JP7194628B2 - Wastewater treatment equipment and wastewater treatment method - Google Patents

Wastewater treatment equipment and wastewater treatment method Download PDF

Info

Publication number
JP7194628B2
JP7194628B2 JP2019067084A JP2019067084A JP7194628B2 JP 7194628 B2 JP7194628 B2 JP 7194628B2 JP 2019067084 A JP2019067084 A JP 2019067084A JP 2019067084 A JP2019067084 A JP 2019067084A JP 7194628 B2 JP7194628 B2 JP 7194628B2
Authority
JP
Japan
Prior art keywords
air
aeration
aerobic reaction
reaction tank
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019067084A
Other languages
Japanese (ja)
Other versions
JP2020163309A (en
Inventor
慶二 小笹
真史 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyudenko Corp
Original Assignee
Kyudenko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyudenko Corp filed Critical Kyudenko Corp
Priority to JP2019067084A priority Critical patent/JP7194628B2/en
Publication of JP2020163309A publication Critical patent/JP2020163309A/en
Application granted granted Critical
Publication of JP7194628B2 publication Critical patent/JP7194628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、例えば既存の大規模な都市下水処理場においても比較的低廉に適用が可能な間欠曝気法を用いた排水処理装置及び排水処理方法に関する。 TECHNICAL FIELD The present invention relates to a wastewater treatment apparatus and a wastewater treatment method using an intermittent aeration method that can be applied relatively inexpensively, for example, to an existing large-scale municipal sewage treatment plant.

従来、湖沼や閉鎖性海域へ放流する都市下水を処理する下水処理場においては、放流先の富栄養化を防止する目的で、排水中の窒素除去とリン除去が必要とされている。 Conventionally, in sewage treatment plants that treat urban sewage discharged into lakes and closed sea areas, it is necessary to remove nitrogen and phosphorus from the wastewater in order to prevent eutrophication of the discharge destination.

窒素除去プロセスの原理は、被処理水中のアンモニア性窒素を硝化細菌により硝酸性窒素に酸化する硝化槽(空気曝気により酸素が供給される好気槽)と、硝化された硝酸性窒素を脱窒細菌により還元して窒素ガスとして大気に放出する脱窒槽(空気曝気をせずに攪拌機により攪拌混合される無酸素槽)の組み合わせによりアンモニア性窒素を最終的に窒素ガスに変換することである。この硝化槽と脱窒槽の配置・組み合わせによっていくつかの窒素除去プロセスが開発されてきた。 The principle of the nitrogen removal process consists of a nitrification tank (an aerobic tank in which oxygen is supplied by air aeration) in which ammonia nitrogen in the water to be treated is oxidized to nitrate nitrogen by nitrifying bacteria, and a denitrification tank to denitrify the nitrified nitrate nitrogen. Ammonia nitrogen is finally converted to nitrogen gas by a combination of denitrification tanks (anoxic tanks that are stirred and mixed by a stirrer without air aeration) that are reduced by bacteria and released into the atmosphere as nitrogen gas. Several nitrogen removal processes have been developed by arranging and combining the nitrification and denitrification tanks.

大規模な都市下水処理場は、反応タンク全体が単一の好気槽で構成された標準活性汚泥法(常時曝気され槽全体に空気が送り込まれる方式であり、窒素除去の機能はない)として整備されてきた経緯があり、窒素除去を目的として、この単一の好気槽を硝化槽と脱窒槽に変更するには、槽自体の構造変更のコスト、槽内に空気を送り込む散気装置の再配置コスト、攪拌機の導入コスト、及び電力増加のコスト等を必要とし、変更にかかるコストが膨大となり、このことが、大規模な都市下水処理場への窒素除去法導入への課題となり、普及の進捗を妨げている。 A large-scale municipal sewage treatment plant uses the standard activated sludge method in which the entire reaction tank consists of a single aerobic tank. There is a history of maintenance, and in order to change this single aerobic tank into a nitrification tank and a denitrification tank for the purpose of nitrogen removal, the cost of changing the structure of the tank itself and an air diffuser to send air into the tank , the cost of introducing a stirrer, and the cost of increasing power, etc., and the cost of changing is enormous. It hinders the progress of diffusion.

一方、間欠曝気法は、一つの反応タンク内において、曝気状態と曝気停止の状態とをくり返すことにより、生物学的窒素除去を行うものであるが、従来、小規模の都市下水や産業排水の処理法として利用されてきた(例えば特許文献1、図8B、「0094」欄参照)。 On the other hand, the intermittent aeration method performs biological nitrogen removal by repeating the aeration state and the aeration stop state in one reaction tank. (See, for example, Patent Document 1, FIG. 8B, column “0094”).

本発明者らは、この間欠曝気法を、標準活性汚泥法による大規模な都市下水処理場に適用すれば、曝気に係る散気装置の再配置及び攪拌機の導入が不要であることに着目し、この間欠曝気法を大規模処理場への適用を可能とする低廉な窒素除去の排水処理装置及び排水処理方法の開発に鋭意努力してきた。 The present inventors have noticed that if this intermittent aeration method is applied to a large-scale municipal sewage treatment plant using the standard activated sludge method, it will not be necessary to rearrange the aeration device and introduce an agitator. Since then, we have made efforts to develop a low-cost nitrogen-removing wastewater treatment system and a wastewater treatment method that enable the intermittent aeration method to be applied to large-scale treatment plants.

特開2015-54271号公報JP 2015-54271 A

しかしながら、小規模施設と大規模施設とでは、下水の流入条件と処理施設条件が異なるため、小規模施設の間欠曝気システムをそのまま大規模下水処理施設へ転用することはできなかった。 However, since the sewage inflow conditions and treatment facility conditions differ between small-scale facilities and large-scale facilities, intermittent aeration systems for small-scale facilities cannot be used as they are for large-scale sewage treatment facilities.

即ち、小規模都市下水処理場では、一般に流入量調整槽が設けられているので、水質と水量の両変動がある程度抑制された条件での間欠曝気法の適用事例が多い。また、間欠曝気法を適用している小規模都市下水処理場の水理学的滞留時間(処理時間)、もしくは処理水量当たりの反応タンク容量は、標準活性汚泥法を適用している大規模下水処理施設の2~3倍あり、小規模施設では反応タンクそのものも流量調整槽の役割を果たしている。従って、小規模下水処理施設での間欠曝気法の知見は、水質と水量の変動が大きく、流量調整槽を設けないことが一般的な大規模処理場へは適用できない。 That is, in small-scale urban sewage treatment plants, an inflow control tank is generally provided, so there are many cases where the intermittent aeration method is applied under conditions in which fluctuations in both water quality and water volume are suppressed to some extent. In addition, the hydraulic retention time (treatment time) of a small-scale municipal sewage treatment plant applying the intermittent aeration method, or the reaction tank capacity per amount of treated water, does not correspond to that of a large-scale sewage treatment applying the standard activated sludge method. It is two to three times as large as the facility, and in small-scale facilities, the reaction tank itself also plays the role of a flow control tank. Therefore, the knowledge of the intermittent aeration method in small-scale sewage treatment plants cannot be applied to large-scale treatment plants where there are large fluctuations in water quality and water volume, and where flow control tanks are generally not installed.

また、処理施設条件の差違を挙げれば、上記処理時間の他に、反応タンク形式がある。小規模都市下水処理場では、土地の制約が緩いため反応タンクの処理時間が24時間程度の無終端水路であるオキシデーションディッチ法での間欠曝気法が普及している。一方、大規模都市下水処理場は、処理時間8時間程度、長くても10時間程度のワンパスで処理する押し出し流れ型反応タンクであり、処理時間、タンク型式が異なることから、小規模処理場での間欠曝気法の実施例は、大規模下水処理場では参考にならない。このような背景もあり、例えば処理水量5万m/日以上の大規模下水処理場での間欠曝気法の適用例は全くない。 In addition to the above treatment time, there is a reaction tank type as a difference in treatment facility conditions. In small-scale municipal sewage treatment plants, the intermittent aeration method using the oxidation ditch method, which is an endless waterway with a reaction tank treatment time of about 24 hours, is widely used due to loose land restrictions. On the other hand, large-scale urban sewage treatment plants use push-flow reaction tanks that process in one pass with a treatment time of about 8 hours, or 10 hours at the longest. Examples of the intermittent aeration method are not helpful for large-scale sewage treatment plants. Against this background, there are no examples of application of the intermittent aeration method to large-scale sewage treatment plants with a treated water volume of 50,000 m 3 /day or more.

また、処理施設条件の差違のもう一つは、小規模と大規模における送風機の形式と容量規模の違いである。小規模処理場の送風機は、小型で起動と停止を行うことが容易な低速回転の容積形送風機と呼ばれる型式が主であり、間欠曝気に適している。さらに小規模処理場では、反応タンク数が2~3水路に対して、前記容積形送風機も2~3台であることが多く、間欠曝気による風量の変動が大きくても、完全に他水路に影響を与えないように分離できることも間欠曝気に適している。 Another difference in treatment facility conditions is the difference in the type and capacity of blowers between small and large scales. The blowers used in small-scale treatment plants are mainly of the type called positive displacement blowers, which are small and easy to start and stop, and which rotate at low speed, and are suitable for intermittent aeration. Furthermore, in small-scale treatment plants, the number of reaction tanks is often 2 to 3 for 2 to 3 water channels, and the positive displacement blowers are often 2 to 3 units. It is also suitable for intermittent aeration because it can be separated without affecting it.

これに対して、大規模処理場では大型の羽根車が高速で慣性を以って回転するターボ形送風機とよばれる型式である。多くの反応タンクを有する大規模処理場に間欠曝気を導入すると、曝気時と曝気停止時の送風量の差が大きく変動する。このため、送風機の起動と停止を頻繁に実施することが必要となるが、ターボ形送風機では頻繁な起動と停止は、ターボ形送風機の原理からして時間がかかること、羽根車の軸受にダメージを与え、送風機の耐用年数を縮めるので不可能であることから、大規模処理場への間欠曝気法の適用事例は全くない。 On the other hand, in large-scale treatment plants, a type called a turbo blower is used, in which a large impeller rotates at high speed with inertia. When intermittent aeration is introduced into a large-scale treatment plant with many reaction tanks, the difference in the amount of air blown during aeration and when aeration is stopped fluctuates greatly. For this reason, it is necessary to start and stop the blower frequently, but with a turbo blower, frequent start and stop takes time due to the principle of the turbo blower, and damages the bearings of the impeller. There is no application example of the intermittent aeration method to a large-scale treatment plant because it is impossible because it gives a large amount of air and shortens the service life of the blower.

また、多くの反応タンクを一気に間欠曝気法に変更することはなく、もし変更するなら、数年を要することから、変更完了までは、常時曝気する必要のある標準活性汚泥法と間欠曝気法が混在する期間でも間欠曝気による送風量の変動が極力抑えられる必要がある。 In addition, many reaction tanks will not be changed to the intermittent aeration method all at once, and if they are changed, it will take several years. It is necessary to minimize fluctuations in airflow due to intermittent aeration even during mixed periods.

また、大規模処理場では10水路を超す反応タンクを有することは珍しくない。一方、送風機は大型を用いることから予備機を含めて台数は5台程度未満である。このような条件において、いくつかの反応タンクを間欠曝気法に変更するために、一部の送風機の起動と停止の操作を間欠曝気対応に変更すると、処理場全体の送風量が不安定になることを避けられない。 Also, it is not uncommon for large-scale treatment plants to have reaction tanks in excess of 10 channels. On the other hand, since a large-sized blower is used, the number of blowers is less than about 5 units including the spare blower. Under these conditions, if some of the reaction tanks are changed to the intermittent aeration method, and the operation of starting and stopping some of the fans is changed to correspond to the intermittent aeration method, the air flow rate of the entire treatment plant becomes unstable. unavoidable.

特許文献1の処理装置は図8Bとして1つの反応槽に散気手段を複数設け、散気手段を交互に曝気と曝気停止を行う間欠曝気法が開示されているが、他の反応槽でどのような曝気制御を行うのか、送風制御をどのように行うかについての具体的な開示がなく、当該装置を大規模処理場に適用できるか否か不明である。 The treatment apparatus of Patent Document 1 discloses an intermittent aeration method in which a plurality of aeration means are provided in one reaction tank as shown in FIG. 8B, and the aeration means are alternately aerated and stopped. There is no specific disclosure as to whether such aeration control is to be performed or how to control the air flow, and it is unclear whether or not this device can be applied to large-scale treatment plants.

このようなことから、大規模下水処理場への間欠曝気法の導入には、小規模処理施設での間欠曝気法の知見とは異なる、新たな発想の間欠曝気の送風方式を考案する必要がある。 Therefore, in order to introduce the intermittent aeration method to large-scale sewage treatment plants, it is necessary to devise a new intermittent aeration blowing method that is different from the knowledge of the intermittent aeration method used in small-scale treatment plants. be.

本発明は、上述のような従来の課題に鑑みてなされたものであり、以上のような諸課題を解決する間欠曝気法として、本発明は、曝気停止の代わりに少量の一定の空気を散気する微曝気を用い、一対の好気性タンクにおいて、他方の好気性反応タンクの散気動作を、一方の好気性反応タンクの散気動作に対して逆位相とすることにより、間欠曝気に伴う送風量の大きな変動と送風機の停止を避けることができ、大規模都市下水処理場に適用可能な間欠曝気法を使用した排水処理装置及び排水処理方法を提供することを目的とする。 The present invention has been made in view of the conventional problems as described above, and as an intermittent aeration method for solving the above problems, the present invention is an intermittent aeration method in which a small amount of constant air is diffused instead of stopping aeration. In a pair of aerobic tanks, the diffusion operation of the other aerobic reaction tank is reversed in phase with respect to the diffusion operation of the other aerobic reaction tank. To provide a wastewater treatment apparatus and a wastewater treatment method using an intermittent aeration method capable of avoiding large fluctuations in the amount of air blown and stoppage of the blower and applicable to large-scale municipal sewage treatment plants.

上記の目的を達成するため本発明は、
第1に、少なくとも2つの水路の各々に押し出し流れ型の好気性反応タンクが設けられ、上記各好気性反応タンクの下流側の各最終沈殿池から上記各好気性反応タンクの上流側に汚泥を返送する汚泥返送手段が各々設けられた排水処理装置において、各水路の上記好気性反応タンクには、各上記タンク内に設けられた空気散気手段と、上記各空気散気手段に空気を送り込むための送気管と、上記送気管に設けられ上記空気散気手段に送風される空気散気量を調整するための風量調整弁と、上記各送気管の空気流量を測定可能な空気流量計とからなる曝気調整部が各々設けられ、上記各送気管に空気を送り込むための各水路に共通の送風機が設けられ、上記各風量調整弁を開閉制御する制御部が設けられ、上記制御部には、上記各空気流量計の流量を検知しながら上記空気散気手段への空気散気量を調整し得る弁開閉駆動手段が上記各曝気調整部の上記風量調整弁毎に設けられ、上記送風機から上記各水路の送気管への送風が行われている状態において、一対の上記好気性反応タンクにおいて、一方の上記好気性反応タンクでは、それに対応する一方の上記弁開閉駆動手段が対応する上記風量調整弁を開閉制御することにより、空気散気量の多い曝気と、空気散気量の少ない微曝気とを同一の周期でくり返す正相間欠曝気動作を行うと共に、他方の上記好気性反応タンクでは、それに対応する他方の上記弁開閉駆動手段が対応する上記風量調整弁を開閉制御することにより、上記一方の好気性反応タンクの曝気時は微曝気、微曝気時は曝気からなる上記正相間欠曝気動作とは同一周期かつ同一タイミングの逆相間欠曝気動作を行うものである排水処理装置により構成される。
In order to achieve the above object, the present invention
First, each of the at least two waterways is provided with a push-flow type aerobic reaction tank, and sludge is transferred from each final sedimentation tank downstream of each aerobic reaction tank to the upstream side of each aerobic reaction tank. In a wastewater treatment apparatus provided with means for returning sludge to be returned, the aerobic reaction tank of each water channel includes air diffusion means provided in each tank, and air is sent to each air diffusion means. an air supply pipe for air supply, an air volume adjustment valve provided in the air supply pipe for adjusting the air diffusion amount blown to the air diffusion means, and an air flow meter capable of measuring the air flow rate of each of the air supply pipes An aeration adjustment unit consisting of A valve opening/closing driving means capable of adjusting the amount of air diffusion to the air diffusion means while detecting the flow rate of each air flow meter is provided for each of the air volume adjustment valves of each aeration adjustment unit, and from the blower In a state in which air is being blown to the air pipes of the water channels, in one of the aerobic reaction tanks of the pair of aerobic reaction tanks, the air volume corresponding to one of the valve opening/closing driving means corresponding thereto By controlling the opening and closing of the regulating valve, a positive phase intermittent aeration operation is performed in which aeration with a large amount of air diffusion and fine aeration with a small amount of air diffusion are repeated in the same cycle, and the other aerobic reaction tank is operated. Then, by controlling the opening and closing of the corresponding air volume control valve by the other valve opening/closing driving means corresponding to it, the positive phase consisting of slight aeration during aeration of the one aerobic reaction tank and aeration during slight aeration The intermittent aeration operation is composed of a wastewater treatment device that performs reversed-phase intermittent aeration operation at the same period and at the same timing.

汚泥返送手段は例えば返送汚泥配管(6)により構成することができる。空気散気手段は例えば散気装置(5A,5B,5C)により構成することができる。このような構成によると、各好気性反応タンクにおける間欠曝気動作により、曝気時には被処理水中のアンモニア性窒素を硝化細菌により硝酸性窒素に酸化する処理が行われ、微曝気時には硝化された硝酸性窒素を脱窒細菌により還元して窒素ガスとして大気に放出する処理が行われることにより、排水中の窒素を除去することができる。また、一方の好気性反応タンクにおいて、風量調整弁の開閉による正相間欠曝気動作(例えば周期Tで空気散気量「5」(曝気)、空気散気量「1」(微曝気)をくり返す間欠曝気動作)を行い、また他方の好気性反応タンクにおいて、風量調整弁の開閉による同一周期及び同一タイミングで逆相間欠曝気動作(例えば周期Tで空気散気量「1」(微曝気)、空気散気量「5」(曝気)をくり返す間欠曝気動作)を行うことにより、間欠曝気動作中の送風機の運転を停止することなく、所定の風量、例えば曝気時の空気散気量が一定の場合は、一定の風量(例えば風量「18」)で運転を継続でき、曝気時の空気散気量が増減変動する場合においても、風量の増減変動量は少量(例えば風量の変動は「18」から「21」、或いは、「15」から「12」等)で良く、送風機の運転を継続することができる。よって、例えば大型のターボ形送風機を使用しているような大規模な都市下水処理場において、好気性反応タンク及び空気散気手段の構成を大幅に変更することなく、間欠曝気処理による窒素除去を比較的低コストにて実現することができる。 The sludge return means can be composed of, for example, a return sludge pipe (6). The air diffuser can be composed of, for example, air diffusers (5A, 5B, 5C). According to such a configuration, by intermittent aeration operation in each aerobic reaction tank, the ammonium nitrogen in the water to be treated is oxidized to nitrate nitrogen by the nitrifying bacteria during aeration, and the nitrified nitrate nitrogen is processed during slight aeration. Nitrogen in the wastewater can be removed by performing a treatment in which nitrogen is reduced by denitrifying bacteria and released into the atmosphere as nitrogen gas. In addition, in one of the aerobic reaction tanks, the positive phase intermittent aeration operation by opening and closing the air volume adjustment valve (for example, at the cycle T, the air diffusion amount is "5" (aeration) and the air diffusion amount is "1" (slight aeration). intermittent aeration operation), and in the other aerobic reaction tank, in the same cycle and at the same timing by opening and closing the air volume adjustment valve, reverse phase intermittent aeration operation , an intermittent aeration operation that repeats an air diffusion amount of "5" (aeration), so that a predetermined air volume, for example, an air diffusion amount during aeration, can be achieved without stopping the operation of the blower during the intermittent aeration operation. If it is constant, the operation can be continued with a constant air volume (for example, air volume "18"), and even if the air diffusion amount during aeration fluctuates, the amount of increase or decrease in air volume is small (for example, the air volume fluctuation is " 18" to "21", or "15" to "12", etc.), and the operation of the fan can be continued. Therefore, nitrogen can be removed by intermittent aeration treatment in a large-scale municipal sewage treatment plant using a large turbo-type blower, for example, without significantly changing the configuration of the aerobic reaction tank and air diffusion means. It can be realized at relatively low cost.

第2に、上記2つの水路以外に少なくとも2以上の偶数個の上記水路が増設され、増設された各水路に上記最終沈殿池を含む上記汚泥返送手段と、上記曝気調整部を具備した押し出し流れ型の上記好気性反応タンクが各々設けられ、上記送風機は上記各送気管に空気を送り込むために上記各水路に共通に設けられ、上記制御部には、増設された上記水路の上記風量調整弁毎に、上記各空気流量計の流量を検知しながら、上記空気散気手段への空気散気量を調整し得る弁開閉駆動手段が設けられ、上記一対の好気性反応タンクとは別の増設された複数の好気性反応タンクにおける、2個を一組とする一対の好気性反応タンクにおいて、一方の上記好気性反応タンクでは、それに対応する一方の弁開閉駆動手段が対応する上記風量調整弁を開閉制御することにより上記正相間欠曝気動作を行うと共に、他方の好気性反応タンクにおいては、それに対応する他方の弁開閉駆動手段が対応する上記風量調整弁を開閉制御することにより上記逆相間欠曝気動作を行うものである上記第1記載の排水処理装置により構成される。 Second, an even number of at least two waterways are added in addition to the two waterways, and each additional waterway is equipped with the sludge return means including the final sedimentation tank and the aeration adjustment unit. The aerobic reaction tanks of the type are provided respectively, the blower is provided in common to each of the water channels for sending air to the air pipes, and the control unit includes the air volume adjustment valve of the added water channel. Each aerobic reaction tank is provided with a valve opening/closing drive means capable of adjusting the amount of air diffusion to the air diffusion means while detecting the flow rate of each air flow meter, and is installed separately from the pair of aerobic reaction tanks. In a pair of aerobic reaction tanks in a plurality of aerobic reaction tanks, in one of the aerobic reaction tanks, one valve opening/closing driving means corresponding to the aerobic reaction tank corresponds to the air volume control valve The positive phase intermittent aeration operation is performed by controlling the opening and closing of the other aerobic reaction tank. It is composed of the waste water treatment apparatus according to the first aspect, which performs an intermittent aeration operation.

このように構成すると、好気性反応タンクの間欠曝気動作中の上記送風機が所定の風量にて運転を継続し得るので、例えば複数の水路(例えば4水路以上の偶数個)を有する大規模な都市下水処理場において、比較的低廉なコストで窒素除去が可能な間欠曝気動作による排水処理システムに変更することが可能となる。 With this configuration, the blower during the intermittent aeration operation of the aerobic reaction tank can continue to operate at a predetermined air volume. In a sewage treatment plant, it becomes possible to change to a wastewater treatment system using an intermittent aeration operation capable of removing nitrogen at a relatively low cost.

第3に、上記複数の上記一方の好気性反応タンクの何れか一つに負荷濃度確認センサと溶存酸素濃度センサとが設けられ、上記制御部は上記各センサからのデータを検出し得ると共に上記送風機の風量を制御し得るものであり、上記制御部は、上記負荷濃度確認センサの測定値と前回測定時の測定値を比較する負荷濃度比較手段、上記送風機の風量を増減指示する送風機駆動手段、上記溶存酸素濃度センサの測定値が上限値又は下限値に達しているか否かを検出する溶存酸素濃度比較手段、上記周期が上限値又は下限値に達しているか否か検出する周期比較手段を具備しており、上記正相間欠曝気動作を行う上記一方の好気性反応タンクにおいて、上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度より低下していると判断した場合は、上記送風機駆動手段が上記送風機の風量を減少する指示を行うと共に、上記溶存酸素濃度比較手段及び上記周期比較手段の比較に基づいて上記溶存酸素濃度センサの測定値及び上記周期が下限値に至るまで、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量は減少させ、微曝気時の空気散気量は一定値を維持するように指示するものであり、上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度より上昇していると判断した場合は、上記送風機駆動手段が上記送風機の風量を増加する指示を行うと共に、上記溶存酸素濃度比較手段及び上記周期比較手段の比較に基づいて上記溶存酸素濃度センサの測定値及び上記周期が上限値に至るまで、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量は増加させ、微曝気時の空気散気量は上記一定値を維持するように指示するものであり、上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であると判断した場合は、上記送風機駆動手段が上記送風機の風量を維持すると共に、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの上記各風量調整弁に対して周期と空気散気量を維持するように指示するものであり、上記逆相間欠曝気動作を行う上記他方の好気性反応タンクにおいて、上記他方の弁開閉駆動手段は曝気時において上記正相間欠曝気動作における変更後の増減された上記周期及び空気散気量とし、微曝気時の空気散気量は上記一定値を維持する逆位相の制御を行うものである上記第1又は2記載の排水処理装置により構成される。 Thirdly, any one of the plurality of aerobic reaction tanks is provided with a load concentration confirmation sensor and a dissolved oxygen concentration sensor, and the control unit can detect data from each of the sensors. The control unit includes load concentration comparing means for comparing the measured value of the load concentration confirmation sensor with the measured value at the time of the previous measurement, and blower driving means for instructing an increase or decrease in the air volume of the blower. , dissolved oxygen concentration comparison means for detecting whether the measured value of the dissolved oxygen concentration sensor has reached the upper limit value or the lower limit value, and period comparison means for detecting whether the period has reached the upper limit value or the lower limit value. and in the one aerobic reaction tank performing the positive phase intermittent aeration operation, the load concentration comparison means determines that the measured value of the load concentration confirmation sensor is lower than the previous load concentration. In this case, the blower driving means instructs to decrease the air volume of the blower, and the measured value of the dissolved oxygen concentration sensor and the period are set to the lower limit based on the comparison of the dissolved oxygen concentration comparing means and the period comparing means. until the one valve opening/closing drive means reduces the period and the air diffusion amount during aeration for each of the air volume control valves of the one aerobic reaction tank, and the air diffusion during slight aeration When the load concentration comparing means judges that the measured value of the load concentration confirmation sensor is higher than the previous load concentration, the blower driving means gives an instruction to increase the air volume of the blower, and the one of the The valve opening/closing driving means increases the period and the air diffusion amount during aeration for each of the air volume control valves of the one aerobic reaction tank, and maintains the air diffusion amount during slight aeration at the above constant value. When the load concentration comparing means determines that the measured value of the load concentration confirmation sensor is equivalent to the previous load concentration, the blower driving means causes the air volume of the blower to increase. and the one valve opening/closing driving means instructs each of the air volume control valves of the one aerobic reaction tank to maintain the period and the air diffusion volume, and the reverse phase intermittent In the other aerobic reaction tank that performs the aeration operation, the other valve opening/closing driving means is set to the increased or decreased period and air diffusion amount after the change in the positive phase intermittent aeration operation during aeration, The wastewater treatment apparatus according to the above first or second aspect performs anti-phase control for maintaining the above constant value for the amount of air diffused during slight aeration.

負荷濃度確認センサの前回測定時の測定値とは、例えば微曝気終了時の負荷濃度の測定値をいう。上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であるとは、負荷濃度が変化していないか、変化したとしても少量の一定範囲内の変化に留まることをいう。このように構成すると、何れか一つの一方の好気性反応タンクに負荷濃度確認センサ及び溶存酸素濃度センサを設けるだけで、全ての好気性反応タンクにおいて、負荷濃度に応じた曝気時の空気散気量及び周期の増減を行うことができ、負荷濃度の上昇又は下降に対応して適切な空気散気量及び周期の変更を、全ての水路に対応する好気性反応タンクにおいて実現することが可能となる。しかも、一方の好気性反応タンクと他方の好気性反応タンクは逆位相にて制御されるし、微曝気時においても送風機を止める必要がなく、空気散気量の増減変更があっても、送風機の風量の増減変化は最小限に留めることができるため、例えば大型のターボ形送風機を使用している大規模な都市下水処理場においても適用が可能な排水処理装置を実現し得る。 The value measured by the load concentration confirmation sensor at the time of the previous measurement means, for example, the value of the load concentration measured at the end of the slight aeration. The fact that the measured value of the load concentration confirmation sensor is equivalent to the previous load concentration means that the load concentration does not change, or if it does change, it remains within a small and constant range. With this configuration, only by providing a load concentration confirmation sensor and a dissolved oxygen concentration sensor in any one of the aerobic reaction tanks, air diffusion during aeration according to the load concentration can be performed in all the aerobic reaction tanks. It is possible to increase or decrease the amount and period, and it is possible to realize appropriate air diffusion amount and period change in response to the increase or decrease of the load concentration in the aerobic reaction tank corresponding to all waterways. Become. In addition, one aerobic reaction tank and the other aerobic reaction tank are controlled in reverse phase, there is no need to stop the blower even during slight aeration, and even if the amount of air diffuser is increased or decreased, the blower Therefore, it is possible to realize a wastewater treatment apparatus that can be applied to large-scale urban sewage treatment plants that use large turbo-type blowers, for example.

第4に、上記複数の上記一方の好気性反応タンクの何れか一つに負荷濃度確認センサと溶存酸素濃度センサとが設けられ、上記制御部は上記各センサからのデータを検出し得ると共に上記送風機の風量を制御し得るものであり、上記制御部は、上記負荷濃度確認センサの測定値と前回測定時の測定値を比較する負荷濃度比較手段、上記送風機の風量を増減指示する送風機駆動手段、上記溶存酸素濃度センサの測定値が上限値又は下限値に達しているか否かを検出する溶存酸素濃度比較手段を具備しており、上記正相間欠曝気動作を行う上記一方の好気性反応タンクにおいて、上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度より低下していると判断した場合は、上記送風機駆動手段が上記送風機の風量を減少する指示を行うと共に、上記溶存酸素濃度比較手段の比較に基づいて上記溶存酸素濃度センサの測定値が下限値に至るまで、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期は同一のまま曝気時の空気散気量のみを減少させ、微曝気時の空気散気量は一定値を維持するように指示するものであり、上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度より上昇していると判断した場合は、上記送風機駆動手段が上記送風機の風量を増加する指示を行うと共に、上記溶存酸素濃度比較手段の比較に基づいて上記溶存酸素濃度センサの測定値が上限値に至るまで、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの上記各風量調整弁に対して上記周期は同一のまま曝気時の空気散気量のみを増加させ、微曝気時の空気散気量は上記一定値を維持するように指示するものであり、上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であると判断した場合は、上記送風機駆動手段が上記送風機の風量を維持すると共に、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの各風量調整弁に対して、上記周期と空気散気量を維持するように指示するものであり、上記逆相間欠曝気動作を行う上記他方の好気性反応タンクにおいて、上記他方の弁開閉駆動手段は曝気時において上記正相間欠曝気動作における変更後の増減された空気散気量とし、微曝気時の空気散気量は上記一定値を維持する逆位相の制御を行うものである上記第1又は2記載の排水処理装置により構成される。 Fourth, any one of the plurality of aerobic reaction tanks is provided with a load concentration confirmation sensor and a dissolved oxygen concentration sensor, and the control unit can detect data from each of the sensors and The control unit includes load concentration comparing means for comparing the measured value of the load concentration confirmation sensor with the measured value at the time of the previous measurement, and blower driving means for instructing an increase or decrease in the air volume of the blower. , the one aerobic reaction tank which is equipped with dissolved oxygen concentration comparison means for detecting whether the measured value of the dissolved oxygen concentration sensor has reached the upper limit or the lower limit, and which performs the positive phase intermittent aeration operation wherein, when the load concentration comparing means determines that the measured value of the load concentration confirmation sensor is lower than the previous load concentration, the blower driving means instructs the blower to decrease the air volume, and Until the measured value of the dissolved oxygen concentration sensor reaches the lower limit based on the comparison by the dissolved oxygen concentration comparison means, the one valve opening/closing driving means is operated to the air volume control valve of the one aerobic reaction tank. , while the period remains the same, only the air diffusion amount during aeration is decreased, and the air diffusion amount during slight aeration is instructed to be maintained at a constant value. When it is determined that the measured value of the concentration confirmation sensor is higher than the previous load concentration, the blower driving means instructs to increase the air volume of the blower, and the dissolved oxygen concentration comparison means makes a comparison based on the comparison. Until the measured value of the dissolved oxygen concentration sensor reaches the upper limit, the one valve opening/closing driving means is operated to the air volume control valves of the one aerobic reaction tank to disperse air during aeration while maintaining the same cycle. Only the air volume is increased, and the air diffusion volume during slight aeration is instructed to be maintained at the above constant value. , the blower driving means maintains the air volume of the blower, and the one valve opening/closing driving means for each air volume adjustment valve of the one aerobic reaction tank, In the other aerobic reaction tank that performs the reverse phase intermittent aeration operation, the other valve opening/closing drive means is operated to maintain the above cycle and the air diffusion amount during aeration. The waste water treatment apparatus according to the first or second aspect, wherein the air diffusion amount is increased or decreased after the change in the aeration operation, and the air diffusion amount during slight aeration is controlled in the opposite phase to maintain the above constant value. configured be

このように構成すると、周期は常時一定値を維持しながら、負荷濃度の上昇又は下降に応じて空気散気量のみを増減変更することができ、周期をも増減変更する制御に比べて簡易ではあるが、間欠曝気動作による窒素除去を可能とする大規模な排水処理施設に適用可能な排水処理装置を実現することができる。 With this configuration, it is possible to increase or decrease only the air diffusion amount according to the increase or decrease of the load concentration while maintaining the cycle at a constant value, which is simpler than the control that also increases or decreases the cycle. However, it is possible to realize a wastewater treatment apparatus that can be applied to large-scale wastewater treatment facilities that can remove nitrogen by intermittent aeration.

第5に、上記複数の上記一方の好気性反応タンクの何れか一つに負荷濃度確認センサが設けられ、上記制御部は、上記負荷濃度確認センサの測定値と前回測定時の測定値を比較する負荷濃度比較手段、上記送風機の風量を増減指示する送風機駆動手段、空気散気量が上限値又は下限値に達しているか否かを検出する空気散気量比較手段、周期が上限値又は下限値に達しているか否かを検出する周期比較手段を具備しており、上記正相間欠曝気動作を行う上記一方の好気性反応タンクにおいて、上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度より低下していると判断した場合は、上記送風機駆動手段が上記送風機の風量を減少する指示を行うと共に、上記空気散気量比較手段及び上記周期比較手段の比較に基づいて上記空気散気量及び周期が下限値に至るまで、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量を減少させ、微曝気時の空気散気量は一定値を維持するように指示するものであり、上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度より上昇していると判断した場合は、上記送風機駆動手段が上記送風機の風量を増加する指示を行うと共に、上記空気散気量比較手段及び上記周期比較手段の比較に基づいて上記空気散気量及び周期が上限値に至るまで、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの各風量調整弁に対して、上記周期と曝気時の空気散気量を増加させ、微曝気時の空気散気量は上記一定値を維持するように指示するものであり、上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であると判断した場合は、上記送風機駆動手段が上記送風機の風量を維持すると共に、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの各風量調整弁に対して上記周期と空気散気量を維持するように指示し、上記逆相間欠曝気動作を行う上記他方の好気性反応タンクにおいて、上記他方の弁開閉駆動手段は曝気時において上記正相間欠曝気動作における変更後の増減された上記周期及び空気散気量とし、微曝気時の空気散気量は上記一定値を維持する逆位相の制御を行うものである上記第1又は2記載の排水処理装置により構成される。 Fifth, a load concentration confirmation sensor is provided in any one of the plurality of aerobic reaction tanks, and the control unit compares the measured value of the load concentration confirmation sensor with the measured value of the previous measurement. blower drive means for instructing the air volume of the blower to increase or decrease, air diffusion amount comparison means for detecting whether the air diffusion amount has reached the upper limit or lower limit, and the cycle is the upper limit or the lower limit In the one aerobic reaction tank which is equipped with a cycle comparison means for detecting whether or not the value has been reached and which performs the positive phase intermittent aeration operation, the load concentration comparison means measures the load concentration confirmation sensor. When it is determined that the value is lower than the previous load concentration, the blower driving means instructs to decrease the air volume of the blower, and based on the comparison of the air diffusion amount comparison means and the period comparison means until the air diffusion amount and period reach the lower limit values, the one valve opening/closing drive means controls the air volume control valves of the one aerobic reaction tank to maintain the period and the air diffusion amount during aeration. is decreased and the amount of air diffusion during slight aeration is maintained at a constant value. When it is determined that there is an upper limit of the air diffusion amount and period based on the comparison of the air diffusion amount comparison means and the period comparison means, the blower drive means instructs to increase the air volume of the blower. until the value is reached, the one valve opening/closing driving means increases the period and the air diffusion amount during aeration for each air volume adjustment valve of the one aerobic reaction tank, and the air diffusion amount during slight aeration is increased. When the load concentration comparison means determines that the measured value of the load concentration confirmation sensor is the same as the previous load concentration, the blower The driving means maintains the air volume of the blower, and the one valve opening/closing driving means instructs each air volume control valve of the one aerobic reaction tank to maintain the period and the air diffusion volume, In the other aerobic reaction tank that performs the reverse phase intermittent aeration operation, the other valve opening/closing drive means is the cycle and the air diffusion amount that have been changed after the change in the positive phase intermittent aeration operation during aeration, The wastewater treatment apparatus according to the above first or second aspect performs anti-phase control for maintaining the above constant value for the amount of air diffused during slight aeration.

このように構成すると、溶存酸素濃度センサを用いることなく、間欠曝気動作による窒素除去を可能とする排水処理施設を実現することができ、精度は若干落ちるが、同様に大規模な都市排水処理場に適用可能な排水処理装置を実現することができる。 With this configuration, it is possible to realize a wastewater treatment facility that enables nitrogen removal by intermittent aeration without using a dissolved oxygen concentration sensor. It is possible to realize a waste water treatment device applicable to

第6に、上記各水路の上記各好気性反応タンクの上流側に脱窒を行う無酸素槽が各々設けられ、上記各水路の上記各好気性反応タンクの下流側に存在する排水の一部を上記無酸素槽に供給する排水循環手段が各々設けられ、かつ上記各水路の上記汚泥返送手段は上記汚泥を上記好気性反応タンクに代えて、上記無酸素槽に返送するものである上記第1~5の何れかに記載の排水処理装置により構成される。 Sixthly, an anoxic tank for denitrification is provided upstream of each of the aerobic reaction tanks in each of the water channels, and part of the wastewater present on the downstream side of each of the aerobic reaction tanks of each of the water channels. to the anoxic tank, and the sludge returning means of each waterway returns the sludge to the anoxic tank instead of the aerobic reaction tank. It is constituted by the waste water treatment apparatus according to any one of 1 to 5.

