JP5149736B2 - Denitrification treatment method and denitrification treatment apparatus - Google Patents

Denitrification treatment method and denitrification treatment apparatus Download PDF

Info

Publication number
JP5149736B2
JP5149736B2 JP2008208709A JP2008208709A JP5149736B2 JP 5149736 B2 JP5149736 B2 JP 5149736B2 JP 2008208709 A JP2008208709 A JP 2008208709A JP 2008208709 A JP2008208709 A JP 2008208709A JP 5149736 B2 JP5149736 B2 JP 5149736B2
Authority
JP
Japan
Prior art keywords
denitrification
hydrogen donor
unit
water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008208709A
Other languages
Japanese (ja)
Other versions
JP2010042363A (en
Inventor
吉昭 長谷部
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2008208709A priority Critical patent/JP5149736B2/en
Priority to CN200910151475XA priority patent/CN101633532B/en
Priority to TW098125090A priority patent/TWI449676B/en
Publication of JP2010042363A publication Critical patent/JP2010042363A/en
Application granted granted Critical
Publication of JP5149736B2 publication Critical patent/JP5149736B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、被処理水中に含まれる硝酸イオン、亜硝酸イオンを脱窒菌により窒素に還元する脱窒処理方法及び脱窒処理装置に関する。   The present invention relates to a denitrification treatment method and a denitrification treatment apparatus for reducing nitrate ions and nitrite ions contained in water to be treated into nitrogen by denitrifying bacteria.

近年、水処理、特に排水処理の分野においては、微生物の生理活性を利用して排水中の汚濁物質を無害な物質に変化させて処理を行う生物化学的な水処理が多用されている。一般的な生物処理法として活性汚泥法が主流であるが、通常の活性汚泥法においては、槽内の微生物濃度の高濃度化が困難であり負荷を高く取ることができないため、大きな敷地面積が必要であること、生物の管理が難しくバルキング等の処理性能悪化を生じやすいこと、大規模な沈殿設備が必要であること、余剰汚泥等の廃棄物発生量が多いことなどが問題視されてきた。これらの問題を解決する技術として、活性汚泥の固液分離を膜により行う方法、スポンジや高分子担体等の微生物を付着させて処理を行う方法、微生物が自己造粒した比重の高い塊、いわゆるグラニュールを利用して処理を行う方法等が開発されてきた。中でもグラニュールを使用する方法は槽内に多量の微生物を保持しうるため、単位体積当たりの反応速度が速く、固液分離も容易なため注目されてきている。   In recent years, in the field of water treatment, particularly wastewater treatment, biochemical water treatment is often used in which the pollutant in the wastewater is changed to a harmless substance by utilizing the physiological activity of microorganisms. The activated sludge method is the mainstream as a general biological treatment method. However, in the normal activated sludge method, it is difficult to increase the concentration of microorganisms in the tank and the load cannot be increased. It has been regarded as a problem that it is necessary, the management of organisms is difficult and processing performance such as bulking is likely to deteriorate, the need for large-scale sedimentation facilities, and the generation of waste such as excess sludge . As a technique for solving these problems, a method of performing solid-liquid separation of activated sludge with a membrane, a method of performing treatment by attaching microorganisms such as sponges and polymer carriers, a mass with a high specific gravity, which is self-granulated microorganisms, so-called A method for performing processing using granules has been developed. Among them, the method using granules has been attracting attention because it can retain a large amount of microorganisms in the tank, and thus has a high reaction rate per unit volume and easy solid-liquid separation.

窒素を含有した排水の処理においても同様に、生物化学的な水処理が適用される。例えば、アンモニア性窒素含有排水の処理としては、好気性条件下において、アンモニア酸化細菌および亜硝酸酸化細菌等によりアンモニウムイオンを亜硝酸イオン、硝酸イオンにまで硝化した後に、嫌気性条件及び水素供与体の存在下において、脱窒菌により亜硝酸イオン、硝酸イオンを窒素ガスにまで還元する方法がある。この際、水素供与体としては排水中に含まれている有機物等が利用できるが、水素供与体が不足する場合には外部より供給することが必要となる。このとき水素供与体は排水中の窒素濃度を元に供給量が決定され、その供給量に基づいて、水素供与体が連続的に添加される。   Similarly, biochemical water treatment is applied to treatment of wastewater containing nitrogen. For example, in the treatment of wastewater containing ammonia nitrogen, anaerobic conditions and hydrogen donors are obtained after nitrifying ammonium ions to nitrite ions and nitrate ions by ammonia oxidizing bacteria and nitrite oxidizing bacteria under aerobic conditions. In the presence of nitrite, there is a method of reducing nitrite ions and nitrate ions to nitrogen gas by denitrifying bacteria. At this time, an organic substance or the like contained in the waste water can be used as the hydrogen donor, but when the hydrogen donor is insufficient, it is necessary to supply it from the outside. At this time, the supply amount of the hydrogen donor is determined based on the nitrogen concentration in the waste water, and the hydrogen donor is continuously added based on the supply amount.

このうち、脱窒菌により亜硝酸イオン、硝酸イオンを窒素ガスにまで還元する脱窒処理においては、活性汚泥法の他に、脱窒菌の濃度を高め、且つ固液分離を容易にするために、スポンジやゲル状の担体を添加し、脱窒処理を行う方法がある。また、脱窒菌自体を自己造粒させて比重の高い塊、すなわちグラニュールを形成して、槽内の脱窒菌の濃度を飛躍的に高め、脱窒処理を行う方法もある。グラニュール化した脱窒菌を使用する処理方法においては、高濃度の脱窒菌を槽内に保持することができるため、槽あたりの処理速度は担体を添加した処理方法と比較しても速く、担体が不要であるため低コスト化が可能となる。さらに、グラニュールの比重が高く沈降速度が速いため、固液分離が容易である等の利点を有している。このようなグラニュールの形成は、嫌気性メタン発酵、上向流式スラッジブランケットリアクター(USB)、半回分式リアクター(SBR)で確認されている(例えば、特許文献1〜3参照)。   Among these, in the denitrification treatment that reduces nitrite ions and nitrate ions to nitrogen gas by denitrifying bacteria, in addition to the activated sludge method, in order to increase the concentration of denitrifying bacteria and facilitate solid-liquid separation, There is a method in which a denitrification treatment is performed by adding a sponge or a gel-like carrier. There is also a method in which denitrifying bacteria are self-granulated to form a lump with high specific gravity, that is, granules, and the concentration of denitrifying bacteria in the tank is dramatically increased to perform denitrification treatment. In the treatment method using granulated denitrifying bacteria, a high concentration of denitrifying bacteria can be retained in the tank, so the processing speed per tank is faster than the treatment method with the addition of the carrier. Can be reduced in cost. Furthermore, since the specific gravity of the granule is high and the sedimentation speed is fast, it has advantages such as easy solid-liquid separation. Formation of such granules has been confirmed in anaerobic methane fermentation, an upflow sludge blanket reactor (USB), and a semi-batch reactor (SBR) (see, for example, Patent Documents 1 to 3).

特開昭63−258695号公報JP 63-258695 A 特開平1−262996号公報JP-A-1-262996 特開2000−51893号公報JP 2000-51893 A

半回分式リアクターにおいては、脱窒槽が完全混合型であって、1つの脱窒槽で、被処理水の流入、酸素供給および被処理水と脱窒菌との接触、脱窒菌の沈降、処理水の排出、といった4つの工程を経ることによって処理が行われる。しかし、被処理水の流入と処理水の排出が共に短時間で行われるため、処理流量の変動が大きくなり、装置には大きな流量調整槽が必要となる。そのため、小規模の装置においては簡便で有利な装置となり得るが、中〜大規模の装置に適用することは困難である。また、上向流式スラッジブランケットリアクターを用いた場合には、非常に高い処理速度が得られるものの、特殊な形状の脱窒槽を用いるため、設備コストが高くなる。また、装置の構成上、脱窒槽内部の攪拌を十分に行うことができないため、被処理水のpHコントロールが困難となり、カルシウム等を含んだ被処理水においてはスケールの発生やグラニュール中に無機物が蓄積するなどの問題点を有している。   In the semi-batch reactor, the denitrification tank is a complete mixing type. In one denitrification tank, inflow of treated water, oxygen supply and contact between treated water and denitrifying bacteria, sedimentation of denitrifying bacteria, treated water The process is carried out through four processes such as discharging. However, since both the inflow of treated water and the discharge of treated water are performed in a short time, the variation of the treatment flow rate becomes large, and the apparatus requires a large flow rate adjustment tank. Therefore, although it can be a simple and advantageous device in a small-scale device, it is difficult to apply to a medium-to-large device. In addition, when an upward flow type sludge blanket reactor is used, although a very high processing speed can be obtained, the equipment cost increases because a specially shaped denitrification tank is used. In addition, due to the configuration of the equipment, the inside of the denitrification tank cannot be sufficiently stirred, making it difficult to control the pH of the water to be treated. In the water to be treated containing calcium, etc., the generation of scales and inorganic substances in the granule Have problems such as accumulation.

こういった問題を解決するためには従来から多くの装置で利用されている完全混合型の脱窒槽を利用し、被処理水を連続流入(及び連続排出)させる装置構成とすることが望ましいが、このような装置構成における脱窒菌のグラニュール形成に関する報告はこれまでにない。   In order to solve these problems, it is desirable to use a completely mixed type denitrification tank that has been used in many devices in the past, and to have a device configuration that continuously inflows (and continuously discharges) the water to be treated. There has never been a report on the formation of granules of denitrifying bacteria in such a device configuration.

そこで、本発明は、被処理水に含まれる硝酸イオン、亜硝酸イオンを脱窒菌により窒素に還元する脱窒処理において、完全混合型の脱窒槽に被処理水を連続流入させながら、脱窒菌をグラニュール化させることを目的とする。   Therefore, in the denitrification treatment in which nitrate ions and nitrite ions contained in the water to be treated are reduced to nitrogen by the denitrifying bacteria, the present invention continuously removes the denitrifying bacteria while allowing the water to be treated to continuously flow into the complete denitrification tank. The purpose is to granulate.

