2mgP/Lとなるように添加したものに対し、硝酸ナトリウムを表2の条件になるように添加したものを用いた。脱窒反応槽に塩酸を添加し、脱窒反応槽内のpHを7.0に調整し脱窒反応を行った。その他の条件として、流入窒素負荷を0.6kg/m/dとし、第1脱窒反応槽に供給する水素供与体として濃度100mL/Lのメタノールを用い、水素供与体の添加量は流入する硝酸性窒素(NO−N)の2.6倍量に設定した。 Denitrification sludge was added to the denitrification reaction tank so that the sludge concentration was 3000 mg / L, and continuous water treatment was performed on the water to be treated. The sludge was returned to the first denitrification reaction tank using an air lift at a flow rate of 0.5 times the flow rate of the water to be treated. The water to be treated was prepared by adding sodium nitrate so as to satisfy the conditions shown in Table 2 with respect to water added to industrial water so as to be 2 mg P / L. Hydrochloric acid was added to the denitrification reaction tank, and the pH in the denitrification reaction tank was adjusted to 7.0 to carry out the denitrification reaction. As other conditions, the inflow nitrogen load is 0.6 kg / m 3 / d, methanol having a concentration of 100 mL / L is used as the hydrogen donor to be supplied to the first denitrification reaction tank, and the added amount of the hydrogen donor flows. The amount was set to 2.6 times the amount of nitrate nitrogen (NO 3 —N).

表2に、各条件における水理学的滞留時間、間欠添加サイクル数、TOC濃度勾配計算値及び処理水質を示す。なお、水素供与体の間欠添加の各条件は、以下の通り決定した。水素供与体の間欠添加1サイクル当たりの時間は、(水理学的滞留時間)/(間欠添加サイクル数)で求めた。間欠添加1サイクル当たりの水素供与体の添加時間は、(1サイクル当たりの時間)×(5%)に設定し、間欠添加1サイクル当たりの水素供与体の供給停止時間は、(間欠添加1サイクル当たりの時間)−(間欠添加1サイクル当たりの水素供与体の添加時間)で求めた。また、水素供与体の添加時間、水素供与体の間欠添加サイクル数、間欠添加1サイクル当たりの時間内に必要なメタノールの量、メタノールの濃度から、水素供与体の添加速度を決定した。   Table 2 shows the hydraulic retention time, the number of intermittent addition cycles, the calculated TOC concentration gradient, and the treated water quality under each condition. The conditions for intermittent addition of the hydrogen donor were determined as follows. The time per cycle of intermittent hydrogen donor addition was determined by (hydraulic residence time) / (number of intermittent addition cycles). The hydrogen donor addition time per cycle of intermittent addition is set to (time per cycle) × (5%), and the supply stop time of hydrogen donor per cycle of intermittent addition is (one cycle of intermittent addition) Per hour)-(hydrogen donor addition time per cycle of intermittent addition). Also, the hydrogen donor addition rate was determined from the hydrogen donor addition time, the number of intermittent hydrogen donor addition cycles, the amount of methanol required within the time per cycle of intermittent addition, and the methanol concentration.

また、表2に示したTOC濃度勾配計算値は、(被処理水中の窒素濃度)×(脱窒反応槽の総容量/第1脱窒反応槽の容量)×(流入する窒素濃度に対する水素供与体の添加倍率)÷(水素供与体の間欠添加サイクル数)で求めた値に、0.375を乗じてTOCに換算することにより求められる。   The calculated TOC concentration gradient shown in Table 2 is (nitrogen concentration in the water to be treated) × (total capacity of the denitrification reaction tank / capacity of the first denitrification reaction tank) × (hydrogen donation with respect to the inflowing nitrogen concentration) It is calculated | required by multiplying the value calculated | required by the addition ratio of the body | division / (number of intermittent addition cycles of a hydrogen donor) by 0.375, and converting into TOC.