上記排水循環手段は例えば排水循環管(12)により構成することができる。このように構成すると、好気性反応タンクでの間欠曝気動作による窒素除去の機能に加えて、上流側の無酸素槽においても活発に脱窒反応が行われるため、より効果的に窒素除去を行うことが可能となる。 The drainage circulation means can be composed of, for example, a drainage circulation pipe (12). With this configuration, in addition to the function of removing nitrogen by intermittent aeration operation in the aerobic reaction tank, the denitrification reaction is also actively performed in the anoxic tank on the upstream side, so nitrogen removal is performed more effectively. becomes possible.

第7に、上記各水路の上記各無酸素槽の上流側にリン吐き出しを行う嫌気槽が各々設けられ、上記汚泥返送手段は上記汚泥を上記無酸素槽に代えて上記嫌気槽に返送するものである上記第6記載の排水処理装置により構成される。 Seventh, an anaerobic tank for discharging phosphorus is provided upstream of each anaerobic tank in each water channel, and the sludge returning means returns the sludge to the anaerobic tank instead of the anaerobic tank. It is composed of the waste water treatment apparatus according to the sixth aspect.

このように構成すると、上記無酸素槽及び好気性反応タンクによる窒素除去の機能に加えて、嫌気槽に汚泥が返送されることで返送汚泥中のリン蓄積細菌がリン酸を放出し、これが好気性反応タンクに流入し、該タンクにおける活性汚泥中にリンが吸収されることでリンの除去をも行うことができる。 With this configuration, in addition to the function of nitrogen removal by the anoxic tank and the aerobic reaction tank, the phosphorus-accumulating bacteria in the returned sludge release phosphoric acid when the sludge is returned to the anaerobic tank, which is preferable. Phosphorus can also be removed by flowing into the aerobic reaction tank and absorbing phosphorus into the activated sludge in the tank.

第8に、上記各水路の上記好気性反応タンクの上流側にリン吐き出しを行う嫌気槽が各々設けられ、上記汚泥返送手段は上記汚泥を上記好気性反応タンクに代えて上記嫌気槽に返送するものである上記第1~5の何れかに記載の排水処理装置により構成される。 Eighth, an anaerobic tank for discharging phosphorus is provided upstream of the aerobic reaction tank in each water channel, and the sludge returning means returns the sludge to the anaerobic tank instead of the aerobic reaction tank. It is composed of the waste water treatment apparatus according to any one of the above 1 to 5.

このように構成すると、窒素除去は好気性反応タンクの間欠曝気動作にて行い、かつ嫌気槽を好気性反応タンクの上流側に設けることによってリンの除去をも行うことができる。 With this configuration, nitrogen removal is performed by intermittent aeration of the aerobic reaction tank, and phosphorous can also be removed by providing an anaerobic tank upstream of the aerobic reaction tank.

第9に、上記周期は20分~90分である上記第1~8の何れかに記載の排水処理装置により構成される。 Ninth, it is composed of the waste water treatment apparatus according to any one of the first to eighth above, wherein the period is 20 to 90 minutes.

第10に、上記各水路に流入する水量を測定するための流入水量計が水路毎に設けられ、上記制御部に、上記正相間欠曝気動作を行う一の好気性反応タンクに対応する水路の上記流入水量計の水量と、上記一の好気性反応タンクに対応する上記空気流量計の空気流量とから空気倍率を求め、当該空気倍率を基準空気倍率として記憶する空気倍率算出記憶手段が設けられ、かつ、他の水路の好気性反応タンクの空気倍率を上記基準空気倍率に合わせるべく、他の水路の上記流入水量計の流入水量に基づいて、上記他の水路の好気性反応タンクの空気流量を算出するための微調整量算出手段が設けられ、上記制御部は、上記微調整量算出手段にて算出された微調整後の空気流量に基づいて、上記他の水路の上記風量調整弁を、上記微調整後の空気量に合わせるべく微調整するものである上記第1~9の何れかに記載の排水処理装置により構成される。 Tenth, an inflow water meter for measuring the amount of water flowing into each waterway is provided for each waterway, and the controller is provided with a waterway corresponding to one aerobic reaction tank that performs the positive phase intermittent aeration operation. Air ratio calculation storage means is provided for obtaining an air ratio from the water amount of the inflow water meter and the air flow rate of the air flow meter corresponding to the one aerobic reaction tank, and storing the air ratio as a reference air ratio. And, in order to match the air magnification of the aerobic reaction tank of the other waterway with the reference air magnification, the air flow rate of the aerobic reaction tank of the other waterway is calculated based on the inflow water amount of the inflow water meter of the other waterway. is provided, and the control unit adjusts the air volume adjustment valve of the other water passage based on the air flow rate after fine adjustment calculated by the fine adjustment amount calculation means. , the wastewater treatment apparatus according to any one of the first to ninth above, which is finely adjusted to match the air amount after the fine adjustment.

上記空気倍率算出記憶手段は、空気倍率算出手段(13u)、基準空気倍率記憶手段(13v)により構成することができる。このように構成すると、一の水路について基準空気倍率を算出することにより、他の水路の空気倍率を基準空気倍率に合わせるべく、他の水路の好気性反応タンクの空気流量を調整することができ、例えば複数の水路が存在する場合、簡易な構成により各水路の好気性反応タンクの空気倍率を基準空気倍率に合わせることができる。 The air magnification calculation storage means can be composed of an air magnification calculation means (13u) and a reference air magnification storage means (13v). With this configuration, by calculating the standard air ratio for one channel, it is possible to adjust the air flow rate of the aerobic reaction tank of the other channel so as to match the air ratio for the other channels with the standard air ratio. For example, when there are a plurality of water channels, the air ratio of the aerobic reaction tank of each water channel can be adjusted to the standard air ratio with a simple configuration.

第11に、少なくとも2つの水路の各々に押し出し流れ型の好気性反応タンクを設け、上記各好気性反応タンクの下流側の各最終沈殿池から上記各好気性反応タンクの上流側に汚泥を返送する汚泥返送手段を各々設けた排水処理装置における排水処理方法であって、
各水路の上記好気性反応タンクには、各上記タンク内に設けられた空気散気手段と、上記各空気散気手段に空気を送り込むための送気管と、上記送気管に設けられ上記空気散気手段に送風される空気散気量を調整するための風量調整弁と、各送気管の空気流量を測定可能な空気流量計とからなる曝気調整部とを設け、上記各送気管に空気を送り込むための各水路に共通の送風機を設け、上記各空気流量計の流量を検知しながら上記各風量調整弁を開閉制御することにより上記空気散気手段への空気散気量を調整し得る制御部を設け、上記制御部は、上記送風機から上記各水路の送気管への送風が行われているときに、上記各風量調整弁を開閉制御することにより、一対の上記好気性反応タンクにおいて、一方の上記好気性反応タンクでは、空気散気量の多い曝気と、空気散気量の少ない微曝気とを同一の周期でくり返す正相間欠曝気動作を行うと共に、他方の上記好気性反応タンクにおいて、上記一方の好気性反応タンクの曝気時は微曝気、微曝気時は曝気からなる上記正相間欠曝気動作とは同一周期かつ同一タイミングの逆相間欠曝気動作を行う排水処理装置における排水処理方法により構成される。
Eleventh, each of at least two waterways is provided with a push-flow type aerobic reaction tank, and sludge is returned from each final sedimentation tank on the downstream side of each aerobic reaction tank to the upstream side of each aerobic reaction tank. A wastewater treatment method in a wastewater treatment apparatus provided with sludge returning means for each,
The aerobic reaction tank of each water channel includes an air diffuser provided in each tank, an air pipe for sending air to each air diffuser, and the air diffuser provided in the air pipe. An aeration adjustment unit comprising an air volume adjustment valve for adjusting the amount of air diffused to be blown to the air means and an air flow meter capable of measuring the air flow rate of each air pipe is provided, and air is supplied to each of the air pipes. A common blower is provided for each water channel for sending air, and the air diffusion amount to the air diffusion means can be adjusted by controlling the opening and closing of each air volume adjustment valve while detecting the flow rate of each air flow meter. A part is provided, and the control part controls opening and closing of each of the air volume adjustment valves when air is being blown from the blower to the air pipe of each water channel, thereby causing the pair of aerobic reaction tanks to: In one of the aerobic reaction tanks, positive-phase intermittent aeration is performed in which aeration with a large amount of air diffusion and fine aeration with a small amount of air diffusion are repeated in the same cycle, while the other aerobic reaction tank performs a positive-phase intermittent aeration operation. In wastewater treatment in a wastewater treatment apparatus that performs a negative phase intermittent aeration operation with the same cycle and timing as the above positive phase intermittent aeration operation consisting of slight aeration during aeration of the one aerobic reaction tank and aeration during slight aeration. Constructed by a method.

第12に、上記2つの水路以外に少なくとも2以上の偶数個の上記水路を増設し、増設した各水路に上記最終沈殿池を含む上記汚泥返送手段と、上記曝気調整部を具備した押し出し流れ型の上記好気性反応タンクを各々設け、上記送風機は上記各送気管に空気を送り込むために上記各水路に共通に設けられ、上記制御部は増設した上記水路における上記各空気流量計の流量を検知しながら上記各風量調整弁を開閉制御することにより、上記各空気散気手段への空気散気量を調整するものであり、上記一対の好気性反応タンクとは別の増設した複数の上記好気性反応タンクにおける、2個を一組とする一対の好気性反応タンクにおいて、上記制御部は、上記風量調整弁の弁を開閉制御することにより、一方の上記好気性反応タンクでは上記正相間欠曝気動作を行うと共に、他方の好気性反応タンクにおいては上記逆相間欠曝気動作を行う上記第11記載の排水処理装置における排水処理方法により構成される。 Twelfth, in addition to the two waterways, an even number of at least two waterways are added, and each additional waterway is equipped with the sludge return means including the final sedimentation tank and the aeration adjustment unit. The aerobic reaction tank is provided respectively, the blower is provided in common to each water channel for sending air to each air pipe, and the control unit detects the flow rate of each air flow meter in the added water channel. By controlling the opening and closing of each of the air volume control valves while adjusting the amount of air diffused to each of the air diffuser means, a plurality of the preferred aerobic reaction tanks are added separately from the pair of aerobic reaction tanks. In a pair of aerobic reaction tanks, in which two aerobic reaction tanks constitute a set, the control unit controls the opening and closing of the air volume control valve, thereby causing the positive phase intermittent operation in one of the aerobic reaction tanks. The wastewater treatment method in the wastewater treatment apparatus according to the above eleventh aspect, wherein the aeration operation is performed and the reversed-phase intermittent aeration operation is performed in the other aerobic reaction tank.

第13に、上記複数の上記一方の好気性反応タンクの何れか一つに負荷濃度確認センサと溶存酸素濃度センサとを設け、上記制御部は上記各センサからのデータを検出し得ると共に上記送風機の風量を制御するものであり、上記正相間欠曝気動作を行う上記一方の好気性反応タンクにおいて、上記制御部は、上記負荷濃度確認センサの測定値が前回の負荷濃度より低下していると判断した場合は、上記送風機の風量を減少する指示を行うと共に、上記溶存酸素濃度センサの測定値及び周期が下限値に至るまで、上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量を減少し、微曝気時の空気散気量は一定値を維持するように指示し、上記負荷濃度確認センサの測定値が前回の負荷濃度より上昇していると判断した場合は、上記送風機の風量を増加する指示を行うと共に、上記溶存酸素濃度センサの測定値及び上記周期が上限値に至るまで、上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量を増加し、微曝気時の空気散気量は上記一定値を維持するように指示し、上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であると判断した場合は、上記送風機の風量を維持すると共に、上記一方の好気性反応タンクの上記各風量調整弁に対して周期と空気散気量を維持するように指示し、上記逆相間欠曝気動作を行う上記他方の好気性反応タンクにおいて、上記制御部は曝気時において上記正相間欠曝気動作における変更後の増減された上記周期及び空気散気量とし、微曝気時の空気散気量は上記一定値を維持する逆位相の制御を行う上記第11又は12記載の排水処理装置における排水処理方法により構成される。 Thirteenth, any one of the plurality of aerobic reaction tanks is provided with a load concentration confirmation sensor and a dissolved oxygen concentration sensor, and the control section can detect data from each of the sensors and the blower. In the one aerobic reaction tank that performs the positive phase intermittent aeration operation, the control unit determines that the measured value of the load concentration confirmation sensor is lower than the previous load concentration. When it is determined, an instruction is given to reduce the air volume of the blower, and the air volume control valve of the one aerobic reaction tank is controlled until the measured value and cycle of the dissolved oxygen concentration sensor reach the lower limit. , to decrease the period and the air diffusion rate during aeration, and to maintain the air diffusion rate during slight aeration at a constant value. If it is determined that it is, an instruction is given to increase the air volume of the blower, and the air volume of the one aerobic reaction tank is adjusted until the measured value of the dissolved oxygen concentration sensor and the period reach the upper limit. The valve is instructed to increase the period and the air diffusion amount during aeration, and to maintain the above constant value for the air diffusion amount during slight aeration, and the measured value of the load concentration confirmation sensor is the previous value. If it is determined that the load concentration is equivalent, the air volume of the blower is maintained, and the period and air diffusion volume are maintained for each of the air volume control valves of the one aerobic reaction tank. In the other aerobic reaction tank that instructs and performs the reverse phase intermittent aeration operation, the control unit sets the increased or decreased period and air diffusion amount after the change in the positive phase intermittent aeration operation during aeration, The wastewater treatment method in the wastewater treatment apparatus according to the above eleventh or twelfth aspect, wherein the amount of air diffused during aeration is controlled in reverse phase to maintain the constant value.

第14に、上記複数の上記一方の好気性反応タンクの何れか一つに負荷濃度確認センサと溶存酸素濃度センサとを設け、上記制御部は上記各センサからのデータを検出し得ると共に上記送風機の風量を制御するものであり、上記正相間欠曝気動作を行う上記一方の好気性反応タンクにおいて、上記制御部は、上記負荷濃度確認センサの測定値が前回の負荷濃度より低下していると判断した場合は、上記送風機の風量を減少する指示を行うと共に、上記溶存酸素濃度センサの測定値が下限値に至るまで、上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期は同一のまま曝気時の空気散気量のみを減少し、微曝気時の空気散気量は一定値を維持するように指示し、上記負荷濃度確認センサの測定値が前回の負荷濃度より上昇していると判断した場合は、上記送風機の風量を増加する指示を行うと共に、上記溶存酸素濃度センサの測定値が上限値に至るまで、上記一方の好気性反応タンクの上記各風量調整弁に対して上記周期は同一のまま曝気時の空気散気量のみを増加し、微曝気時の空気散気量は上記一定値を維持するように指示し、上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であると判断した場合は、上記送風機の風量を維持すると共に、上記一方の好気性反応タンクの各風量調整弁に対して、上記周期と空気散気量を維持するように指示し、上記逆相間欠曝気動作を行う上記他方の好気性反応タンクにおいて、上記制御部は曝気時において上記正相間欠曝気動作における変更後の増減された空気散気量とし、微曝気時の空気散気量は上記一定値を維持する逆位相の制御を行う上記第11又は12記載の排水処理装置における排水処理方法により構成される。 Fourteenth, any one of the plurality of aerobic reaction tanks is provided with a load concentration confirmation sensor and a dissolved oxygen concentration sensor, and the control section can detect data from each of the sensors and the blower. In the one aerobic reaction tank that performs the positive phase intermittent aeration operation, the control unit determines that the measured value of the load concentration confirmation sensor is lower than the previous load concentration. When it is determined, an instruction is given to reduce the air volume of the blower, and the air volume control valve of the one aerobic reaction tank is operated until the measured value of the dissolved oxygen concentration sensor reaches the lower limit value. At the same cycle, only the air diffusion amount during aeration is decreased, and the air diffusion amount during slight aeration is instructed to be maintained at a constant value, and the measured value of the load concentration confirmation sensor is higher than the previous load concentration. If it is determined that the air volume is increasing, an instruction is given to increase the air volume of the blower, and the air volume control valve of the one aerobic reaction tank is adjusted until the measured value of the dissolved oxygen concentration sensor reaches the upper limit. For the above cycle, only the air diffusion amount during aeration is increased with the same period, and the air diffusion amount during slight aeration is instructed to maintain the above constant value, and the measured value of the load concentration confirmation sensor is If it is determined that the load concentration is the same as the previous load concentration, the air volume of the blower is maintained, and the cycle and air diffusion volume are maintained for each air volume adjustment valve of the one aerobic reaction tank. In the other aerobic reaction tank in which the reverse phase intermittent aeration operation is performed, the control unit makes the air diffusion amount increased or decreased after the change in the positive phase intermittent aeration operation at the time of aeration, The wastewater treatment method in the wastewater treatment apparatus according to the above eleventh or twelfth aspect, wherein the amount of air diffused during aeration is controlled in reverse phase to maintain the constant value.

第15に、上記複数の上記一方の好気性反応タンクの何れか一つに負荷濃度確認センサを設け、上記制御部は上記センサからのデータを検出し、上記送風機の風量を制御すると共に、現在の空気散気量を記憶する空気散気量記憶手段を設け、上記正相間欠曝気動作を行う上記一方の好気性反応タンクにおいて、上記制御部は、上記負荷濃度確認センサの測定値が前回の負荷濃度より低下していると判断した場合は、上記送風機の風量を減少する指示を行うと共に、上記周期及び上記空気散気量記憶手段に記憶している前回の空気散気量が下限値に至るまで、上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量を減少し、微曝気時の空気散気量は一定値を維持するように指示し、上記負荷濃度確認センサの測定値が前回の負荷濃度より上昇していると判断した場合は、上記送風機の風量を増加する指示を行うと共に、上記周期及び上記空気散気量記憶手段に記憶している前回の空気散気量が上限値に至るまで、上記各一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量を増加し、微曝気時の空気散気量は上記一定値を維持するように指示し、上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であると判断した場合は、上記送風機の風量を維持すると共に、上記一方の好気性反応タンクの各風量調整弁に対して上記周期と空気散気量を維持するように指示し、上記逆相間欠曝気動作を行う上記他方の好気性反応タンクにおいて、上記制御部は曝気時において上記正相間欠曝気動作における変更後の増減された上記周期及び空気散気量とし、微曝気時の空気散気量は上記一定値を維持する逆位相の制御を行う上記第11又は12記載の排水処理装置における排水処理方法により構成される。 Fifteenth, any one of the plurality of aerobic reaction tanks is provided with a load concentration confirmation sensor, the control unit detects data from the sensor, controls the air volume of the blower, and controls the current In the one aerobic reaction tank that performs the positive phase intermittent aeration operation, the control unit is configured to store the air diffusion amount storage means for storing the air diffusion amount of the previous When it is determined that the concentration is lower than the load concentration, an instruction is given to decrease the air volume of the blower, and the previous air diffusion volume stored in the period and the air diffusion volume storage means reaches the lower limit. Until then, for each of the air volume control valves of the one aerobic reaction tank, the period and the air diffusion amount during aeration are reduced, and the air diffusion amount during slight aeration is maintained at a constant value. If it is determined that the measured value of the load concentration confirmation sensor is higher than the previous load concentration, an instruction to increase the air volume of the blower is given, and the period and the air diffusion amount storage means are stored. Until the previous air diffusion amount memorized reaches the upper limit, the period and the air diffusion amount at the time of aeration are increased for each of the air volume control valves of the one aerobic reaction tank, The amount of air diffusion during aeration is instructed to maintain the above constant value, and if it is determined that the measured value of the load concentration confirmation sensor is the same as the previous load concentration, the air volume of the blower is maintained. At the same time, instructing each air volume control valve of the one aerobic reaction tank to maintain the cycle and the air diffusion amount, and performing the reverse phase intermittent aeration operation In the other aerobic reaction tank, During aeration, the control unit controls the cycle and the air diffusion amount that have been increased or decreased after the change in the positive phase intermittent aeration operation, and controls the air diffusion amount during slight aeration to maintain the above constant value. It is constituted by the wastewater treatment method in the wastewater treatment apparatus according to the eleventh or twelfth above.

第16に、上記各水路に流入する水量を測定するための流入水量計を水路毎に設け、上記制御部に、上記正相間欠曝気動作を行う一の好気性反応タンクに対応する水路の上記流入水量計の水量と、上記一の好気性反応タンクに対応する上記空気流量計の空気流量とから空気倍率を求め、当該空気倍率を基準空気倍率として記憶する空気倍率算出記憶手段を設け、かつ、他の水路の好気性反応タンクの空気倍率を上記基準空気倍率に合わせるべく、他の水路の上記流入水量計の流入水量に基づいて、上記他の水路の好気性反応タンクの空気量を算出するための微調整量算出手段を設け、上記制御部は、上記微調整量算出手段にて算出された微調整後の空気量に基づいて、上記他の水路の上記風量調整弁を、上記微調整後の空気量に合わせるべく微調整を行う上記第11~15の何れかに記載の排水処理装置における排水処理方法により構成される。 Sixteenth, an inflow water meter for measuring the amount of water flowing into each waterway is provided for each waterway, and the control unit is provided with the waterway corresponding to the one aerobic reaction tank that performs the positive phase intermittent aeration operation. an air ratio calculation storage means for obtaining an air ratio from the water amount of the inflow water meter and the air flow rate of the air flow meter corresponding to the one aerobic reaction tank, and storing the air ratio as a reference air ratio; , calculating the air volume of the aerobic reaction tank of the other channel based on the inflow volume of the inflow water meter of the other channel in order to match the air magnification of the aerobic reaction tank of the other channel with the reference air magnification. A fine adjustment amount calculation means is provided for adjusting the fine adjustment amount calculation means, and the control unit adjusts the air amount adjustment valve of the other water passage to the fine adjustment amount based on the air amount after the fine adjustment calculated by the fine adjustment amount calculation means. The wastewater treatment method in the wastewater treatment apparatus according to any one of the eleventh to fifteenth above-mentioned items performs fine adjustment so as to match the adjusted air amount.

本発明は上述のように、従来の間欠曝気動作における曝気停止時間帯の機械による攪拌に代わり、微曝気を行うことで、風量をゼロにすることなく、一方の好気性反応タンクにおいて正相間欠曝気動作を行い、他方の好気性反応タンクにおいて逆相間欠曝気動作を行うことにより、間欠曝気動作中の送風機の風量を停止することなく所定の風量にて運転を継続することができ、従って例えば大型のターボ形送風機を使用している都市型大規模下水処理場において、好気性反応タンク及び空気散気手段等の構成を大幅に変更することなく、間欠曝気処理による窒素除去が可能な高機能排水処理施設への変更を比較的低コストにて実現することができるものである。 As described above, the present invention performs fine aeration instead of mechanical agitation during the aeration stop time period in the conventional intermittent aeration operation, so that the air volume does not become zero, and positive phase intermittent in one aerobic reaction tank By performing the aeration operation and performing the reverse phase intermittent aeration operation in the other aerobic reaction tank, the operation can be continued at a predetermined air volume without stopping the air volume of the fan during the intermittent aeration operation. High performance that can remove nitrogen by intermittent aeration treatment without significantly changing the configuration of aerobic reaction tanks and air diffusion means in urban large-scale sewage treatment plants that use large turbo blowers. A change to the wastewater treatment facility can be realized at a relatively low cost.

また、例えば複数の水路(例えば4水路以上の偶数個)を有する大規模な都市型下水処理場においても、比較的低廉なコストで間欠曝気動作による窒素除去が可能な高機能排水処理施設への変更を行うことが可能となる。 In addition, for example, even in large-scale urban sewage treatment plants with multiple waterways (for example, an even number of waterways of 4 or more), high-performance wastewater treatment facilities that can remove nitrogen by intermittent aeration operation at relatively low cost. Changes can be made.

また、何れか一つの好気性反応タンクに負荷濃度確認センサ及び溶存酸素濃度センサを設けるだけで、全ての好気性反応タンクにおいて、負荷濃度に応じた曝気時の空気散気量及び周期の増減制御を行うことができ、負荷濃度の上昇又は下降に対応して適切な空気散気量及び周期の変更を、全ての水路に対応する好気性反応タンクにおいて実現することが可能となる。 In addition, by simply installing a load concentration confirmation sensor and a dissolved oxygen concentration sensor in any one of the aerobic reaction tanks, all the aerobic reaction tanks can be controlled to increase or decrease the amount of air diffusion and the period during aeration according to the load concentration. can be performed, and it becomes possible to realize appropriate changes in the amount of air diffusion and the cycle corresponding to the increase or decrease of the load concentration in the aerobic reaction tanks corresponding to all water channels.

また、一方の好気性反応タンクと他方の好気性反応タンクは逆位相にて制御され、微曝気時は少量の一定風量を維持しているので、空気散気量の増減変更があっても、送風機を止める必要がないし、送風機の風量の増減変化は最小限に留めることができ、例えば大型のターボ形送風機を使用している都市大規模下水処理場においても適用が可能な高機能な排水処理装置及び排水処理方法を実現し得る。 In addition, one aerobic reaction tank and the other aerobic reaction tank are controlled in reverse phase, and a small constant air volume is maintained during slight aeration, so even if the air diffusion volume is changed, There is no need to stop the blower, and fluctuations in the air volume of the blower can be kept to a minimum. For example, high-performance wastewater treatment that can be applied to urban large-scale sewage treatment plants that use large turbo-type blowers. An apparatus and wastewater treatment method can be realized.

また、周期は常時一定値を維持しながら、負荷濃度の上昇又は下降に応じて空気散気量のみを増減変更することもでき、周期をも増減変更する制御に比べて簡易ではあるが、間欠曝気動作による窒素除去を可能とする大規模な排水処理場に適用可能な高機能な排水処理装置及び排水処理方法を実現することができる。 In addition, while the period is always maintained at a constant value, only the air diffusion amount can be increased or decreased according to the increase or decrease of the load concentration. It is possible to realize a highly functional wastewater treatment apparatus and a wastewater treatment method that are applicable to large-scale wastewater treatment plants that enable nitrogen removal by aeration operation.

また、溶存酸素濃度センサを用いることなく、間欠曝気動作による窒素除去を可能とする排水処理施設を実現することができ、精度は若干落ちるが、同様に大規模な排水処理場に適用可能な排水処理装置及び排水処理方法を実現することができる。 In addition, it is possible to realize a wastewater treatment facility that can remove nitrogen by intermittent aeration without using a dissolved oxygen concentration sensor. A treatment apparatus and a wastewater treatment method can be realized.

また、無酸素槽を設けることで、好気性反応タンクでの間欠曝気動作による窒素除去の機能に加えて上流側の無酸素槽においても活発に脱窒反応が行われるため、より効果的に窒素除去を行うことが可能となる。 In addition, by providing an anoxic tank, in addition to the function of removing nitrogen by intermittent aeration in the aerobic reaction tank, active denitrification reaction also occurs in the upstream anoxic tank, so nitrogen is more effectively Removal can be done.

また、無酸素槽の上流に嫌気槽を設けることにより、上記無酸素槽及び好気性反応タンクによる窒素除去の機能に加えて、リンの除去をも行うことができる。 Further, by providing an anaerobic tank upstream of the anoxic tank, phosphorus can be removed in addition to the function of removing nitrogen by the anoxic tank and the aerobic reaction tank.

また、好気性反応タンクの上流側に嫌気槽を設けることで、窒素除去は好気性反応タンクの間欠曝気動作にて行い、さらにリンの除去をも行うことができる。 Further, by providing an anaerobic tank upstream of the aerobic reaction tank, nitrogen can be removed by the intermittent aeration operation of the aerobic reaction tank, and phosphorus can also be removed.

また、複数の水路が存在する場合、簡易な構成により各水路の好気性反応タンクの空気倍率を基準空気倍率に合わせることができる。 Moreover, when there are a plurality of water channels, the air ratio of the aerobic reaction tank of each water channel can be matched with the standard air ratio by a simple configuration.

本発明に係る排水処理装置及び排水処理方法の第1の実施形態のブロック図である。1 is a block diagram of a first embodiment of a waste water treatment apparatus and a waste water treatment method according to the present invention; FIG. 同上処理装置及び処理方法の制御部の全体構成のブロック図である。It is a block diagram of the whole structure of the control part of a processing apparatus same as the above, and a processing method. 同上処理装置及び処理方法の制御部の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the control part of a processing apparatus same as the above, and a processing method. 同上処理装置及び処理方法の制御部の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the control part of a processing apparatus same as the above, and a processing method. 同上処理装置及び処理方法の制御部の動作手順を示すフローチャートである。It is a flowchart which shows the operation|movement procedure of the control part of a processing apparatus same as the above, and a processing method. 同上処理装置及び処理方法の制御部の動作手順を示すフローチャートである。It is a flowchart which shows the operation|movement procedure of the control part of a processing apparatus same as the above, and a processing method. 同上処理装置及び処理方法の制御部の動作手順を示すフローチャートである。It is a flowchart which shows the operation|movement procedure of the control part of a processing apparatus same as the above, and a processing method. 同上処理装置及び処理方法の正相と逆位相の間欠曝気動作を示す図であり、(a)は間欠曝気動作、(b)は曝気時の風量と周期を減少したときの間欠曝気動作、(c)は曝気時の風量と周期を増加したときの間欠曝気動作を示す。FIG. 2 is a diagram showing intermittent aeration operation of the same treatment apparatus and treatment method in positive phase and reverse phase, (a) is intermittent aeration operation, (b) is intermittent aeration operation when the air volume and period during aeration are reduced, ( c) shows the intermittent aeration operation when the air volume and period during aeration are increased. 同上処理装置及び処理方法の正相と逆位相の間欠曝気動作のタイミングチャートであり、(a)は1つの好気槽の正相の間欠曝気動作、(b)は他の水路の1つの好気槽の逆位相の間欠曝気動作、(c)は(a)(b)の合計風量を示す。It is a timing chart of the positive phase and reverse phase intermittent aeration operation of the same treatment apparatus and treatment method, (a) is the positive phase intermittent aeration operation of one aerobic tank, (b) is one of the other water channels. Anti-phase intermittent aeration operation of the air tank, (c) shows the total air volume of (a) and (b). 同上処理装置及び処理方法の水路W以降の制御部の機能的構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a control unit after water channel W3 in the same treatment apparatus and treatment method; 同上装置及び方法において、周期を一定とした状態の正相と逆相の間欠曝気動作を示す図であり、(a)は間欠曝気動作、(b)は曝気時の風量を減少したときの間欠曝気動作を示す。In the same device and method, it is a diagram showing intermittent aeration operation with a constant period of positive phase and reverse phase, (a) is intermittent aeration operation, (b) is intermittent when the air volume during aeration is reduced Indicates the aeration action. 同上装置及び方法の溶存酸素濃度センサを用いない場合の制御部の機能的構成を示す一部ブロックである。It is a partial block which shows the functional structure of the control part when not using a dissolved oxygen concentration sensor of an apparatus and method same as the above. 同上処理装置及び処理方法において、無酸素槽を追加した場合のブロック図である。FIG. 4 is a block diagram of the case where an oxygen-free tank is added in the same processing apparatus and processing method. 同上処理装置及び処理方法において、無酸素槽と嫌気槽を追加した場合のブロック図である。FIG. 4 is a block diagram of the case where an anoxic tank and an anaerobic tank are added in the same treatment apparatus and treatment method. 同上処理装置及び処理方法において、嫌気槽を追加した場合のブロック図である。FIG. 10 is a block diagram of the case where an anaerobic tank is added in the same treatment apparatus and treatment method. 同上処理装置及び処理方法において、間欠曝気動作の他の実施形態を示す概念図である。FIG. 4 is a conceptual diagram showing another embodiment of intermittent aeration operation in the same treatment apparatus and treatment method. 間欠曝気動作中のアンモニア性窒素及び硝酸性窒素の濃度の変化を示す図である。FIG. 4 is a diagram showing changes in concentrations of ammonia nitrogen and nitrate nitrogen during intermittent aeration operation. 同上処理装置及び処理方法の制御部の機能的構成を示すブロック図である。It is a block diagram which shows the functional structure of the control part of a processing apparatus same as the above, and a processing method.

以下、本発明に係る排水処理装置及び排水処理方法について詳細に説明する。 Hereinafter, the wastewater treatment apparatus and wastewater treatment method according to the present invention will be described in detail.

図1は本発明に係る第1の実施形態の排水処理装置のブロック図を示す。この排水処理装置は、例えば排水処理量5万m/日以上の大規模排水処理場を想定しており、最初沈殿池1、好気性反応タンク2、最終沈殿池3から構成される基本的に同一構成の水路W(W,W・・・)が、並列偶数の複数列(例えば2列、4列、6列、8列、10列等)設置されている。 FIG. 1 shows a block diagram of a waste water treatment apparatus of a first embodiment according to the present invention. This wastewater treatment equipment is assumed to be a large-scale wastewater treatment plant with a wastewater treatment capacity of, for example, 50,000 m 3 /day or more, and is basically composed of a primary sedimentation tank 1, an aerobic reaction tank 2, and a final sedimentation tank 3. Water channels W (W 1 , W 2 , .

以下の説明において、各水路を特定する場合は、水路W,W等の符号を用い、水路を特定しない場合はWの符号を用いる。また、各水路Wを構成する部材(例えば好気性反応タンク2、散気装置5A等)について水路を特定しない場合は「2」、「5A」等の符号を用い、各水路を特定する場合は「2,2等、5A等」の添字を用いる(他の構成部材も同様)。 In the following description, the symbols W 1 , W 2 and the like are used when each channel is specified, and the symbol W is used when no channel is specified. In addition, when the waterway is not specified for the members constituting each waterway W (for example, the aerobic reaction tank 2, the air diffuser 5A, etc.), symbols such as "2" and "5A" are used, and when each waterway is specified Subscripts of "2 1 , 2 2 , etc., 5A 1 , etc." are used (same for other components).

また、各水路W,W・・・の各散気装置5A,5B,5C等に送風するための送風機10は、複数の水路W,W・・・に共通に設けられており、この共通の送風機10から各水路W,Wの各送気管8,8・・・を介して上記各水路W,W・・・の各好気性反応タンク2,2・・・の各散気装置5A,5B,5C、5A,5B,5C・・・に空気が送風される。尚、送風機10は、例えば送風に供される1台のターボ形送風機、或いは、並列に接続された送風に供される2台又は3台以上の複数台のターボ形送風機から構成される設備をいう。従って、以下の説明において、1台のターボ形送風機、或いは、並列に接続された2台又は3台以上の複数台のターボ形送風機により所定の風量(例えば後述の風量「18」、風量「21」等)の送風を実現する設備を送風機10という。 In addition, the air blower 10 for blowing air to each air diffuser 5A, 5B, 5C, etc. of each water channel W 1 , W 2 . , from the common air blower 10 to the aerobic reaction tanks 2 1 , 2 of the water channels W 1 , W 2 , etc. via the air pipes 8 1 , 8 2 , Air is blown to each air diffuser 5A 1 , 5B 1 , 5C 1 , 5A 2 , 5B 2 , 5C 2 . The blower 10 is, for example, a single turbo blower for blowing, or a facility composed of two or more turbo blowers connected in parallel for blowing. say. Therefore, in the following description, a single turbo blower or two or more turbo blowers connected in parallel are used to set a predetermined air volume (for example, an air volume of "18" or an air volume of "21", which will be described later). , etc.) is referred to as a blower 10 .

また、水路Wの好気性反応タンク2を「基準制御タンク」、他の水路W,W・・・以降の全ての好気性反応タンク2,2,2・・・を「従属制御タンク」という。 Also, the aerobic reaction tank 21 of the waterway W1 is the "reference control tank", and all the other waterway W2 , W3 , ... and subsequent aerobic reaction tanks 22 , 23 , 24, It is called a "dependent control tank".

そして、上記基準制御タンクとしての好気性反応タンク2にのみ、負荷濃度確認センサ(例えばアンモニアセンサ)Aと溶存酸素濃度センサDが設けられる。各水路Wの構成については、水路Wに上記センサAとDが設けられているだけで、それ以外は同一なので、以下、水路Wの構成の説明を中心に行い、他の水路W,W・・・等の説明は必要に応じて添え字を用いて行う。 A load concentration confirmation sensor (for example, an ammonia sensor) A and a dissolved oxygen concentration sensor D are provided only in the aerobic reaction tank 21 as the reference control tank. The configuration of each water channel W is the same except that the water channel W1 is provided with the sensors A and D, and the rest is the same. , W 3 .

また、本説明において、硝酸とは、硝酸(NO)、亜硝酸(NO)、硝酸性窒素(NO-N)、亜硝酸性窒素(NO-N)、硝酸性窒素と亜硝酸性窒素との集合、硝酸と亜硝酸とを共に示すNOxをも意味する呼称である。また、アンモニアとは、アンモニアと共にアンモニア性窒素を意味する呼称である。また、アンモニア濃度は、アンモニア(NH)及びアンモニア性窒素(NH-N)の何れの濃度をも意味する呼称である。また、硝酸濃度は、硝酸、亜硝酸、硝酸性窒素、亜硝酸性窒素、硝酸性窒素と亜硝酸性窒素との集合、硝酸と亜硝酸とを共に示すNOxの、何れの濃度も意味する呼称である。 In this description, nitric acid means nitric acid (NO 3 ), nitrous acid (NO 2 ), nitrate nitrogen (NO 3 —N), nitrite nitrogen (NO 2 —N), nitrate nitrogen and nitrite It is a term that also means NOx, which is a combination of nitrogen and nitric acid, and also shows nitric acid and nitrous acid. Further, ammonia is a name that means ammonia nitrogen together with ammonia. Further, the ammonia concentration is a term that means the concentration of both ammonia (NH 3 ) and ammonia nitrogen (NH 4 —N). In addition, nitric acid concentration is a term that means any concentration of nitric acid, nitrous acid, nitrate nitrogen, nitrite nitrogen, a set of nitrate nitrogen and nitrite nitrogen, and NOx indicating both nitric acid and nitrous acid. is.

上記各好気性反応タンク2の上流側には、最初沈殿池1が設けられており、原水は最初沈殿池1に流入し、沈殿後の処理水が好気性反応タンク2に流入するように構成されている。尚、最初沈殿池1,1・・・の上流側には、流入する水量を測定するための流入水量計4,4・・・が各水路毎に設けられている。 A primary sedimentation tank 1 is provided on the upstream side of each aerobic reaction tank 2. Raw water flows into the primary sedimentation tank 1, and treated water after sedimentation flows into the aerobic reaction tank 2. It is On the upstream side of the primary sedimentation tanks 11, 12 , . . . , inflow water meters 41, 42, .