本発明は、完全混合型の脱窒部に被処理水を連続供給すると共に、水素供与体を供給し、被処理水中に含まれる硝酸イオン、亜硝酸イオンを脱窒菌により窒素に還元する脱窒処理方法であって、前記脱窒部として、第1脱窒部と第2脱窒部とを設置し、前記第2脱窒部内の反応液の一部を前記第1脱窒部に供給した上で、前記第2脱窒部内での被処理水の水理学的滞留時間における前記第1脱窒部内での水素供与体の濃度と、前記第2脱窒部内での被処理水の水理学的滞留時間における前記第2脱窒部内での水素供与体の濃度との差が、前記脱窒菌の自己造粒化を誘導する濃度差となるように、少なくとも前記第1脱窒部に水素供与体を供給し、前記第2脱窒部に返送する。   The present invention provides denitrification in which water to be treated is continuously supplied to a completely mixed type denitrification unit, a hydrogen donor is supplied, and nitrate ions and nitrite ions contained in the water to be treated are reduced to nitrogen by denitrifying bacteria. In the treatment method, a first denitrification unit and a second denitrification unit are installed as the denitrification unit, and a part of the reaction liquid in the second denitrification unit is supplied to the first denitrification unit. Above, the concentration of the hydrogen donor in the first denitrification unit during the hydraulic residence time of the treated water in the second denitrification unit, and the hydraulics of the treated water in the second denitrification unit The hydrogen donation to at least the first denitrification unit so that the difference from the concentration of the hydrogen donor in the second denitrification unit in the general residence time is a concentration difference that induces self-granulation of the denitrifying bacteria. The body is supplied and returned to the second denitrification unit.

また、前記脱窒処理方法において、前記第2脱窒部内での被処理水の水理学的滞留時間における前記第1脱窒部内での水素供与体の最大濃度と、前記第2脱窒部内での被処理水の水理学的滞留時間における前記第2脱窒部内での水素供与体の最小濃度との差が50mgTOC/L以上であることが好ましい。   In the denitrification method, the maximum concentration of the hydrogen donor in the first denitrification unit during the hydraulic residence time of the water to be treated in the second denitrification unit, and in the second denitrification unit It is preferable that the difference from the minimum concentration of the hydrogen donor in the second denitrification part in the hydraulic residence time of the water to be treated is 50 mg TOC / L or more.

また、前記脱窒処理方法において、前記第2脱窒部には、前記被処理水を供給し、前記第1脱窒部には、水素供与体を供給するとともに、硝酸イオン、亜硝酸イオンを含む水を供給することが好ましい。   In the denitrification method, the water to be treated is supplied to the second denitrification unit, a hydrogen donor is supplied to the first denitrification unit, and nitrate ions and nitrite ions are supplied. It is preferable to supply water containing.

また、前記脱窒処理方法において、前記硝酸イオン、亜硝酸イオンを含む水は、前記第2脱窒部に供給される被処理水を分岐したものであることが好ましい。   In the denitrification method, the water containing nitrate ions and nitrite ions is preferably branched water to be treated supplied to the second denitrification unit.

また、前記脱窒処理方法において、前記第1脱窒部への水素供与体の供給は間欠的であることが好ましい。   In the denitrification method, the supply of the hydrogen donor to the first denitrification unit is preferably intermittent.

また、前記脱窒処理方法において、前記第1脱窒部への水素供与体の供給は、硝酸イオン、亜硝酸イオンの濃度に対して、脱窒処理に必要な水素供与体の供給量を基準とし、前記基準値より少ない量の水素供与体を供給する第1供給工程と、前記基準値より多い量の水素供与体を供給する第2供給工程とを組み合わせることにより行われることが好ましい。   In the denitrification method, the supply of the hydrogen donor to the first denitrification unit is based on the supply amount of the hydrogen donor necessary for the denitrification treatment with respect to the concentration of nitrate ions and nitrite ions. The first supply step for supplying a hydrogen donor in an amount smaller than the reference value and the second supply step for supplying a hydrogen donor in an amount larger than the reference value are preferably performed.

また、本発明は、完全混合型の脱窒部と、前記脱窒部に被処理水を連続供給する被処理水供給手段と、前記脱窒部に水素供与体を供給する水素供与体供給手段と、を有し、前記脱窒部内で被処理水中に含まれる硝酸イオン、亜硝酸イオンを脱窒菌により窒素に還元する脱窒処理装置であって、前記脱窒部は、第1脱窒部と第2脱窒部とを有し、前記第2脱窒部内の反応液の一部を前記第1脱窒部に供給する反応液供給手段と、前記第1脱窒部内の反応液を前記第2脱窒部に返送する反応液返送手段とを有し、前記反応液供給手段により前記第2脱窒部内の反応液の一部を前記第1脱窒部に供給した上で、前記第2脱窒部内での被処理水の水理学的滞留時間における前記第1脱窒部内での水素供与体の濃度と、前記第2脱窒部内での被処理水の水理学的滞留時間における前記第2脱窒部内での水素供与体の濃度との差が、前記脱窒菌の自己造粒化を誘導する濃度差となるように、前記水素供与体供給手段により少なくとも前記第1脱窒部に水素供与体を供給し、前記反応液返送手段により第1脱窒部内の反応液を前記第2脱窒部に返送することが好ましい。   The present invention also provides a complete mixing type denitrification unit, treated water supply means for continuously supplying treated water to the denitrification part, and hydrogen donor supply means for supplying a hydrogen donor to the denitrification part. A denitrification apparatus for reducing nitrate ions and nitrite ions contained in the water to be treated in the denitrification part to nitrogen by denitrifying bacteria, wherein the denitrification part is a first denitrification part And a second denitrification part, a reaction liquid supply means for supplying a part of the reaction liquid in the second denitrification part to the first denitrification part, and a reaction liquid in the first denitrification part A reaction liquid returning means for returning the reaction liquid to the second denitrification section, and supplying a part of the reaction liquid in the second denitrification section to the first denitrification section by the reaction liquid supply means. 2 The concentration of the hydrogen donor in the first denitrification unit during the hydraulic residence time of the water to be treated in the denitrification unit, and the water to be treated in the second denitrification unit At least the hydrogen donor supply means causes the difference in concentration of the hydrogen donor in the second denitrification part in the physical residence time to be a concentration difference that induces self-granulation of the denitrifying bacteria. It is preferable that a hydrogen donor is supplied to the first denitrification unit, and the reaction solution in the first denitrification unit is returned to the second denitrification unit by the reaction solution returning unit.

本発明によれば、完全混合型の脱窒槽に被処理水を連続流入させながら、脱窒菌をグラニュール化させることができ、装置の小型化又は低コスト化が可能となる。   According to the present invention, denitrifying bacteria can be granulated while allowing the water to be treated to flow continuously into a complete mixing type denitrification tank, and the apparatus can be downsized or reduced in cost.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る水処理装置の一例を示す概略構成図である。図1に示すように、水処理装置1は、フッ素処理装置10と、硝化装置12と、脱窒装置14とを備える。本実施形態は、硝酸イオン、亜硝酸イオンを含有した被処理水の脱室処理方法及び脱窒処理装置に関するものであるが、例えば、半導体工場排水等の電子産業排水等には、フッ素及びアンモニア性窒素含有排水として排出されることが多く、このような場合には、上記のようにフッ素処理装置10によりフッ素を除去し、硝化装置12によりアンモニア性窒素を硝酸若しくは亜硝酸まで硝化させる必要がある。   FIG. 1 is a schematic configuration diagram illustrating an example of a water treatment apparatus according to the present embodiment. As shown in FIG. 1, the water treatment device 1 includes a fluorine treatment device 10, a nitrification device 12, and a denitrification device 14. The present embodiment relates to a method and a denitrification apparatus for treating water containing nitrate ions and nitrite ions. For example, fluorine and ammonia are used for electronic industrial wastewater such as semiconductor factory wastewater. In such a case, it is necessary to remove fluorine by the fluorine treatment device 10 and nitrify ammonia nitrogen to nitric acid or nitrous acid by the nitrification device 12 as described above. is there.

アンモニア性窒素は、アンモニア、アンモニウム化合物、アミン系化合物、例えばテトラメチルアンモニウムハイドロオキサイド、モノエタノールアミン、その他アミノ酸等の有機性窒素化合物に起因するものである。フッ素は、フッ酸やフッ素化合物等に起因するものである。なお、フッ素処理装置10の構成及びフッ素除去方法、硝化装置12の構成及び硝化方法について、下記にその一例を説明するが、装置構成及び方法はこれに制限されるものではない。   Ammonia nitrogen originates from organic nitrogen compounds such as ammonia, ammonium compounds, and amine compounds such as tetramethylammonium hydroxide, monoethanolamine, and other amino acids. Fluorine is caused by hydrofluoric acid, a fluorine compound, or the like. In addition, although the example is demonstrated below about the structure of the fluorine processing apparatus 10, the fluorine removal method, the structure of the nitrification apparatus 12, and the nitrification method, an apparatus structure and a method are not restrict | limited to this.

フッ素処理装置10は、被処理水槽と、反応槽と、沈殿槽とを備える。被処理水槽の出口と反応槽の入口、反応槽の出口と沈殿槽の入口とは配管により接続されている。   The fluorine treatment apparatus 10 includes a water tank to be treated, a reaction tank, and a precipitation tank. The outlet of the water tank to be treated and the inlet of the reaction tank, and the outlet of the reaction tank and the inlet of the precipitation tank are connected by piping.

硝化装置12は、被処理水槽と、硝化槽とを備える。フッ素処理装置10の沈殿槽の出口と硝化装置12の被処理水槽の入口、硝化装置12の被処理水槽の出口と硝化槽の入口とは配管により接続されている。   The nitrification device 12 includes a water tank to be treated and a nitrification tank. The outlet of the precipitation tank of the fluorine treatment apparatus 10 and the inlet of the water tank to be treated of the nitrification apparatus 12, and the outlet of the water tank to be treated of the nitrification apparatus 12 and the inlet of the nitrification tank are connected by piping.