Figure 0005325124
Figure 0005325124

図8は、水素供与体の間欠添加サイクル数と処理水質との関係を示す図である。図8から判るように、水素供与体の間欠添加サイクル数が多くなるほど処理水質が良くなった。そして、処理水中の窒素濃度を10mgN/L以下とするためには、2.5回以上の間欠添加サイクル数が必要であることが判った。また、被処理水の窒素濃度が増加しても、2.5回以上の間欠添加サイクル数を設定することにより、安定な処理水質が得られることが判った。さらに、処理水中の窒素濃度を零に近づけるためには、間欠添加サイクル数を3.5回以上に設定する必要があることが判った。このように、安定した処理水質を確保するためには、間欠添加サイクル数を2.5回以上に設定することが好ましく、3.5回以上に設定することがより好ましいと云える。また、被処理水の窒素濃度が高いほど、間欠添加サイクル数の減少に伴う処理水質の悪化が顕著となると云える。   FIG. 8 is a diagram showing the relationship between the number of intermittent hydrogen donor addition cycles and the quality of treated water. As can be seen from FIG. 8, the quality of the treated water was improved as the number of intermittent addition cycles of the hydrogen donor was increased. And in order to make nitrogen concentration in treated water 10 mgN / L or less, it turned out that the number of intermittent addition cycles of 2.5 times or more is required. Moreover, even if the nitrogen concentration of to-be-processed water increased, it turned out that the stable treated water quality is obtained by setting the number of intermittent addition cycles more than 2.5 times. Further, it was found that the intermittent addition cycle number needs to be set to 3.5 or more in order to bring the nitrogen concentration in the treated water close to zero. Thus, in order to ensure stable treated water quality, the number of intermittent addition cycles is preferably set to 2.5 times or more, and more preferably set to 3.5 times or more. In addition, it can be said that the higher the nitrogen concentration of the water to be treated, the more markedly deteriorated the quality of the treated water with the decrease in the number of intermittent addition cycles.

なお、本発明では、水素供与体供給停止時間(S)は(1)式を満たすように設定されるが、水素供与体の供給停止時間を設けない場合(S=0の場合)、例えば、水理学的滞留時間(T)を15分として、この水理学的滞留時間内に必要な水素供与体の添加量が27gである場合、添加開始(0分)から1分で5g/分、1分から5分で1g/分、5分から6分で5g/分、6分から10分で1g/分、10分から11分で5g/分、11分から15分で1g/分の3サイクルで水素供与体を添加することも可能である。この場合は、この水理学的滞留時間内に1g/分(最小添加分)の水素供与体15gは連続的に添加されているとし、残りの12g(27g−15g)を本発明で言う必要な水素供与体の添加量Xとして(1)式を満たすように各パラメータを設定すればよい。 In the present invention, the hydrogen donor supply stop time (S T ) is set so as to satisfy the formula (1), but when the hydrogen donor supply stop time is not provided (when S T = 0), For example, when the hydraulic residence time (T) is 15 minutes and the amount of hydrogen donor required within this hydraulic residence time is 27 g, 5 g / min in 1 minute from the start of addition (0 minutes) 1 to 5 minutes at 1 g / min, 5 to 6 minutes at 5 g / min, 6 to 10 minutes at 1 g / min, 10 to 11 minutes at 5 g / min, 11 to 15 minutes at 1 g / min with 3 cycles of hydrogen It is also possible to add a donor. In this case, it is assumed that 1 g / min (minimum addition amount) of hydrogen donor 15 g is continuously added within this hydraulic residence time, and the remaining 12 g (27 g-15 g) is necessary in the present invention. What is necessary is just to set each parameter so that (1) Formula may be satisfy | filled as the addition amount X of a hydrogen donor.