上記好気性反応タンク2は押し出し流れ型の反応タンクであり、処理水は上流側から下流側(矢印M方向)への流れが形成される。これらの好気性反応タンク2の底部には複数の散気装置5(5A,5B,5C)が設けられており、散気装置5から空気をタンク2内に送り込み、大量の空気散気量での曝気と、少量の空気散気量での微曝気の繰り返しからなる間欠曝気動作が行われ、当該好気性反応タンク2内において、微生物が処理水中の有機物を分解すると共に、処理水に含まれる窒素の除去が行われる。 The aerobic reaction tank 2 is a push-flow type reaction tank, and the treated water forms a flow from the upstream side to the downstream side (in the direction of arrow M). A plurality of air diffusers 5 (5A, 5B, 5C) are provided at the bottom of these aerobic reaction tanks 2, and air is sent into the tank 2 from the air diffusers 5, and a large amount of air is diffused. and microaeration with a small amount of air diffusion are repeated, and in the aerobic reaction tank 2, microorganisms decompose organic matter in the treated water, and the organic matter contained in the treated water Nitrogen removal is performed.

ここで曝気時間と微曝気時間は同一時間とし、曝気と微曝気時間との合計時間を一周期Tとする。また曝気時は一方の好気性反応タンク2の好気槽2A,2B,2Cにおいて、何れの槽においても同じ「曝気」をT/2時間継続し(好気槽2A=曝気、2B=曝気、2C=曝気)、その後、上記好気槽2A,2B,2Cにおいて、何れの槽においても同じ「微曝気」をT/2時間継続する(2A=微曝気、2B=微曝気、2C=微曝気)、という周期Tの間欠曝気動作を繰り返し行う(図8(a)参照)。 Here, the aeration time and the slight aeration time are the same, and the total time of the aeration and the slight aeration time is defined as one cycle T. Further, during aeration, the same "aeration" is continued for T/2 hours in each of the aerobic tanks 2A 1 , 2B 1 and 2C 1 of the aerobic reaction tank 2 1 (aerobic tank 2A 1 = aeration , 2B 1 = aeration, 2C 1 = aeration), and thereafter, in the aerobic tanks 2A 1 , 2B 1 , 2C 1 , the same “slight aeration” is continued for T/2 hours in any of the tanks (2A 1 = slight Aeration, 2B 1 =slight aeration, 2C 1 =slight aeration) is repeated with a period T (see FIG. 8(a)).

また、間欠曝気動作は、例えば水路Wの上記基準制御タンク(一方の好気性反応タンク2)が曝気(T/2周期、例えば空気散気量「5」)、微曝気(T/2周期、例えば空気散気量「1」)・・のタイミングにおいて、水路Wの従属制御タンク(他方の好気性反応タンク2)では微曝気(T/2周期)、曝気(T/2周期)・・・のタイミング、即ち、水路Wの好気性反応タンク2と水路Wの好気性反応タンク2では曝気と微曝気のタイミングが逆転(逆位相)する制御が行われる(図8水路W、水路W参照)。 Further, the intermittent aeration operation is such that, for example, the reference control tank (one aerobic reaction tank 2 1 ) of the waterway W 1 is aerated (T/2 cycle, for example, air diffusion amount “5”), fine aeration (T/2 At the timing of the cycle, for example, the air diffusion amount "1"), the subordinate control tank (the other aerobic reaction tank 2 2 ) of the water channel W 2 performs slight aeration (T/2 cycle), aeration (T/2 cycle ) . _ _ 8 waterway W1, see waterway W2 ).

この関係は水路Wが増加しても同じであり、2水路を一組とする一対の好気性反応タンク(例えば水路WとWにおける一方の好気性反応タンク2と他方の好気性反応タンク2、水路WとWにおける一方の好気性反応タンク2と他方の好気性反応タンク2)においても、相互に逆転のタイミングで曝気と微曝気とが行われる。ここで、水路Wの基準制御タンクの間欠曝気動作を「正相間欠曝気動作」、これと曝気、微曝気のタイミングが逆位相の間欠曝気動作を「逆相間欠曝気動作」と呼ぶ。よって、奇数番目の水路(W,W,W・・・)の好気性反応タンクは正相間欠曝気動作、偶数番目の水路(W,W,W・・・)の好気性反応タンクは、正相間欠曝気動作と同一周期、かつ、同一タイミングで逆相間欠曝気動作が行われることになる。 This relationship is the same even if the number of waterways W is increased , and a pair of aerobic reaction tanks ( for example , one aerobic reaction tank 23 in waterways W3 and W4 and the other aerobic reaction tank Also in the tank 2 4 , one aerobic reaction tank 2 5 and the other aerobic reaction tank 2 6 in the water channels W 5 and W 6 ), aeration and micro-aeration are performed at mutually opposite timings. Here, the intermittent aeration operation of the reference control tank of the waterway W1 is called "positive phase intermittent aeration operation", and the intermittent aeration operation in which the timing of aeration and microaeration is opposite to this is called "negative phase intermittent aeration operation". Therefore, the aerobic reaction tanks of the odd - numbered waterways ( W 1 , W 3 , W 5 . In the gas reaction tank, the reverse phase intermittent aeration operation is performed at the same cycle and timing as the normal phase intermittent aeration operation.

また、正相間欠曝気動作を行う基準制御タンク及び正相間欠曝気動作を行う従属制御タンクを「一方の好気性反応タンク」と呼び、逆相間欠曝気動作を行う従属制御タンクを「他方の好気性反応タンク」と呼ぶ。また、正相間欠曝気動作を行う各一方の好気性反応タンクの弁開閉駆動手段を各一方の弁開閉駆動手段、逆相間欠曝気動作を行う各他方の好気性反応タンクの弁開閉駆動手段を各他方の弁開閉駆動手段と呼ぶ。 In addition, the reference control tank that performs the positive phase intermittent aeration operation and the dependent control tank that performs the positive phase intermittent aeration operation are called "one aerobic reaction tank", and the dependent control tank that performs the reverse phase intermittent aeration operation is called "the other preferred tank". It's called an aerobic reaction tank. In addition, the valve opening/closing drive means for each one of the aerobic reaction tanks performing the positive phase intermittent aeration operation is replaced with the valve opening/closing drive means for each one of the aerobic reaction tanks performing the reverse phase intermittent aeration operation. These are called valve opening/closing drive means of each other.

上記好気性反応タンク2内において有機物及び窒素の除去が行われた排水は最終沈殿池3に送られ、排水に含まれる微生物フロックが排水から沈殿分離され、上記沈殿分離された微生物フロックの一部が返送汚泥配管6,6・・・を介して上記好気性反応タンク2の最上流槽(好気槽2A,2A・・・)に返送され、生物学的窒素除去に再び供される。上記沈殿後の上澄みである処理水は最終沈殿池3から図示しない接触タンクに送られ、当該接触タンクにて消毒され、最終的に河川等に放流される。 Wastewater from which organic matter and nitrogen have been removed in the aerobic reaction tank 2 is sent to a final sedimentation tank 3, where microbial flocs contained in the wastewater are precipitated and separated from the wastewater, and part of the precipitated and separated microbial flocs is returned to the most upstream tank (aerobic tank 2A 1 , 2A 2 . be done. The treated water, which is the supernatant after the sedimentation, is sent from the final sedimentation tank 3 to a contact tank (not shown), disinfected in the contact tank, and finally discharged into a river or the like.

上記水路Wの好気性反応タンク2は、複数の好気槽2A,2B,2Cに分割されている。本実施形態では3つの好気槽に分割されている場合を示すが、分割される数は4分割、5分割等、任意であり、分割されていなくても良い。また、各好気槽2A,2B,2C間の仕切壁7は、あってもなくても良いが、仕切壁7を設ける場合は、各仕切壁7の例えば上側又は下側を通って処理水が下流側に流通するように設置する。 The aerobic reaction tank 2 of the waterway W is divided into a plurality of aerobic tanks 2A, 2B and 2C. In this embodiment, a case is shown in which the tank is divided into three aerobic tanks. Moreover, the partition walls 7 between the aerobic tanks 2A, 2B, and 2C may or may not be provided, but when the partition walls 7 are provided, the treated water passes through, for example, the upper side or the lower side of each partition wall 7. Installed so that the water flows downstream.

上記好気性反応タンク2の各好気槽2A,2B,2C内の底部には上記散気装置5(5A~5C)が設けられている。この散気装置5は、上記各好気槽2A,2B,2Cの底部全域に亘る1つの散気装置5を設けても良いし、各好気槽2A,2B,2C毎に独立した散気装置5A,5B,5Cを設けても良い。本実施形態では、図1に示すように、各好気槽2A,2B,2Cに、各独立した散気装置5A,5B,5Cが設けられているものとする。尚、上記好気槽2、散気装置5については、個別に位置を特定しない場合は「2」,「5」の符号を用い、位置を特定する場合は「A」,「B」等の英文字を付加する(散気調整弁9についても同じ)。 At the bottom of each of the aerobic tanks 2A, 2B and 2C of the aerobic reaction tank 2, the aeration device 5 (5A to 5C) is provided. This air diffuser 5 may be provided with one air diffuser 5 covering the entire bottom of each of the aerobic tanks 2A, 2B, and 2C, or an independent air diffuser for each of the aerobic tanks 2A, 2B, and 2C. Devices 5A, 5B, 5C may be provided. In this embodiment, as shown in FIG. 1, each aerobic tank 2A, 2B, 2C shall be provided with each independent air diffuser 5A, 5B, 5C. Regarding the aerobic tank 2 and the air diffuser 5, the symbols "2" and "5" are used when the positions are not individually specified, and the symbols "A", "B" etc. are used when the positions are specified. An alphabetic character is added (the same applies to the diffuser control valve 9).

上記各散気装置5A,5B,5Cには、各々散気調整弁9A,9B,9Cが接続されており、これら散気調整弁9A,9B,9Cは共通の送気管8に接続され、上記送気管8の一端に上記各好気性反応タンク2の上記散気装置5A,5B,5Cに空気を送り込む送風機10が各送気管8に共通に設けられている。尚、図16に示す実施形態、及び、後述のテーパードエアレーション方式を採用する場合を除いて、本発明の実施形態においては、この散気調整弁9A,9B,9Cは、上記間欠曝気動作中、一定の開度を維持しているものとする。従って、上記送風機10から各水路W,W・・・毎の送気管8,8・・・、上記散気調整弁9A,9B,9C、上記散気調整弁9A,9B,9C・・・を介して、各水路W,W・・・の好気性反応タンク2,2・・・の各散気装置5A,5B,5C、及び、散気装置5A,5B,5C等に散気用の空気が送風されるように構成されている。 Diffusion adjustment valves 9A, 9B, and 9C are connected to the air diffusion devices 5A, 5B, and 5C, respectively. An air blower 10 for sending air to the air diffusers 5A, 5B and 5C of the aerobic reaction tanks 21 is provided at one end of each air pipe 8 in common. Except for the embodiment shown in FIG. 16 and the case where a tapered aeration system, which will be described later, is employed, in the embodiment of the present invention, the aeration control valves 9A, 9B, and 9C operate during the intermittent aeration operation. It is assumed that a constant opening is maintained. Therefore, from the blower 10 , the air pipes 81 , 82 , . . . of the respective water channels W1 , W2 , . , 9B 2 , 9C 2 . . . of the water channels W 1 , W 2 . In addition, it is configured such that air for diffusion is blown to the air diffusers 5A 2 , 5B 2 , 5C 2 and the like.

さらに、各水路W,W・・・の送気管8,8・・・の上記送風機10と上記各散気調整弁9A,9B,9Cとの間には、各々風量調整弁11,11・・・及び空気流量計G,G・・・が設けられており、上記送風機10から送風された空気を、上記各風量調整弁11,11を開閉制御することにより、各水路W,W・・・の送気管8,8・・・、即ち、散気装置5A,5B,5Cへの空気散気量を、各水路W,W毎・・・に独立して調整可能に構成されている。尚、ここで、散気装置5A,5B,5C、送気管8、風量調整弁11、空気流量計Gにより曝気調整部が構成されている。 Further, between the blowers 10 of the air pipes 8 1 , 8 2 . . . of the water channels W 1 , W 2 . 1 , 11 2 . . . and air flow meters G 1 , G 2 . Therefore , the air diffusion amount to the air pipes 8 1 , 8 2 . . . of the water channels W 1 , W 2 . . . . can be adjusted independently of each other. Here, an aeration adjustment unit is configured by the air diffusers 5A, 5B, 5C, the air pipe 8 1 , the air volume adjustment valve 11 1 , and the air flow meter G 1 .

上記負荷濃度確認センサA及び溶存酸素濃度センサDは、上記一方の好気性反応タンク2のみの何れかの好気槽2A,2B,2Cの一つに設けられる。図1では中間の好気槽2Bに上記2つのセンサA,Dを設置しているが、好気槽2A又は好気槽2Cのエリアに設置しても良い。 The load concentration confirmation sensor A and the dissolved oxygen concentration sensor D are provided in one of the aerobic tanks 2A 1 , 2B 1 and 2C 1 of the one aerobic reaction tank 2 1 only. Although the two sensors A and D are installed in the middle aerobic tank 2B- 1 in FIG. 1, they may be installed in the area of the aerobic tank 2A- 1 or the aerobic tank 2C- 1 .

この負荷濃度確認センサAは、その出力部と制御部13(図2、図3、負荷濃度検出手段13a)とが接続されており、上記好気性反応タンク2Bの負荷濃度を常時測定し、その測定値は制御部13(上記負荷濃度検出手段13a)にて検出し得るように構成されている。上記溶存酸素濃度センサDは、その出力部と上記制御部13(図2、図3、溶存酸素濃度検出手段13b)とが接続されており、上記好気槽2Bの溶存酸素濃度を常時測定し、その測定値は上記制御部13(溶存酸素濃度検出手段13b)にて検出し得るように構成されている。 The output portion of the load concentration confirmation sensor A is connected to the control portion 13 (FIGS. 2 and 3 , load concentration detection means 13a), and constantly measures the load concentration of the aerobic reaction tank 2B1, The measured value is configured to be detected by the control section 13 (the load concentration detecting means 13a). The dissolved oxygen concentration sensor D has its output portion connected to the control portion 13 (FIGS. 2 and 3 , dissolved oxygen concentration detection means 13b), and constantly measures the dissolved oxygen concentration in the aerobic tank 2B1. The measured value can be detected by the control section 13 (dissolved oxygen concentration detecting means 13b).

また、上記各水路W,W・・・の上記各送気管8,8・・・に設けられた空気流量計G,G・・・の各出力部は上記制御部13(図2、図4、流量検出手段13c,13c・・・)に接続されており、上記各送気管8,8・・・の空気の流量は上記制御部13(流量検出手段13c,13c・・・)にて検出し得るように構成されている。 Further, each output part of the air flow meters G 1 , G 2 . . . provided in the air pipes 8 1 , 8 2 . (FIGS. 2 and 4, flow rate detecting means 13c 1 , 13c 2 . . . ), and the air flow rate of each of the air pipes 8 1 , 8 2 . 13c 1 , 13c 2 . . . ).

上記制御部13(図2、図3、送風機駆動手段13d)には、上記送風機10が接続されると共に、上記各水路W,W・・・の上記風量調整弁11,11・・・が制御部13(図2、図4、弁開閉駆動手段13e,13e・・・)に各々接続されている。また、上記制御部13(図2、図3、散気調整弁駆動手段13f)には、上記散気調整弁9A~9C,9A~9C等が各々独立して接続されている。 The blower 10 is connected to the control unit 13 (FIGS. 2 and 3, blower driving means 13d), and the air volume control valves 11 1 , 11 2 , . . _ In addition, the diffusion control valves 9A 1 to 9C 1 , 9A 2 to 9C 2 and the like are independently connected to the control unit 13 (FIGS. 2 and 3, diffusion control valve driving means 13f). .

そして、上記制御部13において、一方の好気性反応タンク2の正相間欠曝気動作において、負荷濃度を検出し、該タンク2内の負荷濃度が上昇傾向にある場合は、送風機10の風量を増加し、上記風量調整弁11を制御して上記散気装置5の曝気時の空気散気量を増加させると共に周期Tも増加させ、微曝気時は、曝気時の空気散気量の増加に拘わらず、空気散気量を常に少量の一定値とし、上記タンク2内の負荷濃度が下降傾向にある場合は、送風機10の風量を減少し、上記風量調整弁11を制御して曝気時の上記散気装置5の空気散気量を減少させると共に周期Tも減少させ、微曝気時は、曝気時の空気散気量の減少に拘わらず、空気散気量を常に上記一定値とし、上記負荷濃度の変化がない場合は、空気散気量及び周期T共に前回の値を維持する、という制御を行う。また、他方の好気性反応タンク2においては、上記逆相間欠曝気動作を同様に行う。 Then, the control unit 13 detects the load concentration in the positive phase intermittent aeration operation of one of the aerobic reaction tanks 21, and when the load concentration in the tank 21 tends to increase, the air volume of the blower 10 is increased. is increased, the air volume control valve 111 is controlled to increase the air diffusion amount during aeration of the air diffuser 5, and the period T is also increased, and during slight aeration, the air diffusion amount during aeration is increased. Regardless of the increase, the amount of diffused air is always kept at a small constant value, and when the load concentration in the tank 21 tends to decrease, the air volume of the blower 10 is reduced and the air volume adjustment valve 111 is controlled. During aeration, the air diffusion amount of the air diffusion device 5 is reduced and the period T is also decreased, and during slight aeration, the air diffusion amount is always kept constant regardless of the decrease in the air diffusion amount during aeration. If there is no change in the load concentration, control is performed such that both the air diffusion amount and the period T are maintained at the previous values. In addition, in the other aerobic reaction tank 22, the reverse phase intermittent aeration operation is similarly performed.

このように、一方の好気性反応タンク2において「曝気」又は「微曝気」が行われているタイミングにおいて、他方の好気性反応タンク2において、逆の散気動作、即ち、「微曝気」又は「曝気」が行われる間欠曝気動作を「逆位相」と定義する。ここで、「逆位相」の間欠曝気動作において、一方又は他方の好気性反応タンク2又は2における曝気時の空気散気量が増加、減少しても、他方又は一方の好気性反応タンク2又は2における微曝気時の空気散気量は変化せずに、常に一定値(例えば空気散気量「1」)であり、このような関係を含めて「逆位相」と定義する。 In this way, at the timing when "aeration" or "slight aeration" is performed in one of the aerobic reaction tanks 21 , the other aerobic reaction tank 22 performs a reverse diffusion operation, that is, "slight aeration". or "aeration" is defined as "anti-phase". Here, in the "reverse phase" intermittent aeration operation, even if the amount of air diffused during aeration in one or the other aerobic reaction tank 21 or 22 increases or decreases, the other or one aerobic reaction tank The air diffusion amount during slight aeration in 2 2 or 2 1 does not change and is always a constant value (for example, air diffusion amount "1"), including such a relationship is defined as "antiphase" .

そして、水路Wを増設した場合においても、奇数番目の好気性反応タンク2,2・・・は正相間欠曝気動作、偶数番目の好気性反応タンク2,2・・・は逆相間欠曝気動作を行い、これらの全ての制御は、一の好気性反応タンク2(基準制御タンク)にのみ用いられた負荷濃度確認センサA及び/又は溶存酸素濃度センサDに基づいて、上記一の好気性反応タンク2に対応して設けられた単一の制御部13にて行う。 Even when the water channel W is expanded, the odd-numbered aerobic reaction tanks 2 1 , 2 3 . Intermittent aeration operation is performed, and all of these controls are based on the load concentration confirmation sensor A and / or dissolved oxygen concentration sensor D used only in one aerobic reaction tank 2 1 (reference control tank). A single controller 13 provided for one aerobic reaction tank 21 is used.

ここで、本発明者が本発明をするに至った経緯を説明する。本発明者は、従来の間欠曝気法において、送風機の曝気と曝気停止の運転をくり返す方法がターボ形送風機のような大型の送風機を使用している大規模都市下水処理場に適用できないことから、曝気停止の代わりに少量の空気を散気する微曝気を用い、曝気時間と微曝気時間を同時間とし、かつ、押し出し流れ型の2個を一組とする好気性反応タンクの両散気装置を逆位相にて曝気と微曝気をくり返す間欠曝気により、同一時間帯は、曝気と微曝気の送風機の合計風量を一定で運転継続できることを想起するに至った。 Here, the circumstances that led the inventors to make the present invention will be described. In the conventional intermittent aeration method, the method of repeatedly aerating and stopping the operation of the blower cannot be applied to a large-scale urban sewage treatment plant using a large blower such as a turbo blower. , Instead of stopping the aeration, micro-aeration is used to diffuse a small amount of air, the aeration time and the micro-aeration time are set to the same time, and two push-flow type aerobic reaction tanks are used as a set for both aeration. By intermittent aeration in which aeration and micro-aeration are repeated in the opposite phase, I came to think that the total air volume of the aeration and micro-aeration fans can be kept constant during the same period of time.

この間欠曝気法により、間欠曝気に伴う送風機の送風量の大きな変動と送風機の停止を避けることが可能となり、当該間欠曝気法を適用した本発明に係る排水処理装置及び排水処理方法は、大規模都市下水処理場においても適用することができるものである。 By this intermittent aeration method, it is possible to avoid large fluctuations in the blowing amount of the blower and the stoppage of the blower due to the intermittent aeration. It can also be applied in urban sewage treatment plants.

また、本発明者は、流量調整槽のない都市型の大規模下水処理場を想定し、散気装置を有する押し出し流れ型の単一の好気性反応タンクを用いて、曝気と微曝気の間欠曝気動作を行い、負荷濃度の基準としてアンモニア性窒素濃度、硝化反応の基準として硝酸窒素濃度の変化を測定、記録した。その結果を図17に示す。尚、流量変動として平均流入水量を基準に120%の人工的な流動変動を与えた。 In addition, the present inventor assumed an urban large-scale sewage treatment plant without a flow control tank, and used a single push flow type aerobic reaction tank with an air diffuser to intermittently perform aeration and microaeration. Aeration was performed, and changes in ammonia nitrogen concentration as a reference of load concentration and changes in nitrate nitrogen concentration as a reference of nitrification reaction were measured and recorded. The results are shown in FIG. As the flow rate fluctuation, 120% artificial flow fluctuation was given based on the average inflow water flow rate.

図17において、横軸は時間であり、周期50分で25分ずつの曝気と微曝気を行った。縦軸はアンモニア性窒素と硝酸性窒素濃度の変化関係を相対濃度として示している。その結果、曝気時間帯は、アンモニア性窒素が硝化反応により減少し、減少した濃度に相当する硝酸性窒素が増加すること、微曝気時には、硝酸性窒素が脱窒反応により減少し、アンモニア性窒素が上昇することがわかる。硝酸性窒素の減少は脱窒反応により窒素ガスが放出されていることを意味し、アンモニア性窒素の上昇は、高濃度のアンモニア性窒素を含む新たな被処理水が当該槽に前の槽から流入していることを示している。 In FIG. 17, the horizontal axis represents time, and aeration and micro-aeration were performed every 25 minutes at a cycle of 50 minutes. The vertical axis indicates the relationship between changes in concentrations of ammonia nitrogen and nitrate nitrogen as relative concentrations. As a result, during the aeration period, ammonia nitrogen decreased due to nitrification reaction, and nitrate nitrogen increased corresponding to the decreased concentration. is found to rise. A decrease in nitrate nitrogen means that nitrogen gas is being released due to the denitrification reaction, and an increase in ammonia nitrogen means that new water containing a high concentration of ammonia nitrogen is entering the tank from the previous tank. It shows that it is flowing.

アンモニア性窒素の上昇濃度若しくは上昇速度は、時刻によって差違がある。例えば75分から200分の上昇が大きい時間帯(図中矢印a)は、流入水アンモニア性窒素濃度が高くなる時間帯であることを意味する。これを判断基準として硝化速度を高めるためにアンモニア性窒素濃度が高くなる時間帯においては空気散気量を増加させ、逆にアンモニア性窒素が低くなるとき(400分から550分、図中矢印b)に空気散気量を減じることが、硝化反応制御及び省エネに有効であることを知見した。 The increasing concentration or rate of increase of ammoniacal nitrogen differs depending on the time of day. For example, the time zone (arrow a in the figure) in which the increase is large from 75 minutes to 200 minutes means that the influent ammonia nitrogen concentration is high. Using this as a criterion, the amount of air diffusion is increased in the time period when the ammonia nitrogen concentration is high in order to increase the nitrification rate, and conversely, when the ammonia nitrogen is low (400 minutes to 550 minutes, arrow b in the figure). It has been found that reducing the amount of air diffusion is effective for nitrification reaction control and energy saving.

また、アンモニア性窒素が高い200~350分における微曝気時間帯の硝酸性窒素濃度の減少速度(脱窒速度)(図中c)は、アンモニア性窒素が低い0~50分における微曝気時の硝酸性窒素濃度の減少速度(図中d)より速いことが認められる。このことから、脱窒に必要な有機物濃度がアンモニア性窒素濃度に比例して高濃度になり、負荷濃度が高い時間帯では、空気曝気量を増加させても、微曝気時の脱窒速度を低下させないことが知見された。これは単一の好気性反応タンクにおいて、曝気と微曝気からなる間欠曝気動作を行わせた場合、負荷濃度が高濃度になって曝気時の空気散気量を増加させても、微曝気時の脱窒反応はむしろ活発に行われ、負荷高濃度時間帯においても窒素ガスの放出が可能であることが知見された。 In addition, the rate of decrease in nitrate nitrogen concentration (denitrification rate) in the slight aeration time zone at 200 to 350 minutes when ammonia nitrogen is high (c in the figure) is It can be seen that the rate of decrease in the nitrate nitrogen concentration is faster than the rate of decrease (d in the figure). From this, the concentration of organic matter required for denitrification increases in proportion to the concentration of ammonia nitrogen, and in the time period when the load concentration is high, even if the amount of air aeration is increased, the denitrification rate during slight aeration is reduced. It was found to not reduce In a single aerobic reaction tank, when intermittent aeration consisting of aeration and micro-aeration is performed, even if the load concentration becomes high and the amount of air diffused during aeration is increased, the It was found that the denitrification reaction was rather active, and that nitrogen gas could be released even during the high load concentration period.

また、アンモニア性窒素が低い時間帯の50分時の硝酸性窒素は略0であり、周期を50分より長くすると、硝酸性窒素が0のまま時間が経過する可能性があり、脱窒の生じない無駄な微曝気時間帯になることを意味する。このことより、アンモニア性窒素が低濃度になるに従って周期を短くし、逆にアンモニア性窒素が高濃度になるに従って周期を長くすることが有効であることが知見された。 In addition, the nitrate nitrogen at 50 minutes in the time zone when the ammonia nitrogen is low is almost 0, and if the period is longer than 50 minutes, there is a possibility that the time will pass while the nitrate nitrogen is 0, resulting in denitrification. It means that it becomes a useless minute aeration time zone that does not occur. From this, it was found that it is effective to shorten the period as the concentration of ammoniacal nitrogen becomes lower, and conversely, to lengthen the period as the concentration of ammoniacal nitrogen becomes higher.

上述のような知見に基づいて、本発明に係る排水処理装置及び排水処理方法に適用する曝気と微曝気からなる間欠曝気法において、一対の好気性反応タンクにて互いに逆相の間欠曝気動作を行わせることによって送風機の風量の大きな変動を抑えることができること、及び、負荷濃度が上昇した場合はそれに伴って曝気の空気散気量と共に周期を増加し、負荷濃度が減少した場合はそれに伴って空気散気量と共に周期を減少することが、硝化反応及び脱窒反応に有効であるこがわかった。以下、本発明の具体的内容について説明する。 Based on the findings described above, in the intermittent aeration method consisting of aeration and micro-aeration applied to the wastewater treatment apparatus and wastewater treatment method according to the present invention, intermittent aeration operations of opposite phases are performed in a pair of aerobic reaction tanks. It is possible to suppress large fluctuations in the air volume of the blower, and when the load concentration increases, the period increases with the air diffusion amount of aeration, and when the load concentration decreases, the period increases accordingly. Decreasing period with air sparge was found to be beneficial for nitrification and denitrification. Specific contents of the present invention will be described below.

上記制御部13は(図2~図4参照)、CPUを具備するコンピュータであり、図5~図7のフローチャートに示す動作手順がプログラムとして内部メモリに記憶されており、上記CPUが上記フローチャートに従って以下説明する間欠曝気動作を行うものである。図3、図4はこの制御部13の機能をブロック化したものであり、以下、制御部13について説明する。 The control unit 13 (see FIGS. 2 to 4) is a computer having a CPU, and the operation procedures shown in the flow charts of FIGS. 5 to 7 are stored as a program in an internal memory. It performs the intermittent aeration operation described below. 3 and 4 show the functions of the control section 13 in blocks, and the control section 13 will be described below.

上記制御部13は(図3参照)、曝気と微曝気とを繰り返す間欠曝気動作において、前回の微曝気時の負荷濃度を記憶する負荷濃度記憶手段13g、現在の負荷濃度と前回の負荷濃度を比較し、現在の負荷濃度が前回負荷濃度より大きいか又は小さいかを検出し、比較結果を次段の溶存酸素濃度比較手段13iに送出する負荷濃度比較手段13hを具備している。上記負荷濃度比較手段13hは、負荷濃度の変化がない場合(前回の負荷濃度と同等である場合)は、送風機駆動手段13d及び空気量変更手段13t(図4参照)に現在の風量を維持する旨の指令を行うと共に(図3(3)参照)、周期決定手段13r(図4参照)に現在の周期を維持する旨の指令を行う(図3(1)参照)。 The control unit 13 (see FIG. 3) has load concentration storage means 13g for storing the load concentration at the time of the previous slight aeration in the intermittent aeration operation in which aeration and slight aeration are repeated, and stores the current load concentration and the previous load concentration. A load concentration comparing means 13h is provided for comparing, detecting whether the current load concentration is larger or smaller than the previous load concentration, and sending the comparison result to the dissolved oxygen concentration comparing means 13i in the next stage. The load concentration comparing means 13h maintains the current air volume in the blower driving means 13d and the air volume changing means 13t (see FIG. 4) when there is no change in the load concentration (when the load concentration is equal to the previous load concentration). (3) in FIG. 3), and to the cycle determining means 13r (see FIG. 4) to maintain the current cycle (see (1) in FIG. 3).

上記制御部13は溶存酸素濃度の上限値を記憶しているDO上限値記憶手段13j、溶存酸素濃度の下限値を記憶しているDO下限値記憶手段13kを有しており、上記溶存酸素濃度比較手段13iは、上記負荷濃度比較手段13hから比較結果の通知があると、上記溶存酸素濃度検出手段13bで検出した現在の溶存酸素濃度と上記記憶手段13j,13kに記憶しているDO上限値(溶存酸素濃度の上限値)又はDO下限値(溶存酸素濃度の下限値)と比較する。尚、「DO」とは「Dissolved Oxygen」(溶存酸素)の略である。 The control unit 13 has DO upper limit storage means 13j storing the upper limit of the dissolved oxygen concentration and DO lower limit storage means 13k storing the lower limit of the dissolved oxygen concentration. When the comparison result is notified from the load concentration comparison means 13h, the comparison means 13i detects the current dissolved oxygen concentration detected by the dissolved oxygen concentration detection means 13b and the DO upper limit stored in the storage means 13j and 13k. (upper limit of dissolved oxygen concentration) or lower limit of DO (lower limit of dissolved oxygen concentration). "DO" is an abbreviation for "Dissolved Oxygen".

そして、上記溶存酸素濃度比較手段13iは、上記負荷濃度比較手段13hでの比較結果に基づいて、上記溶存酸素濃度検出手段13bにて検出した現在の溶存酸素濃度がDO下限値よりも大きいか、又は、DO上限値よりも小さいかを比較し、負荷濃度が減少している場合において(図5P11参照)、現在の溶存酸素濃度がDO下限値よりも大きい場合は、送風機10の風量を減少すべく送風機駆動手段13dに指令を行う(図5P14参照)。一方、負荷濃度が上昇している場合において(図5P12参照)、溶存酸素濃度がDO上限値よりも小さい場合は、送風機10の風量を増加すべく送風機駆動手段13dに指令を行う。また、溶存酸素濃度比較手段13iは空気散気量を減少又は増加する場合は、同時に、空気量変更手段13t(図4参照)に空気散気量の減少又は増加を指令する(図3(3)参照)。さらに、溶存酸素濃度比較手段13iは、同時に比較結果を次段の周期比較手段13mに通知する。 Then, the dissolved oxygen concentration comparison means 13i determines whether the current dissolved oxygen concentration detected by the dissolved oxygen concentration detection means 13b is greater than the DO lower limit value, based on the comparison result of the load concentration comparison means 13h. Alternatively, if the load concentration is decreased (see P11 in FIG. 5) by comparing whether it is smaller than the DO upper limit, and if the current dissolved oxygen concentration is greater than the DO lower limit, the air volume of the blower 10 is reduced. A command is issued to the blower driving means 13d (see P14 in FIG. 5). On the other hand, when the load concentration is increasing (see P12 in FIG. 5), if the dissolved oxygen concentration is lower than the DO upper limit, the blower driving means 13d is instructed to increase the air volume of the blower 10. Further, when the dissolved oxygen concentration comparing means 13i decreases or increases the amount of air diffusion, it simultaneously commands the air amount changing means 13t (see FIG. 4) to decrease or increase the amount of air diffusion (see FIG. 3 (3 )reference). Furthermore, the dissolved oxygen concentration comparison means 13i notifies the comparison result to the period comparison means 13m in the next stage at the same time.

上記制御部13は基本となる周期Tを記憶している周期記憶手段13sを有していると共に、曝気時間と微曝気時間の周期の上限値を記憶している周期上限値記憶手段13n、上記周期の下限値を記憶している周期下限値記憶手段13oを有している。上記周期比較手段13mは、上記溶存酸素濃度比較手段13iから比較結果の通知があると、現在周期認識手段13pにて認識している現在の周期と、上記記憶手段13n,13oに記憶している周期の上限値又は下限値とを比較する。 The control unit 13 has cycle storage means 13s for storing the basic cycle T, and cycle upper limit value storage means 13n for storing the upper limits of the cycles of the aeration time and the slight aeration time. It has a cycle lower limit value storage means 13o that stores the cycle lower limit value. When the period comparison means 13m receives the notification of the comparison result from the dissolved oxygen concentration comparison means 13i, the period comparison means 13m stores the current period recognized by the current period recognition means 13p and the storage means 13n and 13o. Compare with the upper or lower period limit.

ここで周期とは、曝気時間と微曝気時間を1周期(T)とし、曝気時間(T/2)と微曝気時間(T/2)は同一時間(何れもT/2)であるから、周期が増加又は減少すると、曝気時間と微曝気時間は同じ時間だけ増加又は減少する。 Here, the cycle is defined as one cycle (T) of the aeration time and the micro-aeration time, and since the aeration time (T/2) and the micro-aeration time (T/2) are the same time (both T/2), As the period increases or decreases, the aeration time and microaeration time increase or decrease by the same amount.

ここで、説明の簡単のため(図8(a)参照)、同一タイミングの両好気性反応タンク2,2において、水路W側では、好気性反応タンク2の各散気装置5A,5B,5Cの曝気時の風量が例えば「5」、「5」、「5」のとき、風量調整弁11以降の送気管8の風量は「15」(5×3)、風量調整弁11の開度も風量に合わせて「15」とし、水路W側では、好気性反応タンク2の各散気装置5A,5B,5Cの微曝気時の風量が例えば「1」、「1」、「1」のとき、風量調整弁11以降の送気管8の風量は「3」(1×3)、風量調整弁11の開度も風量に合わせて「3」とし、このときの送風機10の風量は送気管8と8の合計風量(15+3)である「18」とする。尚、曝気時の風量が増加又は減少した場合の各部の風量及び開度も同様に考えるものとする。 Here, for simplicity of explanation (see FIG. 8(a)), in both aerobic reaction tanks 2 1 and 2 2 at the same timing, on the water channel W 1 side, each air diffuser 5A of the aerobic reaction tank 2 1 1 , 5B 1 , 5C 1 at the time of aeration is, for example, "5", "5", "5", the air volume of the air pipe 8 1 after the air volume adjustment valve 11 1 is "15" (5 × 3) , the opening of the air volume adjustment valve 11 1 is also set to "15" according to the air volume, and on the water channel W 2 side, the air volume at the time of slight aeration of each air diffuser 5A 2 , 5B 2 , 5C 2 of the aerobic reaction tank 2 2 is "1", "1", "1", the air volume of the air pipe 82 after the air volume adjustment valve 11-2 is " 3 " (1 x 3), and the opening of the air volume adjustment valve 11-2 also depends on the air volume. The total air volume of the blower 10 at this time is assumed to be "18", which is the total air volume (15+3) of the air pipes 8 1 and 8 2 . The same applies to the air volume and opening of each part when the air volume increases or decreases during aeration.

図1の水路Wの好気性反応タンク2では、間欠曝気動作、即ち、曝気と微曝気が周期T/2にて繰り返し行われる(図8(a)参照)。例えば、上記送風機10にて風量「18」(好気性反応タンク2A,2B,2Cで各々空気散気量「5」、「5」、「5」、好気性反応タンク2A,2B,2Cで各々空気散気量「1」、「1」、「1」、合計18)の送風が行われ、水路Wの制御部13の弁開閉駆動手段13eにて風量調整弁11が、曝気時はT/2の期間、所定の開度「15(5×3)」が維持されることにより、好気性反応タンク2A~2Cに各々空気散気量「5」、「5」、「5」の曝気が行われ(図8(a)参照)、上記T/2が経過した後、上記弁開閉駆動手段13eは弁の開度を絞り、その後のT/2の期間、所定の開度「3(1×3)」が維持されることにより、好気性反応タンク2A~2Cに各々少量の空気散気量「1」、「1」、「1」の微曝気が行われ、その後は、周期T/2毎に、上記風量調整弁11の開閉動作の繰り返しを行う(図8(a)参照)。ここで、微曝気時の空気散気量は、曝気時の散気量が増加減少しても、常時一定散気量(本実施形態では空気散気量「1」)が維持される。 In the aerobic reaction tank 2-1 of the waterway W1 in FIG. 1 , intermittent aeration operation, that is, aeration and micro-aeration are repeated at a cycle of T/2 (see FIG. 8(a)). For example, the air volume of the blower 10 is "18" (the aerobic reaction tanks 2A 1 , 2B 1 and 2C 1 have air diffusion amounts of "5", "5" and "5", and the aerobic reaction tanks 2A 2 and 2B 2 , 2C2 blow air with an air diffusion amount of " 1 ", " 1 ", "1", total 18). 11 1 is maintained at a predetermined opening degree of "15 (5×3)" for a period of T/ 2 during aeration. , "5", and "5" are performed (see FIG. 8(a)), and after T/2 has passed, the valve opening/closing drive means 13e1 throttles the opening of the valve, and then T/ 2, by maintaining the predetermined degree of opening "3 (1×3)", the aerobic reaction tanks 2A 1 to 2C 1 each have a small amount of air diffusion "1", "1", "1 After that, the opening and closing operation of the air volume control valve 111 is repeated every cycle T/2 (see FIG. 8(a)). Here, the air diffusion amount during slight aeration is always maintained at a constant air diffusion amount (air diffusion amount "1" in this embodiment) even if the air diffusion amount during aeration increases or decreases.