図2は、本実施形態に係る脱窒装置の構成の一例を示す模式図である。図2に示すように、脱窒装置14は、脱窒部(第1脱窒部16a、第2脱窒部16b)と、酸化槽18と、沈殿槽20と、被処理水流入管22、反応液返送管23、汚泥返送管24、処理水取出管26a,26b,26c、反応液供給手段としての反応液供給管27及びポンプ29、水素供与体供給装置28、pH調整装置30、とを備える。脱窒部は完全混合型であり、第1脱窒部16aと第2脱窒部16bとを有する。図1に示す硝化装置12の硝化槽の出口と図2に示す第2脱窒部16bの被処理水供給口とは、被処理水流入管22により接続されている。第1脱窒部16aの反応液排出口と第2脱窒部16bの反応液供給口とは、反応液返送管23により接続されている。第2脱窒部16bの処理水出口と酸化槽18の入口とは処理水取出管26aにより接続され、酸化槽18の出口と沈殿槽20の入口とは処理水取出管26bにより接続され、沈殿槽20の処理水出口には、処理水取出管26cが接続されている。沈殿槽20の汚泥排出口と第2脱窒部16bの汚泥流入口とは、ポンプ25を介して、汚泥返送管24により接続されている。第1脱窒部16a及び第2脱窒部16b内には、槽内の水の攪拌を行う攪拌装置32a,32bが設けられている。   FIG. 2 is a schematic diagram illustrating an example of the configuration of the denitrification apparatus according to the present embodiment. As shown in FIG. 2, the denitrification device 14 includes a denitrification unit (first denitrification unit 16 a and second denitrification unit 16 b), an oxidation tank 18, a precipitation tank 20, a treated water inflow pipe 22, a reaction. A liquid return pipe 23, a sludge return pipe 24, treated water take-out pipes 26a, 26b and 26c, a reaction liquid supply pipe 27 and a pump 29 as a reaction liquid supply means, a hydrogen donor supply apparatus 28, and a pH adjusting apparatus 30 are provided. . The denitrification unit is a complete mixing type, and includes a first denitrification unit 16a and a second denitrification unit 16b. The outlet of the nitrification tank of the nitrification apparatus 12 shown in FIG. 1 and the treated water supply port of the second denitrification unit 16 b shown in FIG. 2 are connected by a treated water inflow pipe 22. The reaction liquid discharge port of the first denitrification unit 16 a and the reaction liquid supply port of the second denitrification unit 16 b are connected by a reaction liquid return pipe 23. The treated water outlet of the second denitrification unit 16b and the inlet of the oxidation tank 18 are connected by a treated water take-out pipe 26a, and the outlet of the oxidation tank 18 and the inlet of the settling tank 20 are connected by a treated water take-out pipe 26b to cause precipitation. A treated water outlet pipe 26 c is connected to the treated water outlet of the tank 20. The sludge discharge port of the sedimentation tank 20 and the sludge inlet of the second denitrification unit 16 b are connected by a sludge return pipe 24 via a pump 25. In the 1st denitrification part 16a and the 2nd denitrification part 16b, the stirring apparatuses 32a and 32b which stir the water in a tank are provided.

反応液供給手段は、第2脱窒部16b内の反応液を引き抜き第1脱窒部16aに供給するためのものであり、反応液供給管27の一端は、第2脱窒部16b内に挿入されており、他端は第1脱窒部16aの反応液供給口に接続されている。また、反応液供給管27にはポンプ29が設置されている。   The reaction solution supply means is for extracting the reaction solution in the second denitrification unit 16b and supplying it to the first denitrification unit 16a, and one end of the reaction solution supply pipe 27 is placed in the second denitrification unit 16b. The other end is connected to the reaction liquid supply port of the first denitrification unit 16a. A pump 29 is installed in the reaction liquid supply pipe 27.

水素供与体供給装置28は、少なくとも第1脱窒部16aに水素供与体を供給するものであり、水素供与体が収容される水素供与体タンク34、水素供与体を第1脱窒部16aに送水するポンプ36、水素供与体の流路となる水素供与体流入管38、ポンプ36の駆動を制御し、水素供与体の供給量をコントロールする制御装置40とを備える。水素供与体タンク34の出口と第1脱窒部16aの水素供与体供給口とは、ポンプ36を介して、水素供与体流入管38により接続されている。ポンプ36と制御装置40とは電気的に接続されている。なお、第2脱窒部16bにも水素供与体を供給する場合には、水素供与体を第2脱窒部16bに送水するポンプ、水素供与体の流路となる水素供与体流入管、ポンプの駆動を制御し、水素供与体の供給量をコントロールする制御装置を別途設ければよい。   The hydrogen donor supply device 28 supplies a hydrogen donor to at least the first denitrification unit 16a, a hydrogen donor tank 34 in which the hydrogen donor is accommodated, and the hydrogen donor to the first denitrification unit 16a. A pump 36 for feeding water, a hydrogen donor inflow pipe 38 serving as a flow path for the hydrogen donor, and a controller 40 for controlling the drive of the pump 36 and controlling the supply amount of the hydrogen donor are provided. The outlet of the hydrogen donor tank 34 and the hydrogen donor supply port of the first denitrification unit 16 a are connected by a hydrogen donor inflow pipe 38 via a pump 36. The pump 36 and the control device 40 are electrically connected. In addition, when supplying a hydrogen donor also to the 2nd denitrification part 16b, the pump which supplies a hydrogen donor to the 2nd denitrification part 16b, the hydrogen donor inflow pipe used as the flow path of a hydrogen donor, a pump A control device for controlling the driving of the hydrogen donor and controlling the supply amount of the hydrogen donor may be provided separately.

pH調整装置30は、第1脱窒部16a及び第2脱窒部16b内の被処理水のpHを調整するものであり、塩酸等の酸剤又は水酸化ナトリウム等のアルカリ剤等のpH調整剤が収容されるpH調整剤タンク42と、pH調整剤を第1脱窒部16a及び第2脱窒部16bに送水するポンプ44a,44bと、pH調整剤の流路となるpH調整剤流入管46a,46bと、第1脱窒部16a及び第2脱窒部16b内の被処理水pH値を測定するpHセンサ48a,48bと、ポンプ44aの駆動を制御し、第1脱窒部16aに供給するpH調整剤の供給量をコントロールする制御装置50aと、ポンプ44bの駆動を制御し、第2脱窒部16bに供給するpH調整剤の供給量をコントロールする制御装置50bとを備える。pH調整剤タンク42の第1出口と第1脱窒部16aのpH調整剤供給口とは、ポンプ44aを介して、pH調整剤流入管46aにより接続されている。また、pH調整剤タンク42の第2出口と第2脱窒部16bのpH調整剤供給口とは、ポンプ44bを介して、pH調整剤流入管46bにより接続されている。pHセンサ48aと制御装置50a、制御装置50aとポンプ44a、pHセンサ48bと制御装置50b、制御装置50bとポンプ44bとは電気的に接続されている。   The pH adjuster 30 adjusts the pH of the water to be treated in the first denitrification unit 16a and the second denitrification unit 16b, and adjusts the pH of an acid agent such as hydrochloric acid or an alkali agent such as sodium hydroxide. PH adjusting agent tank 42 in which the agent is accommodated, pumps 44a and 44b for feeding the pH adjusting agent to the first denitrifying unit 16a and the second denitrifying unit 16b, and the pH adjusting agent inflow serving as a channel for the pH adjusting agent The pipes 46a and 46b, pH sensors 48a and 48b for measuring the pH values of the water to be treated in the first denitrification unit 16a and the second denitrification unit 16b, and the drive of the pump 44a are controlled, and the first denitrification unit 16a And a control device 50b for controlling the supply amount of the pH adjusting agent supplied to the second denitrification unit 16b by controlling the drive of the pump 44b. The first outlet of the pH adjuster tank 42 and the pH adjuster supply port of the first denitrification unit 16a are connected by a pH adjuster inflow pipe 46a via a pump 44a. Further, the second outlet of the pH adjuster tank 42 and the pH adjuster supply port of the second denitrification unit 16b are connected by a pH adjuster inflow pipe 46b via a pump 44b. The pH sensor 48a and the control device 50a, the control device 50a and the pump 44a, the pH sensor 48b and the control device 50b, and the control device 50b and the pump 44b are electrically connected.

次に、本実施形態に係る水処理方法及び水処理装置1の動作について説明する。まず、フッ素及びアンモニア性窒素を含有する被処理水を図1に示すフッ素処理装置10の被処理水槽に送液する。該被処理水槽にて被処理水の流量及び濃度を平均化し、pHを調整した後、被処理水をフッ素処理装置10の反応槽に送液する。また、反応槽にカルシウム化合物を供給する。そして、フッ素処理装置10の反応槽で、被処理水中のフッ素とカルシウム化合物とを反応させ、フッ化カルシウム(CaF)を生成させる。ここで、被処理水中のフッ素の処理効率を上げるために、カルシウム化合物と共に、凝集剤をフッ素処理装置10の反応槽に供給して、上記生成するフッ化カルシウムをフロック化させてもよい。そして、フッ素処理装置10の沈殿槽で(フロック化した)フッ化カルシウムを含む被処理水の個液分離を行い、被処理水からフッ素(及びフッ化カルシウム)を除去する。 Next, the operation of the water treatment method and the water treatment apparatus 1 according to this embodiment will be described. First, the water to be treated containing fluorine and ammonia nitrogen is fed to the water tank to be treated of the fluorine treatment apparatus 10 shown in FIG. After the flow rate and concentration of the water to be treated are averaged in the water tank to be treated and the pH is adjusted, the water to be treated is sent to the reaction tank of the fluorine treatment apparatus 10. In addition, a calcium compound is supplied to the reaction vessel. Then, in a reaction vessel of the fluorine treatment unit 10 is reacted with fluorine and calcium compounds in the for-treatment water, to form calcium fluoride (CaF 2). Here, in order to increase the treatment efficiency of fluorine in the water to be treated, together with the calcium compound, a flocculant may be supplied to the reaction tank of the fluorine treatment apparatus 10 to flock the generated calcium fluoride. Then, individual liquid separation of water to be treated containing calcium fluoride (flocculated) is performed in the precipitation tank of the fluorine treatment apparatus 10 to remove fluorine (and calcium fluoride) from the water to be treated.

また、フッ素処理装置10は、反応槽を複数備えるものであってもよい。例えば、第1反応槽と第2反応槽とを備え、第1反応槽でフッ素及びアンモニア性窒素を含有する処理水とカルシウム化合物とを反応させて、フッ化カルシウムを生成させ、第2反応槽で凝集剤を添加してフッ化カルシウムをフロック化させてもよい。なお、反応槽には槽内の水の撹拌を行う撹拌機構が設けられてもよい。   Moreover, the fluorine processing apparatus 10 may include a plurality of reaction vessels. For example, a first reaction tank and a second reaction tank are provided, and in the first reaction tank, treated water containing fluorine and ammonia nitrogen and a calcium compound are reacted to generate calcium fluoride, and the second reaction tank The flocculant may be flocked by adding a flocculant. In addition, the reaction tank may be provided with a stirring mechanism for stirring water in the tank.