また、1サイクル当たりに添加する水素供与体を容器に溜め、脱窒反応槽に一気に投入する場合は、水素供与体の添加速度(v)や水素供与体の添加時間割合(D)を設定するのが困難であるため、1サイクル当たりに添加する水素供与体量v’を下式により決定することができる。
v’=X・T/(N・M)
In addition, when the hydrogen donor to be added per cycle is stored in a container and charged into the denitrification reaction tank all at once, the hydrogen donor addition rate (v) and the hydrogen donor addition time ratio (D) are set. Therefore, the hydrogen donor amount v ′ added per cycle can be determined by the following equation.
v ′ = X · T / (N · M)

1〜3 窒素含有水の生物処理装置、10 脱窒反応槽、10a 第1脱窒反応槽、10b 第2脱窒反応槽、12 酸化槽、14 沈殿処理槽、16 ポンプ、18 タンク、20 水素供与体添加ライン、22a〜22e 被処理水流入ライン、24 処理水排出ライン、26 汚泥返送ライン、28 流量センサ、30 T−Nセンサ、32 制御部、34 硝化反応槽。   1-3 Biological treatment equipment of nitrogen-containing water, 10 Denitrification reaction tank, 10a First denitrification reaction tank, 10b Second denitrification reaction tank, 12 Oxidation tank, 14 Precipitation treatment tank, 16 Pump, 18 Tank, 20 Hydrogen Donor addition line, 22a-22e treated water inflow line, 24 treated water discharge line, 26 sludge return line, 28 flow rate sensor, 30 TN sensor, 32 control unit, 34 nitrification reaction tank.

Claims (16)