即ち、水路W及び奇数番目の水路W,W,W・・・に接続された各一方の弁開閉駆動手段13e,13e,13e・・・は、通常時は一定周期T/2にて、曝気と微曝気が繰り返し行われるように、風量調整弁11,11,11・・・の弁開度を周期的に開閉し、空気量変更手段13tから曝気時の空気散気量の増加又は減少指示及び周期決定手段13rから周期の増加又は減少指示があったときは(送風機10の風量も増加又は減少している)、上記指示に従って、曝気時の弁開度及び弁開度時間を調整することにより、曝気時の空気散気量と周期の変更を行う(図5P14又はP16、P18又はP20参照)。また、上記各一方の弁開閉駆動手段13e,13e,13e・・・は、空気散気量の増加又は減少指示により送風機10の風量が増加又は減少しても、微曝気時は常時一定散気量(例えば少量の空気散気量「1」)となるように、空気流量計G,G,G・・・からの流量に基づいて風量調整弁11,11,11・・・の弁開度の調整を行う(図5P6参照)。 That is, each one of the valve opening/closing driving means 13e1 , 13e3 , 13e5 , ... connected to the water passage W1 and the odd - numbered water passages W3 , W5, W7 , . At T/2, the valve opening degrees of the air volume control valves 11 1 , 11 3 , 11 5 . When there is an instruction to increase or decrease the amount of air diffusion and an instruction to increase or decrease the period from the period determining means 13r (the air volume of the blower 10 is also increasing or decreasing), the valve is opened during aeration according to the above instruction By adjusting the degree and valve opening time, the air diffusion amount and period during aeration are changed (see P14 or P16, P18 or P20 in FIG. 5). In addition, the valve opening/closing drive means 13e 1 , 13e 3 , 13e 5 . The air volume control valves 11 1 , 11 3 , 11 1 , 11 3 , . 11 5 ... Adjust the opening degree of the valve (see P6 in FIG. 5).

同時に、水路Wの好気性反応タンク2では、上記水路Wとは逆位相の間欠曝気動作、即ち、微曝気と曝気が周期T/2にて好気性反応タンク2と同一タイミングで繰り返し行われる(図8(a)好気性反応タンク2参照)。例えば、上記送風機10にて風量「18」の送風が行われ、水路Wの制御部13の他方の弁開閉駆動手段13eにて風量調整弁11が、微曝気時はT/2の期間、所定の開度「3(1×3)」が維持されることにより、好気性反応タンク2A~2Cに各々空気散気量「1」、「1」、「1」の微曝気が行われ(図8(a)参照)、上記T/2が経過した後、上記他方の弁開閉駆動手段13eは弁の開度を開き、その後のT/2の期間、所定の開度「15(5×3)」が維持されることにより、好気性反応タンク2A~2Cに各々空気散気量「5」、「5」、「5」の曝気が行われ、その後は、上記好気性反応タンク2とは逆位相の間欠曝気動作、即ち周期T/2毎に、上記風量調整弁11の開閉動作の繰り返しを行う(図8(a)参照)。ここで、好気性反応タンク2においても、微曝気時の空気散気量は、曝気時の散気量が増加減少しても、常時一定散気量(本実施形態では空気散気量「1」)が維持される。 At the same time , in the aerobic reaction tank 22 of the waterway W2, the intermittent aeration operation is performed in a phase opposite to that of the waterway W1, that is, microaeration and aeration occur at the same timing as the aerobic reaction tank 21 at the cycle T / 2 . This is repeated (see FIG . 8(a) aerobic reaction tank 22). For example, when the blower 10 blows air at an air volume of "18", the other valve opening/closing driving means 13e2 of the control unit 13 of the water channel W2 sets the air volume adjustment valve 112 to T/ 2 at the time of slight aeration. By maintaining the predetermined opening degree "3 (1 × 3)" for the period, the aerobic reaction tanks 2A 2 to 2C 2 are slightly aerated with air diffusion amounts "1", "1", and "1", respectively. is performed (see FIG. 8(a)), and after the above T/ 2 has passed, the other valve opening/closing driving means 13e2 opens the valve opening, and for the subsequent period of T/2, a predetermined opening By maintaining "15 (5 × 3)", the aerobic reaction tanks 2A 2 to 2C 2 are aerated with air diffusion amounts of "5", "5", and "5", respectively. The intermittent aeration operation in the opposite phase to the aerobic reaction tank 21, that is, the opening and closing operation of the air volume control valve 112 is repeated every cycle T/ 2 (see FIG. 8(a)). Here, even in the aerobic reaction tank 22 , even if the amount of air diffusion during slight aeration increases or decreases, the amount of air diffusion is always constant (in this embodiment, the amount of air diffusion "1") is maintained.

即ち、水路W及び偶数番目の水路W,W・・・に接続された各他方の弁開閉駆動手段13e,13e,13e・・・は、通常時は一定周期T/2かつ好気性反応タンク2と同一タイミングにて、微曝気と曝気が繰り返し行われるように、風量調整弁11,11,11・・・の弁開度を周期的に開閉し、空気量変更手段13tから曝気時の空気散気量の増加又は減少指示及び周期決定手段13rから周期の増加又は減少指示があったときは(送風機10の風量も増加又は減少している)、上記指示に従って、曝気時の弁開度及び弁開度時間を調整することにより、曝気時の空気散気量と周期の変更を行う(図5P14又はP16、P18又はP20参照)。また、上記各他方の弁開閉駆動手段13e,13e,13e・・・は、空気散気量の増加又は減少指示により送風機10の風量が増加又は減少しても、微曝気時は常時一定散気量(例えば空気散気量「1」)となるように、空気流量計G,G,G・・・からの流量に基づいて風量調整弁11,11,11・・・の弁開度の調整を行う(図5P2参照)。 That is, the other valve opening/closing driving means 13e 2 , 13e 4 , 13e 6 . At the same timing as the aerobic reaction tank 21, the valve opening degrees of the air volume control valves 11 2 , 11 4 , 11 6 . . . When there is an instruction to increase or decrease the amount of air diffusion during aeration from the amount changing means 13t and an instruction to increase or decrease the period from the period determining means 13r (the air volume of the blower 10 is also increasing or decreasing), the above instructions Accordingly, by adjusting the valve opening degree and the valve opening degree time during aeration, the air diffusion amount and period during aeration are changed (see P14 or P16, P18 or P20 of FIG. 5). In addition, the other valve opening/closing driving means 13e 2 , 13e 4 , 13e 6 . Air volume control valves 11 2 , 11 4 , 11 6 based on flow rates from air flow meters G 2 , G 4 , G 6 . . . . . is adjusted (see P2 in FIG. 5).

このように、空気散気量の増加、減少は、送風機10の風量を増加又は減少させると共に、上記弁開閉駆動手段13e,13e等が空気流量計G,G等からの流量に基づいて、各風量調整弁11,11等の弁の開度を調整し、空気散気量の増加又は減少(例えば空気散気量「5」から「6」への増加、又は、空気散気量「5」から「4」への減少)が行われる。そして、上記送風機駆動手段13dにより送風機10の風量を増加又は減少して、この曝気時の空気散気量の増加又は減少する制御を行うが、微曝気時の空気散気量は、送風機10の風量を変更することなく、風量調整弁11,11の弁の開度調整により、常時「1」を維持するように制御を行う。このような制御を行うことで、間欠曝気動作中は、風量の増減指示がない限り、送風機10の風量は常時一定値(例えば図8(a)の場合は一定の風量「18」)を維持することが可能となる。 In this way, the increase or decrease in the amount of air diffuser increases or decreases the air volume of the blower 10, and the valve opening/closing drive means 13e 1 , 13e 2 , etc. change the flow rate from the air flow meters G 1 , G 2 , etc. Based on this, the opening degree of each air volume adjustment valve 11 1 , 11 2 etc. is adjusted to increase or decrease the amount of air diffusion (for example, increase the amount of air diffusion from “5” to “6”, or Aeration amount is reduced from "5" to "4"). Then, the air volume of the fan 10 is increased or decreased by the fan drive means 13d, and control is performed to increase or decrease the air diffusion amount during this aeration. Without changing the air volume, control is performed to always maintain "1" by adjusting the opening degrees of the air volume control valves 11 1 and 11 2 . By performing such control, during the intermittent aeration operation, unless there is an instruction to increase or decrease the air volume, the air volume of the blower 10 is always a constant value (for example, in the case of FIG. 8A, a constant air volume "18") is maintained. It becomes possible to

上記周期比較手段13mは、上記負荷濃度比較手段13hでの比較結果に応じて、上記現在周期認識手段13pにて認識した現在の周期が周期の下限値よりも大きいか、又は、周期の上限値よりも小さいかを比較し、負荷濃度が減少傾向で(図5P11参照)、現在の周期が周期下限値よりも大きい場合は、周期を減少すべく周期変更手段13qに指令を行い、負荷濃度が増加傾向で(図5P12参照)、現在の周期が周期上限値よりも小さい場合は、周期を増加すべく周期変更手段13qに指令を行う(図3(2)参照)。 The cycle comparison means 13m determines whether the current cycle recognized by the current cycle recognition means 13p is greater than the lower limit of the cycle or the upper limit of the cycle according to the comparison result of the load concentration comparison means 13h. If the load concentration tends to decrease (see P11 in FIG. 5) and the current cycle is greater than the cycle lower limit value, the cycle changing means 13q is instructed to decrease the cycle, and the load concentration If there is an increasing trend (see P12 in FIG. 5) and the current cycle is smaller than the cycle upper limit value, the cycle changing means 13q is commanded to increase the cycle (see FIG. 3 (2)).

上記制御部13の上記周期変更手段13q(図4参照)は、現在の周期(例えば60分)を例えば1ステップ増加(例えば70分)又は1ステップ減少(例えば50分)して、周期決定手段13rに通知する。上記周期決定手段13rは、現在の周期を1ステップ増加又は1ステップ減少し、決定した周期を一方又は他方の弁開閉駆動手段13e,13e,13e・・・に通知する。上記弁開閉駆動手段13e,13e・・・は、曝気時又は微曝気時の上記風量調整弁11,11・・・の開度を、変更後の1/2周期の期間持続することで、曝気時又は微曝気時の周期の変更を行う(図5P16又はP20参照)。 The period changing means 13q (see FIG. 4) of the control unit 13 increases the current period (for example, 60 minutes) by one step (for example, 70 minutes) or decreases by one step (for example, 50 minutes), and the period determining means Notify 13r. The period determination means 13r increases or decreases the current period by one step, and notifies the determined period to one or the other valve opening/closing driving means 13e 1 , 13e 2 , 13e 3 . . . The valve opening/closing driving means 13e 1 , 13e 2 . By doing so, the cycle during aeration or slight aeration is changed (see P16 or P20 in FIG. 5).

上記制御部13(一方の弁開閉駆動手段13e)は(奇数番目の水路に対応する各一方の弁開閉駆動手段も同じ)、上記周期決定手段13rから指令される周期を認識し、当該周期(例えば60分)の内、風量調整弁11は、1/2周期(30分)の期間は例えば開度「15(5×3)」(好気性反応タンク2A~2Cの空気散気量は各々「5」)として曝気の開度を維持し、その後の1/2周期(30分)の期間は風量調整弁11の開度を絞って例えば開度「3(1×3)」(好気性反応タンク2A~2Cの空気散気量は各々「1」)の微曝気の開度を維持し、このような1/2周期毎の曝気と微曝気の開閉動作(間欠曝気動作)を繰り返し行う(図8(a)水路W参照)。 The control unit 13 (one valve opening/closing driving means 13e 1 ) (the same applies to each one valve opening/closing driving means corresponding to the odd-numbered water passage) recognizes the period instructed by the period determining means 13r, and (for example, 60 minutes), the air volume control valve 11 1 is, for example, open 15 (5×3) during the period of 1/2 cycle (30 minutes) (air diffusion of the aerobic reaction tanks 2A 1 to 2C 1 ). Each air volume is set to "5") to maintain the opening of the aeration, and the opening of the air volume control valve 11 is narrowed for the period of 1/2 cycle (30 minutes) after that, for example, the opening is set to "3 (1 x 3) ” (air diffusion amount of each of the aerobic reaction tanks 2A 1 to 2C 1 is “1”). Aeration operation) is repeated (see waterway W1 in FIG. 8( a )).

上記制御部13(他方の弁開閉駆動手段13e)は(偶数番目の水路に対応する各他方の弁開閉駆動手段も同じ)、上記周期決定手段13rから指令される周期を認識し、上記一方の弁開閉駆動手段13e(又は対となる奇数番目の水路に対応する各一方の弁開閉駆動手段)と同一タイミング及び同一周期であるが、上記一方の弁開閉駆動手段13e(又は奇数番目の水路に対応する各一方の弁開閉駆動手段)とは逆位相の間欠曝気動作を行う(図8(a)水路W参照)。 The control unit 13 (the other valve opening/closing drive means 13e 2 ) (the same applies to the other valve opening/closing drive means corresponding to even-numbered water passages) recognizes the period instructed by the period determining means 13r, (or one of the valve opening/closing driving means corresponding to the paired odd-numbered water passages) has the same timing and the same cycle as the valve opening/closing driving means 13e 1 (or the odd-numbered water passage), but the one valve opening/closing driving means 13e 1 (or the odd-numbered The intermittent aeration operation is performed in the opposite phase to the one valve opening/closing driving means corresponding to each water channel (see FIG . 8(a) water channel W2).

即ち、上記他方の弁開閉駆動手段13eは、上記周期を認識し、当該周期(60分)の内、1/2周期(30分)の期間は例えば風量調整弁11の開度「3(1×3)」(好気性反応タンク2A~2Cの空気散気量は各々「1」)として微曝気の開度を維持し、その後の1/2周期(30分)の期間は風量調整弁11の開度を開いて例えば開度「15(5×3)」(好気性反応タンク2A~2Cの空気散気量は各々「5」)の曝気の開度を維持し、このような1/2周期毎の微曝気と曝気の開閉動作(間欠曝気動作)を繰り返し行う(図8(a)水路W参照)。 That is, the other valve opening/closing driving means 13e2 recognizes the above cycle, and during the half cycle (30 minutes) of the cycle (60 minutes), for example, the opening degree of the air volume control valve 112 is " 3 ". (1 × 3)” (air diffusion amount of each of the aerobic reaction tanks 2A 2 to 2C 2 is “1”) to maintain the opening of fine aeration, and the period of 1/2 cycle (30 minutes) after that is Open the opening of the air volume control valve 11 2 to maintain the opening of the aeration, for example, the opening of "15 (5 x 3)" (the air diffusion amount of the aerobic reaction tanks 2A 2 to 2C 2 is "5" each). Then, such microaeration and aeration opening/closing operation (intermittent aeration operation) are repeated every 1/2 cycle (see waterway W2 in FIG. 8(a)).

そして、上記一方又は他方の弁開閉駆動手段13e,13e・・・は上記送風機駆動手段13dによって送風機10の風量が増加(例えば風量「18」から「21」に増加(図8(a)から図8(c)参照))又は減少(風量「18」から「15」に減少(図8(a)から図8(b)参照))したとき、即ち、空気量変更手段13tから曝気時の空気散気量の変更の指示があったとき、曝気時の空気散気量が、変更指示後の所定の空気散気量(例えば散気量「4」又は「6」等)になるように、対応する水路W,W・・・の流量検出手段13c,13c・・・からの流量を検出しながら、自己の水路の風量調整弁11,11・・・の弁開度の調整(開閉制御)を行う。 Then, one or the other of the valve opening/closing drive means 13e 1 , 13e 2 . to FIG. 8(c))) or decreased (air volume decreased from “18” to “15” (see FIG. 8(a) to FIG. 8(b))), that is, from the air volume changing means 13t to the aeration When there is an instruction to change the amount of air diffusion, the air diffusion amount at the time of aeration will be the predetermined air diffusion amount after the change instruction (for example, the amount of air diffusion "4" or "6" etc.) , while detecting the flow rate from the flow rate detection means 13c 1 , 13c 2 . . . of the corresponding water channels W 1 , W 2 . Adjust the degree of opening (open/close control).

但し、上記一方又は他方の弁開閉駆動手段13e,13e・・・は上記送風機駆動手段13dによって送風機10の風量が増加又は減少しても、微曝気時の空気散気量は、常時一定散気量(例えば空気散気量「1」)を維持すべく、流量検出手段13c,13c・・・からの流量を検出しながら、風量調整弁11,11・・・の弁開度の調整を行う(図8(a)参照)。 However, the one or the other valve opening/closing drive means 13e 1 , 13e 2 . While detecting the flow rate from the flow rate detection means 13c 1 , 13c 2 . The opening is adjusted (see FIG. 8(a)).

本発明は上述のように構成されるので、以下、図5のフローチャートに基づいて本発明の動作手順を説明する。また、説明の簡単のため、図1に示す基準制御タンクを有する水路Wと、従属制御タンクを有する水路Wの2つの水路として説明する。尚、図5のフローチャートにおいて、ステップP2’とステップP7’の空気倍率に基づく微調整動作については、後半の(空気倍率に基づく補正動作)においてまとめて説明する。 Since the present invention is configured as described above, the operating procedure of the present invention will be described below with reference to the flow chart of FIG. Also, for the sake of simplification of explanation, the waterway W1 having the reference control tank shown in FIG . 1 and the waterway W2 having the subordinate control tank will be described. In the flow chart of FIG. 5, the fine adjustment operation based on the air magnification in steps P2' and P7' will be collectively described in the second half (correction operation based on the air magnification).

各水路W,Wには各々排水(被処理水)が流入し、最初沈殿池1,1にて沈殿後の被処理水が好気性反応タンク2,2に流入し、各反応タンク2,2の散気装置5A~5C,5A~5Cによる間欠曝気動作が行われる。尚、制御部13(散気調整弁駆動手段13f)の制御により、各水路W,Wの散気調整弁9A~9C、9A~9Cは常時一定の開度を維持しているものとする。また、制御部13内の周期記憶手段13sに、基本となる周期T(本実施形態では60分とする)が記憶されているものとする。 Drainage ( water to be treated) flows into each of the water channels W1 and W2, and the water to be treated after sedimentation in the primary sedimentation tanks 11 and 12 flows into the aerobic reaction tanks 21 and 22, Intermittent aeration operations are performed by the diffusers 5A 1 to 5C 1 and 5A 2 to 5C 2 of the reaction tanks 2 1 and 2 2 . Under the control of the control unit 13 (diffusion adjustment valve driving means 13f), the diffusion adjustment valves 9A 1 to 9C 1 and 9A 2 to 9C 2 of the water passages W 1 and W 2 always maintain a constant degree of opening. shall be It is also assumed that the cycle storage means 13s in the control unit 13 stores a basic cycle T (60 minutes in this embodiment).

1 第1の実施形態
制御部13(送風機駆動手段13d)は送風機10を予め定められた風量(ここでは風量「18」とする)にて駆動する(図8(a)、図9(c)参照)。すると、送風機10から水路Wの送気管8、水路Wの送気管8に各々送風が開始される。尚、図9(a)は好気性反応タンク2の1つの好気槽(例えば2A)の正相間欠曝気動作、同図(b)は好気性反応タンク2の1つの好気槽(例えば2A)の逆相間欠曝気動作の各タイミングチャートを示し、同図(c)は両好気槽2A,2Aの合計風量を示し、同図(c)において、カッコ内の数字(18,15,21)は、そのときの送風機10の風量を示す。
1. First Embodiment The control unit 13 (blower driving means 13d) drives the blower 10 at a predetermined air volume (here, the air volume is "18") (FIGS. 8A and 9C). reference). Then, air blowing from the blower 10 to the air pipe 8 1 of the water channel W 1 and the air pipe 8 2 of the water channel W 2 is started. FIG. 9(a) shows the positive phase intermittent aeration operation of one aerobic tank (for example, 2A 1 ) of the aerobic reaction tank 21, and FIG . 9(b) shows one aerobic tank of the aerobic reaction tank 22. (For example, 2A 2 ) shows each timing chart of the reverse phase intermittent aeration operation, and the figure (c) shows the total air volume of both aerobic tanks 2A 1 and 2A 2 , and in the figure (c), the numbers in parentheses (18, 15, 21) indicates the air volume of the blower 10 at that time.

(好気性反応タンク2の曝気動作)
制御部13(流量検出手段13c)は空気流量計Gからの流量データを検出しており、上記制御部13(一方の弁開閉駆動手段13e)は上記流量検出手段13cから現在の流量データを常時受信している。よって、上記制御部13(弁開閉駆動手段13e)は、上記流量データを常時検出しながら、風量調整弁11の弁開度を、好気槽2A~2Cの各空気散気量が「5」となるように調整し(弁開度「15」(5×3))、その結果、水路Wの送気管8に対応する風量(「15」)が送風され、同一開度の散気調整弁9A~9Cを介して、好気性反応タンク2(基準制御タンク)の各好気槽2A,2B,2Cの散気装置5A,5B,5Cに均等に送風が分配され、上記各散気装置5A~5Cから空気散気量「5」、「5」、「5」の空気がタンク内に噴射され、各好気槽2A,2B,2Cにおいて、空気散気量「5」の「曝気」が開始される(図5P1、図8(a)K1、図9(a)(イ)参照)。
(Aeration operation of aerobic reaction tank 21 )
The control unit 13 (flow rate detection means 13c 1 ) detects flow rate data from the air flow meter G 1 , and the control unit 13 (one valve opening/closing drive means 13e 1 ) detects the current data from the flow rate detection means 13c 1 . Constantly receiving flow rate data. Therefore, the control unit 13 (valve opening/closing driving means 13e 1 ) constantly detects the flow rate data, and adjusts the valve opening degree of the air volume adjustment valve 11 1 to the air diffusion amount of each of the aerobic tanks 2A 1 to 2C 1 . is adjusted to be "5" (valve opening degree "15" (5 x 3)), and as a result, the air volume corresponding to the air pipe 81 of the waterway W1 (" 15 ") is blown, and the same opening Aeration devices 5A 1 , 5B 1 , 5C of each aerobic tank 2A 1 , 2B 1 , 2C 1 of aerobic reaction tank 2 1 (reference control tank) via air diffusion adjustment valves 9A 1 to 9C 1 1 , and the diffusers 5A 1 to 5C 1 spray air with air diffusion amounts of "5", "5", and "5" into the tank, and each aerobic tank 2A 1 , 2B 1 and 2C 1 , "aeration" with an air diffusion amount of "5" is started (see FIG. 5P1, FIG. 8(a) K1, and FIG. 9(a)(b)).

尚、図8において「K1」,「K2」・・・は、正相間欠曝気動作における、各好気性反応タンク2の曝気、微曝気のタイミングを示す単なる符号、「K1’」,「K2’」・・・は逆相間欠曝気動作における好気性反応タンク2の微曝気、曝気のタイミングを示す単なる符号であり、説明の便宜上付したものである(図11においても同じ)。 In FIG. 8 , "K1", "K2", . ' ' .

(好気性反応タンク2の微曝気動作)
同時に、制御部13(流量検出手段13c)は空気流量計Gからの流量データを検出しており、上記制御部13(他方の弁開閉駆動手段13e)は上記流量検出手段13cから現在の流量データを常時受信している。よって、制御部13(弁開閉駆動手段13e)は、上記流量データを常時検出しながら、風量調整弁11の弁開度を、好気槽2A~2Cの各空気散気量が、基準制御タンクとは逆位相となる微曝気の空気散気量「1」となるように調整し(弁開度「3」(1×3))、その結果、水路Wの送気管8に対応する風量(「3」)が送風され、同一開度の散気調整弁9A~9Cを介して、水路Wの好気性反応タンク2(従属制御タンク)の各好気槽2A,2B,2Cの散気装置5A,5B,5Cに均等に送風が分配され、上記各散気装置5A~5Cから空気散気量「1」の空気が噴射され、各好気槽2A,2B,2Cにおいて基準制御タンクとは逆位相の空気散気量「1」、「1」、「1」の「微曝気」が、同一タイミングで開始される(図5P2、図8(a)K1’、図9(b)(ロ)参照)。
( Slight aeration operation of aerobic reaction tank 22)
At the same time, the control unit 13 (flow rate detection means 13c 2 ) detects flow data from the air flow meter G 2 , and the control unit 13 (the other valve opening/closing drive means 13e 2 ) detects the flow rate data from the flow rate detection means 13c 2 . Constantly receiving current flow rate data. Therefore, the control unit 13 (valve opening/closing driving means 13e 2 ) constantly detects the flow rate data, and adjusts the valve opening degree of the air volume adjustment valve 11 2 to the air diffusion amount of each of the aerobic tanks 2A 2 to 2C 2 . , Adjusted so that the air diffusion amount of micro-aeration, which is in the opposite phase to the reference control tank, is "1" (valve opening "3" (1 x 3)), and as a result, the air pipe 8 of the water channel W2 2 ("3") is blown, and each aerobic reaction tank 2 2 (subordinate control tank) of the water channel W 2 is blown through the diffusion adjustment valves 9A 2 to 9C 2 with the same opening degree. Blowing air is evenly distributed to the diffusers 5A 2 , 5B 2 and 5C 2 of the tanks 2A 2 , 2B 2 and 2C 2 , and the diffusers 5A 2 to 5C 2 emit air with an air diffusion amount of “1”. In each aerobic tank 2A 2 , 2B 2 , 2C 2 , the air diffusion amount of "1", "1", "1" in the opposite phase to the reference control tank "slight aeration" starts at the same timing (See FIG. 5P2, FIG. 8(a) K1′, FIG. 9(b) (b)).

(周期の決定動作)
その後、制御部13(周期決定手段13r)は、水路Wの好気性反応タンク2の各好気槽2A~2Cの曝気継続時間がT/2(30分)になるか否かを判断する(図5P4参照)。尚、その間、制御部13(負荷濃度検出手段13a)は負荷濃度確認センサAから負荷濃度データを取得し、かつ制御部13(溶存酸素濃度検出手段13b)は溶存酸素濃度確認センサDから溶存酸素データを取得する(図5P5参照)。
(Period determination operation)
After that, the control unit 13 (cycle determining means 13r) determines whether the duration of aeration of the aerobic tanks 2A 1 to 2C 1 of the aerobic reaction tank 21 of the waterway W 1 reaches T/ 2 (30 minutes). is determined (see P4 in FIG. 5). During this time, the control unit 13 (load concentration detection means 13a) obtains load concentration data from the load concentration confirmation sensor A, and the control unit 13 (dissolved oxygen concentration detection means 13b) detects the dissolved oxygen concentration from the dissolved oxygen concentration confirmation sensor D. Acquire data (see P5 in FIG. 5).

そして制御部13(周期決定手段13r)は、曝気時間がT/2(30分)に達すると(図5P4YES)、水路W,Wの各弁開閉駆動手段13e,13eに曝気又は微曝気の周期が終了した旨を通知する。その後、制御部13(弁開閉駆動手段13e、弁開閉駆動手段13e)は、水路Wの好気性反応タンク2の曝気、水路Wの好気性反応タンク2の微曝気を各々終了し、水路Wの好気性反応タンク2の微曝気、水路Wの好気性反応タンク2の曝気を同一タイミングで各々開始する(図5P6,P7参照)。 Then, when the aeration time reaches T/2 (30 minutes) (YES in P4 of FIG. 5), the control unit 13 (cycle determining means 13r) causes the valve opening/closing driving means 13e 1 and 13e 2 of the water channels W 1 and W 2 to aerate or Notifies that the micro-aeration cycle has ended. After that, the control unit 13 (valve opening/closing driving means 13e 1 , valve opening/closing driving means 13e 2 ) aerates the aerobic reaction tank 21 of the waterway W1 and slightly aerates the aerobic reaction tank 22 of the waterway W2. After completion, the aeration of the aerobic reaction tank 2-1 of the waterway W1 and the aeration of the aerobic reaction tank 2-2 of the waterway W2 are started at the same timing (see P6 and P7 in FIG . 5 ).

(好気性反応タンク2の微曝気動作)
制御部13(一方の弁開閉駆動手段13e)は、流量検出手段13cからの流量データを検出しながら、風量調整弁11の弁開度を空気散気量「5」(弁開度「15」)から空気散気量「1」(弁開度「3」)となるように調整し、その結果、水路Wの送気管8に対応する風量(「3」)が送風され、同一開度の散気調整弁9A~9Cを介して、好気性反応タンク2(基準制御タンク)の各好気槽2A,2B,2Cの散気装置5A,5B,5Cに均等に送風が分散され、上記散気装置5A~5Cから空気散気量「1」、「1」、「1」の空気が噴射され「微曝気」が開始される(図5P6、図8(a)K2、図9(a)(ハ)参照)。
(Slight aeration operation of aerobic reaction tank 21 )
The control unit 13 (valve opening/closing driving means 13e 1 on one side) detects the flow rate data from the flow rate detection means 13c 1 , and adjusts the valve opening of the air volume control valve 11 1 to an air diffusion amount of “5” (valve opening). "15") to air diffusion amount " 1 " (valve opening degree "3"), and as a result, the air volume (" 3 ") corresponding to the air pipe 81 of the waterway W1 is blown. , air diffusion devices 5A 1 and 5B of each aerobic tank 2A 1 , 2B 1 and 2C 1 of the aerobic reaction tank 2 1 (reference control tank) via the diffusion adjustment valves 9A 1 to 9C 1 having the same degree of opening 1 and 5C 1 are evenly distributed, and the diffusers 5A 1 to 5C 1 jet out air with air diffusion amounts of "1", "1", and "1" to start "slight aeration". (See FIG. 5P6, FIG. 8(a) K2, and FIG. 9(a)(c)).

(好気性反応タンク2の曝気動作)
同時に、制御部13(他方の弁開閉駆動手段13e)は、流量検出手段13cからの流量を検出し、風量調整弁11の弁開度を空気散気量「1」(弁開度「3」)から空気散気量「5」(弁開度「15」)となるように調整し、その結果、水路Wの送気管8に対応する風量(「15」)が送風され、同一開度の散気調整弁9A~9Cを介して、好気性反応タンク2(従属制御タンク)の各好気槽2A,2B,2Cの散気装置5A,5B,5Cに送風が均等に分散され、上記散気装置5A~5Cから空気散気量「5」、「5」、「5」の空気が噴射され「曝気」が開始される(図5P7、図8(a)K2’、図9(b)(ニ)参照)。
( Aeration operation of aerobic reaction tank 22)
At the same time, the control unit 13 (the other valve opening/closing drive means 13e 2 ) detects the flow rate from the flow rate detection means 13c 2 and adjusts the valve opening of the air volume control valve 11 2 to the air diffusion amount of "1" (valve opening "3") to an air diffusion amount of "5" (valve opening degree of "15"), and as a result, an air volume corresponding to the air pipe 82 of the water channel W2 ( "15") is blown. , air diffusion devices 5A 2 , 5B of each aerobic tank 2A 2 , 2B 2 , 2C 2 of the aerobic reaction tank 2 2 (subordinate control tank) via the diffusion adjustment valves 9A 2 to 9C 2 with the same opening degree 2 and 5C 2 are evenly distributed, and the diffusers 5A 2 to 5C 2 inject air with air diffusion amounts of "5", "5", and "5" to start "aeration" ( 5P7, FIG. 8(a)K2', FIG. 9(b)(d)).

(周期の決定動作)
その後、制御部13(周期決定手段13r)は、水路Wの好気性反応タンク2の微曝気継続時間がT/2(30分)になるか否かを判断する(図5P9参照)。尚、その間、制御部13(負荷濃度検出手段13a)は負荷濃度確認センサAから負荷濃度データを取得し、かつ制御部13(溶存酸素濃度検出手段13b)は溶存酸素濃度センサDから溶存酸素データを取得する(図5P10参照)。
(Period determination operation)
After that, the control unit 13 (cycle determining means 13r) determines whether or not the micro - aeration duration of the aerobic reaction tank 21 of the waterway W1 has reached T/ 2 (30 minutes) (see P9 in FIG. 5). During this time, the control unit 13 (load concentration detection means 13a) acquires load concentration data from the load concentration confirmation sensor A, and the control unit 13 (dissolved oxygen concentration detection means 13b) acquires dissolved oxygen data from the dissolved oxygen concentration sensor D. is obtained (see P10 in FIG. 5).

そして制御部13(周期決定手段13r)は、上記微曝気時間がT/2(30分)に達すると(図5P9YES)、弁開閉駆動手段13e,13eに周期が終了した旨を通知すると共に、制御部13は、水路Wの好気性反応タンク2(基準制御タンク)について、以下の制御動作を行う。 When the micro-aeration time reaches T/2 (30 minutes) (YES in P9 of FIG. 5), the control unit 13 (cycle determining means 13r) notifies the valve opening/closing driving means 13e 1 and 13e 2 that the cycle has ended. At the same time, the control unit 13 performs the following control operations for the aerobic reaction tank 2 1 (reference control tank) of the waterway W 1 .

(空気散気量、周期の一定制御)
制御部13(負荷濃度検出手段13a)は、負荷濃度確認センサAからの現在の負荷濃度データを検出し、制御部13(負荷濃度比較手段13h)は、前回の負荷濃度記憶手段13gに記憶している前回微曝気終了時の負荷濃度と現在の微曝気時の負荷濃度とを比較し、現在の負荷濃度データが、正相間欠曝気動作において、前回微曝気終了時の負荷濃度に対して大きいか又は小さいかを判断する(図5P11,P12参照)。
(Constant control of air diffusion amount and period)
The control unit 13 (load concentration detection means 13a) detects the current load concentration data from the load concentration confirmation sensor A, and the control unit 13 (load concentration comparison means 13h) stores the data in the previous load concentration storage means 13g. The load concentration at the end of the previous micro-aeration is compared with the load concentration at the current micro-aeration, and the current load concentration data is greater than the load concentration at the end of the previous micro-aeration in the positive phase intermittent aeration operation. or smaller (see P11 and P12 in FIG. 5).

この場合、負荷濃度は一定で変化なし(或いは、負荷濃度の変動が、前回の負荷濃度と同等であり、一定の範囲内で実質的に変化なし)と判断されたとする(図5P11NO,P12NO)。すると、制御部13(負荷濃度比較手段13h)は、送風機駆動手段13d、空気量変更手段13tに現状の風量を維持すること(図3、図4(3)参照)、及び、周期決定手段13rに現状の周期Tを維持すること(図3、図4(1)参照)、を各々通知する。その結果、送風機10の風量、及び、周期Tは維持された状態で、ステップP1,ステップP2に戻る。 In this case, it is assumed that the load concentration is constant and does not change (or the fluctuation of the load concentration is the same as the previous load concentration and is substantially unchanged within a certain range) (NO, P12 in FIG. 5). . Then, the control unit 13 (load concentration comparing means 13h) causes the blower driving means 13d and the air amount changing means 13t to maintain the current air volume (see FIGS. 3 and 4 (3)), and the period determining means 13r. to maintain the current period T (see FIGS. 3 and 4 (1)). As a result, the air volume of the blower 10 and the period T are maintained, and the process returns to steps P1 and P2.

従って、基準制御タンク(一方の好気性反応タンク2)ではステップP12からステップP1に戻り、負荷濃度が同等である限り、ステップP1,P4,P6,P9の動作が繰り返し行われ、制御部13(一方の弁開閉駆動手段13e)は、周期T/2(30分)の曝気(空気散気量「5」)、その後、周期T/2(30分)の微曝気(空気散気量「1」)の弁開閉動作(空気散気量「5,5,5」,「1,1,1」,「5,5,5」,「1,1,1」・・・)の繰り返しの動作(正相間欠曝気動作)が行われる(図8(a)K1,K2,K3,K4・・・、図9(a)期間S1参照)。 Therefore, in the reference control tank (one aerobic reaction tank 2 1 ), the process returns from step P12 to step P1, and the operations of steps P1, P4, P6, and P9 are repeated as long as the load concentrations are the same, and the control unit 13 (One valve opening/closing driving means 13e 1 ) performs aeration (air diffusion amount “5”) for period T/2 (30 minutes), and then fine aeration for period T/2 (30 minutes) (air diffusion amount "1") valve opening and closing operation (air diffusion amount "5, 5, 5", "1, 1, 1", "5, 5, 5", "1, 1, 1" ...) repetition (positive phase intermittent aeration operation) is performed (see FIG. 8(a) K1, K2, K3, K4 . . . , FIG. 9(a) period S1).

一方、従属制御タンク(他方の好気性反応タンク2)ではステップP12からステップP2に戻り、同様に負荷濃度が同等である限り、ステップP2,P4,P7,P9の動作が繰り返し行われ、制御部13(他方の弁開閉駆動手段13e)は、基準制御タンクと同一タイミングで逆位相の動作、即ち、周期T/2(30分)の微曝気(空気散気量「1」)、その後、周期T/2(30分)の曝気(空気散気量「5」)の動作(空気散気量「1,1,1」,「5,5,5」,「1,1,1」,「5,5,5」・・・・)の繰り返し動作が行われる(図8(a)K1’,K2’,K3’K4’・・・、図9(b)期間S1参照)。 On the other hand, in the dependent control tank (the other aerobic reaction tank 2 2 ), the process returns from step P12 to step P2. The unit 13 (the other valve opening/closing driving means 13e 2 ) operates in the opposite phase at the same timing as the reference control tank, that is, the cycle T/2 (30 minutes) of slight aeration (air diffusion amount “1”), and then , operation of aeration (air diffusion amount "5") with period T/2 (30 minutes) (air diffusion amount "1,1,1", "5,5,5", "1,1,1" , "5, 5, 5" .