フッ素処理装置10の反応槽に供給するカルシウム化合物は、フッ素をフッ化カルシウムとして折出できるものであれば特に制限されるものではなく、例えば、水酸化カルシウム(Ca(OH))、塩化カルシウム(CaCl)、硫酸カルシウム(CaSO)等が挙げられる。また、凝集剤としては、例えば、ポリ塩化アルミニウムや硫酸アルミニウム等の無機系凝集剤や陰イオン性ポリマー等の有機高分子凝集剤等を用いることができる。 The calcium compound supplied to the reaction tank of the fluorine treatment apparatus 10 is not particularly limited as long as fluorine can be extracted as calcium fluoride. For example, calcium hydroxide (Ca (OH) 2 ), calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ) and the like. Examples of the flocculant include inorganic flocculants such as polyaluminum chloride and aluminum sulfate, and organic polymer flocculants such as an anionic polymer.

次に、フッ素が除去されたアンモニア性窒素を含有する被処理水を図1に示す硝化装置12の被処理水槽に送液する。該被処理水槽にて被処理水の流量及び濃度を平均化し、pHを調整した後、被処理水を硝化槽に送液する。硝化槽には、担体に硝化菌を含む微生物膜を担持させてなる微生物担持担体が充填されている。また、硝化槽には、空気導入管(不図示)が接続されており、硝化槽内の被処理水に空気を供給することができる構造になっている。そして、硝化槽で、微生物担持担体の硝化菌の働きにより、被処理水中のアンモニア性窒素を硝酸性窒素、亜硝酸性窒素に硝化させる。ここで、硝化菌は、被処理水中に含まれるアンモニア性窒素を亜硝酸性窒素に硝化する独立栄養性細菌のアンモニア酸化細菌、亜硝酸性窒素を硝酸性窒素に硝化する独立栄養性細菌の亜硝酸酸化細菌等である。   Next, the water to be treated containing ammonia nitrogen from which fluorine has been removed is fed to the water tank to be treated of the nitrification apparatus 12 shown in FIG. After the flow rate and concentration of the water to be treated are averaged in the water tank to be treated and the pH is adjusted, the water to be treated is sent to the nitrification tank. The nitrification tank is filled with a microorganism-supporting carrier formed by supporting a microorganism film containing nitrifying bacteria on a carrier. In addition, an air introduction pipe (not shown) is connected to the nitrification tank so that air can be supplied to the water to be treated in the nitrification tank. Then, in the nitrification tank, ammonia nitrogen in the water to be treated is nitrified into nitrate nitrogen and nitrite nitrogen by the action of nitrifying bacteria of the microorganism-supporting carrier. Here, nitrifying bacteria are ammonia-oxidizing bacteria, which are auxotrophic bacteria that nitrify ammonia nitrogen contained in treated water to nitrite nitrogen, and sub-types of autotrophic bacteria that nitrify nitrite nitrogen to nitrate nitrogen. Such as nitrate-oxidizing bacteria.

硝化菌が担持される担体は、特に制限されるものではないが、例えば、スポンジ、ゲル、プラスチック成型品等を利用することができる。具体的には、親水性のポリウレタンスポンジ、ポリビニルアルコールゲル等を利用することが好ましい。   The carrier on which nitrifying bacteria are supported is not particularly limited, and for example, sponges, gels, plastic molded products, and the like can be used. Specifically, it is preferable to use hydrophilic polyurethane sponge, polyvinyl alcohol gel, or the like.

次に、上記硝化処理された硝化処理液、すなわち、硝酸性窒素、亜硝酸性窒素を含む被処理水を被処理水流入管22を介して脱窒装置14の第2脱窒部16bに連続供給する。そして、反応液供給手段のポンプ29を稼働させ、反応液供給管27から第2脱窒部16b内の反応液(第2脱窒部16b内の被処理水及び脱窒菌等)の一部を第1脱窒部16aに供給するとともに、水素供与体供給装置28のポンプ36を稼働させ、水素供与体タンク34内の水素供与体を水素供与体流入管38を介して第1脱窒部16aに供給する。その後、第1脱窒部16a内の反応液を反応液返送管23を介して第2脱窒部16bへ供給する。これにより、第1脱窒部16a内の反応液中の脱窒菌は一時的に高濃度の水素供与体に暴露される。また、第1脱窒部16a内の反応液が第2脱窒部16bへ供給されるため、第2脱窒部16b内の反応液中の脱窒菌は水素供与体濃度の低い環境下に暴露されることとなる。このように、脱窒菌に対して水素供与体濃度を変動させることにより、脱窒菌のグラニュール化を誘導することが可能となる。なお、第2脱窒部16b内の反応液の一部が、第1脱窒部16a内に連続供給されるように、反応液供給手段のポンプ29を継続して稼働させてもよいし、第2脱窒部16b内の反応液の一部が、第1脱窒部16a内に間欠的に供給されるように、反応液供給手段のポンプ29を断続的に稼働させてもよい。   Next, the nitrification liquid subjected to the nitrification treatment, that is, the water to be treated containing nitrate nitrogen and nitrite nitrogen is continuously supplied to the second denitrification unit 16b of the denitrification apparatus 14 through the water to be treated inflow pipe 22. To do. Then, the pump 29 of the reaction liquid supply means is operated, and a part of the reaction liquid (the treated water and denitrifying bacteria in the second denitrification part 16b, etc.) in the second denitrification part 16b is removed from the reaction liquid supply pipe 27. While supplying to the 1st denitrification part 16a, the pump 36 of the hydrogen donor supply apparatus 28 is operated, and the hydrogen donor in the hydrogen donor tank 34 is made into the 1st denitrification part 16a via the hydrogen donor inflow pipe 38. To supply. Thereafter, the reaction solution in the first denitrification unit 16 a is supplied to the second denitrification unit 16 b through the reaction solution return pipe 23. Thereby, the denitrifying bacteria in the reaction solution in the first denitrifying unit 16a are temporarily exposed to a high concentration hydrogen donor. Further, since the reaction solution in the first denitrification unit 16a is supplied to the second denitrification unit 16b, the denitrifying bacteria in the reaction solution in the second denitrification unit 16b are exposed to an environment with a low hydrogen donor concentration. Will be. In this way, it is possible to induce granulation of the denitrifying bacteria by varying the hydrogen donor concentration with respect to the denitrifying bacteria. The pump 29 of the reaction solution supply means may be continuously operated so that a part of the reaction solution in the second denitrification unit 16b is continuously supplied into the first denitrification unit 16a. You may operate the pump 29 of a reaction liquid supply means intermittently so that a part of reaction liquid in the 2nd denitrification part 16b may be intermittently supplied in the 1st denitrification part 16a.

第1脱窒部16a及び第2脱窒部16b内では、脱窒菌の働きによって、被処理水中の硝酸イオン、亜硝酸イオンが窒素ガスに還元される。水素供与体としてメタノールを使用した場合、被処理水中の硝酸イオン、亜硝酸イオンは、下記反応式に示す反応により、窒素ガスに還元される。   In the first denitrification unit 16a and the second denitrification unit 16b, nitrate ions and nitrite ions in the water to be treated are reduced to nitrogen gas by the action of the denitrifying bacteria. When methanol is used as the hydrogen donor, nitrate ions and nitrite ions in the water to be treated are reduced to nitrogen gas by the reaction shown in the following reaction formula.

2NO + CHOH → N + CO + HO + 2OH
6NO + 5CHOH → 3N + 5CO + 7HO + 6OH
2NO 2 + CH 3 OH → N 2 + CO 2 + H 2 O + 2OH
6NO 3 - + 5CH 3 OH → 3N 2 + 5CO 2 + 7H 2 O + 6OH -

次に、処理水取出管26aを介して、脱窒処理により硝酸イオン、亜硝酸イオンが除去された処理水を酸化槽18に送液し、酸化槽18で、処理水中に残存する水素供与体等の有機物を酸化させる。次に、処理水取出管26bを介して、水素供与体が除去された処理水を沈殿槽20に送液する。そして、沈殿槽20の下部に、被処理水中に含まれる(本実施形態では自己造粒化した)脱窒菌が汚泥として堆積し、沈殿槽20の上部の上澄水を処理水取出管26cから取り出す。また、ポンプ25を稼働させ、沈殿槽20の下部に堆積した汚泥を汚泥返送管24から再度第2脱窒部16b内(又は第1脱窒部16a内)へ返送する。なお、硝化装置12で行う硝化処理も浮遊式の汚泥で行う場合、硝化槽へ汚泥を返送してもよい。   Next, the treated water from which nitrate ions and nitrite ions have been removed by the denitrification treatment is sent to the oxidation tank 18 through the treated water extraction pipe 26a, and the hydrogen donor remaining in the treated water in the oxidation tank 18 Oxidize organic matter such as. Next, the treated water from which the hydrogen donor has been removed is sent to the sedimentation tank 20 through the treated water take-out pipe 26b. Then, denitrifying bacteria contained in the water to be treated (self-granulated in this embodiment) accumulate as sludge in the lower part of the sedimentation tank 20, and the supernatant water of the upper part of the precipitation tank 20 is taken out from the treated water extraction pipe 26c. . Moreover, the pump 25 is operated, and the sludge accumulated in the lower part of the sedimentation tank 20 is returned again from the sludge return pipe 24 into the second denitrification unit 16b (or the first denitrification unit 16a). In addition, when performing the nitrification process performed with the nitrification apparatus 12 also with a floating sludge, you may return sludge to a nitrification tank.

図3は、本発明の他の実施形態に係る脱窒装置の構成の一例を示す模式図である。脱窒装置14においては、必ずしも沈殿槽20を脱窒部と独立して設ける必要はなく、図3に示すように、第2脱窒部16b内に、下部開口の隔壁52を設け、脱窒室54及び沈殿室56を形成してもよい。また、個液分離は、図2に示す沈殿槽20、図3に示す沈殿室56によらず、ガスソリッドセパレータ(GSS)、膜分離装置等の任意の手段で行ってもよい。   FIG. 3 is a schematic diagram showing an example of the configuration of a denitrification apparatus according to another embodiment of the present invention. In the denitrification apparatus 14, it is not always necessary to provide the precipitation tank 20 independently of the denitrification unit. As shown in FIG. 3, a partition wall 52 having a lower opening is provided in the second denitrification unit 16 b, and denitrification is performed. The chamber 54 and the sedimentation chamber 56 may be formed. Further, the individual liquid separation may be performed by any means such as a gas solid separator (GSS), a membrane separation device, etc., without using the precipitation tank 20 shown in FIG. 2 and the precipitation chamber 56 shown in FIG.