硝酸若しくは亜硝酸を含む被処理水が流入する反応槽に、水素供与体を間欠添加して、前記硝酸若しくは前記亜硝酸を窒素ガスに還元する窒素含有水の生物処理方法であって、
前記反応槽に流入する被処理水中の硝酸若しくは亜硝酸の濃度と前記反応槽に流入する被処理水量との積から求められる硝酸若しくは亜硝酸量の増加又は減少に応じて、以下の式(1)を満たすように、水素供与体添加速度(v)、単位時間当たりに必要な水素供与体の添加量(X)、前記反応槽の総容量/前記反応槽に流入する水流量で求められる水理学的滞留時間(T)、前記水理学的滞留時間(T)を水素供与体の添加及び停止からなる間欠添加1サイクル当たりの時間で除した水素供与体の間欠添加サイクル数(N)、添加する水素供与体の濃度(M)、前記間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)、及び前記間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)を設定することを特徴とする窒素含有水の生物処理方法。
v=X・T・(100−D)/(N・S・D・M) (1)
A biological treatment method for nitrogen-containing water in which a hydrogen donor is intermittently added to a reaction tank into which treated water containing nitric acid or nitrous acid flows, and the nitric acid or nitrous acid is reduced to nitrogen gas,
Depending on the increase or decrease in the amount of nitric acid or nitrous acid obtained from the product of the concentration of nitric acid or nitrous acid in the water to be treated flowing into the reaction tank and the amount of water to be treated flowing into the reaction tank, the following formula (1 ) So that the hydrogen donor addition rate (v), the hydrogen donor addition amount (X) required per unit time, the total volume of the reaction tank / the water flow rate flowing into the reaction tank Physical residence time (T), number of intermittent addition cycles of hydrogen donor (N) divided by time per cycle of intermittent addition consisting of addition and termination of hydrogen donor. Concentration of hydrogen donor (M), ratio of hydrogen donor addition time to time per cycle of intermittent addition (D), and hydrogen donor supply stop time ( ST ) in time per cycle of intermittent addition Set Biological treatment method of the nitrogen-containing water, characterized in that.
v = X · T · (100−D) / (N · S T · D · M) (1)
請求項1に記載の窒素含有水の生物処理方法であって、
前記水素供与体添加速度(v)が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記間欠添加回数(N)と前記水素供与体添加時間の割合(D)をそれぞれ増加又は減少させることを特徴とする窒素含有水の生物処理方法。
The biological treatment method for nitrogen-containing water according to claim 1,
The nitric acid obtained from the product of the concentration of the nitric acid or nitrous acid in the water to be treated flowing into the reaction tank and the amount of water to be treated flowing into the reaction tank under a constant hydrogen donor addition rate (v) When the amount of nitrous acid is increased or decreased, the number of intermittent additions (N) and the ratio of hydrogen donor addition time (D) are increased or decreased in proportion to the increase or decrease of the nitric acid or the amount of nitrous acid, respectively. A biological treatment method for nitrogen-containing water, which is characterized by reducing the amount.
請求項2に記載の窒素含有水の生物処理方法であって、さらに、前記反応槽に流入する被処理水量が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度が増加又は減少したことにより、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記間欠添加回数(N)と前記水素供与体添加時間の割合(D)をそれぞれ増加又は減少させることを特徴とする窒素含有水の生物処理方法。   The biological treatment method for nitrogen-containing water according to claim 2, further comprising: the nitric acid or the nitrous acid in the treated water flowing into the reaction tank under a constant amount of treated water flowing into the reaction tank. As the concentration increases or decreases, the amount of nitric acid or nitrous acid obtained from the product of the concentration of nitric acid or nitrous acid in the water to be treated flowing into the reaction tank and the amount of water to be treated flowing into the reaction tank is When increased or decreased, the intermittent addition frequency (N) and the hydrogen donor addition time ratio (D) are increased or decreased in proportion to the increase or decrease in the amount of nitric acid or nitrous acid, respectively. A biological treatment method for nitrogen-containing water. 請求項1に記載の窒素含有水の生物処理方法であって、前記間欠添加回数(N)、前記水素供与体添加時間の割合(D)が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記水素供与体添加速度(v)を増加又は減少させることを特徴とする窒素含有水の生物処理方法。   2. The biological treatment method for nitrogen-containing water according to claim 1, wherein the number of intermittent additions (N) and the ratio (D) of the hydrogen donor addition time are constant, and the treated water flows into the reaction tank. When the amount of nitric acid or nitrous acid obtained from the product of the concentration of nitric acid or nitrous acid and the amount of water to be treated flowing into the reaction vessel increases or decreases, the amount of nitric acid or nitrous acid increases or decreases. A biological treatment method for nitrogen-containing water, characterized by increasing or decreasing the hydrogen donor addition rate (v) in proportion. 請求項4に記載の窒素含有水の生物処理方法であって、さらに、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度が一定の下、前記反応槽に流入する被処理水量が増加又は減少したことにより、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記水素供与体添加速度(v)を増加又は減少させることを特徴とする窒素含有水の生物処理方法。   