このように負荷濃度が一定(又は一定の範囲内)であれば、曝気時の空気散気量は「5」、微曝気時の空気散気量は「1」の状態で、基準制御タンク(一方の好気性反応タンク2)では正相間欠曝気動作が行われ、従属制御タンク(他方の好気性反応タンク2)では、同一周期かつ同一タイミングにて、基準制御タンクとは逆位相の逆相間欠曝気動作が行われる。 In this way, if the load concentration is constant (or within a certain range), the air diffusion amount during aeration is "5" and the air diffusion amount during slight aeration is "1". In one aerobic reaction tank 2 1 ), positive phase intermittent aeration operation is performed, and in the subordinate control tank (the other aerobic reaction tank 2 2 ), at the same period and at the same timing, the phase is opposite to that of the reference control tank. A reverse phase intermittent aeration operation is performed.

即ち、負荷濃度確認センサAにて検出した微曝気時の負荷濃度データが前回微曝気終了時の負荷濃度データと同一又は略同一であって負荷濃度が一定又は一定の範囲内であれば、排水中のアンモニア性窒素の量は略変化しておらず、空気散気量、周期Tを変更する必要がないので、水路Wの一方の好気性反応タンク2(基準制御タンク)では周期Tの間欠曝気動作、水路Wの他方の好気性反応タンク2(従属制御タンク)では周期Tの逆位相の間欠曝気動作が繰り返し行われる(図8(a)参照)。 That is, if the load concentration data at the time of slight aeration detected by the load concentration confirmation sensor A is the same or substantially the same as the load concentration data at the end of the previous slight aeration, and the load concentration is constant or within a certain range, the wastewater Since the amount of ammonia nitrogen in the waterway W 1 does not change substantially, and there is no need to change the amount of air diffusion and the period T, the period T The intermittent aeration operation is repeated in the other aerobic reaction tank 2 2 (subordinate control tank) of the waterway W 2 , and the intermittent aeration operation in the opposite phase of the period T is repeated (see FIG. 8(a)).

従って、上記基準制御タンクである一方の好気性反応タンク2の各好気槽2A~2Cにおいては、曝気時において、散気装置5A~5Cから各好気槽2A~2Cに何れも空気散気量「5」の豊富な空気が噴射されるので、上記空気により硝化菌が排水中のアンモニア性窒素を亜硝酸性窒素、及び、硝酸性窒素に酸化する硝化反応が行われる。一方、微曝気時においては、散気装置5A~5Cから各好気槽2A~2Cに何れも空気散気量「1」の少量の空気が噴射されるので、略無酸素条件下となり、脱窒細菌による硝酸性呼吸又は亜硝酸性呼吸により、亜硝酸性窒素、硝酸性窒素が窒素ガスに還元され、空気中に放出される。このように間欠曝気動作により、排水中の窒素を除去することができる。 Therefore, in each of the aerobic tanks 2A 1 to 2C 1 of one of the aerobic reaction tanks 2 1 , which is the reference control tank, during aeration, the air diffusers 5A 1 to 5C 1 to the aerobic tanks 2A 1 to 2C Since abundant air with an air diffusion amount of "5" is injected into each of 1 , the nitrification reaction in which the nitrifying bacteria oxidize the ammonia nitrogen in the wastewater into nitrite nitrogen and nitrate nitrogen is caused by the above air. done. On the other hand, at the time of slight aeration, a small amount of air with an air diffusion amount of “1” is injected from the air diffusers 5A to 5C to each of the aerobic tanks 2A to 2C. Nitrite nitrogen and nitrite nitrogen are reduced to nitrogen gas by nitrate respiration or nitrite respiration by nitriding bacteria and released into the air. In this way, the intermittent aeration operation can remove nitrogen in the waste water.

上記従属制御タンクである他方の好気性反応タンク2の各好気槽2A~2Cにおいても、上記基準制御タンクと逆相になるだけで、同様に、排水中の窒素を除去することができる。そして、上記一方の好気性反応タンク2と他方の好気性反応タンク2を逆位相で間欠曝気動作を行うことにより、送風機10の送風は間欠曝気動作中は所定の風量、即ち、常時一定(例えば風量「18」)の風量にて運転を継続することができる(図9(c)期間S1参照)。尚、水路WとWで好気槽は各3個あるので、送風機10の風量は「18」(6×3)となる)。 In each of the aerobic tanks 2A 2 to 2C 2 of the other aerobic reaction tank 2 2 , which is the subordinate control tank, the nitrogen in the wastewater can be removed in the same way only by being in reverse phase with the reference control tank. can be done. By intermittently aerating the one aerobic reaction tank 21 and the other aerobic reaction tank 22 in opposite phases , the airflow from the blower 10 is kept constant during the intermittent aeration operation. The operation can be continued at an air volume (for example, an air volume of "18") (see period S1 in FIG. 9(c)). Since each of the water channels W1 and W2 has three aerobic tanks, the air volume of the blower 10 is "18" (6×3)).

(空気散気量減少、周期減少制御)
水路Wの基準制御タンクとしての一方の好気性反応タンク2にて間欠曝気動作、及び、水路Wの従属制御タンクとしての他方の好気性反応タンク2にて基準制御タンクとは逆相の間欠曝気動作が継続的に行われている状態とする(図5P1~P9参照)。
(Air diffusion amount reduction, cycle reduction control)
Intermittent aeration operation with one aerobic reaction tank 21 as the reference control tank of waterway W1 and the other aerobic reaction tank 22 as the slave control tank of waterway W2 in reverse to the reference control tank. It is assumed that the phase intermittent aeration operation is continuously performed (see Figures 5P1 to 5P9).

制御部13(負荷濃度較手段13h)は、ステップP11の1判断にて、前回微曝気終了時の負荷濃度(アンモニア濃度)が、今回の微曝気終了時の負荷濃度(アンモニア濃度)より低下していると判断した場合は(図5P11YES)、その旨を次段の溶存酸素濃度比較手段13iに通知する。 The control unit 13 (load concentration comparing means 13h) determines in step P11 that the load concentration (ammonia concentration) at the end of the previous slight aeration is lower than the load concentration (ammonia concentration) at the end of the current slight aeration. If it is determined that the concentration of oxygen is present (YES in P11 in FIG. 5), the fact is notified to the dissolved oxygen concentration comparison means 13i in the next stage.

制御部13(溶存酸素濃度比較手段13i)は、現在の微曝気終了時の負荷濃度が前回微曝気時の負荷濃度より低下している旨の報告を受けると、空気散気量は十分に足りていると判断し、周期及び空気散気量を減少すべく以下の制御を行う。 When the control unit 13 (dissolved oxygen concentration comparison means 13i) receives a report that the load concentration at the end of the current slight aeration is lower than the load concentration at the time of the previous slight aeration, the amount of air diffusion is sufficiently sufficient. Therefore, the following control is performed to reduce the period and the amount of air diffusion.

制御部13(溶存酸素濃度比較手段13i)は、溶存酸素濃度検出手段13bにて得られた前回の曝気時の溶存酸素濃度と、DO下限値記憶手段13kに記憶されているDO下限値(溶存酸素濃度の下限値)とを比較し(図5ステップP13参照)、前回の曝気時の溶存酸素濃度がDO下限値に達していないと判断した場合は、送風機10の風量を減少(風量「18」から例えば風量「15」)するように送風機駆動手段13dに指令すると共に、空気量変更手段13tにも曝気時の空気散気量を減少(空気散気量「5」から例えば空気散気量「4」)するように指令する(図3、図4(3)参照)。上記制御部13(送風機駆動手段13d)は、送風機10の風量を減少するように制御を行う。この場合、送風機10の風量が「18」から「15」に減少する(図5P14、図8(b)参照)。この場合、送風機10の風量の減少量及び各好気槽の散気量の減少量は、負荷濃度が減少している場合は、予め定められた一定量を減少しても良いし、負荷濃度減少量に応じて(例えば比例して)、風量及び散気量を減少するように構成することもできる。 The control unit 13 (dissolved oxygen concentration comparison means 13i) compares the dissolved oxygen concentration at the time of the previous aeration obtained by the dissolved oxygen concentration detection means 13b and the DO lower limit (dissolved oxygen concentration) stored in the DO lower limit storage means 13k. lower limit of oxygen concentration) (see step P13 in FIG. 5), and if it is determined that the dissolved oxygen concentration at the time of the previous aeration has not reached the DO lower limit, reduce the air volume of the blower 10 (air volume "18 ” to, for example, an air volume of “15”), and the air volume changing means 13t also decreases the air diffusion amount during aeration (from an air diffusion amount of “5” to, for example, an air diffusion amount of "4") (see FIGS. 3 and 4 (3)). The control unit 13 (blower driving means 13d) performs control to reduce the air volume of the blower 10. FIG. In this case, the air volume of the blower 10 decreases from "18" to "15" (see P14 in FIG. 5 and FIG. 8B). In this case, the amount of decrease in the air volume of the blower 10 and the amount of decrease in the diffusion amount of each aerobic tank may be decreased by a predetermined constant amount when the load concentration is decreasing, or the load concentration It can also be configured to reduce the air volume and air diffusion in accordance with the amount of reduction (for example, proportionally).

また、空気量変更手段13tは、一方又は他方の弁開閉駆動手段13e,13eに曝気時の空気散気量を減少する(例えば空気散気量「5」から「4」に減少する)ように指令する。これにより、弁開閉駆動手段13e,13eは、各々曝気時の空気散気量を減少すべく弁開度の調整を行う(曝気時の弁開度「15」らか「12」(4×3)に絞る)(図5P14参照)。 In addition, the air amount changing means 13t reduces the air diffusion amount during aeration by one or the other valve opening/closing driving means 13e1 , 13e2 (for example, the air diffusion amount is reduced from "5" to "4"). command to As a result, the valve opening/closing driving means 13e 1 and 13e 2 adjust the valve opening to reduce the amount of air diffused during aeration (valve opening during aeration from "15" to "12" (4 x 3)) (see P14 of FIG. 5).

尚、制御部13(溶存酸素濃度比較手段13i)は、前回の曝気時の溶存酸素濃度が既にDO下限値に達していると判断した場合は(図5P13NO)、空気散気量を変更せずにステップP1に戻る。 In addition, when the control unit 13 (dissolved oxygen concentration comparison means 13i) determines that the dissolved oxygen concentration at the time of the previous aeration has already reached the DO lower limit (NO in FIG. 5 P13), the air diffusion amount is not changed. Then return to step P1.

また、制御部13(溶存酸素量比較手段13i)は、次段の周期比較手段13mに空気散気量を減少した旨を通知する。上記制御部13(周期比較手段13m)は、現在周期認識手段13pにて現在の周期T(60分)を認識し、現在の周期Tと周期下限値記憶手段13oに記憶されている周期下限値(例えばT=20分)とを比較する。そして、周期比較手段13mは現在の周期が周期下限値よりも長い、即ち、現在の周期Tが周期下限値に達していないことを確認すると(図5P15YES)、当該周期を減少すべく、周期変更手段13qに指令する(図3(2)参照)。制御部13(周期変更手段13q)は、現在の周期Tより若干短い周期T’(=50分)(T>T’)を設定し、減少後の周期T’を周期決定手段13rに通知する。この場合、周期Tの減少量は、負荷濃度が減少している場合は、予め定められた一定量を減少しても良いし、負荷濃度減少量に応じて(例えば比例して)、周期を減少するように構成することもできる。 Further, the control unit 13 (dissolved oxygen amount comparison means 13i) notifies the period comparison means 13m of the next stage that the air diffusion amount has been decreased. The control unit 13 (period comparison means 13m) recognizes the current period T (60 minutes) by the current period recognition means 13p, and calculates the current period T and the period lower limit stored in the period lower limit storage means 13o. (eg T=20 minutes). Then, when the period comparing means 13m confirms that the current period is longer than the lower limit of the period, that is, the current period T has not reached the lower limit of the period (YES in P15 in FIG. 5), the period is changed to decrease the period. Command means 13q (see FIG. 3(2)). The control unit 13 (period changing means 13q) sets a period T' (=50 minutes) (T>T') slightly shorter than the current period T, and notifies the period determining means 13r of the reduced period T'. . In this case, when the load concentration is decreasing, the period T may be decreased by a predetermined constant amount, or the cycle may be changed according to (for example, in proportion to) the amount of decrease in the load concentration. It can also be configured to decrease.

尚、制御部13(周期比較手段13m)は、現在の周期が周期下限値に達していると判断した場合は(図5P15NO)、周期を変更せずにステップ1に戻る。 When the control unit 13 (cycle comparison unit 13m) determines that the current cycle has reached the cycle lower limit (NO in P15 of FIG. 5), the cycle returns to step 1 without changing the cycle.

上記周期決定手段13rは現在の周期Tより若干短い周期T’を決定し(図5P16参照)、新たな周期T’(50分)を水路Wの上記一方の弁開閉駆動手段13e及び水路Wの他方の弁開閉駆動手段13cに送信する(図4参照)。 The period determination means 13r determines a period T' slightly shorter than the current period T (see P16 in FIG. 5), and sets a new period T' (50 minutes) to the one valve opening/closing drive means 13e1 of the waterway W1 and the waterway W1. It is transmitted to the other valve opening/closing driving means 13c2 of W2 (see FIG . 4).

その後、制御部13はステップP1に戻り、制御部13(送風機駆動手段13d)は、送風機10を減少した風量である風量「15」にて運転する。すると、送風機10から水路Wの送気管8、水路Wの送気管8に各々対応する風量が送風される(図8(b)、図9(c)期間S2参照)。 Thereafter, the control unit 13 returns to step P1, and the control unit 13 (blower driving means 13d) operates the blower 10 at the reduced air volume of "15". Then, the blower 10 blows an air volume corresponding to each of the air pipe 8 1 of the water channel W 1 and the air pipe 8 2 of the water channel W 2 (see period S2 in FIG. 8(b) and FIG. 9(c)).

制御部13(一方の弁開閉駆動手段13e)は、上記空気量変更手段13tから空気散気量を減少するように指令がきているので、空気流量計G(流量検出手段13c)からの流量を検出しながら風量調整弁11の曝気時の弁開度を「15」(5×3)から減少した散気量「4」となるように調整し(絞り)、弁開度を「12」(4×3)とし、その結果、水路Wの送気管8に対応する風量(「12」(4×3))が送風され、同一開度の散気調整弁9A~9Cを介して、好気性反応タンク2(基準制御タンク)の各好気槽2A,2B,2Cの散気装置5A,5B,5Cに送風が均等に分散され、各散気装置5A~5Cから空気散気量「4」、「4」、「4」の空気が噴射され「曝気」が開始される(図5P1、図8(b)K5、図9(a)(ホ)参照)。 Since the controller 13 (valve opening/closing driving means 13e 1 ) receives a command to decrease the air diffusion amount from the air amount changing means 13t, the air flow meter G 1 (flow rate detecting means 13c 1 ) While detecting the flow rate of , the valve opening during aeration of the air volume adjustment valve 11 1 is adjusted from "15" (5 x 3) to a reduced air diffusion amount of "4" (throttle), and the valve opening is adjusted to "12" (4 × 3), and as a result, the air volume ("12" (4 × 3)) corresponding to the air pipe 8 1 of the water channel W 1 is blown, and the diffusion adjustment valves 9A 1 to 9A 1 to Via 9C 1 , the air is evenly distributed to the diffusers 5A 1 , 5B 1 and 5C 1 of the aerobic tanks 2A 1 , 2B 1 and 2C 1 of the aerobic reaction tank 2 (reference control tank). Air diffusers 5A 1 to 5C 1 inject air with air diffusion amounts of "4", "4", and "4" to start "aeration" (Fig. 5P1, Fig. 8(b) K5, Fig. 9 ( a) See (e)).

同時に、制御部13(他方の弁開閉駆動手段13e)は、空気流量計G(流量検出手段13c)からの流量を検出しながら風量調整弁11の弁開度を空気散気量「5」から空気散気量「1」となるように調整し(絞り)、弁開度を「3」(1×3)とし、その結果、水路Wの送気管8に対応する風量(「3」(1×3))が送風され、同一開度の散気調整弁9A~9Cを介して、好気性反応タンク2(従属制御タンク)の各好気槽2A,2B,2Cの散気装置5A,5B,5Cに送風が均等に分散され、各散気装置5A~5Cから空気散気量「1」、「1」、「1」の空気が噴射され「微曝気」が開始される(図5P2、図8(b)K5’、図9(b)(へ)参照)。 At the same time, the control unit 13 (the other valve opening/closing drive means 13e 2 ) detects the flow rate from the air flow meter G 2 (flow rate detection means 13c 2 ) and adjusts the valve opening degree of the air volume control valve 11 2 to the air diffusion amount. Adjust the air diffusion amount from "5" to "1" (throttle), set the valve opening to "3" (1 × 3 ), and as a result, the air volume corresponding to the air pipe 82 of the water channel W2 ("3" (1 × 3)) is blown, and each aerobic tank 2A 2 of the aerobic reaction tank 2 2 (subordinate control tank) through the diffusion adjustment valves 9A 2 to 9C 2 with the same opening degree The blown air is evenly dispersed in the air diffusers 5A 2 , 5B 2 and 5C 2 of 2B 2 and 2C 2 , and the air diffusion amounts from the air diffusers 5A 2 to 5C 2 are "1", "1", and "1". of air is injected and "slight aeration" is started (see Fig. 5P2, Fig. 8(b) K5', Fig. 9(b) (to)).

その後、制御部13(周期決定手段13r)は、水路Wの好気性反応タンク2の曝気継続時間が減少したT’/2(25分)になるか否かを判断する(図5P4参照)。尚、その間、同様に、制御部13(負荷濃度検出手段13a)及び制御部13(溶存酸素濃度検出手段13b)は負荷濃度データ及び溶存酸素データを取得する(図5P5参照)。 After that, the control unit 13 (cycle determining means 13r) determines whether or not the aeration duration of the aerobic reaction tank 21 of the waterway W1 has decreased to T' / 2 (25 minutes) (see P4 in FIG. 5). ). In the meantime, similarly, the control unit 13 (load concentration detection means 13a) and the control unit 13 (dissolved oxygen concentration detection means 13b) acquire load concentration data and dissolved oxygen data (see P5 in FIG. 5).

そして曝気時間がT’/2(25分)に達すると(図5P4YES)、制御部13(一方の弁開閉駆動手段13e)は曝気を終了し、水路Wの好気性反応タンク2(基準制御タンク)の微曝気を開始する(図5P6、図8(b)K6、図9(a)(ト)参照)。 When the aeration time reaches T'/2 (25 minutes) (YES in P4 of FIG. 5), the control unit 13 (one valve opening/closing driving means 13e 1 ) ends the aeration, and the aerobic reaction tank 2 1 ( Start micro-aeration of the reference control tank (Fig. 5P6, Fig. 8(b) K6, Fig. 9(a)(g)).

即ち、制御部13(一方の弁開閉駆動手段13e)は、空気流量計Gからの流量を検出しながら風量調整弁11の弁開度を空気散気量「4」から空気散気量「1」となるように絞り、その結果、水路Wの散気管8に対応する風量「3」(1×3)が送風され、水路Wの好気性反応タンク2(基準制御タンク)の各好気槽2A,2B,2Cの散気装置5A,5B,5Cから空気散気量「1」、「1」、「1」の空気が噴射され「微曝気」が開始される(図5P6参照)。 That is, the control unit 13 (one valve opening/closing driving means 13e 1 ) detects the flow rate from the air flow meter G 1 and adjusts the valve opening of the air volume adjustment valve 11 1 from the air diffusion amount “4” to the air diffusion amount “4”. As a result, an air volume of “3” (1×3) corresponding to the air diffuser 8 1 of the waterway W 1 is blown, and the aerobic reaction tank 2 1 of the waterway W 1 ( standard control Air diffusers 5A 1 , 5B 1 , 5C 1 of each aerobic tank 2A 1 , 2B 1 , 2C 1 of the tank) are injected with air diffusion amounts of “1”, “1”, and “1”, and “fine Aeration" is started (see Figure 5P6).

同時に、制御部13(他方の弁開閉駆動手段13e)は、空気流量変更手段13tから曝気時の空気散気量を減少(空気散気量「5」から「4」に減少)するように指令がきているので、空気流量計Gからの流量を検出しながら風量調整弁11の弁開度を空気散気量「1」から「4」となるように開き、その結果、水路Wの送気管8に対応する風量「12」(4×3)が送風され、水路Wの好気性反応タンク2(従属制御タンク)の各好気槽2A,2B,2Cの散気装置5A,5B,5Cから空気散気量「4」、「4」、「4」の空気が噴射され「曝気」が開始される(図5P7、図8(b)K6’、図9(b)(チ)参照)。 At the same time, the controller 13 (the other valve opening/closing driving means 13e 2 ) reduces the air diffusion amount during aeration from the air flow rate changing means 13t (reduces the air diffusion amount from "5" to "4"). Since the command is received, the valve opening degree of the air volume adjustment valve 112 is opened so that the air diffusion amount changes from "1" to " 4 " while detecting the flow rate from the air flow meter G2. The air volume "12" (4 × 3) corresponding to the air pipe 8 2 of No. 2 is blown, and each aerobic tank 2A 2 , 2B 2 , 2C 2 of the aerobic reaction tank 2 2 (subordinate control tank) of the waterway W 2 Air diffusers 5A 2 , 5B 2 , and 5C 2 of the air diffusers 5A 2 , 5B 2 , and 5C 2 inject air with air diffusion amounts of “4”, “4”, and “4” to start “aeration” (Fig. 5P7, Fig. 8(b) K6 ', see FIG. 9(b)(h)).

その後、制御部13(周期決定手段13r)は、水路Wの好気性反応タンク2の微曝気継続時間がT’/2(25分)になるか否かを判断する(図5P9参照)。尚、その間、制御部13(負荷濃度検出手段13a)及び制御部13(溶存酸素濃度検出手段13b)は負荷濃度データ及び溶存酸素データを取得する(図5P10参照)。 After that, the control unit 13 (cycle determining means 13r) determines whether or not the micro - aeration duration of the aerobic reaction tank 21 of the waterway W1 reaches T'/ 2 (25 minutes) (see P9 in FIG. 5). . During this time, the control unit 13 (load concentration detecting means 13a) and the control unit 13 (dissolved oxygen concentration detecting means 13b) acquire load concentration data and dissolved oxygen data (see P10 in FIG. 5).

そして制御部13(周期決定手段13r)は、上記微曝気時間がT’/2(25分)に達すると(図5P9YES)、弁開閉駆動手段13e,13eに微曝気又は曝気の周期が終了した旨を通知すると共に、制御部13は、水路Wの好気性反応タンク2について、負荷濃度の検出動作を再び行う。 Then, when the micro-aeration time reaches T'/2 (25 minutes) (YES in P9 of FIG. 5), the control unit 13 (period determination means 13r) causes the valve opening/closing driving means 13e 1 and 13e 2 to perform micro-aeration or the aeration period. Along with notifying the completion, the control unit 13 again performs the load concentration detection operation for the aerobic reaction tank 2-1 of the waterway W1.

従って、その後、負荷濃度確認センサAにて検出した微曝気時の負荷濃度データが前回微曝気終了時の負荷濃度データと同一(又は一定範囲内)であって負荷濃度が一定(又は略一定)であれば、同一空気散気量(曝気時「4」、微曝気時「1」)、同一周期T’(50分)にて、水路Wの一方の好気性反応タンク2(基準制御タンク)での間欠曝気動作(空気散気量「4,4,4」,「1,1,1」,「4,4,4」,「1,1,1」・・・、図8(b)K7,K8・・・参照)、水路Wの他方の好気性反応タンク2(従属制御タンク)での同一タイミングでの逆位相の間欠曝気動作(空気散気量「1,1,1」,「4,4,4」,「1,1,1」,「4,4,4」・・・、図8(b)K7’,K8’・・・参照)が繰り返し行われる(図9(a)(b)期間S2参照)。 Therefore, after that, the load concentration data at the time of slight aeration detected by the load concentration confirmation sensor A is the same as the load concentration data at the end of the previous slight aeration (or within a certain range), and the load concentration is constant (or substantially constant). Then, the aerobic reaction tank 2 1 ( reference control tank) intermittent aeration operation (air diffusion amount "4, 4, 4", "1, 1, 1", "4, 4, 4", "1, 1, 1" ..., Fig. 8 ( b ) K7 , K8 . 1", "4,4,4", "1,1,1", "4,4,4" . . . , see FIG. 8(b) K7', K8' . 9 (a) and (b) period S2).

この間送風機10は、風量「18」(5×3+1×3)から風量「15」(4×3+1×3)への少量の減少で良いため、例えばターボ型送風機のような大型の送風機であっても十分に対応することが可能である(図9(c)期間S1からS2への変化参照)。 During this time, the blower 10 can be a large blower such as a turbo blower, for example, because it is sufficient to reduce the air volume from "18" (5 x 3 + 1 x 3) to "15" (4 x 3 + 1 x 3). (see FIG. 9(c), change from period S1 to S2).

また、図5のステップP11にて負荷濃度が前回微曝気終了時の負荷濃度より低下しており、同図ステップP13にて空気散気量がDO下限値に達していない場合は、送風機10の風量が減少され(例えば風量「18」から「15」に段階的又は漸次減少され)、その結果、水路Wの基準制御タンクとしての好気性反応タンク2において、風量調整弁11の開度が曝気時は、空気散気量が下限値に至るまで、例えば空気散気量「4」から「3」に低下していく。或いは、図5のステップP13にて空気散気量がDO下限値に達していない場合は、送風機10の風量及び/又は空気散気量が負荷濃度減少量に応じて(例えば比例して)、漸次減少される。この場合、負荷濃度減少量が大きい場合は、送風機10の風量及び/又は空気散気量の減少量も大きくなり、負荷濃度減少量が少ない場合は、送風機10の風量及び/又は空気散気量の減少量も少なくなる。但し、微曝気時の空気散気量は常時「1」に維持される(図8(a)(b)参照)。また、図5のステップP15にて周期が周期下限値(T=20分)に達していない場合は、同時に周期も、周期下限値に至るまで段階的又は漸次減少され、曝気と微曝気からなる間欠曝気の周期も段階的に減少していく(例えばT=50分、40分、30分、20分)(図8、図9参照)。或いは、周期が周期下限値(T=20分)に達していない場合は、負荷濃度減少量に応じて(例えば比例して)、漸次減少される(例えばT=50分、48分、44分、38分のように減少期間は2分刻みの偶数の整数値)。従って、この場合負荷濃度減少量が大きい場合は、周期の減少量も大きくなり、負荷濃度減少量が少ない場合は、周期の減少量も少なくなる。 Also, in step P11 of FIG. 5, the load concentration is lower than the load concentration at the end of the previous slight aeration, and if the air diffusion amount has not reached the DO lower limit value in step P13 of FIG. The air volume is reduced (for example, from "18" to "15"), and as a result, in the aerobic reaction tank 2-1 as the reference control tank of the waterway W1, the air volume control valve 11-1 is opened. When the degree is aeration, the air diffusion amount decreases from "4" to "3", for example, until it reaches the lower limit. Alternatively, if the air diffusion amount has not reached the DO lower limit value in step P13 of FIG. Gradually decreased. In this case, when the load concentration decrease amount is large, the decrease amount of the air volume and/or the air diffusion amount of the fan 10 is also large, and when the load concentration decrease amount is small, the air volume and/or the air diffusion amount of the fan 10 is also increased. decreases. However, the air diffusion rate during slight aeration is always maintained at "1" (see FIGS. 8(a) and 8(b)). In addition, when the cycle has not reached the cycle lower limit (T = 20 minutes) in step P15 in Fig. 5, the cycle is also reduced step by step or gradually until it reaches the cycle lower limit, consisting of aeration and microaeration. The period of intermittent aeration is also reduced step by step (for example, T=50 minutes, 40 minutes, 30 minutes, 20 minutes) (see FIGS. 8 and 9). Alternatively, if the cycle has not reached the cycle lower limit (T = 20 minutes), it is gradually decreased (eg, T = 50 minutes, 48 minutes, 44 minutes) according to (eg, in proportion to) the load concentration decrease amount. , 38 minutes, even integer values in 2 minute increments). Therefore, in this case, when the amount of load concentration decrease is large, the amount of decrease in the cycle is also large, and when the amount of load concentration decrease is small, the amount of decrease in the cycle is also small.

一方、水路Wの従属制御タンクとしての他方の好気性反応タンク2においては、基準制御タンクと同一の周期及び同一のタイミングにて、逆位相の間欠曝気動作(曝気時の空気散気量は、基準制御タンクの曝気時風量と同じ、微曝気時の空気散気量は常時「1」)が行われ、基準制御タンクと同一のタイミングで曝気と微曝気からなる逆相間欠曝気の周期も段階的又は漸次減少していく。 On the other hand, in the other aerobic reaction tank 22 as a subordinate control tank of the waterway W2, intermittent aeration operation in the opposite phase ( air diffusion amount during aeration) is performed at the same cycle and timing as the reference control tank is the same as the air volume during aeration of the standard control tank, and the air diffusion volume during micro-aeration is always "1"), and the cycle of intermittent reverse phase aeration consisting of aeration and micro-aeration at the same timing as the standard control tank also decreases step by step or gradually.

このように、現在の微曝気終了時の負荷濃度が前回微曝気終了時の負荷濃度より低下している場合は、空気散気量が十分に足りているということなので、空気散気量を、溶存酸素濃度が下限値に至るまでは段階的又は漸次減少し、間欠曝気動作の周期も、周期の下限値に至るまでは段階的又は漸次に減少する、という動作を繰り返し行う。 In this way, if the load concentration at the end of the current slight aeration is lower than the load concentration at the end of the previous slight aeration, it means that the amount of air diffusion is sufficient. The dissolved oxygen concentration decreases stepwise or gradually until it reaches the lower limit, and the cycle of the intermittent aeration operation also decreases stepwise or gradually until it reaches the lower limit of the cycle.

従って、負荷濃度の低下に応じて曝気時の空気散気量を適切に低下させることができるし、曝気時の空気散気量が減少しても、微曝気時は正相間欠曝気動作及び逆相間欠曝気動作共に、常に一定値の少量の空気散気量を維持し得るので、常に一定の脱窒速度を維持することができ、安定した窒素ガスへの変換を行うことができる。 Therefore, the amount of air diffusion during aeration can be appropriately reduced in accordance with the decrease in load concentration, and even if the amount of air diffusion during aeration decreases, normal phase intermittent aeration operation and reverse With the intermittent aeration operation, a constant small amount of air diffusion can be maintained at all times, so a constant denitrification rate can be maintained at all times, and stable conversion to nitrogen gas can be performed.

上記従属制御タンクである他方の好気性反応タンク2の各好気槽2A~2Cにおいても、上記基準制御タンクと逆位相になるだけで、同様に、排水中の窒素を除去することができる。
(空気量増加、周期増加制御)
同様に、水路Wの一方の好気性反応タンク2にて間欠曝気動作、及び、水路Wの他方の好気性反応タンク2にて逆位相の間欠曝気動作が継続的に行われているとする(図5P1~P9参照)。
In the aerobic tanks 2A to 2C of the other aerobic reaction tank 22, which is the subordinate control tank, the nitrogen in the waste water can be removed in the same way only by being in the opposite phase to the reference control tank. .
(Air volume increase, cycle increase control)
Similarly, the intermittent aeration operation in the aerobic reaction tank 21 on one side of the waterway W1 and the intermittent aeration operation in the opposite phase on the other aerobic reaction tank 22 in the waterway W2 are continuously performed. (see P1 to P9 in FIG. 5).

制御部13(負荷濃度比較手段13h)は、前回微曝気終了時の負荷濃度(アンモニア濃度)が、今回の微曝気終了時の負荷濃度より上昇している場合は(図5P11NO、P12YES)、その旨を次段の溶存酸素濃度比較手段13iに通知する。 If the load concentration (ammonia concentration) at the end of the previous slight aeration is higher than the load concentration at the end of the current slight aeration (Fig. 5 P11 NO, P12 YES), the control unit 13 (load concentration comparison means 13h) This is notified to the dissolved oxygen concentration comparison means 13i in the next stage.

制御部13(溶存酸素濃度比較手段13i)は、現在の微曝気終了時の負荷濃度が前回微曝気終了時の負荷濃度より上昇している旨の報告を受けると、空気散気量が不足していると判断し、風量及び空気散気量を増加すべく以下の制御を行う。 When the control unit 13 (dissolved oxygen concentration comparison means 13i) receives a report that the load concentration at the end of the current slight aeration is higher than the load concentration at the end of the previous slight aeration, the amount of air diffusion is insufficient. Then, the following control is performed to increase the air volume and the air diffusion volume.

即ち、制御部13(溶存酸素濃度比較手段13i)は、溶存酸素濃度検出手段13bにて得られた前回の曝気時の溶存酸素濃度と、DO上限値記憶手段13jに記憶されているDO上限値(溶存酸素濃度の上限値)とを比較し(図5P17参照)、前回の曝気時の溶存酸素濃度がDO上限値に達していないと判断した場合は、送風機10の風量を増加するように送風機駆動手段13dに指令する(図3(3)参照)。上記制御部13(送風機駆動手段13d)は、送風機10の風量を増加するように制御を行う。この場合、送風機10の風量が「18」から「21」(6×3+1×3)に増加したとする(図5P18、図8(c)、図9(c)期間S3からS4参照)。 That is, the control unit 13 (dissolved oxygen concentration comparison means 13i) compares the dissolved oxygen concentration at the time of the previous aeration obtained by the dissolved oxygen concentration detection means 13b and the DO upper limit stored in the DO upper limit storage means 13j. (Upper limit of dissolved oxygen concentration) (see FIG. 5P17), and if it is determined that the dissolved oxygen concentration at the time of the previous aeration has not reached the DO upper limit, the air volume of the blower 10 is increased. A command is issued to the driving means 13d (see FIG. 3(3)). The control unit 13 (blower driving means 13d) performs control so as to increase the air volume of the blower 10. FIG. In this case, assume that the air volume of the blower 10 has increased from "18" to "21" (6×3+1×3) (see P18 in FIG. 5, FIG. 8(c), and FIG. 9(c) period S3 to S4).

尚、制御部13(溶存酸素濃度比較手段13i)は、前回の曝気時の溶存酸素濃度が既にDO上限値に達していると判断した場合は(図5P17NO)、空気量を変更せずにステップP1に戻る。 In addition, the control unit 13 (dissolved oxygen concentration comparison means 13i) determines that the dissolved oxygen concentration at the time of the previous aeration has already reached the DO upper limit value (Fig. 5 P17 NO), step without changing the air amount Return to P1.

また、空気量変更手段13tは、一方又は他方の弁開閉駆動手段13e,13eに曝気時の空気散気量を増加するように指令する。これにより、弁開閉駆動手段13e,13eは、各々曝気時の空気散気量を増加することを認識する。 In addition, the air amount changing means 13t commands one or the other valve opening/closing driving means 13e1 , 13e2 to increase the air diffusion amount during aeration. As a result, the valve opening/closing driving means 13e 1 and 13e 2 recognize to increase the amount of air diffused during aeration.

また、制御部13(溶存酸素量比較手段13i)は、次段の周期比較手段13mに空気散気量を増加した旨を通知する。上記制御部13(周期比較手段13m)は、現在周期認識手段13pにて現在の周期(この場合60分とする)を認識し、現在の周期Tと周期上限値記憶手段13nに記憶されている周期上限値(90分)とを比較する。そして、周期比較手段13mは現在の周期(60分)が周期上限値よりも短い、即ち、現在の周期Tが周期上限値に達していないことを確認すると(図5P19YES)、当該周期を増加すべく、周期変更手段13qに通知する(図3(2)参照)。制御部13(周期変更手段13q)は、現在の周期Tより長い周期T”(例えば70分)(T<T”)を設定し、増加後の周期T”(70分)を周期決定手段13rに送出する。 Further, the control unit 13 (dissolved oxygen amount comparison means 13i) notifies the period comparison means 13m of the next stage that the air diffusion amount has been increased. The control unit 13 (period comparison means 13m) recognizes the current period (60 minutes in this case) by the current period recognition means 13p, and the current period T and the period upper limit value storage means 13n are stored. Compare with the cycle upper limit (90 minutes). When the period comparison means 13m confirms that the current period (60 minutes) is shorter than the upper limit of period, that is, the current period T has not reached the upper limit of period (YES in P19 of FIG. 5), it increases the period. Therefore, the period changing means 13q is notified (see FIG. 3(2)). The control unit 13 (period changing means 13q) sets a period T″ (for example, 70 minutes) longer than the current period T (T<T″), and sets the increased period T″ (70 minutes) to the period determining means 13r. send to

尚、制御部13(周期比較手段13m)は、現在の周期が周期上限値に達していると判断した場合は(図5P19NO)、周期を変更せずにステップP1に戻る。 When the control unit 13 (cycle comparison unit 13m) determines that the current cycle has reached the cycle upper limit value (NO in P19 in FIG. 5), the cycle returns to step P1 without changing the cycle.

上記周期決定手段13rは現在の周期Tより長い周期T”(70分)を決定し(図5P20参照)、新たな周期T”を水路Wの上記一方の弁開閉駆動手段13e及び水路Wの他方の弁開閉駆動手段13cに通知する。 The cycle determination means 13r determines a cycle T'' (70 minutes) longer than the current cycle T (see P20 in FIG. 5), and sets the new cycle T'' to the one valve opening/closing driving means 13e1 of the water channel W1 and the water channel W. 2 to the other valve opening/closing driving means 13c2 .

その後、制御部13はステップ1に戻り、制御部13(送風機駆動手段13d)は送風機10を以前の風量「18」から風量「21」にて運転する。すると、送風機10から水路Wの送気管8、水路Wの送気管8に対応する風量が送風される(図8(c)、図9(c)期間S4参照)。 After that, the control unit 13 returns to step 1, and the control unit 13 (blower driving means 13d) drives the blower 10 from the previous air volume "18" to the air volume "21". Then, the blower 10 blows an air volume corresponding to the air pipe 8 1 of the water channel W 1 and the air pipe 8 2 of the water channel W 2 (see FIG. 8(c) and FIG. 9(c) period S4).

制御部13(一方の弁開閉駆動手段13e)は、空気量変更手段13tから曝気時の空気量を増加するように指令されているので、空気流量計Gからの流量を検出しながら風量調整弁11の曝気時の弁開度を以前の弁開度「15」(5×3)から弁開度「18」(6×3)となるように調整し(開き)、その結果、水路Wの送気管8に対応する風量「18」が送風され、同一開度の散気調整弁9A~9Cを介して、一方の好気性反応タンク2(基準制御タンク)の各好気槽2A,2B,2Cの散気装置5A,5B,5Cに送風が均等に分散され、各散気装置5A~5Cから空気散気量「6」、「6」、「6」の空気が噴射され「曝気」が開始される(図5P1、図8(c)K9、図9(a)(リ)参照)。 The controller 13 (one valve opening/closing driving means 13e 1 ) is instructed by the air amount changing means 13t to increase the air amount during aeration, so the air amount is detected while detecting the flow rate from the air flow meter G 1 The valve opening during aeration of the regulating valve 11 1 is adjusted (opened) from the previous valve opening of "15" (5 x 3) to the valve opening of "18" (6 x 3), and as a result, An air volume of "18" corresponding to the air pipe 8 1 of the water channel W 1 is blown, and each of the one aerobic reaction tanks 2 (reference control tank) The blown air is evenly dispersed in the air diffusers 5A 1 , 5B 1 and 5C 1 of the aerobic tanks 2A 1 , 2B 1 and 2C 1 , and the air diffusion amounts from the air diffusers 5A 1 to 5C 1 are "6", "6" and "6" are injected to start "aeration" (see FIG. 5P1, FIG. 8(c) K9, and FIG. 9(a) (li)).