酸化槽18は、被処理水中に含まれる水素供与体等の有機物を微生物の働きにより酸化分解するためのものである。酸化槽18は、図2に示すように、沈殿槽20より上流側に設置してもよいし、沈殿槽20より下流側に設置してもよい。   The oxidation tank 18 is for oxidizing and decomposing organic substances such as a hydrogen donor contained in the water to be treated by the action of microorganisms. As shown in FIG. 2, the oxidation tank 18 may be installed on the upstream side of the precipitation tank 20, or may be installed on the downstream side of the precipitation tank 20.

次に、水素供与体の供給方法について詳述する。通常、水素供与体は、脱窒部に供給される被処理水中の硝酸イオン、亜硝酸イオンの濃度から、脱窒処理に必要な水素供与体の供給量を算出し、その量を変化させることなく連続的に脱窒部に供給する。そのため、脱窒部内の水素供与体の濃度は、低濃度でほぼ一定である。なお、脱窒処理を効率的に行うために、脱窒部内の硝酸イオン及び亜硝酸イオンの脱窒処理に必要な水素供与体の供給量(水素供与体必要理論量)の1.2倍前後を脱窒部に供給する。   Next, a method for supplying a hydrogen donor will be described in detail. Normally, the hydrogen donor calculates the supply amount of the hydrogen donor required for the denitrification treatment from the concentration of nitrate ion and nitrite ion in the water to be treated supplied to the denitrification section, and changes the amount. Continuously supplied to the denitrification section. Therefore, the concentration of the hydrogen donor in the denitrification part is almost constant at a low concentration. In order to efficiently perform the denitrification treatment, about 1.2 times the supply amount of hydrogen donor (necessary theoretical amount of hydrogen donor) required for the denitrification treatment of nitrate and nitrite ions in the denitrification section Is supplied to the denitrification section.

しかし、本実施形態では、第2脱窒部16b内の反応液を第1脱窒部16aに供給した上で、第2脱窒部16b内での被処理水の水理学的滞留時間(HRT)における第1脱窒部16a内での水素供与体の濃度と、第2脱窒部16b内での被処理水の水理学的滞留時間における第2脱窒部16b内での水素供与体の濃度との差が、脱窒菌の自己造粒化を誘導する(グラニュール化する)濃度差となるように、少なくとも第1脱窒部16aに水素供与体を供給し、第2脱窒部16bに返送する。具体的には、制御装置40に、水理学的滞留時間における第1脱窒部16a及び第2脱窒部16b内での水素供与体の濃度変動マップを予め記録させておき、濃度変動マップに基づいて、第1脱窒部16a内での水素供与体の濃度と第2脱窒部16b内での濃度との差が、脱窒菌の自己造粒化を誘導する濃度差となるように、ポンプ36の稼働を制御し、水素供与体の供給量を調節する。そして、反応液返送管23から第2脱窒部16bに反応液を返送する。   However, in this embodiment, after supplying the reaction liquid in the 2nd denitrification part 16b to the 1st denitrification part 16a, the hydraulic residence time (HRT) of the to-be-processed water in the 2nd denitrification part 16b ) Of the hydrogen donor in the first denitrification unit 16a and the hydraulic donor residence time in the second denitrification unit 16b during the hydraulic residence time of the treated water in the second denitrification unit 16b. The hydrogen donor is supplied to at least the first denitrification unit 16a and the second denitrification unit 16b so that the difference from the concentration is a concentration difference that induces (granulates) self-granulation of the denitrifying bacteria. Return to Specifically, the control device 40 is made to record in advance a concentration variation map of the hydrogen donor in the first denitrification unit 16a and the second denitrification unit 16b during the hydraulic residence time. Based on this, the difference between the concentration of the hydrogen donor in the first denitrification unit 16a and the concentration in the second denitrification unit 16b is a concentration difference that induces self-granulation of the denitrifying bacteria. The operation of the pump 36 is controlled and the supply amount of the hydrogen donor is adjusted. Then, the reaction solution is returned from the reaction solution return pipe 23 to the second denitrification unit 16b.

ここで、第2脱窒部16b内の被処理水の水理学的滞留時間(HRT)における第1脱窒部16a内での水素供与体の最大濃度と、第2脱窒部16b内の被処理水の水理学的滞留時間における第2脱窒部16b内での水素供与体の最小濃度との差は、50mgTOC/L以上であることが好ましく、また、100mgTOC/L以上であることがより好ましい。第1脱窒部16a内での水素供与体の最大濃度と第2脱窒部16b内での水素供与体の最小濃度との差が、50mgTOC/Lより小さいと、脱窒菌の自己造粒化を充分に誘導することができない場合がある。また、第2脱窒部16b内での水素供与体の最小濃度は、第1脱窒部16a内での水素供与体の最大濃度に対して1/2以下(0より大きく、最大濃度に対して1/2以下の範囲)であることが好ましい。上記最小濃度が最大濃度に対して1/2を超えると、脱窒菌の自己造粒化の誘導が困難となる場合がある。   Here, the maximum concentration of the hydrogen donor in the first denitrification unit 16a in the hydraulic retention time (HRT) of the water to be treated in the second denitrification unit 16b, and the target concentration in the second denitrification unit 16b. The difference from the minimum concentration of the hydrogen donor in the second denitrification unit 16b in the hydraulic residence time of the treated water is preferably 50 mg TOC / L or more, and more preferably 100 mg TOC / L or more. preferable. If the difference between the maximum concentration of the hydrogen donor in the first denitrification unit 16a and the minimum concentration of the hydrogen donor in the second denitrification unit 16b is less than 50 mg TOC / L, self-granulation of the denitrifying bacteria May not be sufficiently induced. Further, the minimum concentration of the hydrogen donor in the second denitrification unit 16b is ½ or less of the maximum concentration of the hydrogen donor in the first denitrification unit 16a (greater than 0, with respect to the maximum concentration). And a range of 1/2 or less). If the minimum concentration exceeds 1/2 with respect to the maximum concentration, it may be difficult to induce self-granulation of denitrifying bacteria.

本実施形態において、第2脱窒部16bから反応液供給管27を通る反応液中の硝酸イオン、亜硝酸イオンの濃度が低い場合等では、水素供与体を供給後の第1脱窒部16a内における脱窒活性を高めるために、硝酸イオン、亜硝酸イオンを含む水を第1脱窒部16aに供給することが好ましい。具体的には、硝酸イオン、亜硝酸イオンを含む水を収容するタンク、当該水をタンクから第1脱窒部16aに送液するためのポンプ及び送液管を設けて、当該水を第1脱窒部16aに供給する。しかし、装置の構成を簡略化することができる点で、被処理水流入管22を分岐させて、分岐した管を第1脱窒部16aに接続させることにより、被処理水を硝酸イオン、亜硝酸イオンを含む水として、第1脱窒部16aに供給することが好ましい。   In this embodiment, when the concentration of nitrate ions and nitrite ions in the reaction solution passing through the reaction solution supply pipe 27 from the second denitrification unit 16b is low, the first denitrification unit 16a after supplying the hydrogen donor is used. In order to enhance the denitrification activity inside, it is preferable to supply water containing nitrate ions and nitrite ions to the first denitrification unit 16a. Specifically, a tank for containing water containing nitrate ions and nitrite ions, a pump for feeding the water from the tank to the first denitrification unit 16a, and a liquid feed pipe are provided, and the water is first supplied. It supplies to the denitrification part 16a. However, because the configuration of the apparatus can be simplified, the treated water inflow pipe 22 is branched, and the branched pipe is connected to the first denitrification unit 16a, so that the treated water is mixed with nitrate ions and nitrous acid. It is preferable to supply the first denitrification unit 16a as water containing ions.

本実施形態では、水素供与体を第1脱窒部16aに連続的に供給してもよい(第2脱窒部16bにも供給してよい)が、被処理水中の硝酸イオン、亜硝酸イオンの濃度が低い場合には、第1脱窒部16aと第2脱窒部16bとの間で、水素供与体の濃度差を形成することが困難となる。そこで、第1脱窒部16aと第2脱窒部16bとの間で、水素供与体の濃度差を容易に形成することができる点で、水素供与体を間欠的に第1脱窒部16aに供給することが好ましい。但し、水素供与体の供給及び停止時間、水素供与体の供給量は、第1脱窒部16a内での水素供与体の最大濃度と第2脱窒部16b内での水素供与体の最小濃度との差が、例えば50mgTOC/L以上となるように設定されることが好ましい。   In the present embodiment, the hydrogen donor may be continuously supplied to the first denitrification unit 16a (may also be supplied to the second denitrification unit 16b), but nitrate ions and nitrite ions in the water to be treated. When the concentration of is low, it becomes difficult to form a concentration difference of the hydrogen donor between the first denitrification unit 16a and the second denitrification unit 16b. Therefore, the hydrogen donor is intermittently formed between the first denitrification unit 16a and the second denitrification unit 16b so that the hydrogen donor is intermittently formed. It is preferable to supply to. However, the supply and stop time of the hydrogen donor and the supply amount of the hydrogen donor are the maximum concentration of the hydrogen donor in the first denitrification unit 16a and the minimum concentration of the hydrogen donor in the second denitrification unit 16b. Is preferably set so as to be, for example, 50 mg TOC / L or more.

第1脱窒部16aでの水素供与体の供給及び停止のサイクルを複数行う場合、後段の第2脱窒部16b内での水素供与体の濃度を平均化することができる点で、1サイクル(供給−停止)の時間は、第2脱窒部16b内での被処理水の水理学的滞留時間の50%より短いこと、すなわち第2脱窒部16b内での被処理水の水理学的滞留時間に対して2サイクル以上行うことが好ましい。   When a plurality of hydrogen donor supply and stop cycles are performed in the first denitrification unit 16a, the concentration of the hydrogen donor in the second denitrification unit 16b in the subsequent stage can be averaged. The (supply-stop) time is shorter than 50% of the hydraulic retention time of the treated water in the second denitrification unit 16b, that is, the hydraulics of the treated water in the second denitrification unit 16b. It is preferable to carry out 2 cycles or more with respect to the general residence time.