The biological treatment method for nitrogen-containing water according to claim 4, further comprising a treatment to flow into the reaction tank under a constant concentration of the nitric acid or nitrous acid in the treated water flowing into the reaction tank. Due to the increase or decrease in the amount of water, the amount of nitric acid or nitrous acid determined from the product of the concentration of nitric acid or nitrous acid in the treated water flowing into the reaction tank and the amount of treated water flowing into the reaction tank is A biological treatment method for nitrogen-containing water, characterized by increasing or decreasing the hydrogen donor addition rate (v) in proportion to an increase or decrease in the amount of nitric acid or nitrous acid when increased or decreased. 請求項1に記載の窒素含有水の生物処理方法であって、前記水素供与体添加速度(v)、前記間欠添加回数(N)が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記水素供与体添加時間の割合(D)を増加又は減少させることを特徴とする窒素含有水の生物処理方法。   2. The biological treatment method for nitrogen-containing water according to claim 1, wherein the hydrogen donor addition rate (v) and the intermittent addition frequency (N) are constant and the treatment water flowing into the reaction tank flows into the reaction tank. When the amount of nitric acid or nitrous acid obtained from the product of the concentration of nitric acid or nitrous acid and the amount of treated water flowing into the reaction vessel increases or decreases, it is proportional to the increase or decrease in the amount of nitric acid or nitrous acid. And increasing or decreasing the hydrogen donor addition time ratio (D). 請求項1〜6のいずれか1項に記載の窒素含有水の生物処理方法であって、前記間欠添加回数(N)が2.5以上とすることを特徴とする窒素含有水の生物処理方法。   The biological treatment method for nitrogen-containing water according to any one of claims 1 to 6, wherein the number of intermittent additions (N) is 2.5 or more. . 請求項2又は3に記載の窒素含有水の生物処理方法であって、前記間欠添加回数(N)を減少させた結果、前記間欠添加回数(N)が2.5未満となる場合、前記間欠添加回数(N)を2.5以上として、前記式(1)を満たすように、前記水素供与体供給停止時間(S)及び前記水素供与体添加速度(v)を再設定することを特徴とする窒素含有水の生物処理方法。 The biological treatment method for nitrogen-containing water according to claim 2 or 3, wherein the intermittent addition frequency (N) is less than 2.5 as a result of reducing the intermittent addition frequency (N). The number of additions (N) is set to 2.5 or more, and the hydrogen donor supply stop time (S T ) and the hydrogen donor addition rate (v) are reset so as to satisfy the formula (1). A biological treatment method for nitrogen-containing water. 硝酸若しくは亜硝酸を含む被処理水が流入する反応槽と、前記反応槽に水素供与体を間欠添加する水素供与体添加手段と、を備え、前記反応槽で前記硝酸若しくは亜硝酸を窒素ガスに還元する窒素含有水の生物処理装置であって、
前記反応槽に流入する被処理水中の硝酸若しくは亜硝酸の濃度と前記反応槽に流入する被処理水量との積から求められる硝酸若しくは亜硝酸量の増加又は減少に応じて、以下の式(1)を満たすように、水素供与体添加速度(v)、単位時間当たりに必要な水素供与体の添加量(X)、前記反応槽の総容量/前記反応槽に流入する水流量で求められる水理学的滞留時間(T)、前記水理学的滞留時間(T)を水素供与体の添加及び停止からなる間欠添加1サイクル当たりの時間で除した水素供与体の間欠添加サイクル数(N)、添加する水素供与体の濃度(M)、前記間欠添加1サイクル当たりの時間に対する水素供与体添加時間の割合(D)、及び前記間欠添加1サイクル当たりの時間における水素供与体供給停止時間(S)を設定する制御手段を備えることを特徴とする窒素含有水の生物処理装置。
v=X・T・(100−D)/(N・S・D・M) (1)
A reaction vessel into which treated water containing nitric acid or nitrous acid flows, and a hydrogen donor addition means for intermittently adding a hydrogen donor to the reaction vessel, wherein the nitric acid or nitrous acid is converted to nitrogen gas in the reaction vessel. A biological treatment apparatus for reducing nitrogen-containing water,
Depending on the increase or decrease in the amount of nitric acid or nitrous acid obtained from the product of the concentration of nitric acid or nitrous acid in the water to be treated flowing into the reaction tank and the amount of water to be treated flowing into the reaction tank, the following formula (1 ) So that the hydrogen donor addition rate (v), the hydrogen donor addition amount (X) required per unit time, the total volume of the reaction tank / the water flow rate flowing into the reaction tank Physical residence time (T), number of intermittent addition cycles of hydrogen donor (N) divided by time per cycle of intermittent addition consisting of addition and termination of hydrogen donor. Concentration of hydrogen donor (M), ratio of hydrogen donor addition time to time per cycle of intermittent addition (D), and hydrogen donor supply stop time ( ST ) in time per cycle of intermittent addition Set Biological treatment apparatus of the nitrogen-containing water, characterized in that it comprises a control means.
v = X · T · (100−D) / (N · S T · D · M) (1)
請求項9に記載の窒素含有水の生物処理装置であって、
前記制御手段は、前記水素供与体添加速度(v)が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記間欠添加回数(N)と前記水素供与体添加時間の割合(D)をそれぞれ増加又は減少させることを特徴とする窒素含有水の生物処理装置。
The biological treatment apparatus for nitrogen-containing water according to claim 9,
The control means calculates the concentration of the nitric acid or the nitrous acid in the water to be treated flowing into the reaction tank and the amount of the water to be treated flowing into the reaction tank under a constant hydrogen donor addition rate (v). When the required amount of nitric acid or nitrous acid increases or decreases, the ratio of the intermittent addition number (N) and the hydrogen donor addition time (D) in proportion to the increase or decrease of the nitric acid or nitrous acid amount (D ), Or a biological treatment apparatus for nitrogen-containing water.