同時に、制御部13(他方の弁開閉駆動手段13e)は、空気流量計Gからの流量を検出しながら風量調整弁11の弁開度を、基準制御タンクとは逆位相、この場合は、微曝気の弁開度「3」(1×3)となるように調整し、その結果、水路Wの送気管8に対応する風量「3」が送風され、同一開度の散気調整弁9A~9Cを介して、他方の好気性反応タンク2(従属制御タンク)の各好気槽2A,2B,2Cの散気装置5A,5B,5Cに送風が均等に分散され、各散気装置5A~5Cから空気散気量「1」、「1」、「1」の空気が噴射され「微曝気」が開始される(図5P2、図8(c)K9’、図9(b)(ヌ)参照)。 At the same time, the control unit 13 (the other valve opening/closing driving means 13e 2 ) detects the flow rate from the air flow meter G 2 and adjusts the valve opening degree of the air volume control valve 11 2 in the opposite phase to the reference control tank, in this case is adjusted so that the opening of the valve for slight aeration is "3" (1 x 3), and as a result, an air volume of " 3 " corresponding to the air pipe 82 of the waterway W2 is blown, and the dispersion with the same opening Air diffuser 5A 2 , 5B 2 , 5C 2 of each aerobic tank 2A 2 , 2B 2 , 2C 2 of the other aerobic reaction tank 2 2 (subordinate control tank) via air regulating valves 9A 2 to 9C 2 The air is evenly dispersed in the air diffusers 5A 2 to 5C 2, and air with air diffusion amounts of "1", "1", and "1" is injected from each air diffuser 5A 2 to 5C 2 to start "slight aeration" (Fig. 5P2, See FIG. 8(c) K9′ and FIG. 9(b) (J)).

その後、制御部13(周期決定手段13r)は、水路Wの好気性反応タンク2の曝気継続時間がT”/2(35分)になるか否かを判断する(図5P4参照)。尚、その間、制御部13(負荷濃度検出手段13a)及び制御部13(溶存酸素濃度検出手段13b)は負荷濃度データ及び溶存酸素データを取得する(図5P5参照)。 After that, the control unit 13 (period determining means 13r) determines whether or not the aeration duration of the aerobic reaction tank 2 in the waterway W1 has reached T″/2 (35 minutes) (see P4 in FIG. 5). During this time, the control unit 13 (load concentration detection means 13a) and the control unit 13 (dissolved oxygen concentration detection means 13b) acquire load concentration data and dissolved oxygen data (see P5 in FIG. 5).

そして曝気時間がT”/2(35分)に達すると(図5P4YES)、曝気を終了し、水路Wの好気性反応タンク2(基準制御タンク)の微曝気を開始する(図5P6、図8(c)K10、図9(a)(ル)参照)。 Then, when the aeration time reaches T″/2 (35 minutes) (YES in P4 of FIG. 5), the aeration is terminated and microaeration of the aerobic reaction tank 2 1 (reference control tank) of the waterway W 1 is started (P6 in FIG. 5, See FIG. 8(c) K10 and FIG. 9(a) (L)).

即ち、制御部13(一方の弁開閉駆動手段13e)は、空気流量計Gからの流量を検出しながら風量調整弁11の弁開度を空気散気量「6」から空気散気量「1」となるように調整し(絞り)、その結果、水路Wの送気管8に対応する風量「3」(1×3)が送風され、水路Wの好気性反応タンク2(基準制御タンク)の各好気槽2A,2B,2Cの散気装置5A,5B,5Cから空気散気量「1」、「1」、「1」の空気が噴射され「微曝気」が開始される(図5P6、図8(c)K10参照)。 That is, the control unit 13 (one valve opening/closing driving means 13e 1 ) detects the flow rate from the air flow meter G 1 and adjusts the valve opening degree of the air volume adjustment valve 11 1 from the air diffusion amount “6” to the air diffusion amount “6”. Adjusted (throttling) so that the amount was "1", and as a result, the air volume "3" ( 1 x 3 ) corresponding to the air pipe 81 of the waterway W1 was blown, and the aerobic reaction tank 2 of the waterway W1 was blown. 1 (reference control tank) from each aerobic tank 2A 1 , 2B 1 , 2C 1 air diffuser 5A 1 , 5B 1 , 5C 1 of the air diffusion amount "1", "1", "1" air It is injected and "slight aeration" is started (see Fig. 5P6, Fig. 8(c) K10).

同時に、制御部13(他方の弁開閉駆動手段13e)は、空気量変更手段13tから曝気時の風量を増加するように指令されているので、空気流量計Gからの流量を検出しながら風量調整弁11の弁開度を空気散気量「1」から空気散気量「6」となるように調整し(開き)、その結果、水路Wの送気管8に対応する風量「18」(6×3)が送風され、水路Wの好気性反応タンク2(従属制御タンク)の各好気槽2A,2B,2Cの散気装置5A,5B,5Cから空気散気量「6」、「6」、「6」の空気が噴射され「曝気」が開始される(図5P7、図8(c)K10’、図9(b)(オ)参照)。 At the same time, the control unit 13 (the other valve opening/closing driving means 13e 2 ) is instructed by the air amount changing means 13t to increase the air volume during aeration, so while detecting the flow rate from the air flow meter G 2 The valve opening degree of the air volume adjustment valve 11 2 is adjusted (opened) from the air diffusion amount “1” to the air diffusion amount “6”, and as a result, the air volume corresponding to the air supply pipe 8 2 of the water channel W 2 "18" (6 × 3) is blown, and the diffusers 5A 2 , 5B 2 of the aerobic tanks 2A 2 , 2B 2 , 2C 2 of the aerobic reaction tank 2 2 (subordinate control tank) of the waterway W 2 , Air with an air diffusion amount of "6", "6", "6" is injected from 5C 2 and "aeration" is started (Fig. 5P7, Fig. 8(c) K10', Fig. 9(b) (o) reference).

その後、制御部13(周期決定手段13r)は、水路Wの好気性反応タンク2の微曝気継続時間がT”/2(35分)になるか否かを判断する(図5P9参照)。尚、その間、制御部13(負荷濃度検出手段13a)及び制御部13(溶存酸素濃度検出手段13b)は負荷濃度データ及び溶存酸素データを取得する(図5P10参照)。 After that, the control unit 13 (period determining means 13r) determines whether or not the micro-aeration continuation time of the aerobic reaction tank 2 of the waterway W1 has reached T″/2 (35 minutes) (see P9 in FIG. 5). During this time, the control unit 13 (load concentration detecting means 13a) and the control unit 13 (dissolved oxygen concentration detecting means 13b) acquire load concentration data and dissolved oxygen data (see P10 in FIG. 5).

そして制御部13(周期決定手段13r)は、上記微曝気時間がT”/2(35分)に達すると(図5P9YES)、弁開閉駆動手段13e,13eに微曝気又は曝気の周期が終了した旨を通知すると共に、制御部13は、水路Wの好気性反応タンク2(基準制御タンク)について、負荷濃度の検出動作を再び行う。 Then, when the micro-aeration time reaches T″/2 (35 minutes) (YES in P9 of FIG. 5), the control unit 13 (period determination means 13r) causes the valve opening/closing drive means 13e 1 and 13e 2 to perform micro-aeration or the aeration cycle. Along with notifying the completion, the control unit 13 performs the load concentration detection operation again for the aerobic reaction tank 2 1 (reference control tank) of the waterway W 1 .

従って、以後、負荷濃度確認センサAにて検出した微曝気時の負荷濃度データが前回微曝気終了時の負荷濃度データと同一(又は一定範囲内)であって負荷濃度が一定(又は略同一)であれば、同一空気散気量(曝気時「6」、微曝気時「1」)、同一周期T”にて、水路Wの一方の好気性反応タンク2(基準制御タンク)での間欠曝気動作(空気散気量「6,6,6」,「1,1,1」,「6,6,6」,「1,1,1」・・・、図8()K9,K10,K11・・・参照)、水路Wの他方の好気性反応タンク2(従属制御タンク)での同一タイミングでの逆相の間欠曝気動作(空気散気量「1,1,1」,「6,6,6」,「1,1,1」,「6,6,6」・・・、図8()K9’,K10’,K11’・・・参照)が繰り返し行われる。 Therefore, after that, the load concentration data at the time of slight aeration detected by the load concentration confirmation sensor A is the same (or within a certain range) as the load concentration data at the end of the previous slight aeration, and the load concentration is constant (or substantially the same). Then, at the same air diffusion amount (“6” for aeration, “1” for slight aeration) and the same period T”, one aerobic reaction tank 2 1 (reference control tank) of the water channel W 1 Intermittent aeration operation (air diffusion amount "6, 6, 6", "1, 1, 1", "6, 6, 6", "1, 1, 1" ..., Fig. 8 ( c ) K9, See K10, K11...), reverse phase intermittent aeration operation at the same timing in the other aerobic reaction tank 2 2 (subordinate control tank) of water channel W 2 (air diffusion amount "1, 1, 1" , ``6, 6, 6'', ``1, 1, 1'', ` `6, 6, 6'' . .

この間送風機10は、風量「18」(5×3+1×3)から風量「21」(6×3+1×3)への少量の増加で良いため、例えばターボ型送風機のような大型の送風機であっても問題なく対応することが可能である(図9(c)期間S3からS4への変化参照)。 During this time, the blower 10 can be a large blower such as a turbo blower, for example, because a small increase in the air flow from "18" (5×3+1×3) to "21" (6×3+1×3) is sufficient. can be dealt with without any problem (see the change from period S3 to S4 in FIG. 9(c)).

また、図5ステップP12にて負荷濃度が前回微曝気終了時の負荷濃度より上昇しており、ステップP17にて空気散気量がDO上限値に達していない場合は、送風機10の風量が増加され(例えば風量「18」から「21」に段階的又は漸次増加され)、その結果、水路Wの基準制御タンクとしての一方の好気性反応タンク2において、風量調整弁11の開度が曝気時は、空気散気量が上限値に至るまで、空気散気量「5」から「6」に増加していく。或いは、図5ステップP17にて空気散気量がDO上限値に達していない場合は、送風機10の風量及び/又は空気散気量が負荷濃度増加量に応じて(例えば比例して)、漸次増加される。この場合、負荷濃度増加量が大きい場合は、送風機10の風量及び/又は空気散気量の増加量も大きくなり、負荷濃度増加量が少ない場合は、送風機10の風量及び/又は空気散気量の増加量も少なくなる。但し、微曝気時の風量は常時一定散気量(例えば空気散気量「1」)に維持される。 Also, if the load concentration has increased from the load concentration at the end of the previous slight aeration at step P12 in FIG. (For example, the air volume is increased stepwise or gradually from "18" to "21"). During aeration, the air diffusion rate increases from "5" to "6" until the air diffusion rate reaches the upper limit. Alternatively, if the air diffusion amount has not reached the DO upper limit value in step P17 in FIG. Increased. In this case, when the load concentration increase amount is large, the increase amount of the air volume and/or the air diffusion amount of the fan 10 is also large, and when the load concentration increase amount is small, the air volume and/or the air diffusion amount of the fan 10 is increased. The amount of increase in is also reduced. However, the air volume during slight aeration is always maintained at a constant air diffusion volume (for example, the air diffusion volume is "1").

また、図5のステップP19にて周期が周期上限値に達していない場合は、同時に周期も、周期上限値に至るまで、段階的又は漸次増加され(70分、80分、90分)、曝気と微曝気からなる間欠曝気の周期も段階的又は漸次増加していく。或いは、周期が上限値に達していない場合は、負荷濃度増加量に応じて(例えば比例して)、漸次増加される(例えばT=70分、72分、80分のように2分刻みの偶数の整数値)。従って、この場合負荷濃度増加量が大きい場合は、周期の増加量も大きくなり、負荷濃度増加量が少ない場合は、周期の増加量も少なくなる。 In addition, when the cycle has not reached the cycle upper limit value in step P19 of FIG. The cycle of intermittent aeration consisting of air and microaeration also increases step by step or gradually. Alternatively, if the cycle has not reached the upper limit, it is gradually increased (for example, T = 70 minutes, 72 minutes, 80 minutes, etc. in 2-minute increments) according to the load concentration increase amount (for example, proportionally). even integer value). Therefore, in this case, when the amount of increase in load concentration is large, the amount of increase in the period is also large, and when the amount of increase in load concentration is small, the amount of increase in the period is also small.

一方、水路Wの従属制御タンクとしての他方の好気性反応タンク2においては、基準制御タンクと同一の周期及び同一のタイミングにて、逆位相の間欠曝気動作(曝気時の散気量は、基準制御タンクの曝気時散気量と同じ、微曝気時の空気散気量は常時「1」)が行われ、基準制御タンクと同一のタイミングで曝気と微曝気からなる間欠曝気の周期も段階的に増加していく。 On the other hand, in the other aerobic reaction tank 22 as a subordinate control tank of the waterway W2, the intermittent aeration operation of the opposite phase is performed at the same period and at the same timing as the reference control tank ( the amount of aeration during aeration is , the same amount of air diffusion during aeration of the standard control tank, the air diffusion amount during micro-aeration is always "1"), and the intermittent aeration cycle consisting of aeration and micro-aeration is performed at the same timing as the standard control tank. increase step by step.

このように、現在の微曝気終了時の負荷濃度が前回微曝気終了時の負荷濃度より上昇している場合は、空気散気量が足りていないので、空気散気量をDO上限値に至るまでは段階的又は漸次増加し、間欠曝気動作の周期も周期上限値に至るまでは段階的又は漸次増加する、という動作を繰り返し行う。 In this way, if the load concentration at the end of the current slight aeration is higher than the load concentration at the end of the previous slight aeration, the amount of air diffusion is insufficient, so the amount of air diffusion reaches the DO upper limit value. The cycle of the intermittent aeration operation also increases stepwise or gradually until it reaches the cycle upper limit, and this operation is repeated.

従って、負荷濃度の上昇に応じて曝気時の空気散気量を適切に増加させることができるし、曝気時の空気散気量が増加しても、微曝気時は正相間欠曝気動作及び逆相間欠曝気動作共に、常に一定値の少量の散気量を維持し得るので、常に一定の脱窒速度を維持することができ、安定した窒素ガスへの変換を行うことができる。 Therefore, it is possible to appropriately increase the amount of air diffusion during aeration according to the increase in the load concentration, and even if the amount of air diffusion during aeration increases, the normal phase intermittent aeration operation and the reverse In the intermittent aeration operation, a constant small amount of aeration can be maintained at all times, so a constant denitrification rate can be maintained at all times, and conversion to nitrogen gas can be stably performed.

また、従属制御タンクとしての好気性反応タンク2においても、同様に、適切な空気散気量により、基準制御タンクと同一タイミング及び同一周期での逆位相の間欠曝気動作が行われる。 Similarly, in the aerobic reaction tank 22 as a subordinate control tank, an intermittent aeration operation of the opposite phase is performed at the same timing and in the same period as the reference control tank with an appropriate amount of air diffusion.

このように、曝気時において、散気装置5A~5Cから各好気槽2A~2Cに空気散気量「6」の適切な空気が噴射されるので、上記空気により硝化菌が排水中のアンモニア性窒素を亜硝酸性窒素、及び、硝酸性窒素に酸化する硝化反応が行われる。一方、曝気時の空気散気量が変化しても、微曝気時においては、散気装置5A~5Cから各好気槽2A~2Cに空気散気量「1」の一定値の空気が噴射されるので、略無酸素条件下となり、脱窒細菌による硝酸性呼吸又は亜硝酸性呼吸により、亜硝酸性窒素、硝酸性窒素が窒素ガスに還元され、空気中に放出される。このように間欠曝気動作により、排水中の窒素を除去することができる。 In this way, during aeration, the appropriate air with an air diffusion amount of "6" is injected from the air diffusers 5A 1 to 5C 1 to the aerobic tanks 2A 1 to 2C 1 , so that the nitrifying bacteria are killed by the air. A nitrification reaction is performed to oxidize ammonium nitrogen in wastewater into nitrite nitrogen and nitrate nitrogen. On the other hand, even if the air diffusion amount at the time of aeration changes, at the time of slight aeration, air with a constant air diffusion amount of "1" is injected from the air diffusers 5A to 5C into the aerobic tanks 2A to 2C. Therefore, almost anoxic conditions are established, and nitrite nitrogen and nitrite nitrogen are reduced to nitrogen gas by nitrate respiration or nitrite respiration by denitrifying bacteria and released into the air. In this way, the intermittent aeration operation can remove nitrogen in the waste water.

(空気倍率に基づく補正動作)
本実施形態においては、従属制御タンクに負荷濃度確認センサ及び溶存酸素濃度センサを用いない効率的な処理を行うため、図18に示すように、制御部13(空気倍率算出手段13u)にて上記水路Wにおける空気倍率(=空気流量/流入水量)を算出し(これを「基準空気倍率S」という)、この基準制御倍率Sを他の水路Wに適用すべく、水路Wにおける空気散気量を補正することを行う。
(Correction operation based on air magnification)
In this embodiment, in order to perform efficient processing without using a load concentration confirmation sensor and a dissolved oxygen concentration sensor in the subordinate control tank, as shown in FIG. The air ratio (= air flow rate/inflow water flow rate) in the waterway W1 is calculated ( this is referred to as the “standard air ratio S”), and the air in the waterway W2 is applied to the other waterway W2. Correct the amount of diffusion.

具体的には、図5のステップP2の従属制御タンク2の微曝気開始の後、図5のステップP2’にて、水路Wの流入水量計4の流量F1(例えば「5」とする)を計測すると共に、基準制御タンク2の曝気時の空気流量計Gの流量R1(この場合「10」とする)を計測し、「R1/F1=(10/5)=2」より基準空気倍率S(=2)を算出し、基準空気倍率記憶手段13vに記憶する(図5P2’参照)。 Specifically, after starting the subordinate control tank 2-2 in step P2 in FIG. 5 , in step P2 ' in FIG. ), and measure the flow rate R1 (in this case, "10") of the air flow meter G1 at the time of aeration of the reference control tank 21, and obtain " R1 /F1 = (10/5) = 2". Then, the reference air ratio S (=2) is calculated and stored in the reference air ratio storage means 13v (see P2' in FIG. 5).

その後、図5ステップP7において、制御部13(微調整量算出手段13y)は、従属制御タンク2の曝気を開始した後、図5ステップP7’において、水路Wの流入水量計4の流量F2を計測すると共に(この場合「4.5」とする)、水路Wの空気倍率が、上記水路Wの基準空気倍率S(=2)と同一となるように、水路Wの風量調整弁11の開度を微調整する。具体的には、微調整量算出手段13yにおいて、微調整後の空気風量「R2=基準空気倍率S×水路Wの流入水量F2」を算出し(本実施形態の場合2×4.5=9=R2)、水路Wの空気流量計Gの流量R2が、微調整前の空気流量「10」から微調整後の空気流量「9」となるように、他方の弁開閉駆動手段13eに指令する。 After that, in step P7 in FIG . 5, the control unit 13 (fine adjustment amount calculation means 13y 2 ) starts aeration of the subordinate control tank 22, and in step P7′ in FIG . In addition to measuring the flow rate F2 of the waterway W2 (in this case, it is set to "4.5"), the waterway W2 is adjusted so that the air ratio of the waterway W2 is the same as the reference air ratio S ( = 2 ) of the waterway W1. finely adjust the opening degree of the air volume control valve 11-2. Specifically, in the fine adjustment amount calculating means 13y2 , the finely adjusted air volume "R2 = reference air magnification S x inflow water volume F2 of water channel W2" is calculated (in this embodiment, 2 x 4.5 =9= R2 ), the other valve opening/closing driving means is adjusted so that the flow rate R2 of the air flow meter G2 of the water channel W2 changes from the air flow rate before the fine adjustment of "10" to the air flow rate after the fine adjustment of "9". Command 13e 2 .

上記水路Wの他方の弁開閉駆動手段13eは、空気流量計Gからの流量を流量検出手段13cで検出しながら、風量調整弁11の開度を調整し、水路Wの空気流量が「9」となるように調整(補正)する(この場合、空気風量を減少する)。その結果、水路Wの流入水量と水路Wの流入水量の差(5-4.5=0.5)に対応して、水路Wの空気倍率を、水路Wと同一の基準空気倍率Sとすることが可能となる。このように、水路Wでの基準空気倍率Sを測定するだけで、他の水路Wについては、上記基準空気倍率Sに合わせるべく、弁開度を調整するだけでよいため、水路毎に負荷濃度確認センサ及び溶存酸素濃度センサを用いる必要がなく、効率的に空気倍率を合わせることができる。 The other valve opening/closing driving means 13e2 of the water channel W2 adjusts the opening of the air volume control valve 112 while detecting the flow rate from the air flow meter G2 with the flow rate detecting means 13c2 . The air flow rate is adjusted (corrected) to be "9" (in this case, the air flow rate is decreased). As a result, corresponding to the difference between the inflow water volume of the water channel W2 and the water inflow volume of the water channel W1 ( 5-4.5 =0.5), the air ratio of the water channel W2 was changed to the same reference air as that of the water channel W1. A magnification of S is possible. In this way, it is only necessary to measure the standard air magnification factor S in the waterway W1, and for the other waterway W2, it is only necessary to adjust the valve opening to match the above - mentioned standard air magnification factor S. There is no need to use a load concentration confirmation sensor and a dissolved oxygen concentration sensor, and the air magnification can be adjusted efficiently.

(水路Wが4水路以上存在する場合)
上述の説明は、水路Wと水路Wが存在する場合であったが、水路は偶数であれば、より多くの水路(例えば4つの水路W~W、或いはそれ以上の水路W~W10)が存在しても良い。
(When there are 4 or more waterways W)
The above description is for the case where waterway W 1 and waterway W 2 exist. ~ W 10 ) may be present.

水路Wが4以上存在する場合の動作手順を図6に示す。この動作手順は、図5の動作手順と比較して、同位相の従属制御タンクの曝気開始(図6ステップP3)と、同位相の従属制御タンクの微曝気開始(図6のステップP8)が追加されるだけで、その他の手順は図5と同じである。 FIG. 6 shows the operation procedure when there are four or more water channels W. As shown in FIG. Compared to the operation procedure of FIG. 5, this operation procedure has the start of aeration of the subordinate control tank in the same phase (step P3 in FIG. 6) and the start of slight aeration of the subordinate control tank in the same phase (step P8 in FIG. 6). Other procedures are the same as in FIG. 5 except for additions.

この場合、基準制御タンクはあくまでも水路Wの好気性反応タンク2のみであり、他の水路W~水路W・・・の好気性反応タンク2~2・・・は全て従属制御タンクであるが、水路Wと水路W(水路Wと水路W等)の2組の水路を一対として(図10参照)、各水路W,W・・・毎に、風量調整弁11,11・・・及び空気流量計G,G・・・を設けると共に、制御部13には各水路毎に各一方及び各他方の弁開閉駆動手段13e,13e・・・と流量検出手段13c,13c・・・を設け、上記制御部13の上記空気量変更手段13t、上記周期決定手段13rからの上記説明と同様の指令により、水路W,W・・・の従属制御タンク(好気性反応タンク2,2・・・、或いは奇数番目の好気性反応タンク、即ち各一方の好気性反応タンク)にて、上記説明した上記基準制御タンクと同じ同位相の間欠曝気動作を行い、水路W,W・・・の従属制御タンク(好気性反応タンク2,2・・・、或いは偶数番目の好気性反応タンク、即ち各他方の好気性反応タンク)にて上記説明した基準制御タンクと逆位相の逆相間欠曝気動作を行う。 In this case, the reference control tank is only the aerobic reaction tank 2 1 of the waterway W 1 , and the aerobic reaction tanks 2 2 to 2 4 of the other waterways W 2 to W 4 are all subordinate. As for the control tank, two sets of water channels, namely water channel W3 and water channel W4 ( water channel W5 and water channel W6 , etc.) are paired (see FIG. 10), and each water channel W3 , W4, . . . Air volume adjustment valves 11 3 , 11 4 . . . and air flow meters G 3 , G 4 . 4 . . . and flow rate detection means 13c 3 , 13c 4 . In the subordinate control tanks of W 5 (aerobic reaction tanks 2 3 , 2 5 . The same phase intermittent aeration operation as the tank is performed, and the subordinate control tanks (aerobic reaction tanks 2 4 , 2 6 . . . In the other aerobic reaction tank), an intermittent aeration operation opposite to the reference control tank described above is performed.

即ち、制御部13から奇数番目の水路の各一方の好気性反応タンクに対する制御(指令)は、上記水路Wの一方の好気性反応タンク2に対してなされる指令と同じ指令が行われ、これら奇数番目の水路の各一方の好気性反応タンクでは、上記一方の好気性反応タンク2と同様の同相間欠曝気動作が行われ、制御部13から偶数番目の各他方の好気性反応タンクに対する制御(指令)は、上記水路Wの他方の好気性反応タンク2に対してなされる指令と同じ指令が行われ、これら偶数番目の水路の各他方の好気性反応タンクでは、上記他方の好気性反応タンク2と同様の逆相間欠曝気動作が行われる。従って、水路が4以上増加しても、制御部13の全く同一の指令にて複数の水路の好気性反応タンク2を制御することができる。 That is, the control (command) from the control unit 13 to the aerobic reaction tanks on one side of the odd-numbered water channel is the same as the command given to the aerobic reaction tank 21 on the one side of the water channel W1. , in each one of the odd-numbered aerobic reaction tanks, the same phase intermittent aeration operation as in the one aerobic reaction tank 21 is performed, and the controller 13 controls the other even-numbered aerobic reaction tanks. The control (command) for the other aerobic reaction tank 22 of the waterway W2 is the same as the command given to the other aerobic reaction tank 22 of the waterway W2, and the other aerobic reaction tank of these even - numbered waterway A reversed - phase intermittent aeration operation similar to that of the aerobic reaction tank 22 is performed. Therefore, even if the number of water channels is increased by four or more, the aerobic reaction tanks 2 of a plurality of water channels can be controlled with exactly the same command from the control unit 13 .

具体的には、図10に示すように、水路Wに対応する弁開閉駆動手段13eは、基準制御タンクと同位相の間欠曝気動作を行うべく、空気流量計Gの流量を流量検出手段13cにて検出しつつ、風量調整弁11の弁開閉制御を行い、曝気時(例えば空気散気量「5」)、微曝気時(空気散気量「1」)の動作を繰り返し行う(「5,5,5」,「1,1,1」,「5,5,5」,「1,1,1」・・・)。また、水路Wに対応する他方の弁開閉駆動手段13eは、逆位相の間欠曝気動作を行うべく、空気流量計Gの流量を流量検出手段13cにて検出しつつ、風量調整弁11の弁開閉制御を行い、微曝気時(空気散気量「1」)、曝気時(例えば空気散気量「5」)の動作を繰り返し行う(「1,1,1」,「5,5,5」,「1,1,1」,「5,5,5」・・・)。勿論、各一方又は各他方の弁開閉駆動手段13e,13e・・・は、空気量変更手段13t、周期決定手段13rからの曝気時の空気散気量の増加、減少の指令に基づいて、曝気時の弁開度を段階的又は連続的に増加、減少を行う。 Specifically, as shown in FIG. 10 , the valve opening/closing drive means 13e3 corresponding to the water channel W3 detects the flow rate of the air flow meter G3 in order to perform the intermittent aeration operation in the same phase as the reference control tank. While detecting by the means 13c3 , the valve opening/closing control of the air volume control valve 113 is performed, and the operation at the time of aeration (for example, the air diffusion amount is "5") and the operation at the time of slight aeration (air diffusion amount is "1") is repeated. Do ("5, 5, 5", "1, 1, 1", "5, 5, 5", "1, 1, 1"...). In addition, the other valve opening/closing drive means 13e4 corresponding to the water channel W4 detects the flow rate of the air flow meter G4 with the flow rate detection means 13c4 , and the air volume control valve 11 4 valve opening and closing control is performed, and the operation at the time of slight aeration (air diffusion amount "1") and at the time of aeration (for example, air diffusion amount "5") is repeated ("1, 1, 1", "5 , 5,5”, “1,1,1”, “5,5,5” . . . ). Of course, the one or the other valve opening/closing driving means 13e 3 , 13e 4 . , the valve opening during aeration is increased or decreased stepwise or continuously.

従って、図6に示すように、ステップP1にて基準制御タンク(一方の好気性反応タンク2)の曝気を開始し、ステップP2にて同時に逆位相の従属制御タンク(例えば偶数番目の各他方の好気性反応タンク2,2・・・)の微曝気を開始し、ステップP3にて同時に同位相の従属制御タンク(例えば奇数番目の各一方の好気性反応タンク2,2・・・)の曝気が開始される。 Therefore, as shown in FIG. 6, at step P1, the aeration of the reference control tank (one aerobic reaction tank 2 1 ) is started, and at step P2, the opposite phase slave control tanks (eg, the other even-numbered tanks) are simultaneously aerated. of the aerobic reaction tanks 2 2 , 2 4 . ) is started.

その後、曝気又は微曝気の周期が終了した後(図6P4参照)、ステップP6にて基準制御タンク(一方の好気性反応タンク2)の微曝気を開始し、ステップP7にて同時に逆位相の従属制御タンク(例えば偶数番目の各他方の好気性反応タンク2,2・・・)の曝気を開始し、ステップP8にて同時に同位相の従属制御タンク(例えば奇数番目の各一方の好気性反応タンク2,2・・・)の微曝気が開始される。 After that, after the cycle of aeration or micro-aeration is completed (see P4 in FIG. 6), micro-aeration of the reference control tank (one aerobic reaction tank 2 1 ) is started in step P6, and at the same time in step P7 Aeration of the dependent control tanks (for example, the other even-numbered aerobic reaction tanks 2 2 , 2 4 . Slight aeration of the gas reaction tanks 2 3 , 2 5 . . . ) is started.

その後、微曝気又は曝気の周期が終了した後(図6P9参照)、ステップP11~P20において、空気散気量及び周期の増減制御は、一つの基準制御タンク(一方の好気性反応タンク2)の負荷濃度及び溶存酸素濃度を基準に行われ、これを基準に他の全ての従属制御タンクの空気散気量及び周期の増減制御が行われる。
(空気倍率に基づく補正動作)
After that, after the micro-aeration or aeration cycle is completed (see P9 in FIG. 6), in steps P11 to P20, the air diffusion amount and cycle increase/decrease control is performed by one reference control tank (one aerobic reaction tank 2 1 ) Based on the load concentration and dissolved oxygen concentration of the other tanks, the air diffusion amount and period of all other subordinate control tanks are controlled to increase or decrease.
(Correction operation based on air magnification)

また、空気倍率についても、図6のステップP3’,P8’において、上記と同様の制御方法により、各水路W,W・・・の空気倍率を上記水路Wの空気倍率に合わせることができる。 As for the air ratio, in steps P3′ and P8′ of FIG. 6, the air ratio of each of the water channels W 2 , W 3 . . . can be done.

図6のステップP3’において、制御部13(図18、空気倍率算出手段13u)は、水路Wの基準制御タンク2の基準空気倍率Sを算出すると共に、その基準空気倍率Sを基準空気倍率記憶手段13v(図18参照)に記憶する。その後、図6のステップP8’において、水路W,W・・・の各流入水量F2,F3・・・を測定し、各微調整量算出手段13y、13y・・・(図18参照)にて、調整後の空気流量R2,R3・・・を水路毎に算出する。そして、微調整量算出手段13y、13y・・・が各水路の弁開閉制御手段13e,13e・・・に、調整後の空気流量に微調整すべく、微調整指令を送出する。これにより、各水路W,W・・・の各弁開閉駆動手段13e,13e・・・は、各水路W,W・・・の空気流量計G,G・・・からの流量を検出しながら風量調整弁11,11・・・を微調整することにより、各水路W,Wの空気倍率を水路Wの基準空気倍率Sに合わせることが可能となる。 At step P3' in FIG. 6, the control unit 13 (FIG. 18, air-magnification calculation means 13u) calculates the reference air - magnification S of the reference control tank 21 of the waterway W1, and converts the reference air - magnification S It is stored in the magnification storage means 13v (see FIG. 18). After that , in step P8' of FIG . 6 , the inflow water amounts F2, F3 , . ), the adjusted air flow rates R2, R3, . . . are calculated for each channel. Then, the fine adjustment amount calculation means 13y 2 , 13y 3 . . . send a fine adjustment command to the valve opening/closing control means 13e 2 , 13e 3 . . As a result, the valve opening/closing driving means 13e 2 , 13e 3 . . . of the water channels W 2 , W 3 .・By finely adjusting the air volume control valves 11 2 , 11 3 . becomes.

このように、基準制御タンクとしての好気性反応タンク2にのみ負荷濃度確認センサAと溶存酸素濃度センサDを設け、基準制御タンクの当該負荷濃度データと溶存酸素濃度データに基づいて、単一の制御部13にて、基準制御タンクを含む他の全ての従属制御タンクの曝気時の空気散気量及び間欠曝気動作の周期を制御し得るので、水路Wが複数(4水路以上)存在しても、水路全体の制御を容易に行うことができる。 In this way, only the aerobic reaction tank 21 as the reference control tank is provided with the load concentration confirmation sensor A and the dissolved oxygen concentration sensor D, and based on the load concentration data and dissolved oxygen concentration data of the reference control tank, a single Since the control unit 13 can control the air diffusion amount and the intermittent aeration operation cycle during aeration of all the other subordinate control tanks including the reference control tank, there are a plurality of water channels W (4 or more water channels) It is possible to easily control the entire waterway.

また、空気散気量の増加、減少についても、曝気時の空気散気量のみを増加し、微曝気時の空気散気量は正相間欠曝気動作及び逆相間欠曝気動作共に、一定値の少量の風量(例えば空気散気量「1」)を維持しているので、脱窒速度を常に一定に維持することができ、曝気時の空気散気量を増減したとしても、安定した脱窒反応を実現することができる。 Regarding the increase and decrease of the air diffusion amount, only the air diffusion amount during aeration is increased, and the air diffusion amount during slight aeration is a constant value for both the positive phase intermittent aeration operation and the negative phase intermittent aeration operation. Since a small amount of air (for example, air diffusion rate "1") is maintained, the denitrification rate can always be maintained constant, and stable denitrification can be achieved even if the air diffusion rate during aeration is increased or decreased. reaction can be realized.

また、間欠曝気動作について、各水路の曝気時と微曝気時の切り換えは、各水路毎に設けた風量調整弁11,11・・・の弁開度調整にて行い、一方の水路(奇数番目の水路)の各一方の好気性反応タンクの間欠曝気動作に対して、他方の水路(偶数番目の水路)の各他方の好気性反応タンクの間欠曝気動作を逆位相とすることにより、同時のタイミングで行われる奇数番目の水路の各一方の好気性反応タンクの曝気と、偶数番目の水路の各他方の好気性反応タンクの微曝気の合計風量は、空気散気量の増減指示がない限り一定とすることができるため、送風機10の風量も、風量の増減指示がない限り所定の風量、即ち、一定の風量にて運転を継続することができる。 In the intermittent aeration operation, switching between aeration and slight aeration of each water channel is performed by adjusting the valve opening of the air volume control valves 11 1 , 11 2 . . . provided for each water channel. By making the intermittent aeration operation of each other aerobic reaction tank of the other waterway (even-numbered waterway) opposite to the intermittent aeration operation of each one of the aerobic reaction tanks of the odd-numbered waterway), The total air volume of the aeration of the aerobic reaction tanks of the odd-numbered water channels and the micro-aeration of the other aerobic reaction tanks of the even-numbered channels, which are performed at the same time, Therefore, the air volume of the blower 10 can be kept constant as long as there is no instruction to increase or decrease the air volume.

また、空気散気量を増加、減少する場合においても、例えば水路Wの曝気時の空気散気量「5」、逆位相の水路Wの微曝気時の空気散気量「1」の状態(例えば4水路の場合は、送風機10の合計風量「36」(2水路の風量「18」×2)の状態)から、風量を増加し、水路Wの曝気時の空気散気量「6」、水路Wの微曝気時の空気散気量「1」になったとしても、送風機10の合計風量は「36」から風量「42」(2水路の風量「21」×2)に少量増加すれば良い。また、例えば水路Wの曝気時の空気散気量「5」、水路Wの微曝気時の空気散気量「1」の状態(送風機10の風量「36」の状態)から、風量を減少し、水路Wの曝気時の空気散気量「4」、水路Wの微曝気時の空気散気量「1」になったとしても、送風機10の風量は「36」から風量「30」(2水路の風量「15」×2)に少量減少すれば良い。 Also, when increasing or decreasing the air diffusion amount, for example, the air diffusion amount at the time of aeration of the water channel W1 is " 5 ", and the air diffusion amount at the time of the reverse phase water channel W2 is " 1 ". The air volume is increased from the state (for example, in the case of 4 channels, the total air volume of the blower 10 is "36" (the air volume of 2 channels is "18" x 2 )), and the air diffusion volume during aeration of the channel W1 is "6", even if the air diffusion amount at the time of slight aeration in the water channel W2 becomes "1", the total air volume of the blower 10 will change from "36" to the air volume "42" (air volume of the two water channels "21" x 2). It should be increased by a small amount. Further, for example, from the state of air diffusion amount "5" during aeration in water channel W1 and air diffusion amount " 1 " during slight aeration in water channel W2 ( air volume "36" state of blower 10), the air volume is changed to Even if the air diffusion amount during aeration in the waterway W1 becomes " 4 " and the air diffusion amount during slight aeration in the waterway W2 becomes " 1 ", the air volume of the blower 10 decreases from "36" to "30" (air volume of two channels "15" x 2).

従って、例えば大規模な下水処理場に使用されている既存の大型の送風機(例えばターボ形送風機)であっても、風量の増加、減少に十分に対応することが可能であり、既存の大規模都市下水処理場において問題なく適用することができる。 Therefore, even existing large-scale blowers (for example, turbo-type blowers) used in large-scale sewage treatment plants, for example, can sufficiently cope with increases and decreases in air volume. It can be applied without problems in municipal sewage treatment plants.