また、本実施形態では、脱窒部に供給される硝酸イオン及び亜硝酸イオンの濃度に対して、脱窒処理に必要な水素供与体の供給量(水素供与体必要理論量)を基準として、基準値より少ない量の水素供与体を第1脱窒部16aに供給する第1供給工程と、前記基準値より多い量の水素供与体を第1脱窒部16aに供給する第2供給工程とを組み合わせて、第1脱窒部16aに水素供与体を供給することによっても、第1脱窒部16aと第2脱窒部16bとの間で、水素供与体の濃度差を容易に形成することができる。但し、水素供与体の供給及び停止時間、水素供与体の供給量は、第1脱窒部16a内での水素供与体の最大濃度と第2脱窒部16b内での水素供与体の最小濃度との差が、例えば50mgTOC/L以上となるように設定されることが好ましい。   In this embodiment, the concentration of nitrate ions and nitrite ions supplied to the denitrification unit is based on the supply amount of hydrogen donor necessary for the denitrification treatment (the theoretical amount of hydrogen donor required), A first supply step for supplying a hydrogen donor in an amount less than a reference value to the first denitrification unit 16a; a second supply step for supplying a hydrogen donor in an amount greater than the reference value to the first denitrification unit 16a; In combination, the hydrogen donor is supplied to the first denitrification unit 16a, so that a concentration difference of the hydrogen donor is easily formed between the first denitrification unit 16a and the second denitrification unit 16b. be able to. However, the supply and stop time of the hydrogen donor and the supply amount of the hydrogen donor are the maximum concentration of the hydrogen donor in the first denitrification unit 16a and the minimum concentration of the hydrogen donor in the second denitrification unit 16b. Is preferably set so as to be, for example, 50 mg TOC / L or more.

第1脱窒部16aでの第1供給工程及び第2供給工程のサイクルを複数行う場合、後段の第2脱窒部16b内での水素供与体の濃度を平均化することができる点で、1サイクル(第1供給工程−第2供給工程)の時間は、第2脱窒部16b内での被処理水の水理学的滞留時間の50%より短いこと、すなわち第2脱窒部16b内での被処理水の水理学的滞留時間に対して2サイクル以上行うことが好ましい。   When performing a plurality of cycles of the first supply step and the second supply step in the first denitrification unit 16a, the concentration of the hydrogen donor in the second denitrification unit 16b in the subsequent stage can be averaged. The time of one cycle (first supply step-second supply step) is shorter than 50% of the hydraulic retention time of the water to be treated in the second denitrification unit 16b, that is, in the second denitrification unit 16b. It is preferable to carry out 2 cycles or more with respect to the hydraulic residence time of the water to be treated.

本実施形態では、少なくとも第1脱窒部16aに水素供与体を供給すればよいが、第2脱窒部16b内での被処理水の水理学的滞留時間における第1脱窒部16a内での水素供与体の濃度と、第2脱窒部16b内での被処理水の水理学的滞留時間における第2脱窒部16b内での水素供与体の濃度との差が、脱窒菌の自己造粒化を誘導する(グラニュール化する)濃度差となれば、第2脱窒部16bにも水素供与体を供給(供給−停止の間欠供給、多量供給−少量供給等も含む)してよい。しかし、第2脱窒部16bに水素供与体を供給することとなると、上記濃度差を確保するために、第1脱窒部16aの水素供与体の供給量を増加させる必要があり、水素供与体の使用量の増加、装置のランニングコストが高くなる場合がある。よって、第1脱窒部16aのみに水素供与体を供給することが好ましい。   In the present embodiment, it is sufficient to supply a hydrogen donor to at least the first denitrification unit 16a, but in the first denitrification unit 16a during the hydraulic residence time of the water to be treated in the second denitrification unit 16b. The difference between the hydrogen donor concentration in the second denitrification part 16b and the hydrogen donor concentration in the second denitrification part 16b during the hydraulic residence time of the treated water in the second denitrification part 16b If the concentration difference induces granulation (granulates), the second denitrification unit 16b is also supplied with a hydrogen donor (including supply-stop intermittent supply, large amount supply-small amount supply, etc.). Good. However, when the hydrogen donor is supplied to the second denitrification unit 16b, it is necessary to increase the supply amount of the hydrogen donor in the first denitrification unit 16a in order to ensure the above concentration difference. There are cases where the amount of use of the body increases and the running cost of the device increases. Therefore, it is preferable to supply the hydrogen donor only to the first denitrification unit 16a.

本実施形態では、第1脱窒部16a及び第2脱窒部16bを単槽として例示したが、これに制限されるものではなく、第1脱窒部16aを複数槽、第2脱窒部16bを複数槽としてもよい。また、第1脱窒部16aは必ずしも槽である必要はない。図4は、本発明の他の実施形態に係る脱窒装置の構成の一例を示す模式図である。図4に示すように、第1脱窒部16aは、所定の長さを有する管であってもよい。すなわち、反応液供給管27、管型の脱窒部16a、反応液返送管23により、一体的なラインが形成されている。なお、本実施形態のように第1脱窒部16aが管型である場合には、反応液返送管23を必ずしも備える必要はない。   In this embodiment, although the 1st denitrification part 16a and the 2nd denitrification part 16b were illustrated as a single tank, it is not restrict | limited to this, The 1st denitrification part 16a is a several tank, 2nd denitrification part 16b may be a plurality of tanks. Moreover, the 1st denitrification part 16a does not necessarily need to be a tank. FIG. 4 is a schematic diagram showing an example of the configuration of a denitrification apparatus according to another embodiment of the present invention. As shown in FIG. 4, the 1st denitrification part 16a may be a pipe | tube which has predetermined length. That is, an integral line is formed by the reaction liquid supply pipe 27, the tubular denitrification unit 16 a, and the reaction liquid return pipe 23. In addition, when the 1st denitrification part 16a is a pipe type like this embodiment, it is not necessarily required to provide the reaction liquid return pipe | tube 23. FIG.

そして、管型の脱窒部16a内に水素供与体供給装置28から水素供与体が供給され、管型の脱窒部16a内で、第2脱窒部16bから引き抜かれた反応液と水素供与体とが接触し、所定の長さを有する第1脱窒部16a、反応液返送管23を流れて、第2脱窒部16bに返送される。ここで、第1脱窒部16aの所定の長さは、反応液の流量等により異なるが、反応液と水素供与体との接触を充分に確保することできるように適宜設定されていればよい。   Then, a hydrogen donor is supplied from the hydrogen donor supply device 28 into the tube-type denitrification unit 16a, and the reaction solution and hydrogen donated from the second denitrification unit 16b in the tube-type denitrification unit 16a. The body comes into contact, flows through the first denitrification section 16a and the reaction liquid return pipe 23 having a predetermined length, and is returned to the second denitrification section 16b. Here, the predetermined length of the first denitrification unit 16a varies depending on the flow rate of the reaction solution, but may be set as appropriate so as to ensure sufficient contact between the reaction solution and the hydrogen donor. .

なお、脱窒菌をグラニュール化させる際には、一部の金属類の添加が良好な結果をもたらす場合がある。これらは、一般的にグラニュール化促進物質として位置付けられ、イオン類としてカルシウムイオン、鉄イオン、化合物類としてフライアッシュ、酸化鉄、炭酸カルシウム等が挙げられる。このうちイオン類に関しては、脱窒処理期間に渡って、もしくは装置の立ち上げ期に連続又は間欠的に添加されることが好ましい。また、化合物類に関しては、装置立ち上げ時に汚泥の添加と共に添加されることが好ましい。   In addition, when granulating denitrifying bacteria, addition of some metals may give a favorable result. These are generally positioned as granulation accelerators, and examples of ions include calcium ions and iron ions, examples of compounds include fly ash, iron oxide, and calcium carbonate. Among these, ions are preferably added continuously or intermittently over the denitrification treatment period or at the start-up period of the apparatus. Further, regarding the compounds, it is preferable to add them together with the addition of sludge when the apparatus is started up.

本実施形態で用いられる水素供与体は、例えば、メタノール、エタノール、イソプロパノール、酢酸、水素ガス、アセトン、グルコース、エチルメチルケトン等が挙げられるが、これに制限されるものではなく、水素供与体として従来公知のもの全てを使用することができる。   Examples of the hydrogen donor used in the present embodiment include methanol, ethanol, isopropanol, acetic acid, hydrogen gas, acetone, glucose, ethyl methyl ketone, and the like. Any conventionally known one can be used.

硝酸イオン、亜硝酸イオンから窒素ガスへの還元反応は、水素供与体の種類により若干異なるが、いずれにしても硝酸イオン、亜硝酸イオンと等モルの水酸化物イオンが生成するため、槽内の被処理水pHは上昇する。一般的に、脱窒処理における被処理水のpHは8〜9の範囲に調整することが好適である。但し、水素供与体由来の炭酸イオン濃度が高くなって、被処理水中に含まれるカルシウムイオン等によるスケール発生が懸念される場合には、槽内の被処理水pHは6〜7.5の範囲に調整することが好ましく、6.3〜7.0の範囲に調整することがより好ましい。具体的には、pH調整装置30のpHセンサ48a,48bにより第1脱窒部16a、第2脱窒部16bの被処理水のpHを検出し、検出したpHに基づいて、第1脱窒部16a、第2脱窒部16b内の被処理水pHが上記pH範囲となるように、制御装置50a,50bによりポンプ44a,44bを稼働させ、pH調整剤タンク42からpH調整剤を第1脱窒部16a、第2脱窒部16b内に供給し、槽内の被処理水のpHを調節する。   The reduction reaction from nitrate ion and nitrite ion to nitrogen gas is slightly different depending on the type of hydrogen donor, but in any case, nitrate ion and nitrite ion and equimolar hydroxide ions are generated. The pH of the water to be treated increases. In general, it is preferable to adjust the pH of water to be treated in the denitrification treatment to a range of 8-9. However, when the concentration of carbonate ions derived from the hydrogen donor is high and there is a concern about the generation of scale due to calcium ions or the like contained in the water to be treated, the pH of the water to be treated in the tank is in the range of 6 to 7.5. It is preferable to adjust to 6.3, and it is more preferable to adjust to the range of 7.3-7.0. Specifically, the pH sensors 48a and 48b of the pH adjusting device 30 detect the pH of the water to be treated in the first denitrification unit 16a and the second denitrification unit 16b, and the first denitrification is performed based on the detected pH. The pumps 44a and 44b are operated by the control devices 50a and 50b so that the pH of the water to be treated in the unit 16a and the second denitrification unit 16b is in the above pH range, and the pH adjuster is first supplied from the pH adjuster tank 42. It supplies in the denitrification part 16a and the 2nd denitrification part 16b, and adjusts the pH of the to-be-processed water in a tank.