請求項10に記載の窒素含有水の生物処理装置であって、前記制御手段は、さらに、前記反応槽に流入する被処理水量が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度が増加又は減少したことにより、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記間欠添加回数(N)と前記水素供与体添加時間の割合(D)をそれぞれ増加又は減少させることを特徴とする窒素含有水の生物処理装置。   The biological treatment apparatus for nitrogen-containing water according to claim 10, wherein the control means further includes the nitric acid in the water to be treated flowing into the reaction tank under a constant amount of the water to be treated flowing into the reaction tank. Alternatively, as the concentration of nitrous acid is increased or decreased, the nitric acid obtained from the product of the concentration of nitric acid or nitrous acid in the water to be treated flowing into the reaction tank and the amount of water to be treated flowing into the reaction tank or When the amount of nitrous acid is increased or decreased, the number of intermittent additions (N) and the ratio of hydrogen donor addition time (D) are increased or decreased in proportion to the increase or decrease of the nitric acid or the amount of nitrous acid, respectively. A biological treatment apparatus for nitrogen-containing water, characterized in that it is reduced. 請求項9に記載の窒素含有水の生物処理装置であって、前記制御手段は、前記間欠添加回数(N)、前記水素供与体添加時間の割合(D)が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記水素供与体添加速度(v)を増加又は減少させることを特徴とする窒素含有水の生物処理装置。   10. The biological treatment apparatus for nitrogen-containing water according to claim 9, wherein the control means is arranged in the reaction tank under a constant number of intermittent additions (N) and a ratio (D) of the hydrogen donor addition time. When the amount of nitric acid or nitrous acid obtained from the product of the concentration of nitric acid or nitrous acid in the treated water flowing in and the amount of treated water flowing into the reaction tank increases or decreases, the amount of nitric acid or nitrous acid A biological treatment apparatus for nitrogen-containing water, wherein the hydrogen donor addition rate (v) is increased or decreased in proportion to an increase or decrease in the amount of hydrogen. 請求項12に記載の窒素含有水の生物処理装置であって、前記制御手段は、さらに、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度が一定の下、前記反応槽に流入する被処理水量が増加又は減少したことにより、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記水素供与体添加速度(v)を増加又は減少させることを特徴とする窒素含有水の生物処理装置。   13. The biological treatment apparatus for nitrogen-containing water according to claim 12, wherein the control means is further configured so that the concentration of the nitric acid or the nitrous acid in the water to be treated flowing into the reaction tank is constant. The amount of treated water flowing into the reaction tank increases or decreases, so that the concentration of the nitric acid or nitrous acid in the treated water flowing into the reaction tank and the amount of treated water flowing into the reaction tank are determined by the product of the nitric acid or When the amount of nitrous acid increases or decreases, the hydrogen donor addition rate (v) is increased or decreased in proportion to the increase or decrease of the nitric acid or the amount of nitrous acid. Biological treatment equipment. 請求項9に記載の窒素含有水の生物処理装置であって、前記制御手段は、前記水素供与体添加速度(v)、前記間欠添加回数(N)が一定の下、前記反応槽に流入する被処理水中の前記硝酸若しくは前記亜硝酸の濃度と前記反応槽に流入する被処理水量の積から求められる前記硝酸若しくは前記亜硝酸量が増加又は減少した場合、該硝酸若しくは該亜硝酸量の増加又は減少に比例して、前記水素供与体添加時間の割合(D)を増加又は減少させることを特徴とする窒素含有水の生物処理装置。   10. The biological treatment apparatus for nitrogen-containing water according to claim 9, wherein the control means flows into the reaction tank with the hydrogen donor addition rate (v) and the number of intermittent additions (N) being constant. When the amount of nitric acid or nitrous acid obtained from the product of the concentration of nitric acid or nitrous acid in the water to be treated and the amount of water to be treated flowing into the reaction tank increases or decreases, the amount of nitric acid or nitrous acid increases Alternatively, the biological treatment apparatus for nitrogen-containing water, wherein the proportion (D) of the hydrogen donor addition time is increased or decreased in proportion to the decrease. 請求項9〜14のいずれか1項に記載の窒素含有水の生物処理装置であって、前記制御手段は、前記間欠添加回数(N)を2.5以上に設定することを特徴とする窒素含有水の生物処理装置。   The biological treatment apparatus for nitrogen-containing water according to any one of claims 9 to 14, wherein the control means sets the number of intermittent additions (N) to 2.5 or more. Biological treatment equipment for contained water. 請求項10又は11に記載の窒素含有水の生物処理装置であって、前記制御手段は、前記間欠添加回数(N)を減少させた結果、前記間欠添加回数(N)が2.5未満となる場合、前記間欠添加回数(N)を2.5以上として、前記式(1)を満たすように、前記水素供与体供給停止時間(S)及び前記水素供与体添加速度(v)を再設定することを特徴とする窒素含有水の生物処理装置。 The biological treatment apparatus for nitrogen-containing water according to claim 10 or 11, wherein the control means decreases the number of intermittent additions (N), so that the number of intermittent additions (N) is less than 2.5. In this case, the number of intermittent additions (N) is set to 2.5 or more, and the hydrogen donor supply stop time (S T ) and the hydrogen donor addition rate (v) are reestablished so as to satisfy the formula (1). A biological treatment apparatus for nitrogen-containing water, characterized by being set.
JP2010001317A 2010-01-06 2010-01-06 Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water Active JP5325124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010001317A JP5325124B2 (en) 2010-01-06 2010-01-06 Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001317A JP5325124B2 (en) 2010-01-06 2010-01-06 Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water