また、このように4水路以上となっても、図18の構成により、各水路W,W・・・の空気倍率を基準制御タンクの空気倍率に合わせることができ、水路が4以上の複数になっても水路毎に負荷濃度確認センサ及び溶存酸素濃度センサを用いる必要がなく、複数水路の空気倍率を効率的に基準空気倍率に合わせることができる。 In addition, even if there are four or more water channels, the configuration of FIG. 18 allows the air magnification of each water channel W2 , W3, . Even if there is a plurality of waterways, there is no need to use a load concentration confirmation sensor and a dissolved oxygen concentration sensor for each waterway, and the air magnification of multiple waterways can be efficiently adjusted to the reference air magnification.

2 周期が一定の場合の実施形態(第2の実施形態)
上記の実施形態では、曝気時の空気散気量の増加又は減少と共に、間欠曝気動作の周期も増加又は減少させる構成について説明した。ここでは、曝気時の空気散気量を増加又は減少するが、周期は一定(例えば60分)とする場合の実施形態(第2の実施形態)について説明する。
2 Embodiment in Case of Constant Cycle (Second Embodiment)
In the above embodiment, the configuration was described in which the period of the intermittent aeration operation is increased or decreased together with the increase or decrease in the amount of air diffused during aeration. Here, an embodiment (second embodiment) in which the amount of air diffused during aeration is increased or decreased and the cycle is constant (for example, 60 minutes) will be described.

図5又は図6の動作手順において、ステップP15,P16及びステップP19,P20が存在せず、ステップP14にて空気散気量を減少する動作を行い、又は、ステップP18にて空気散気量を増加する動作を行った後、ステップP1又はステップP2に戻って、基準制御タンクの曝気動作、逆位相の従属制御タンクの微曝気動作、及び同位相の従属制御タンクの曝気動作を行う。 5 or 6, steps P15, P16 and steps P19, P20 do not exist, and an operation is performed to reduce the air diffusion amount in step P14, or an air diffusion amount is reduced in step P18. After performing the increasing operation, return to step P1 or step P2 to perform the aeration operation of the reference control tank, the minor aeration operation of the subordinate control tank in opposite phase, and the aeration operation of the subordinate control tank in phase.

その後、ステップP4及びステップP9にて周期を決定するが、この場合の周期Tは常時一定(T/2=30分)であり、曝気時の空気散気量の増加、減少に伴って変化しない。また、空気散気量を増加、減少するのは「曝気時」のみであり、「微曝気時」の空気散気量は上記と同様に、増減ぜずに、一定値(例えば風量「1」)を維持する。 After that, the period is determined in steps P4 and P9. In this case, the period T is always constant (T/2=30 minutes) and does not change with the increase or decrease of the air diffusion amount during aeration. . Also, the amount of air diffusion is increased or decreased only during "aeration", and the amount of air diffusion during "slight aeration" does not increase or decrease in the same manner as above, and is a constant value (for example, air volume "1"). ).

この場合、制御部13において、周期を変更する制御に係る構成である現在周期認識手段13p、周期下限値記憶手段13o、周期上限値記憶手段13n,周期比較手段13m(図)、周期変更手段13(図4)に係る構成は必要ない。 In this case, the control unit 13 includes current cycle recognition means 13p, cycle lower limit value storage means 13o, cycle upper limit value storage means 13n, cycle comparison means 13m (FIG. 3 ), and cycle change means. No configuration for 13 q (FIG. 4) is required.

よって、ステップP14,P18においては、溶存酸素濃度比較手段13iから送風機駆動手段13dに曝気時の風量の増加又は減少が指示されると共に、空気量変更手段13tに曝気時の空気散気量の増加又は減少が指示され、その結果、各一方及び各他方の弁開閉駆動手段13e,13eにおいて、周期は一定の状態で、曝気時の空気散気量のみ増加又は減少するように制御が行わる(図11(a)(b)参照)。 Therefore, in steps P14 and P18, the dissolved oxygen concentration comparing means 13i instructs the blower driving means 13d to increase or decrease the air volume during aeration, and the air volume changing means 13t is instructed to increase or decrease the air diffusion amount during aeration. Alternatively, a decrease is instructed, and as a result, in the valve opening/closing driving means 13e 1 and 13e 2 of each one and each other, control is performed so that only the air diffusion amount during aeration is increased or decreased while the period is constant. (see FIGS. 11(a) and 11(b)).

このように間欠曝気動作の周期は一定とし、負荷濃度の増加、減少に対応して、曝気時の空気散気量のみを増加、減少制御することによっても、脱窒速度を維持しながら、負荷濃度の増減(アンモニアの増減)に対応して空気散気量を増加、減少することにより、負荷濃度に応じて硝化反応を適切に促進することができる。 In this way, the periodicity of the intermittent aeration operation is constant, and only the air diffusion rate during aeration is increased or decreased in response to the increase or decrease of the load concentration. By increasing or decreasing the amount of air diffusion according to the increase or decrease in concentration (increase or decrease in ammonia), the nitrification reaction can be appropriately promoted according to the load concentration.

3 溶存酸素濃度センサDを用いない場合(第3実施形態)(図7参照)
上記の実施形態では、溶存酸素濃度センサDを用いて、基準制御タンクとしての好気性反応タンク2の現在の溶存酸素濃度を検出し、制御部13(溶存酸素濃度比較手段13i)は、この現在の溶存酸素濃度がDO下限値又はDO上限値に達しているか否かを検出し、その結果に応じて、風量及び空気散気量の増加又は減少を行っている。
3 When Dissolved Oxygen Concentration Sensor D is not Used (Third Embodiment) (See FIG. 7)
In the above embodiment, the dissolved oxygen concentration sensor D is used to detect the current dissolved oxygen concentration of the aerobic reaction tank 21 as the reference control tank, and the control unit 13 (dissolved oxygen concentration comparison means 13i) It is detected whether or not the current dissolved oxygen concentration has reached the DO lower limit value or the DO upper limit value, and depending on the result, the air flow rate and the air diffusion rate are increased or decreased.

これに対して、この実施形態では、溶存酸素濃度センサDを用いることなく、制御を実現するものである。本実施形態の動作手順を図7に示す。この動作手順は、ステップP13,P17にて溶存酸素濃度を基準とする判断に代えて、現在の空気散気量と予め設定している空気散気量の上限値又は下限値と比較する点が異なるのみで、その他の手順は上記第1又は第2実施形態と同じである。 On the other hand, in this embodiment, control is realized without using the dissolved oxygen concentration sensor D. FIG. FIG. 7 shows the operation procedure of this embodiment. This operation procedure is characterized in that the current air diffusion amount is compared with the preset upper limit or lower limit of the air diffusion amount instead of the determination based on the dissolved oxygen concentration in steps P13 and P17. Other procedures are the same as those of the first or second embodiment, except for the difference.

この実施形態では、図3の溶存酸素濃度検出手段13b、DO下限値記憶手段13k、DO上限値記憶手段13j、溶存酸素濃度比較手段13iに代えて、図12に示すように、前回散気量記憶手段13b’、散気量下限値記憶手段13k’、散気量上限値記憶手段13j’、空気散気量比較手段13i’が設けられる。 In this embodiment, instead of the dissolved oxygen concentration detection means 13b, the DO lower limit value storage means 13k, the DO upper limit value storage means 13j, and the dissolved oxygen concentration comparison means 13i of FIG. Storage means 13b', air diffusion amount lower limit value storage means 13k', air diffusion amount upper limit value storage means 13j', and air diffusion amount comparison means 13i' are provided.

そして、上記制御部13(負荷濃度比較手段13h)が前回微曝気時の負荷濃度より現在の微曝気時の負荷濃度が低いと判断し(図7ステップP11YES)、その旨、空気散気量比較手段13i’に通知があった場合は、ステップP13において、空気散気量比較手段13i’が、前回の空気散気量が散気量下限値に達していないと判断した場合は、送風機駆動手段13dに曝気時の風量を減少するように指令を行うと共に、上記空気量変更手段13t(図4参照)に曝気時の空気散気量を減少するように指令を行う(図7、ステップP14参照)。この場合、空気散気量は、負荷濃度の減少量に応じて(例えば比例して)減少することができる。それ以降は、ステップP15,P16を経て、周期も減少され、ステップP1に戻って、基準制御タンクにおいては、より少ない空気散気量にて曝気が行われ、従属制御タンクにおいては、一定の空気散気量(例えば空気散気量「1」)の微曝気が行われ、以降は第1の実施形態と同様の処理が行われる。 Then, the control unit 13 (load concentration comparison means 13h) determines that the load concentration during the current slight aeration is lower than the load concentration during the previous slight aeration (YES in step P11 in FIG. 7), and compares the amount of air diffuser to that effect. If the means 13i' is notified, in step P13, if the air diffusion amount comparing means 13i' determines that the previous air diffusion amount has not reached the air diffusion amount lower limit value, the blower driving means 13d is commanded to decrease the air volume during aeration, and the air volume changing means 13t (see FIG. 4) is commanded to decrease the air diffuser volume during aeration (see FIG. 7, step P14). ). In this case, the amount of air diffusion can be decreased in accordance with (eg proportionally) the amount of decrease in load concentration. From then on, through steps P15 and P16, the period is also reduced, returning to step P1, where the reference control tank is aerated with a smaller amount of air, and the subordinate control tank is aerated with a constant amount of air. Slight aeration is performed with an air diffusion amount (for example, an air diffusion amount of "1"), and thereafter the same processing as in the first embodiment is performed.

また、制御部13(負荷濃度比較手段13h)が前回微曝気時の負荷濃度より現在の微曝気時の負荷濃度が高いと判断し(図7ステップP12YES)、その旨、空気散気量比較手段13i’に通知があった場合は、ステップP17において、空気散気量比較手段13i’が、前回の空気散気量が散気量上限値に達していないと判断した場合は、送風機駆動手段13dに曝気時の風量を増加するように指令を行うと共に、上記空気変更手段13t(図4参照)に曝気時の空気散気量を増加するように指令を行う(図7、ステップP18参照)。この場合、空気散気量は、負荷濃度の増加量に応じて(例えば比例して)増加することができる。それ以降は、ステップP19,P20を経て、周期も増加され、ステップP1に戻って、主制御タンクにおいては、より多い空気散気量にて曝気が行われ、従属制御タンクにおいては、一定の空気散気量(例えば空気散気量「1」)の微曝気が行われ、以降は第1の実施形態と同様の処理が行われる。 In addition, the control unit 13 (load concentration comparison means 13h) determines that the load concentration during the current slight aeration is higher than the load concentration during the previous slight aeration (YES in step P12 in FIG. 7), and informs the air diffusion amount comparison means. 13i', if the air diffusion amount comparison means 13i' determines that the previous air diffusion amount has not reached the air diffusion upper limit value in step P17, the blower driving means 13d command to increase the air volume during aeration, and command the air changing means 13t (see FIG. 4) to increase the air diffusion volume during aeration (see FIG. 7, step P18). In this case, the amount of air diffusion can be increased in accordance with (for example, in proportion to) the increase in load concentration. After that, through steps P19 and P20, the period is also increased, returning to step P1, the main control tank is aerated with a larger amount of air diffusion, and the subordinate control tank is aerated with a constant amount of air. Slight aeration is performed with an air diffusion amount (for example, an air diffusion amount of "1"), and thereafter the same processing as in the first embodiment is performed.

この場合、制御部13(空気散気量比較手段13i’)は、前回の空気散気量は、例えば、水路Wの弁開閉駆動手段13eの前回の曝気時の弁開度データ(又は弁開度データの1/3、即ち3つの内、1の好機槽に対応する開度データ)、或いは、空気流量計Gの前回の曝気時の流量データ(又は流量データの1/3、即ち3つの内、1の好機槽に対応する流量データ)を認識し、これらのデータを制御部13(前回散気量検出手段13b’)が記憶し、これを前回の空気散気量として、散気量上限値又は散気量下限値と比較すれば良い。 In this case, the control unit 13 (air diffusion amount comparison means 13i') determines that the previous air diffusion amount is, for example, the valve opening degree data (or 1/3 of the valve opening data, that is, the opening data corresponding to one of the three opportunity tanks), or the flow rate data of the previous aeration of the air flow meter G 1 (or 1/3 of the flow rate data, That is, the flow rate data corresponding to one of the three opportunity tanks) is recognized, these data are stored by the control unit 13 (previous air diffusion amount detection means 13b'), and this is used as the previous air diffusion amount, It can be compared with the air diffusion amount upper limit value or the air diffusion amount lower limit value.

このように構成すると、若干精度は落ちるが、溶存酸素濃度センサDを使用することなく、より低コストの装置構成にて、本発明を実現することが可能となる。
4 第4実施形態(図13参照)
この実施形態は、基本的構成は第1の実施形態と同様であるが、各水路W,W・・・の好気性反応タンク2,2・・・の上流側に脱窒を行う無酸素槽14,14・・・を各々設け、かつ末端の好気槽2C,2C・・・の排水の一部を上記無酸素槽14,14・・・に供給する排水循環管12,12・・・を設け、上記汚泥返送管6は上記最終沈殿池3で沈殿分離した微生物フロックの一部を、好気槽2A,2Aに代えて、上記無酸素槽14,14・・・に各々返送するように構成したものである。
With this configuration, although the accuracy is slightly lowered, the dissolved oxygen concentration sensor D is not used, and the present invention can be realized with a lower-cost device configuration.
4 Fourth embodiment (see FIG. 13)
This embodiment has the same basic configuration as the first embodiment, but denitrification is provided upstream of the aerobic reaction tanks 2 1 , 2 2 . . . Anoxic tanks 14 1 , 14 2 . and the sludge return pipe 6 transfers part of the microbial flocs precipitated and separated in the final sedimentation tank 3 to the aerobic tanks 2A 1 and 2A 2 instead of the aerobic tanks 2A 1 and 2A 2 . It is configured to be returned to each of the anoxic tanks 14 1 , 14 2 . . .

それ以外の構成は、第1の実施形態と同様であり、基準制御タンクとしての一方の好気性反応タンク2(及び奇数番目の各一方の好気性反応タンクである従属制御タンク)では曝気と微曝気からなる正相間欠曝気動作が行われ、従属制御タンクとしての各他方の好気性反応タンク2(及び偶数番目の従属制御タンク)では、上記基準制御タンクと同一のタイミング、同一周期で、上記基準制御タンク(又は奇数番目の従属制御タンク)とは逆位相の微曝気と曝気からなる逆相間欠曝気動作が行われる。 The rest of the configuration is the same as in the first embodiment, and aeration and Positive-phase intermittent aeration operation consisting of slight aeration is performed, and in the other aerobic reaction tanks 2 2 (and even-numbered subordinate control tanks) as subordinate control tanks, at the same timing and period as the reference control tank , anti-phase intermittent aeration operation consisting of micro-aeration and aeration in opposite phase to the reference control tank (or odd-numbered subordinate control tank).

上記無酸素槽14には、散気装置は設けずに、無酸素槽14内の排水を攪拌するための攪拌機が設けられる。このように構成すると、好気槽2A,2B,2Cにて行われる間欠曝気動作により、微曝気時に空気散気量を低下させて脱窒菌による脱窒反応により窒素ガスの空気中への放出が行われるが、好気槽2Aの上流側に脱窒反応専用の無酸素槽14を設け、硝化液を排水循環管12にて無酸素槽14に戻すことにより、当該無酸素槽14において、脱窒反応が活発に行われるため、各水路Wにおける脱窒効果を高めることができる。 The anoxic tank 14 is not provided with an air diffuser, but is provided with an agitator for agitating the waste water in the anoxic tank 14 . With this configuration, the intermittent aeration operation performed in the aerobic tanks 2A, 2B, and 2C reduces the amount of air diffusion during slight aeration, and the denitrifying reaction by the denitrifying bacteria releases nitrogen gas into the air. However, an anoxic tank 14 dedicated to denitrification reaction is provided upstream of the aerobic tank 2A, and the nitrifying liquid is returned to the anoxic tank 14 through the waste water circulation pipe 12, so that deoxidization is performed in the anoxic tank 14. Since the nitriding reaction is actively carried out, the denitrifying effect in each water channel W can be enhanced.

5 第5の実施形態(図14参照)
この実施形態は、基本的構成は第4の実施形態と同様であるが、各水路W,W・・・の無酸素槽14,14・・・の上流側に、さらに、リン吐き出しを行う嫌気槽15,15・・・を設け、上記汚泥返送管9は上記最終沈殿池3で沈殿分離した微生物フロックの一部を汚泥返送管6にて、好気槽2、無酸素槽14に代えて、上記嫌気槽15,15・・・に各々返送するように構成したものである。
5 Fifth embodiment (see FIG. 14)
This embodiment has the same basic configuration as the fourth embodiment, but a phosphorus Anaerobic tanks 15 1 , 15 2 . Instead of the oxygen tank 14, the anaerobic tanks 15.sub.1 , 15.sub.2 , . . .

この嫌気槽15においては、散気装置は設けずに、嫌気槽15内の排水を攪拌するための攪拌機を設ける。このように構成すると、最初沈殿池1からの処理水が嫌気槽15に送られるが、当該嫌気槽15には最終沈殿池からの返送汚泥中のリン蓄積細菌が酢酸系の有機物を体内に蓄積し、リン酸を放出(吐き出す)する。このリン酸は、上記無酸素槽14を経て、好気槽2A~2Cに送られ、これら好気槽2A~2Cにおいて、活性汚泥中にリンが吸収されることで、リンの除去を行うことができる。







The anaerobic tank 15 is not provided with an air diffuser, but is provided with a stirrer for stirring the waste water in the anaerobic tank 15 . With this configuration, the treated water from the primary sedimentation tank 1 is sent to the anaerobic tank 15. In the anaerobic tank 15, phosphorus-accumulating bacteria in the returned sludge from the final sedimentation tank accumulate acetic acid-based organic matter in their bodies. and releases (exhales) phosphate. This phosphoric acid is sent to the aerobic tanks 2A to 2C via the anoxic tank 14, and in these aerobic tanks 2A to 2C, phosphorus is absorbed into the activated sludge, thereby removing phosphorus. can be done.







従って、無酸素槽14の上流側に嫌気槽15を設けることにより、排水中の窒素の除去のみならず、リンの除去をも行うことができる。 Therefore, by providing the anaerobic tank 15 on the upstream side of the anoxic tank 14, it is possible to remove not only nitrogen but also phosphorus in the waste water.

6 第6の実施形態(図15参照)
この実施形態は、基本的構成は第1の実施形態と同様であるが、各水路W,W・・・の好気性反応タンク2,2・・・の上流側に、リン吐き出しを行う嫌気槽15,15・・・を設け、上記汚泥返送管6は上記最終沈殿池3で沈殿分離した微生物フロックの一部を、好気槽2A,2Aに代えて、上記嫌気槽15,15・・・に各々返送するように構成したものである。この嫌気槽15においては、散気装置は設けずに、嫌気槽15内の排水を攪拌するための攪拌機を設ける。
6 Sixth embodiment (see FIG. 15)
This embodiment has the same basic configuration as the first embodiment, but phosphorus is discharged upstream of the aerobic reaction tanks 21 , 22 , . anaerobic tanks 15 1 , 15 2 . It is configured to be returned to each of the anaerobic tanks 15 1 , 15 2 . . . The anaerobic tank 15 is not provided with an air diffuser, but is provided with a stirrer for stirring the waste water in the anaerobic tank 15 .

このように構成すると、窒素除去は、好気槽2A~2Cの間欠曝気動作により行いながら、嫌気槽15によって放出された(吐き出された)リン酸を好気槽2A~2Cの活性汚泥中に吸収されることで、好気槽2A~2Cにて窒素を除去しながら、リンの除去をも行うことができる。 With this configuration, nitrogen removal is performed by intermittent aeration operation of the aerobic tanks 2A to 2C, and the phosphoric acid released (exhaled) by the anaerobic tank 15 is transferred into the activated sludge of the aerobic tanks 2A to 2C. By being absorbed, phosphorus can be removed while removing nitrogen in the aerobic tanks 2A to 2C.

上記実施形態において、負荷確認手段としてアンモニアセンサを用いたが、必ずしもこれに限定されるものではなく、負荷が高くなると上昇し、負荷が低くなると下降する特性を有する活性汚泥微生物の呼吸反応に関与する補酵素の一つであるニコチンアミド・アデニン・ジヌクレオチドの計測装置、微曝気時のDO濃度の減少速度すなわち呼吸速度を演算することにより負荷変化を確認できることから溶存酸素センサを使用することが可能である。その他、酸化還元電位計(ORP計)、UV計なども適用可能である。 In the above embodiment, the ammonia sensor is used as the load confirmation means, but it is not necessarily limited to this. Nicotinamide, adenine, dinucleotide, which is one of the coenzymes that are involved in this process, can be measured, and the dissolved oxygen sensor can be used because the change in load can be confirmed by calculating the rate of decrease in DO concentration during microaeration, that is, the respiration rate. It is possible. In addition, an oxidation-reduction potential meter (ORP meter), a UV meter, etc. are also applicable.

また、上記の実施形態では、一方の好気性反応タンク2では好気槽2A,2B,2Cは共に曝気、他方の好気性反応タンク2では好機槽2A,2B,2Cは共に微曝気とする制御を行ったが、図16に示すように、例えば好気性反応タンク2,2を共に5つの槽(2A~2E)に分割し、各槽毎に散気装置5A~5Eを分離して設け、好気性反応タンク2において5つの槽を曝気(図16中丸印)と微曝気(図16中三角印)を交互に行い、他方の好気性反応タンク2において逆位相、同一周期かつ同一タイミングの間欠曝気動作を行うことも可能である。この場合、曝気と微曝気の切り換えは、各散気装置5A~5E毎に設けられた散気調整弁9A~9Eにより行うことができる。 In the above embodiment, the aerobic tanks 2A, 2B and 2C of the aerobic reaction tank 21 are all aerated, and the aerobic tanks 2A, 2B and 2C of the aerobic reaction tank 22 are microaerated. However, as shown in FIG. 16, for example, both the aerobic reaction tanks 2 1 and 2 2 are divided into five tanks (2A to 2E), and the diffusers 5A to 5E are separated for each tank. Aeration (marked with circles in FIG. 16) and microaeration (marked with triangles in FIG . 16) are alternately performed in five tanks in the aerobic reaction tank 21, and the other aerobic reaction tank 22 performs the opposite phase and the same It is also possible to perform periodic and intermittent aeration with the same timing. In this case, switching between aeration and slight aeration can be performed by means of the aeration control valves 9A to 9E provided for each of the aeration devices 5A to 5E.

また、上記説明では、複数の水路の送気管8,8・・・に上記送風機10を設けた構成を示したが、例えば複数の水路毎(例えば4~5水路毎)に送風機10を設け、全体の水路(例えば10水路)としては送風機10が複数台(例えば2つの送風機10)となる構成でも良い。 Further, in the above description, the configuration in which the blowers 10 are provided in the air pipes 8 1 , 8 2 . A plurality of air blowers 10 (for example, two air blowers 10) may be provided for the entire water passages (for example, 10 water passages).

また、上記実施形態では、散気調整弁9A,9B,9Cの開度は均等として説明したが、上記散気調整弁9A,9B,9Cの曝気時の開度を「9Aの開度>9Bの開度>9Cの開度」となるように事前に定め、一方、微曝気時には均等の開度「9Aの開度=9Bの開度=9Cの開度」とすることで、曝気時の散気量に傾斜(例えば、各好気槽2A,2B,2Cの空気散気量が「7,5,3」(合計「15」)を設け、微曝気時の散気量は「1,1,1」とする操作も可能である。この場合、制御部13(散気調整弁駆動手段13f)が曝気と微曝気の周期Tに合わせて、散気調整弁9A,9B,9Cの開度を、上記曝気時の傾斜付きの開度と上記微曝気時の均等の開度に切り換える動作を繰り返し行うことになる。このように構成すると、本発明の間欠曝気動作における曝気時において、好気性反応タンクの酸素要求量が大きい流入端側の空気散気量を大きく、酸素要求量が小さい流出端側の空気散気量を小さくする、所謂テーパードエアレーション方式を実現することができ、流下方向に沿った酸素要求量に適切に対応できるので、均等の散気よりさらに効率的な間欠曝気方式を実現できる。 Further, in the above embodiment, the opening degrees of the air diffusion adjusting valves 9A, 9B, and 9C are assumed to be equal. The degree of opening of > 9C" is set in advance, and on the other hand, at the time of slight aeration, the even degree of opening is set to "the degree of opening of 9A = the degree of opening of 9B = the degree of opening of 9C". The diffusion rate is set with a gradient (for example, the air diffusion rate of each aerobic tank 2A, 2B, 2C is "7, 5, 3" (total "15"), and the diffusion rate at the time of slight aeration is "1, 1, 1". In this case, the controller 13 (diffusion adjustment valve drive means 13f) opens the diffusion adjustment valves 9A, 9B, and 9C in accordance with the cycle T of aeration and slight aeration. The operation of switching the opening degree between the inclined opening degree during the aeration and the uniform opening degree during the slight aeration is repeatedly performed. It is possible to realize a so-called tapered aeration system in which the air diffusion amount is increased at the inflow end of the gas reaction tank where the oxygen demand is high and the air diffusion amount is decreased at the outflow end where the oxygen demand is low. Since it is possible to appropriately respond to the oxygen demand along the , it is possible to realize an intermittent aeration system that is more efficient than uniform aeration.

また、上記実施形態では、説明の簡単のため、曝気時の空気散気量を「4」「5」「6」、微曝気時の空気散気量を「1」、及び、送風機の風量を「15」「18」「21」等と表現したが、これらは増減の方向性を示す数字であり、風量及び空気散気量はこれらに限定されないこと、及び整数に限定されないことは勿論である。例えば、空気流量計G,G・・・にて計測される空気流量は例えば1300m/時、1450m/時等であり、送風機10の風量は例えば数十m/分~数百m/分等である。 Further, in the above embodiment, for the sake of simplicity of explanation, the air diffusion amount during aeration is set to "4", "5", and "6", the air diffusion amount during slight aeration is set to "1", and the air volume of the blower is set to Although expressed as "15", "18", "21", etc., these are numbers that indicate the directionality of increase and decrease, and the air volume and air diffusion volume are not limited to these, and are not limited to integers. . For example , the air flow rate measured by the air flow meters G 1 , G 2 . . . m 3 /min, and so on.

また、上記実施形態では、図17の想定実験をベースに、周期Tは最短で20分、最長で90分としたが、周期の下限値、上限値はこれに限定されることはない。 In the above embodiment, the shortest period T is 20 minutes and the longest period T is 90 minutes based on the hypothetical experiment shown in FIG. 17, but the lower limit and upper limit of the period are not limited to this.

本発明は以上のように、間欠曝気動作における微曝気の風量をゼロにすることなく、一方の好気性反応タンク2において正相間欠曝気動作を行い、他方の好気性反応タンク2において逆相間欠曝気動作を行うことにより、間欠曝気動作中の送風機10の風量を停止することなく所定の風量(例えば一定風量)にて運転を継続することができ、従って例えば大型のターボ形送風機を使用している都市型大規模下水処理場において、好気性反応タンク及び空気散気部等の構成を大幅に変更することなく、間欠曝気処理による窒素除去が可能な高機能排水処理施設への変更を比較的低コストにて実現することができるものである。 As described above, the present invention performs positive phase intermittent aeration operation in one aerobic reaction tank 21 and reverse operation in the other aerobic reaction tank 22 without setting the air volume of microaeration in the intermittent aeration operation to zero. By performing the intermittent aeration operation, it is possible to continue the operation at a predetermined air volume (for example, a constant air volume) without stopping the air volume of the fan 10 during the intermittent aeration operation. In urban large-scale sewage treatment plants currently in operation, change to high-performance wastewater treatment facilities that can remove nitrogen through intermittent aeration treatment without significantly changing the configuration of aerobic reaction tanks, air diffusers, etc. It can be realized at relatively low cost.

また、例えば複数の水路(例えば4水路以上)を有する都市型大規模下水処理場においても、比較的低廉なコストで間欠曝気動作による窒素除去が可能な高機能排水処理施設への変更を行うことが可能となる。 Also, for example, even in a large-scale urban sewage treatment plant with multiple waterways (for example, 4 or more waterways), change to a high-performance wastewater treatment facility that can remove nitrogen by intermittent aeration operation at a relatively low cost. becomes possible.

また、何れか一つの好気性反応タンク2に負荷濃度確認センサA及び溶存酸素濃度センサDを設けるだけで、全ての好気性反応タンク2,2・・・において、負荷濃度に応じた曝気時の空気散気量及び周期の増減制御を行うことができ、負荷濃度の上昇又は下降に対応して適切な空気散気量及び周期の変更を、全ての水路に対応する好気性反応タンクにおいて実現することが可能となる。 In addition, by simply installing the load concentration confirmation sensor A and the dissolved oxygen concentration sensor D in any one of the aerobic reaction tanks 2 1 , all the aerobic reaction tanks 2 1 , 2 2 . An aerobic reaction tank that can control the increase or decrease of the air diffusion amount and period during aeration, and can appropriately change the air diffusion amount and period in response to the increase or decrease of the load concentration, for all water channels. It becomes possible to realize in

また、各一方の好気性反応タンク2,2・・・と各他方の好気性反応タンク2,2・・・は逆位相にて制御されるので、空気散気量の増減変更があっても、送風機10の風量の増減変化は最小限に留めることができ、例えば大型のターボ形送風機を使用している都市型大規模下水処理場においても適用が可能な排水処理装置及び排水処理方法を実現し得る。 Also, the aerobic reaction tanks 2 1 , 2 3 . . . on one side and the aerobic reaction tanks 2 2 , 2 4 . Even if there is, the increase or decrease in the air volume of the blower 10 can be minimized, and for example, a wastewater treatment device and wastewater that can be applied to a large-scale urban sewage treatment plant using a large turbo blower A processing method may be implemented.

また、周期は常時一定値を維持しながら、負荷濃度の上昇又は下降に応じて空気散気量のみを増減変更することができ、周期をも増減変更する制御に比べて簡易ではあるが、間欠曝気動作による窒素除去を可能とする大規模な排水処理施設に適用可能な排水処理装置及び排水処理方法を実現することができる。 In addition, while the cycle is always maintained at a constant value, only the air diffusion amount can be increased or decreased according to the increase or decrease of the load concentration. It is possible to realize a wastewater treatment apparatus and a wastewater treatment method that are applicable to large-scale wastewater treatment facilities that enable nitrogen removal by aeration operation.

また、溶存酸素濃度センサDを用いることなく、間欠曝気動作による窒素除去を可能とする排水処理施設を実現することができ、精度は若干落ちるが、同様に大規模な排水処理施設に適用可能な排水処理装置及び排水処理方法を実現することができる。 In addition, without using the dissolved oxygen concentration sensor D, it is possible to realize a wastewater treatment facility that can remove nitrogen by intermittent aeration. A wastewater treatment device and a wastewater treatment method can be realized.

また、無酸素槽14を設けることで、好気性反応タンクでの間欠曝気動作による窒素除去の機能に加えて上流側の無酸素槽14においても活発に脱窒反応が行われるため、より効果的に窒素除去を行うことが可能となる。 In addition, by providing the anoxic tank 14, in addition to the function of nitrogen removal by intermittent aeration operation in the aerobic reaction tank, the denitrification reaction is actively performed in the upstream anoxic tank 14, so it is more effective. Nitrogen removal can be performed immediately.

また、無酸素槽14の上流に嫌気槽15を設けることにより、上記無酸素槽14及び好気性反応タンクによる窒素除去の機能に加えて、リンの除去をも行うことができる。 Further, by providing the anaerobic tank 15 upstream of the anaerobic tank 14, phosphorus can be removed in addition to the function of removing nitrogen by the anaerobic tank 14 and the aerobic reaction tank.

また、好気性反応タンクの上流側に嫌気槽15を設けることで、窒素除去は好気性反応タンクの間欠曝気動作にて行い、さらにリンの除去をも行うことができる。 Further, by providing the anaerobic tank 15 on the upstream side of the aerobic reaction tank, nitrogen can be removed by the intermittent aeration operation of the aerobic reaction tank, and phosphorus can also be removed.

また、複数の水路が存在する場合、簡易な構成により各水路の好気性反応タンクの空気倍率を基準空気倍率Sに合わせることができる。 Further, when there are a plurality of water channels, the air ratio of the aerobic reaction tank of each water channel can be matched with the standard air ratio S by a simple configuration.

本発明に係る排水処理装置及び排水処理方法によれば、大規模な都市下水処理場等の標準活性汚泥法が適用された排水処理施設を、間欠曝気法による窒素除去を可能とする高機能な排水処理施設に、低廉なコストで変更することができるものであり、大規模下水処理場等に広く適用が可能なものである。 According to the wastewater treatment apparatus and the wastewater treatment method according to the present invention, the wastewater treatment facility to which the standard activated sludge method is applied, such as a large-scale municipal sewage treatment plant, can be highly functionalized to enable nitrogen removal by the intermittent aeration method. The wastewater treatment facility can be modified at a low cost, and can be widely applied to large-scale sewage treatment plants.