脱窒部(第1脱窒部16a、第2脱窒部16b)内のMLSS濃度としては特に制限されるものではないが、充分な脱窒処理速度を達成するために、5000〜100000mgMLSS/L程度とすることが好ましい。   Although it does not restrict | limit especially as MLSS density | concentration in a denitrification part (1st denitrification part 16a, 2nd denitrification part 16b), In order to achieve sufficient denitrification processing speed, 5000-100000 mgMLSS / L It is preferable to set the degree.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

実施例においては、図2に示したものと同様の装置を用い、下記表1に示す水質の被処理水を容積40Lの第2脱窒部に連続通水した。また、第2脱窒部内の反応液を容積4Lの第1脱窒部に連続供給した(第1脱窒部のHRT6分〜144分)。水素供与体としてメタノールを使用し、第2脱窒部内での被処理水のHRTにおける第1脱窒部内でのメタノールの最大濃度と、第2脱窒部内での被処理水のHRTにおける第2脱窒部内でのメタノールの最小濃度との差が50mgTOC/L以上となるように、第1脱窒部に当該メタノールを間欠的に供給した。水素供与体の停止時間と供給時間の比を1:19に固定し、添加−停止のサイクル時間は、被処理水の流入速度に応じて変化させ、第2脱窒部のHRTの1/5とした。このときのメタノールの供給量は、処理窒素量に対して2.7kgメタノール/kg窒素とした。また、試験開始時には約500mgMLSS/Lとなるように脱窒を行っている活性汚泥を第1脱窒部及び第2脱窒部に供給した。また、塩酸を用いて、第1脱窒部及び第2脱窒部の被処理水のpHを6.5〜7.0となるように調整した。また、脱窒部後段に設置した沈殿槽に溜まった汚泥を第1脱窒部に返送した。試験は33日間行った。   In the examples, the same apparatus as shown in FIG. 2 was used, and the water to be treated shown in Table 1 below was continuously passed through the second denitrification section having a volume of 40 L. Further, the reaction liquid in the second denitrification unit was continuously supplied to the 4 L first denitrification unit (HRT 6 minutes to 144 minutes of the first denitrification unit). Using methanol as the hydrogen donor, the maximum concentration of methanol in the first denitrification unit in the HRT of the water to be treated in the second denitrification unit, and the second concentration in the HRT of the water to be treated in the second denitrification unit. The methanol was intermittently supplied to the first denitrification unit so that the difference from the minimum concentration of methanol in the denitrification unit was 50 mg TOC / L or more. The ratio of the hydrogen donor stop time to the feed time is fixed at 1:19, and the addition-stop cycle time is changed according to the inflow rate of the water to be treated, and is 1/5 of the HRT of the second denitrification unit. It was. The supply amount of methanol at this time was 2.7 kg methanol / kg nitrogen with respect to the treated nitrogen amount. Moreover, the activated sludge which is performing denitrification so that it may become about 500 mgMLSS / L at the time of a test start was supplied to the 1st denitrification part and the 2nd denitrification part. Moreover, the pH of the to-be-processed water of a 1st denitrification part and a 2nd denitrification part was adjusted so that it might become 6.5-7.0 using hydrochloric acid. Moreover, the sludge collected in the settling tank installed in the latter stage of the denitrification unit was returned to the first denitrification unit. The test was conducted for 33 days.

Figure 0005149736
Figure 0005149736

比較例においては、第1脱窒部を設置せず、第2脱窒部内での被処理水のHRTにおけるメタノールの最大濃度と最小濃度との差を50mgTOC/L未満に維持したこと以外は実施例と同様の条件で試験を行った。   In the comparative example, the first denitrification unit was not installed and the difference between the maximum concentration and the minimum concentration of methanol in the HRT of the water to be treated in the second denitrification unit was maintained below 50 mg TOC / L. The test was conducted under the same conditions as in the examples.

図5は、実施例の試験経過日数に対するMLSS濃度の変化を示す図である。図6は、実施例の試験経過日数に対する脱窒処理の処理速度の変化を示す図である。図7は、実施例の試験経過日数に対する処理水の硝酸イオン濃度の推移を示す図である。図8は、実施例の試験経過日数に対するSVIの変化を示す図である。図5に示すように、実施例では、日数の経過と共にMLSS濃度が上昇し、試験開始から33日目には、MLSS濃度が5000mgMLSS/Lに達した。また、図6に示すように、MLSS濃度の上昇と共に、脱窒処理の処理速度も上昇し、試験開始から33日目には、約2.5kgN/m/dayまで達し、高い処理速度が得られることを確認した。また、図7に示すように、処理水中の硝酸イオン濃度は低く、試験期間中安定した処理が行われることを確認した。また、図8に示すように、汚泥沈降性の指標としてのSVIが、日数の経過と共に減少し、非常にSVIの値が小さい(沈降性のよい)グラニュールが形成されることを確認した。なお、一般的な活性汚泥のSVIは120〜150mL/gである。一方、比較例においては、試験開始から33日目で、MLSS濃度が2000mgMLSS/L程度までしか達せず、脱窒処理の処理速度も、0.4kgN/m/dayであった。 FIG. 5 is a diagram showing a change in MLSS concentration with respect to the number of days elapsed in the test of the example. FIG. 6 is a diagram illustrating a change in the processing speed of the denitrification process with respect to the elapsed test days of the example. FIG. 7 is a graph showing the transition of the nitrate ion concentration of the treated water with respect to the test elapsed days of the example. FIG. 8 is a diagram illustrating a change in SVI with respect to the number of days elapsed in the test of the example. As shown in FIG. 5, in the example, the MLSS concentration increased with the passage of days, and the MLSS concentration reached 5000 mg MLSS / L on the 33rd day from the start of the test. Further, as shown in FIG. 6, with the increase of the MLSS concentration, the processing speed of the denitrification process also increased, and reached about 2.5 kgN / m 3 / day on the 33rd day from the start of the test, and the high processing speed was high. It was confirmed that it was obtained. Moreover, as shown in FIG. 7, the nitrate ion density | concentration in process water was low, and it confirmed that the process stabilized during the test period was performed. Moreover, as shown in FIG. 8, it confirmed that SVI as a sludge sedimentation parameter | index decreased with progress of the number of days, and the granule with the very small value of SVI (good sedimentation) was formed. In addition, SVI of general activated sludge is 120-150 mL / g. On the other hand, in the comparative example, on the 33rd day from the start of the test, the MLSS concentration reached only 2000 mgMLSS / L, and the treatment rate of the denitrification treatment was 0.4 kgN / m 3 / day.

実施例では、当初浮遊状であった脱窒菌を含む汚泥が、試験開始から約2週間経過後には粒状に変化し、約3週間後には、ほぼ全体が径0.3mm程度のグラニュール汚泥に変化した。また、30日経過後には、径0.5mm程度のグラニュール汚泥となった。   In the examples, the sludge containing denitrifying bacteria, which was initially floating, changed to a granular shape after about 2 weeks from the start of the test, and after about 3 weeks, the sludge was almost entirely granulated sludge having a diameter of about 0.3 mm. changed. Moreover, it became granule sludge of about 0.5 mm in diameter after 30 days.

また、図9は、第1脱窒部及び第2脱窒部におけるメタノールのTOC濃度変化を示す図である。図9に示すように、第1脱窒部内では、時間経過と共にメタノールのTOC濃度は、変化するが、第2脱窒部内では、メタノールのTOC濃度は低濃度で、ほぼ一定であることを確認した。なお、実施例において得られた処理水中のメタノールのTOC濃度は、0.362gTOC/gメタノールであった。   Moreover, FIG. 9 is a figure which shows the TOC density | concentration change of methanol in a 1st denitrification part and a 2nd denitrification part. As shown in FIG. 9, the TOC concentration of methanol changes with time in the first denitrification unit, but it is confirmed that the TOC concentration of methanol is low and almost constant in the second denitrification unit. did. In addition, the TOC concentration of methanol in the treated water obtained in the examples was 0.362 g TOC / g methanol.

本実施形態に係る水処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the water treatment apparatus which concerns on this embodiment. 本実施形態に係る脱窒装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the denitrification apparatus which concerns on this embodiment. 本発明の他の実施形態に係る脱窒装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the denitrification apparatus which concerns on other embodiment of this invention. 本発明の他の実施形態に係る脱窒装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the denitrification apparatus which concerns on other embodiment of this invention. 実施例の試験経過日数に対するMLSS濃度の変化を示す図である。It is a figure which shows the change of the MLSS density | concentration with respect to the test elapsed days of an Example. 実施例の試験経過日数に対する脱窒処理の処理速度の変化を示す図である。It is a figure which shows the change of the processing speed of the denitrification process with respect to the test elapsed days of an Example. 実施例の試験経過日数に対する処理水の硝酸イオン濃度の推移を示す図である。It is a figure which shows transition of the nitrate ion density | concentration of the treated water with respect to the test elapsed days of an Example. 実施例の試験経過日数に対するSVIの変化を示す図である。It is a figure which shows the change of SVI with respect to the test elapsed days of an Example. 第1脱窒部及び第2脱窒部におけるメタノールのTOC濃度変化を示す図である。It is a figure which shows the TOC density | concentration change of methanol in a 1st denitrification part and a 2nd denitrification part.

符号の説明Explanation of symbols

1 水処理装置、10 フッ素処理装置、12 硝化装置、14 脱窒装置、16a 第1脱窒部、16b 第2脱窒部、18 酸化槽、20 沈殿槽、22 被処理水流入管、23 反応液返送管、24 汚泥返送管、26a,26b,26c 処理水取出管、27 反応液供給管、28 水素供与体供給装置、25,29,36,44a,44b ポンプ、30 pH調整装置、32a,32b 攪拌装置、34 水素供与体タンク、38 水素供与体流入管、40,50a,50b 制御装置、42 pH調整剤タンク、46a,46b pH調整剤流入管、48a,48b pHセンサ、52 隔壁、54 脱窒室、56 沈殿室。   DESCRIPTION OF SYMBOLS 1 Water treatment apparatus, 10 Fluorine treatment apparatus, 12 Nitrification apparatus, 14 Denitrification apparatus, 16a 1st denitrification part, 16b 2nd denitrification part, 18 Oxidation tank, 20 Precipitation tank, 22 To-be-processed water inflow pipe, 23 Reaction liquid Return pipe, 24 sludge return pipe, 26a, 26b, 26c treated water take-out pipe, 27 reaction liquid supply pipe, 28 hydrogen donor supply apparatus, 25, 29, 36, 44a, 44b pump, 30 pH adjuster, 32a, 32b Stirring device, 34 Hydrogen donor tank, 38 Hydrogen donor inflow pipe, 40, 50a, 50b Control device, 42 pH adjuster tank, 46a, 46b pH adjuster inflow pipe, 48a, 48b pH sensor, 52 Bulkhead, 54 Desorption Nitrogen chamber, 56 sedimentation chamber.