Publications (2)

Publication Number Publication Date
JP2011139982A JP2011139982A (en) 2011-07-21
JP5325124B2 true JP5325124B2 (en) 2013-10-23

Family

ID=44456231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010001317A Active JP5325124B2 (en) 2010-01-06 2010-01-06 Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water

Country Status (1)

Country Link
JP (1) JP5325124B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226508A (en) * 2012-04-25 2013-11-07 Jfe Steel Corp Treatment method of nitrogen-containing wastewater and device
US11603327B2 (en) 2018-06-22 2023-03-14 Organo Corporation Water treatment method and water treatment device
JP6535125B1 (en) * 2018-06-22 2019-06-26 オルガノ株式会社 Water treatment method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626592A (en) * 1979-08-08 1981-03-14 Ebara Infilco Co Ltd Biological denitrifying method for waste water
JP3376903B2 (en) * 1998-01-29 2003-02-17 栗田工業株式会社 Intermittent aeration activated sludge treatment method
JP4143748B2 (en) * 2000-12-13 2008-09-03 日立造船株式会社 Integrated biological nitrification / denitrification system

Also Published As

Publication number Publication date
JP2011139982A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
KR101831900B1 (en) The Method Of Removing Nitrogen In Wastewater
TWI402221B (en) Nitration of ammonia - containing nitrogen water and its treatment
EP2740713B1 (en) Method for starting up and controlling a biological process for ammonium removal by the action of autotrophic bacteria in wastewater
JP5355314B2 (en) Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
US20140360933A1 (en) Methods and apparatus for nitrogen removal from wastewater
JP6720100B2 (en) Water treatment method and water treatment device
US8323487B2 (en) Waste water treatment apparatus
WO2011119982A9 (en) Mainstream wastewater treatment
JP4872171B2 (en) Biological denitrification equipment
WO2018136350A1 (en) Mainstream deammonification process for treating wastewater that suppresses the growth of nitrite oxidizing bacteria
JP5149717B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP2012120937A (en) Method and system for treating liquid containing ammonia nitrogen
AU2021382505A1 (en) Partial nitritation using sequencing batch reactor with filter media and wastewater treatment device and system for shortcut nitrogen removal using same
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP5325124B2 (en) Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
JP5149728B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP2013081881A (en) Apparatus for treating ammonia nitrogen content wastewater
JP2010005554A (en) Removal apparatus of ammoniacal nitrogen
JP2006204967A (en) Denitrification method and denitrification apparatus
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP5149736B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP4867099B2 (en) Biological denitrification method
JP6384168B2 (en) Sludge treatment method
KR102250418B1 (en) Annamox reactor and water treatment method using the same
JP3677811B2 (en) Biological denitrification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130719

R150 Certificate of patent or registration of utility model

Ref document number: 5325124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250