,2・・ 好気性反応タンク
,3・・ 最終沈殿池
5A,5B,5C 空気散気装置
6 返送汚泥配管
,8・・ 送気管
11,11・・ 風量調整弁
12 排水循環手段
13 制御部
13a 負荷濃度検出手段
13b 溶存酸素濃度検出手段
13b’ 空気散気量記憶手段
13d 送風機駆動手段
13e,13e・・ 弁開閉駆動手段
13c,13c・・ 流量検出手段
13c’ 空気散気量比較手段
13h 負荷濃度比較手段
13i 溶存酸素濃度比較手段
13m 周期比較手段
13t 空気量変更手段
13q 周期変更手段
13u 空気倍率算出手段
13v 基準空気倍率記憶手段
13y,13y・・ 微調整量算出手段
14 無酸素槽
15 嫌気槽
A 負荷濃度確認センサ
D 溶存酸素濃度センサ
,W・・ 水路
2 1 , 2 2 ... Aerobic reaction tanks 3 1 , 3 2 ... Final sedimentation tanks 5A, 5B, 5C Air diffuser 6 Return sludge pipes 8 1 , 8 2 ... Air pipes 11 1 , 11 2 ... Air volume control valve 12 Waste water circulation means 13 Control unit 13a Load concentration detection means 13b Dissolved oxygen concentration detection means 13b' Air diffusion amount storage means 13d Blower driving means 13e 1 , 13e 2 ... Valve opening/closing driving means 13c 1 , 13c 2 . Flow rate detection means 13c' Air diffusion amount comparison means 13h Load concentration comparison means 13i Dissolved oxygen concentration comparison means 13m Period comparison means 13t Air amount change means 13q Period change means 13u Air magnification calculation means 13v Reference air magnification storage means 13y 1 , 13y 2 ... Fine adjustment amount calculation means 14 Anoxic tank 15 Anaerobic tank A Load concentration confirmation sensor D Dissolved oxygen concentration sensor W1, W2 ... Water channel

Claims (16)

少なくとも2つの水路の各々に押し出し流れ型の好気性反応タンクが設けられ、上記各好気性反応タンクの下流側の各最終沈殿池から上記各好気性反応タンクの上流側に汚泥を返送する汚泥返送手段が各々設けられた排水処理装置において、
各水路の上記好気性反応タンクには、各上記タンク内に設けられた空気散気手段と、上記各空気散気手段に空気を送り込むための送気管と、上記送気管に設けられ上記空気散気手段に送風される空気散気量を調整するための風量調整弁と、上記各送気管の空気流量を測定可能な空気流量計とからなる曝気調整部が各々設けられ、
上記各送気管に空気を送り込むための各水路に共通の送風機が設けられ、
上記各風量調整弁を開閉制御する制御部が設けられ、
上記制御部には、上記各空気流量計の流量を検知しながら上記空気散気手段への空気散気量を調整し得る弁開閉駆動手段が上記各曝気調整部の上記風量調整弁毎に設けられ、
上記送風機から上記各水路の送気管への送風が行われている状態において、一対の上記好気性反応タンクにおいて、一方の上記好気性反応タンクでは、それに対応する一方の上記弁開閉駆動手段が対応する上記風量調整弁を開閉制御することにより、空気散気量の多い曝気と、空気散気量の少ない微曝気とを同一の周期でくり返す正相間欠曝気動作を行うと共に、
他方の上記好気性反応タンクでは、それに対応する他方の上記弁開閉駆動手段が対応する上記風量調整弁を開閉制御することにより、上記一方の好気性反応タンクの曝気時は微曝気、微曝気時は曝気からなる上記正相間欠曝気動作とは同一周期かつ同一タイミングの逆相間欠曝気動作を行うものである排水処理装置。
Sludge return for returning sludge from each final sedimentation tank on the downstream side of each aerobic reaction tank to the upstream side of each aerobic reaction tank. In wastewater treatment equipment provided with means,
The aerobic reaction tank of each water channel includes an air diffuser provided in each tank, an air pipe for sending air to each air diffuser, and the air diffuser provided in the air pipe. An aeration adjustment unit comprising an air volume adjustment valve for adjusting the amount of air diffused to the air means and an air flow meter capable of measuring the air flow rate of each of the air pipes is provided,
A common blower is provided in each water channel for sending air into each air pipe,
A control unit for controlling the opening and closing of each of the air volume control valves is provided,
The control unit is provided with valve opening/closing drive means for each air volume adjustment valve of each aeration adjustment unit, which can adjust the air diffusion amount to the air diffusion means while detecting the flow rate of each air flow meter. be
In a state in which air is being blown from the blower to the air pipes of the water channels, in the pair of aerobic reaction tanks, in one of the aerobic reaction tanks, one of the valve opening/closing driving means corresponding to the one of the aerobic reaction tanks is supported. By controlling the opening and closing of the air volume adjustment valve, a positive phase intermittent aeration operation is performed in which aeration with a large amount of air diffusion and fine aeration with a small amount of air diffusion are repeated in the same cycle,
In the other aerobic reaction tank, the corresponding valve opening/closing driving means controls opening/closing of the corresponding air volume control valve, so that slight aeration is performed during aeration of the one aerobic reaction tank, and during slight aeration is a wastewater treatment apparatus which performs reverse phase intermittent aeration operation in the same period and at the same timing as the above positive phase intermittent aeration operation consisting of aeration.
上記2つの水路以外に少なくとも2以上の偶数個の上記水路が増設され、増設された各水路に上記最終沈殿池を含む上記汚泥返送手段と、上記曝気調整部を具備した押し出し流れ型の上記好気性反応タンクが各々設けられ、
上記送風機は上記各送気管に空気を送り込むために上記各水路に共通に設けられ、
上記制御部には、増設された上記水路の上記風量調整弁毎に、上記各空気流量計の流量を検知しながら、上記空気散気手段への空気散気量を調整し得る弁開閉駆動手段が設けられ、
上記一対の好気性反応タンクとは別の増設された複数の好気性反応タンクにおける、2個を一組とする一対の好気性反応タンクにおいて、
一方の上記好気性反応タンクでは、それに対応する一方の弁開閉駆動手段が対応する上記風量調整弁を開閉制御することにより上記正相間欠曝気動作を行うと共に、他方の好気性反応タンクにおいては、それに対応する他方の弁開閉駆動手段が対応する上記風量調整弁を開閉制御することにより上記逆相間欠曝気動作を行うものである請求項1記載の排水処理装置。
In addition to the above two water channels, at least two or more even number of water channels are added, and each added water channel is the above-mentioned preferred sludge return means including the above-mentioned final sedimentation tank and the above-mentioned aeration adjustment unit. each provided with an aerobic reaction tank,
The blower is provided in common to each waterway for sending air to each airpipe,
The control unit includes valve opening/closing driving means capable of adjusting the amount of air diffusion to the air diffusion means while detecting the flow rate of each air flow meter for each of the air volume adjustment valves of the added water channel. is provided,
In a pair of aerobic reaction tanks in a plurality of additional aerobic reaction tanks that are separate from the pair of aerobic reaction tanks,
In one of the aerobic reaction tanks, the positive phase intermittent aeration operation is performed by controlling the opening and closing of the corresponding air volume control valve by the corresponding valve opening/closing drive means, and in the other aerobic reaction tank, 2. A waste water treatment apparatus according to claim 1, wherein said other valve opening/closing drive means corresponding thereto controls opening/closing of said corresponding air volume control valve to perform said reverse phase intermittent aeration operation.
上記複数の上記一方の好気性反応タンクの何れか一つに負荷濃度確認センサと溶存酸素濃度センサとが設けられ、
上記制御部は上記各センサからのデータを検出し得ると共に上記送風機の風量を制御し得るものであり、
上記制御部は、上記負荷濃度確認センサの測定値と前回測定時の測定値を比較する負荷濃度比較手段、上記送風機の風量を増減指示する送風機駆動手段、上記溶存酸素濃度センサの測定値が上限値又は下限値に達しているか否かを検出する溶存酸素濃度比較手段、上記周期が上限値又は下限値に達しているか否か検出する周期比較手段を具備しており、
上記正相間欠曝気動作を行う上記一方の好気性反応タンクにおいて、
上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度より低下していると判断した場合は、上記送風機駆動手段が上記送風機の風量を減少する指示を行うと共に、上記溶存酸素濃度比較手段及び上記周期比較手段の比較に基づいて上記溶存酸素濃度センサの測定値及び上記周期が下限値に至るまで、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量は減少させ、微曝気時の空気散気量は一定値を維持するように指示するものであり、
上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度より上昇していると判断した場合は、上記送風機駆動手段が上記送風機の風量を増加する指示を行うと共に、上記溶存酸素濃度比較手段及び上記周期比較手段の比較に基づいて上記溶存酸素濃度センサの測定値及び上記周期が上限値に至るまで、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量は増加させ、微曝気時の空気散気量は上記一定値を維持するように指示するものであり、
上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であると判断した場合は、上記送風機駆動手段が上記送風機の風量を維持すると共に、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの上記各風量調整弁に対して周期と空気散気量を維持するように指示するものであり、
上記逆相間欠曝気動作を行う上記他方の好気性反応タンクにおいて、
上記他方の弁開閉駆動手段は曝気時において上記正相間欠曝気動作における変更後の増減された上記周期及び空気散気量とし、微曝気時の空気散気量は上記一定値を維持する逆位相の制御を行うものである請求項1又は2記載の排水処理装置。
A load concentration confirmation sensor and a dissolved oxygen concentration sensor are provided in any one of the plurality of aerobic reaction tanks,
The control unit can detect data from each sensor and can control the air volume of the blower,
The control unit includes load concentration comparing means for comparing the measured value of the load concentration confirmation sensor with the measured value of the previous measurement, blower driving means for instructing an increase or decrease in the air volume of the blower, and the measured value of the dissolved oxygen concentration sensor being the upper limit. Dissolved oxygen concentration comparison means for detecting whether the value or the lower limit has been reached, and period comparison means for detecting whether the period has reached the upper limit or the lower limit,
In the one aerobic reaction tank that performs the positive phase intermittent aeration operation,
When the load concentration comparing means determines that the measured value of the load concentration confirmation sensor is lower than the previous load concentration, the blower driving means instructs the blower to decrease the air volume of the blower, and the dissolved Until the measured value of the dissolved oxygen concentration sensor and the period reach the lower limit based on the comparison by the oxygen concentration comparing means and the period comparing means, the one valve opening/closing driving means operates the one aerobic reaction tank. The air volume control valve is instructed to decrease the above period and the air diffusion amount during aeration, and to maintain the air diffusion amount during slight aeration at a constant value,
When the load concentration comparing means determines that the measured value of the load concentration confirmation sensor has increased from the previous load concentration, the blower driving means instructs the blower to increase the air volume of the blower, and the dissolved Until the measured value of the dissolved oxygen concentration sensor and the period reach the upper limit based on the comparison by the oxygen concentration comparing means and the period comparing means, the one valve opening/closing driving means operates the one aerobic reaction tank. The air volume control valve is instructed to increase the above period and the air diffusion amount during aeration, and to maintain the above constant value for the air diffusion amount during slight aeration,
When the load concentration comparing means determines that the measured value of the load concentration confirmation sensor is equivalent to the previous load concentration, the blower driving means maintains the air volume of the blower and the one valve The open/close driving means instructs the air volume control valves of the one aerobic reaction tank to maintain the period and the air diffusion volume,
In the other aerobic reaction tank that performs the reversed-phase intermittent aeration operation,
The other valve opening/closing drive means is the above-mentioned period and air diffusion amount increased or decreased after the change in the positive phase intermittent aeration operation at the time of aeration, and the air diffusion amount at the time of slight aeration maintains the above-mentioned constant value. 3. The waste water treatment apparatus according to claim 1 or 2, which controls the
上記複数の上記一方の好気性反応タンクの何れか一つに負荷濃度確認センサと溶存酸素濃度センサとが設けられ、
上記制御部は上記各センサからのデータを検出し得ると共に上記送風機の風量を制御し得るものであり、
上記制御部は、上記負荷濃度確認センサの測定値と前回測定時の測定値を比較する負荷濃度比較手段、上記送風機の風量を増減指示する送風機駆動手段、上記溶存酸素濃度センサの測定値が上限値又は下限値に達しているか否かを検出する溶存酸素濃度比較手段を具備しており、
上記正相間欠曝気動作を行う上記一方の好気性反応タンクにおいて、
上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度より低下していると判断した場合は、上記送風機駆動手段が上記送風機の風量を減少する指示を行うと共に、上記溶存酸素濃度比較手段の比較に基づいて上記溶存酸素濃度センサの測定値が下限値に至るまで、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期は同一のまま曝気時の空気散気量のみを減少させ、微曝気時の空気散気量は一定値を維持するように指示するものであり、
上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度より上昇していると判断した場合は、上記送風機駆動手段が上記送風機の風量を増加する指示を行うと共に、上記溶存酸素濃度比較手段の比較に基づいて上記溶存酸素濃度センサの測定値が上限値に至るまで、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの上記各風量調整弁に対して上記周期は同一のまま曝気時の空気散気量のみを増加させ、微曝気時の空気散気量は上記一定値を維持するように指示するものであり、
上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であると判断した場合は、上記送風機駆動手段が上記送風機の風量を維持すると共に、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの各風量調整弁に対して、上記周期と空気散気量を維持するように指示するものであり、
上記逆相間欠曝気動作を行う上記他方の好気性反応タンクにおいて、
上記他方の弁開閉駆動手段は曝気時において上記正相間欠曝気動作における変更後の増減された空気散気量とし、微曝気時の空気散気量は上記一定値を維持する逆位相の制御を行うものである請求項1又は2記載の排水処理装置。
A load concentration confirmation sensor and a dissolved oxygen concentration sensor are provided in any one of the plurality of aerobic reaction tanks,
The control unit can detect data from each sensor and can control the air volume of the blower,
The control unit includes load concentration comparing means for comparing the measured value of the load concentration confirmation sensor with the measured value of the previous measurement, blower driving means for instructing an increase or decrease in the air volume of the blower, and the measured value of the dissolved oxygen concentration sensor being the upper limit. Dissolved oxygen concentration comparison means for detecting whether the value or lower limit has been reached,
In the one aerobic reaction tank that performs the positive phase intermittent aeration operation,
When the load concentration comparing means determines that the measured value of the load concentration confirmation sensor is lower than the previous load concentration, the blower driving means instructs the blower to decrease the air volume of the blower, and the dissolved Until the measured value of the dissolved oxygen concentration sensor reaches the lower limit based on the comparison by the oxygen concentration comparing means, the one valve opening/closing drive means operates the air volume control valves of the one aerobic reaction tank. While the period remains the same, only the air diffusion amount during aeration is reduced, and the air diffusion amount during slight aeration is instructed to be maintained at a constant value,
When the load concentration comparing means determines that the measured value of the load concentration confirmation sensor has increased from the previous load concentration, the blower driving means instructs the blower to increase the air volume of the blower, and the dissolved Until the measured value of the dissolved oxygen concentration sensor reaches the upper limit based on the comparison by the oxygen concentration comparison means, the one valve opening/closing driving means operates the air volume control valve of the one aerobic reaction tank in the above cycle. is to increase only the amount of air diffusion during aeration while maintaining the same, and to maintain the above constant value for the amount of air diffusion during slight aeration,
When the load concentration comparing means determines that the measured value of the load concentration confirmation sensor is equivalent to the previous load concentration, the blower driving means maintains the air volume of the blower and the one valve The open/close driving means instructs each air volume control valve of the one aerobic reaction tank to maintain the above cycle and air diffusion volume,
In the other aerobic reaction tank that performs the reversed-phase intermittent aeration operation,
The other valve opening/closing drive means controls the air diffusion amount increased or decreased after the change in the normal phase intermittent aeration operation during aeration, and the air diffusion amount during slight aeration maintains the above constant value. 3. The wastewater treatment system according to claim 1 or 2, wherein
上記複数の上記一方の好気性反応タンクの何れか一つに負荷濃度確認センサが設けられ、
上記制御部は、上記負荷濃度確認センサの測定値と前回測定時の測定値を比較する負荷濃度比較手段、上記送風機の風量を増減指示する送風機駆動手段、空気散気量が上限値又は下限値に達しているか否かを検出する空気散気量比較手段、周期が上限値又は下限値に達しているか否かを検出する周期比較手段を具備しており、
上記正相間欠曝気動作を行う上記一方の好気性反応タンクにおいて、
上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度より低下していると判断した場合は、上記送風機駆動手段が上記送風機の風量を減少する指示を行うと共に、上記空気散気量比較手段及び上記周期比較手段の比較に基づいて上記空気散気量及び周期が下限値に至るまで、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量を減少させ、微曝気時の空気散気量は一定値を維持するように指示するものであり、
上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度より上昇していると判断した場合は、上記送風機駆動手段が上記送風機の風量を増加する指示を行うと共に、上記空気散気量比較手段及び上記周期比較手段の比較に基づいて上記空気散気量及び周期が上限値に至るまで、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの各風量調整弁に対して、上記周期と曝気時の空気散気量を増加させ、微曝気時の空気散気量は上記一定値を維持するように指示するものであり、
上記負荷濃度比較手段は、上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であると判断した場合は、上記送風機駆動手段が上記送風機の風量を維持すると共に、上記一方の弁開閉駆動手段が上記一方の好気性反応タンクの各風量調整弁に対して上記周期と空気散気量を維持するように指示し、
上記逆相間欠曝気動作を行う上記他方の好気性反応タンクにおいて、
上記他方の弁開閉駆動手段は曝気時において上記正相間欠曝気動作における変更後の増減された上記周期及び空気散気量とし、微曝気時の空気散気量は上記一定値を維持する逆位相の制御を行うものである請求項1又は2記載の排水処理装置。
A load concentration confirmation sensor is provided in any one of the plurality of aerobic reaction tanks,
The control unit includes load concentration comparing means for comparing the measured value of the load concentration confirmation sensor with the measured value at the time of the previous measurement, blower driving means for instructing an increase or decrease in the air volume of the blower, and an upper limit value or a lower limit value for the amount of air diffusion. air diffusion amount comparison means for detecting whether or not the period has reached the upper limit value or the lower limit value;
In the one aerobic reaction tank that performs the positive phase intermittent aeration operation,
When the load concentration comparing means determines that the measured value of the load concentration confirmation sensor is lower than the previous load concentration, the blower driving means instructs the blower to reduce the air volume, Until the air diffusion amount and the period reach the lower limit based on the comparison by the air diffusion amount comparison means and the period comparison means, the one valve opening/closing driving means operates the air volume control valves of the one aerobic reaction tank. , the above period and the air diffusion amount during aeration are decreased, and the air diffusion amount during slight aeration is to be maintained at a constant value,
When the load concentration comparing means determines that the measured value of the load concentration confirmation sensor is higher than the previous load concentration, the blower driving means instructs the blower to increase the air volume, Until the air diffusion amount and period reach the upper limit based on the comparison by the air diffusion amount comparison means and the period comparison means, the one valve opening/closing drive means operates the air volume adjustment valves of the one aerobic reaction tank. On the other hand, it is instructed to increase the period and the air diffusion amount during aeration, and to maintain the above constant value for the air diffusion amount during slight aeration,
When the load concentration comparing means determines that the measured value of the load concentration confirmation sensor is equivalent to the previous load concentration, the blower driving means maintains the air volume of the blower and the one valve The open/close driving means instructs each air volume control valve of the one aerobic reaction tank to maintain the cycle and the air diffusion volume,
In the other aerobic reaction tank that performs the reversed-phase intermittent aeration operation,
The other valve opening/closing drive means is the above-mentioned period and air diffusion amount increased or decreased after the change in the positive phase intermittent aeration operation at the time of aeration, and the air diffusion amount at the time of slight aeration maintains the above-mentioned constant value. 3. The waste water treatment apparatus according to claim 1 or 2, which controls the
上記各水路の上記各好気性反応タンクの上流側に脱窒を行う無酸素槽が各々設けられ、
上記各水路の上記各好気性反応タンクの下流側に存在する排水の一部を上記無酸素槽に供給する排水循環手段が各々設けられ、
かつ上記各水路の上記返送汚泥手段は上記汚泥を上記好気性反応タンクに代えて、上記無酸素槽に返送するものである請求項1~5の何れかに記載の排水処理装置。
An anoxic tank for denitrification is provided upstream of each aerobic reaction tank in each water channel,
A waste water circulation means is provided for supplying a part of the waste water existing downstream of each aerobic reaction tank in each water channel to the anoxic tank,
6. A waste water treatment apparatus according to any one of claims 1 to 5, wherein said return sludge means of said water channels return said sludge to said anoxic tank instead of said aerobic reaction tank.
上記各水路の上記各無酸素槽の上流側にリン吐き出しを行う嫌気槽が各々設けられ、
上記汚泥返送手段は上記汚泥を上記無酸素槽に代えて上記嫌気槽に返送するものである請求項6記載の排水処理装置。
An anaerobic tank for discharging phosphorus is provided upstream of each anoxic tank in each water channel,
7. A waste water treatment apparatus according to claim 6, wherein said sludge returning means returns said sludge to said anaerobic tank instead of said anoxic tank.
上記各水路の上記好気性反応タンクの上流側にリン吐き出しを行う嫌気槽が各々設けられ、
上記汚泥返送手段は上記汚泥を上記好気性反応タンクに代えて上記嫌気槽に返送するものである請求項1~5の何れかに記載の排水処理装置。
An anaerobic tank for discharging phosphorus is provided upstream of the aerobic reaction tank in each water channel,
6. The wastewater treatment apparatus according to claim 1, wherein said sludge returning means returns said sludge to said anaerobic tank instead of said aerobic reaction tank.
上記周期は20分~90分である請求項1~8の何れかに記載の排水処理装置。 The waste water treatment apparatus according to any one of claims 1 to 8, wherein the period is 20 minutes to 90 minutes. 上記各水路に流入する水量を測定するための流入水量計が水路毎に設けられ、
上記制御部に、上記正相間欠曝気動作を行う一の好気性反応タンクに対応する水路の上記流入水量計の水量と、上記一の好気性反応タンクに対応する上記空気流量計の空気流量とから空気倍率を求め、当該空気倍率を基準空気倍率として記憶する空気倍率算出記憶手段が設けられ、
かつ、他の水路の好気性反応タンクの空気倍率を上記基準空気倍率に合わせるべく、他の水路の上記流入水量計の流入水量に基づいて、上記他の水路の好気性反応タンクの空気量を算出するための微調整量算出手段が設けられ、
上記制御部は、上記微調整量算出手段にて算出された微調整後の空気量に基づいて、上記他の水路の上記風量調整弁を、上記微調整後の空気量に合わせるべく微調整するものである請求項1~9の何れかに記載の排水処理装置。
An inflow water meter for measuring the amount of water flowing into each waterway is provided for each waterway,
The control unit is provided with the water volume of the inflow water meter of the water channel corresponding to the one aerobic reaction tank performing the positive phase intermittent aeration operation, and the air flow rate of the air flow meter corresponding to the one aerobic reaction tank. an air ratio calculation storage means for obtaining an air ratio from the air ratio and storing the air ratio as a reference air ratio;
In addition, in order to match the air ratio of the aerobic reaction tank of the other channel with the reference air ratio, the air volume of the aerobic reaction tank of the other channel is adjusted based on the inflow water volume of the inflow water meter of the other channel. Fine adjustment amount calculation means for calculating is provided,
The control unit finely adjusts the air volume control valves of the other water passages based on the air volume after fine adjustment calculated by the fine adjustment amount calculation means so as to match the air volume after fine adjustment. The wastewater treatment device according to any one of claims 1 to 9, which is a
少なくとも2つの水路の各々に押し出し流れ型の好気性反応タンクを設け、上記各好気性反応タンクの下流側の各最終沈殿池から上記各好気性反応タンクの上流側に汚泥を返送する汚泥返送手段を各々設けた排水処理装置における排水処理方法であって、
各水路の上記好気性反応タンクには、各上記タンク内に設けられた空気散気手段と、上記各空気散気手段に空気を送り込むための送気管と、上記送気管に設けられ上記空気散気手段に送風される空気散気量を調整するための風量調整弁と、各送気管の空気流量を測定可能な空気流量計とからなる曝気調整部とを設け、
上記各送気管に空気を送り込むための各水路に共通の送風機を設け、
上記各空気流量計の流量を検知しながら上記各風量調整弁を開閉制御することにより上記空気散気手段への空気散気量を調整し得る制御部を設け、
上記制御部は、上記送風機から上記各水路の送気管への送風が行われているときに、上記各風量調整弁を開閉制御することにより、一対の上記好気性反応タンクにおいて、一方の上記好気性反応タンクでは、空気散気量の多い曝気と、空気散気量の少ない微曝気とを同一の周期でくり返す正相間欠曝気動作を行うと共に、
他方の上記好気性反応タンクにおいて、上記一方の好気性反応タンクの曝気時は微曝気、微曝気時は曝気からなる上記正相間欠曝気動作とは同一周期かつ同一タイミングの逆相間欠曝気動作を行う排水処理装置における排水処理方法。
Sludge returning means for returning sludge from each final sedimentation tank on the downstream side of each of the aerobic reaction tanks to the upstream side of each of the aerobic reaction tanks. A wastewater treatment method in a wastewater treatment apparatus provided with
The aerobic reaction tank of each water channel includes an air diffuser provided in each tank, an air pipe for sending air to each air diffuser, and the air diffuser provided in the air pipe. An aeration adjustment unit comprising an air volume adjustment valve for adjusting the amount of air diffused to be blown to the air means and an air flow meter capable of measuring the air flow rate of each air pipe,
A common blower is provided in each water channel for sending air into each air pipe,
a control unit capable of adjusting the amount of air diffused to the air diffusion means by controlling the opening and closing of each of the air volume control valves while detecting the flow rate of each of the air flow meters;
The control unit controls opening and closing of the air volume control valves when air is being blown from the air blower to the air pipes of the water channels, so that one of the aerobic reaction tanks in the pair of aerobic reaction tanks In the aerobic reaction tank, positive-phase intermittent aeration is performed in which aeration with a large amount of air diffusion and fine aeration with a small amount of air diffusion are repeated in the same cycle,
In the other aerobic reaction tank, the negative phase intermittent aeration operation is performed in the same period and at the same timing as the positive phase intermittent aeration operation, which consists of slight aeration during aeration of the one aerobic reaction tank and aeration during slight aeration. Wastewater treatment method in wastewater treatment equipment.
上記2つの水路以外に少なくとも2以上の偶数個の上記水路を増設し、増設した各水路に上記最終沈殿池を含む上記汚泥返送手段と、上記曝気調整部を具備した押し出し流れ型の上記好気性反応タンクを各々設け、
上記送風機は上記各送気管に空気を送り込むために上記各水路に共通に設けられ、
上記制御部は増設した上記水路における上記各空気流量計の流量を検知しながら上記各風量調整弁を開閉制御することにより、上記各空気散気手段への空気散気量を調整するものであり、
上記一対の好気性反応タンクとは別の増設した複数の上記好気性反応タンクにおける、2個を一組とする一対の好気性反応タンクにおいて、
上記制御部は、上記風量調整弁の弁を開閉制御することにより、一方の上記好気性反応タンクでは上記正相間欠曝気動作を行うと共に、他方の好気性反応タンクにおいては上記逆相間欠曝気動作を行う請求項11記載の排水処理装置における排水処理方法。
In addition to the two waterways, an even number of at least two waterways are added, and each additional waterway is equipped with the sludge return means including the final sedimentation tank and the aeration adjustment unit. Provide each reaction tank,
The blower is provided in common to each waterway for sending air to each airpipe,
The control unit adjusts the amount of air diffused to each of the air diffusion means by controlling the opening and closing of each of the air volume control valves while detecting the flow rate of each of the air flow meters in the added water channel. ,
In a pair of aerobic reaction tanks in a plurality of aerobic reaction tanks that are added separately from the pair of aerobic reaction tanks,
By controlling the opening and closing of the air volume control valve, the control unit performs the positive phase intermittent aeration operation in one of the aerobic reaction tanks and the reverse phase intermittent aeration operation in the other aerobic reaction tank. The wastewater treatment method in a wastewater treatment apparatus according to claim 11, wherein
上記複数の上記一方の好気性反応タンクの何れか一つに負荷濃度確認センサと溶存酸素濃度センサとを設け、
上記制御部は上記各センサからのデータを検出し得ると共に上記送風機の風量を制御するものであり、
上記正相間欠曝気動作を行う上記一方の好気性反応タンクにおいて、
上記制御部は、上記負荷濃度確認センサの測定値が前回の負荷濃度より低下していると判断した場合は、上記送風機の風量を減少する指示を行うと共に、上記溶存酸素濃度センサの測定値及び周期が下限値に至るまで、上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量を減少し、微曝気時の空気散気量は一定値を維持するように指示し、
上記負荷濃度確認センサの測定値が前回の負荷濃度より上昇していると判断した場合は、上記送風機の風量を増加する指示を行うと共に、上記溶存酸素濃度センサの測定値及び上記周期が上限値に至るまで、上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量を増加し、微曝気時の空気散気量は上記一定値を維持するように指示し、
上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であると判断した場合は、上記送風機の風量を維持すると共に、上記一方の好気性反応タンクの上記各風量調整弁に対して周期と空気散気量を維持するように指示し、
上記逆相間欠曝気動作を行う上記他方の好気性反応タンクにおいて、
上記制御部は曝気時において上記正相間欠曝気動作における変更後の増減された上記周期及び空気散気量とし、微曝気時の空気散気量は上記一定値を維持する逆位相の制御を行う請求項11又は12記載の排水処理装置における排水処理方法。
A load concentration confirmation sensor and a dissolved oxygen concentration sensor are provided in any one of the plurality of aerobic reaction tanks,
The control unit can detect data from each sensor and control the air volume of the blower,
In the one aerobic reaction tank that performs the positive phase intermittent aeration operation,
When determining that the measured value of the load concentration confirmation sensor is lower than the previous load concentration, the control unit instructs to decrease the air volume of the blower, and the dissolved oxygen concentration sensor measured value and Until the cycle reaches the lower limit, for each of the air volume control valves of the one aerobic reaction tank, the cycle and the air diffusion amount during aeration are decreased, and the air diffusion amount during slight aeration is constant. instructed to keep
When it is determined that the measured value of the load concentration confirmation sensor is higher than the previous load concentration, an instruction to increase the air volume of the blower is given, and the measured value of the dissolved oxygen concentration sensor and the period are the upper limit values. Up to, for each air volume control valve of the one aerobic reaction tank, increase the period and the air diffusion amount during aeration, and maintain the above constant value for the air diffusion amount during slight aeration. and
When it is determined that the measured value of the load concentration confirmation sensor is equivalent to the previous load concentration, the air volume of the blower is maintained, and the air volume adjustment valve of the one aerobic reaction tank is instructed to maintain period and air sparge,
In the other aerobic reaction tank that performs the reversed-phase intermittent aeration operation,
During aeration, the control unit controls the cycle and the air diffusion amount that have been increased or decreased after the change in the positive phase intermittent aeration operation, and controls the air diffusion amount during slight aeration to maintain the above constant value. A wastewater treatment method in a wastewater treatment apparatus according to claim 11 or 12.
上記複数の上記一方の好気性反応タンクの何れか一つに負荷濃度確認センサと溶存酸素濃度センサとを設け、
上記制御部は上記各センサからのデータを検出し得ると共に上記送風機の風量を制御するものであり、
上記正相間欠曝気動作を行う上記一方の好気性反応タンクにおいて、
上記制御部は、上記負荷濃度確認センサの測定値が前回の負荷濃度より低下していると判断した場合は、上記送風機の風量を減少する指示を行うと共に、上記溶存酸素濃度センサの測定値が下限値に至るまで、上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期は同一のまま曝気時の空気散気量のみを減少し、微曝気時の空気散気量は一定値を維持するように指示し、
上記負荷濃度確認センサの測定値が前回の負荷濃度より上昇していると判断した場合は、上記送風機の風量を増加する指示を行うと共に、上記溶存酸素濃度センサの測定値が上限値に至るまで、上記一方の好気性反応タンクの上記各風量調整弁に対して上記周期は同一のまま曝気時の空気散気量のみを増加し、微曝気時の空気散気量は上記一定値を維持するように指示し、
上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であると判断した場合は、上記送風機の風量を維持すると共に、上記一方の好気性反応タンクの各風量調整弁に対して、上記周期と空気散気量を維持するように指示し、
上記逆相間欠曝気動作を行う上記他方の好気性反応タンクにおいて、
上記制御部は曝気時において上記正相間欠曝気動作における変更後の増減された空気散気量とし、微曝気時の空気散気量は上記一定値を維持する逆位相の制御を行う請求項11又は12記載の排水処理装置における排水処理方法。
A load concentration confirmation sensor and a dissolved oxygen concentration sensor are provided in any one of the plurality of aerobic reaction tanks,
The control unit can detect data from each sensor and control the air volume of the blower,
In the one aerobic reaction tank that performs the positive phase intermittent aeration operation,
When determining that the measured value of the load concentration confirmation sensor is lower than the previous load concentration, the control unit instructs to decrease the air volume of the blower, and the measured value of the dissolved oxygen concentration sensor increases. Until the lower limit value is reached, for each air volume control valve of one of the aerobic reaction tanks, only the air diffusion volume during aeration is reduced while the cycle remains the same, and the air diffusion volume during slight aeration is instructed to maintain a constant value,
When it is determined that the measured value of the load concentration confirmation sensor is higher than the previous load concentration, an instruction is given to increase the air volume of the blower, and the measured value of the dissolved oxygen concentration sensor reaches the upper limit. , for each of the air volume control valves of the one aerobic reaction tank, only the air diffusion volume during aeration is increased while the cycle remains the same, and the air diffusion volume during slight aeration is maintained at the above constant value. and
When it is determined that the measured value of the load concentration confirmation sensor is equivalent to the previous load concentration, the air volume of the blower is maintained, and for each air volume adjustment valve of the one aerobic reaction tank, Instruct to maintain the above period and air diffusion rate,
In the other aerobic reaction tank that performs the reversed-phase intermittent aeration operation,
11. The control unit controls the air diffusion amount increased or decreased after the change in the normal phase intermittent aeration operation at the time of aeration, and controls the air diffusion amount at the time of slight aeration to maintain the above constant value. Or the wastewater treatment method in the wastewater treatment equipment according to 12.
上記複数の上記一方の好気性反応タンクの何れか一つに負荷濃度確認センサを設け、
上記制御部は上記センサからのデータを検出し、上記送風機の風量を制御すると共に、現在の空気散気量を記憶する空気散気量記憶手段を設け、
上記正相間欠曝気動作を行う上記一方の好気性反応タンクにおいて、
上記制御部は、上記負荷濃度確認センサの測定値が前回の負荷濃度より低下していると判断した場合は、上記送風機の風量を減少する指示を行うと共に、上記周期及び上記空気散気量記憶手段に記憶している前回の空気散気量が下限値に至るまで、上記一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量を減少し、微曝気時の空気散気量は一定値を維持するように指示し、
上記負荷濃度確認センサの測定値が前回の負荷濃度より上昇していると判断した場合は、上記送風機の風量を増加する指示を行うと共に、上記周期及び上記空気散気量記憶手段に記憶している前回の空気散気量が上限値に至るまで、上記各一方の好気性反応タンクの上記各風量調整弁に対して、上記周期と曝気時の空気散気量を増加し、微曝気時の空気散気量は上記一定値を維持するように指示し、
上記負荷濃度確認センサの測定値が前回の負荷濃度に対して同等であると判断した場合は、上記送風機の風量を維持すると共に、上記一方の好気性反応タンクの各風量調整弁に対して上記周期と空気散気量を維持するように指示し、
上記逆相間欠曝気動作を行う上記他方の好気性反応タンクにおいて、
上記制御部は曝気時において上記正相間欠曝気動作における変更後の増減された上記周期及び空気散気量とし、微曝気時の空気散気量は上記一定値を維持する逆位相の制御を行う請求項11又は12記載の排水処理装置における排水処理方法。
A load concentration confirmation sensor is provided in any one of the plurality of aerobic reaction tanks,
The control unit detects data from the sensor, controls the air volume of the blower, and is provided with air diffusion amount storage means for storing the current air diffusion amount,
In the one aerobic reaction tank that performs the positive phase intermittent aeration operation,
When it is determined that the measured value of the load concentration confirmation sensor is lower than the previous load concentration, the control unit instructs to decrease the air volume of the blower, and stores the period and the air diffusion amount. Decrease the period and the air diffusion amount during aeration for each of the air volume control valves of the one aerobic reaction tank until the previous air diffusion amount stored in the means reaches the lower limit, Instructed to maintain a constant value for air diffusion during micro-aeration,
When it is determined that the measured value of the load concentration confirmation sensor is higher than the previous load concentration, an instruction to increase the air volume of the blower is given, and the period and air diffusion amount are stored in the storage means. Until the previous air diffusion amount reaches the upper limit, increase the period and the air diffusion amount at the time of aeration for each of the air volume adjustment valves of each of the above-mentioned aerobic reaction tanks. Instruct the air diffusion rate to maintain the above constant value,
When it is determined that the measured value of the load concentration confirmation sensor is equivalent to the previous load concentration, the air volume of the blower is maintained, and the air volume adjustment valve of the one aerobic reaction tank is instructed to maintain period and air sparge,
In the other aerobic reaction tank that performs the reversed-phase intermittent aeration operation,
During aeration, the control unit controls the cycle and the air diffusion amount that have been increased or decreased after the change in the positive phase intermittent aeration operation, and controls the air diffusion amount during slight aeration to maintain the above constant value. A wastewater treatment method in a wastewater treatment apparatus according to claim 11 or 12.
上記各水路に流入する水量を測定するための流入水量計を水路毎に設け、
上記制御部に、上記正相間欠曝気動作を行う一の好気性反応タンクに対応する水路の上記流入水量計の水量と、上記一の好気性反応タンクに対応する上記空気流量計の空気流量とから空気倍率を求め、当該空気倍率を基準空気倍率として記憶する空気倍率算出記憶手段を設け、
かつ、他の水路の好気性反応タンクの空気倍率を上記基準空気倍率に合わせるべく、他の水路の上記流入水量計の流入水量に基づいて、上記他の水路の好気性反応タンクの空気量を算出するための微調整量算出手段を設け、
上記制御部は、上記微調整量算出手段にて算出された微調整後の空気量に基づいて、上記他の水路の上記風量調整弁を、上記微調整後の空気量に合わせるべく微調整を行う請求項11~15の何れかに記載の排水処理装置における排水処理方法。
An inflow water meter for measuring the amount of water flowing into each waterway is provided for each waterway,
The control unit is provided with the water volume of the inflow water meter of the water channel corresponding to the one aerobic reaction tank performing the positive phase intermittent aeration operation, and the air flow rate of the air flow meter corresponding to the one aerobic reaction tank. an air ratio calculation storage means for obtaining an air ratio from the air ratio and storing the air ratio as a reference air ratio;
In addition, in order to match the air ratio of the aerobic reaction tank of the other channel with the reference air ratio, the air volume of the aerobic reaction tank of the other channel is adjusted based on the inflow water volume of the inflow water meter of the other channel. Provide fine adjustment amount calculation means for calculating,
Based on the air volume after fine adjustment calculated by the fine adjustment amount calculating means, the control unit finely adjusts the air volume adjustment valves of the other water passages so as to match the air volume after fine adjustment. The wastewater treatment method in a wastewater treatment apparatus according to any one of claims 11 to 15.
JP2019067084A 2019-03-29 2019-03-29 Wastewater treatment equipment and wastewater treatment method Active JP7194628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019067084A JP7194628B2 (en) 2019-03-29 2019-03-29 Wastewater treatment equipment and wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019067084A JP7194628B2 (en) 2019-03-29 2019-03-29 Wastewater treatment equipment and wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2020163309A JP2020163309A (en) 2020-10-08
JP7194628B2 true JP7194628B2 (en) 2022-12-22

Family

ID=72715466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019067084A Active JP7194628B2 (en) 2019-03-29 2019-03-29 Wastewater treatment equipment and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP7194628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102576502B1 (en) * 2023-02-28 2023-09-08 주식회사 아쿠아웍스 High-efficiency air diffusing system for integrated sewage and wastewater treatment plant having single control type aeration structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114684909A (en) * 2022-03-23 2022-07-01 光大环保技术研究院(南京)有限公司 Leachate aerobic treatment control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251385A (en) 2002-02-28 2003-09-09 Sumitomo Heavy Ind Ltd Water treatment system and operation method therefor
US20140124457A1 (en) 2012-11-05 2014-05-08 Air Products And Chemicals, Inc. Methods For Treating Liquid Waste With High Purity Oxygen
JP2015054271A (en) 2013-09-11 2015-03-23 メタウォーター株式会社 Effluent treatment apparatus and effluent treatment method
JP2015208708A (en) 2014-04-25 2015-11-24 株式会社日立製作所 Water treatment monitor system, water treatment system having the same and water treatment method
JP2016172247A (en) 2015-03-16 2016-09-29 三菱レイヨン株式会社 Method and apparatus for treating waste water
JP2017177105A (en) 2017-06-07 2017-10-05 株式会社東芝 Organic wastewater treatment apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251385A (en) 2002-02-28 2003-09-09 Sumitomo Heavy Ind Ltd Water treatment system and operation method therefor
US20140124457A1 (en) 2012-11-05 2014-05-08 Air Products And Chemicals, Inc. Methods For Treating Liquid Waste With High Purity Oxygen
JP2015054271A (en) 2013-09-11 2015-03-23 メタウォーター株式会社 Effluent treatment apparatus and effluent treatment method
JP2015208708A (en) 2014-04-25 2015-11-24 株式会社日立製作所 Water treatment monitor system, water treatment system having the same and water treatment method
JP2016172247A (en) 2015-03-16 2016-09-29 三菱レイヨン株式会社 Method and apparatus for treating waste water
JP2017177105A (en) 2017-06-07 2017-10-05 株式会社東芝 Organic wastewater treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102576502B1 (en) * 2023-02-28 2023-09-08 주식회사 아쿠아웍스 High-efficiency air diffusing system for integrated sewage and wastewater treatment plant having single control type aeration structure

Also Published As

Publication number Publication date
JP2020163309A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
WO2010074008A1 (en) Method and device for removing biological nitrogen and support therefor
KR20150080493A (en) Method and apparatus for nitrogen removal in wastewater treatment
KR20160008502A (en) Method and apparatus for maximizing nitrogen removal from wastewater
JP6666165B2 (en) Nitrification and denitrification treatment method for ammoniacal nitrogen-containing liquid to be treated
CN105174630B (en) Low carbon-nitrogen ratio sewage denitrification dephosphorization system and method based on biotechnology
JP2006281003A (en) Biological waste water treatment method
JP7194628B2 (en) Wastewater treatment equipment and wastewater treatment method
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
JPH07265890A (en) Treatment of water containing organic sulfur compound and device therefor
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP6532723B2 (en) Method and system for treating organic wastewater
KR102094020B1 (en) Device and Method for continuous feeding andintermittent discharge in sewage and wastewater treatment plant
JP6246624B2 (en) Waste water treatment apparatus and waste water treatment method
JP2018111061A (en) Nitrogen removing system and nitrogen removing method
JP2008221161A (en) Denitrifying treatment device and denitrifying treatment method
JP6893546B2 (en) Sewage treatment system and sewage treatment method
JP3379199B2 (en) Operation control method of activated sludge circulation method
JP2003326297A (en) Nitrification method for waste water
JP2006289277A (en) Nitrate forming nitrification/denitrification method, method for nitrifying/denitrifying ammonia nitrogen-containing liquid and nitrate forming nitrification/denitrification equipment
JP4579450B2 (en) Operation control method of oxidation ditch
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH07136687A (en) Operation control method for modified active sludge circulation process in low water temperature period
SG190528A1 (en) Nitrogen and phosphorus removal method and nitrogen and phosphorus removal apparatus
KR102250418B1 (en) Annamox reactor and water treatment method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R150 Certificate of patent or registration of utility model

Ref document number: 7194628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150