Claims (6)

完全混合型の脱窒部に被処理水を連続供給すると共に、水素供与体を供給し、被処理水中に含まれる硝酸イオン、亜硝酸イオンを脱窒菌により窒素に還元する脱窒処理方法であって、
前記脱窒部として、第1脱窒部と第2脱窒部とを設置し、
前記第2脱窒部内の反応液の一部を前記第1脱窒部に供給した上で、
前記第2脱窒部内での被処理水の水理学的滞留時間における前記第1脱窒部内での水素供与体の最大濃度と、前記第2脱窒部内での被処理水の水理学的滞留時間における前記第2脱窒部内での水素供与体の最小濃度との差が、50mgTOC/L以上となるように、少なくとも前記第1脱窒部に水素供与体を供給し、前記第2脱窒部に返送することを特徴とする脱窒処理方法。
This is a denitrification treatment method in which water to be treated is continuously supplied to a completely mixed type denitrification section, a hydrogen donor is supplied, and nitrate ions and nitrite ions contained in the water to be treated are reduced to nitrogen by denitrifying bacteria. And
As the denitrification unit, a first denitrification unit and a second denitrification unit are installed,
After supplying a part of the reaction liquid in the second denitrification unit to the first denitrification unit,
The maximum concentration of the hydrogen donor in the first denitrification unit during the hydraulic residence time of the treated water in the second denitrification unit, and the hydraulic retention of the treated water in the second denitrification unit Supplying the hydrogen donor to at least the first denitrification unit so that the difference from the minimum concentration of the hydrogen donor in the second denitrification unit over time is 50 mg TOC / L or more , A denitrification method characterized by returning to the department.
請求項1記載の脱窒処理方法であって、前記第2脱窒部には、前記被処理水を供給し、前記第1脱窒部には、水素供与体を供給するとともに、硝酸イオン、亜硝酸イオンを含む水を供給することを特徴とする脱窒処理方法。   The denitrification method according to claim 1, wherein the water to be treated is supplied to the second denitrification unit, a hydrogen donor is supplied to the first denitrification unit, and nitrate ions, A denitrification method characterized by supplying water containing nitrite ions. 請求項記載の脱窒処理方法であって、前記硝酸イオン、亜硝酸イオンを含む水は、前記第2脱窒部に供給される被処理水を分岐したものであることを特徴とする脱窒処理方法。 3. The denitrification method according to claim 2 , wherein the water containing nitrate ions and nitrite ions is obtained by branching water to be treated supplied to the second denitrification unit. Nitrogen treatment method. 請求項記載の脱窒処理方法であって、前記第1脱窒部への水素供与体の供給は間欠的であることを特徴とする脱窒処理方法。 The denitrification method according to claim 1 , wherein the supply of the hydrogen donor to the first denitrification unit is intermittent. 請求項記載の脱窒処理方法であって、前記第1脱窒部への水素供与体の供給は、硝酸イオン、亜硝酸イオンの濃度に対して、脱窒処理に必要な水素供与体の供給量を基準とし、前記基準値より少ない量の水素供与体を供給する第1供給工程と、前記基準値より多い量の水素供与体を供給する第2供給工程とを組み合わせることにより行われることを特徴とする脱窒処理方法。 2. The denitrification treatment method according to claim 1 , wherein the supply of the hydrogen donor to the first denitrification unit is performed by supplying the hydrogen donor necessary for the denitrification treatment with respect to the concentration of nitrate ions and nitrite ions. Based on the supply amount, the first supply step for supplying a hydrogen donor in an amount less than the reference value is combined with the second supply step for supplying a hydrogen donor in an amount greater than the reference value. A denitrification method characterized by the above. 完全混合型の脱窒部と、前記脱窒部に被処理水を連続供給する被処理水供給手段と、前記脱窒部に水素供与体を供給する水素供与体供給手段と、を有し、前記脱窒部内で被処理水中に含まれる硝酸イオン、亜硝酸イオンを脱窒菌により窒素に還元する脱窒処理装置であって、
前記脱窒部は、第1脱窒部と第2脱窒部とを有し、
前記第2脱窒部内の反応液の一部を前記第1脱窒部に供給する反応液供給手段と、前記第1脱窒部内の反応液を前記第2脱窒部に返送する反応液返送手段とを有し、
前記反応液供給手段により前記第2脱窒部内の反応液の一部を前記第1脱窒部に供給した上で、
前記第2脱窒部内での被処理水の水理学的滞留時間における前記第1脱窒部内での水素供与体の最大濃度と、前記第2脱窒部内での被処理水の水理学的滞留時間における前記第2脱窒部内での水素供与体の最小濃度との差が、50mgTOC/L以上となるように、前記水素供与体供給手段により少なくとも前記第1脱窒部に水素供与体を供給し、前記反応液返送手段により第1脱窒部内の反応液を前記第2脱窒部に返送することを特徴とする脱窒処理装置。
A complete mixing type denitrification unit, treated water supply means for continuously supplying treated water to the denitrification unit, and hydrogen donor supply means for supplying a hydrogen donor to the denitrification unit, A denitrification apparatus for reducing nitrate ions and nitrite ions contained in water to be treated in the denitrification unit to nitrogen by denitrifying bacteria,
The denitrification unit has a first denitrification unit and a second denitrification unit,
Reaction liquid supply means for supplying a part of the reaction liquid in the second denitrification part to the first denitrification part, and reaction liquid return for returning the reaction liquid in the first denitrification part to the second denitrification part Means,
After supplying a part of the reaction liquid in the second denitrification part to the first denitrification part by the reaction liquid supply means,
The maximum concentration of the hydrogen donor in the first denitrification unit during the hydraulic residence time of the treated water in the second denitrification unit, and the hydraulic retention of the treated water in the second denitrification unit The hydrogen donor is supplied to at least the first denitrification part by the hydrogen donor supply means so that the difference from the minimum concentration of the hydrogen donor in the second denitrification part over time is 50 mg TOC / L or more. The denitrification processing apparatus is characterized in that the reaction liquid in the first denitrification part is returned to the second denitrification part by the reaction liquid return means.
JP2008208709A 2008-07-25 2008-08-13 Denitrification treatment method and denitrification treatment apparatus Active JP5149736B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008208709A JP5149736B2 (en) 2008-08-13 2008-08-13 Denitrification treatment method and denitrification treatment apparatus
CN200910151475XA CN101633532B (en) 2008-07-25 2009-07-23 Nitrogen removal processing method and nitrogen removal processing apparatus
TW098125090A TWI449676B (en) 2008-07-25 2009-07-24 A denitrification treatment method and a denitrification treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208709A JP5149736B2 (en) 2008-08-13 2008-08-13 Denitrification treatment method and denitrification treatment apparatus

Publications (2)

Publication Number Publication Date
JP2010042363A JP2010042363A (en) 2010-02-25
JP5149736B2 true JP5149736B2 (en) 2013-02-20

Family

ID=42014187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208709A Active JP5149736B2 (en) 2008-07-25 2008-08-13 Denitrification treatment method and denitrification treatment apparatus

Country Status (1)

Country Link
JP (1) JP5149736B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558866B2 (en) * 2010-03-04 2014-07-23 株式会社神鋼環境ソリューション Water treatment apparatus and water treatment method
JP5750164B2 (en) * 2010-10-27 2015-07-15 ペキン ユニバーシティ Processing system and method for processing waste
JP4768886B1 (en) * 2011-03-02 2011-09-07 株式会社加藤建設 How to remove nitrogen in water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645797A (en) * 1979-09-20 1981-04-25 Ebara Infilco Co Ltd Biological denitrification of waste water
JPS5980399A (en) * 1982-10-27 1984-05-09 Hitachi Ltd Controlling means for biological denitrifying apparatus
JP4608771B2 (en) * 2000-12-08 2011-01-12 栗田工業株式会社 Biological denitrification equipment

Also Published As

Publication number Publication date
JP2010042363A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
US8894857B2 (en) Methods and systems for treating wastewater
JP5355314B2 (en) Nitrogen-containing water treatment method and nitrogen-containing water treatment apparatus
JP4910266B2 (en) Nitrification method and treatment method of ammonia-containing nitrogen water
ES2362211T3 (en) PROCEDURE FOR THE TREATMENT OF WASTEWATER CONTAINING AMMONIUM BY REGULATION OF PH.
JP5149717B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP2016512169A5 (en)
JP4625508B2 (en) Nitrate waste liquid treatment method and apparatus
KR102311712B1 (en) Shortcut Nitrogen Removal Process and System by using Partial Nitritation in SBBR(Sequencing Batch Biofilm Reactor) with Media
JP4872171B2 (en) Biological denitrification equipment
JP5149728B2 (en) Denitrification treatment method and denitrification treatment apparatus
CN108949569B (en) Method for culturing anaerobic ammonium oxidation bacteria
JP2009066505A (en) Method of forming aerobic granule, water treatment method and water treatment apparatus
CN105481092A (en) Sewage treatment device achieving automatic control function by monitoring N2O and control method
JP2007105627A (en) Method for treating nitrate-containing waste liquid and device therefor
JP5149736B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP5055667B2 (en) Biological denitrification method and biological denitrification apparatus
JP2010005554A (en) Removal apparatus of ammoniacal nitrogen
JP5325124B2 (en) Biological treatment method for nitrogen-containing water and biological treatment apparatus for nitrogen-containing water
JP4867099B2 (en) Biological denitrification method
JP5079285B2 (en) Wastewater septic tank
TWI449676B (en) A denitrification treatment method and a denitrification treatment apparatus
KR20010002276A (en) Method and equipment for the treatment of wastewater containing nitrate-nitrogen
JP2007044661A (en) Methane fermentation method
JP2012024723A (en) Wastewater treating apparatus and wastewater treating method
JP2007275747A (en) Wastewater treatment method and wastewater treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5149736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250