JP6532723B2 - Method and system for treating organic wastewater - Google Patents

Method and system for treating organic wastewater Download PDF

Info

Publication number
JP6532723B2
JP6532723B2 JP2015063549A JP2015063549A JP6532723B2 JP 6532723 B2 JP6532723 B2 JP 6532723B2 JP 2015063549 A JP2015063549 A JP 2015063549A JP 2015063549 A JP2015063549 A JP 2015063549A JP 6532723 B2 JP6532723 B2 JP 6532723B2
Authority
JP
Japan
Prior art keywords
air
tank
activated sludge
lift pump
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015063549A
Other languages
Japanese (ja)
Other versions
JP2016182551A (en
Inventor
裕司 大塚
裕司 大塚
康之 吉田
康之 吉田
鈴木 邦康
邦康 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2015063549A priority Critical patent/JP6532723B2/en
Publication of JP2016182551A publication Critical patent/JP2016182551A/en
Application granted granted Critical
Publication of JP6532723B2 publication Critical patent/JP6532723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、有機性排水を活性汚泥が貯留された無酸素槽と好気槽との間で循環させながら生物処理する有機性排水の処理方法及びその処理システムに関する。   The present invention relates to a method and system for treating organic wastewater in which biological wastewater is treated while circulating organic wastewater between an anoxic tank in which activated sludge is stored and an aerobic tank.

特許文献1には、循環式硝化脱窒法を採用した汚水処理方法が開示されている。循環式硝化脱窒法では、汚水を脱窒槽及び硝化槽に順に流入させ、硝化槽から流出する硝化処理水の一部を硝化循環液として脱窒槽へ循環返送し、残りを最終沈殿池へ流出する生物処理方法であり、浮遊活性汚泥により硝化及び脱窒を行なって汚水から窒素を除去する生物処理方法である。脱窒槽ではBOD成分や窒素が脱窒反応により除去され、硝化槽ではアンモニア態窒素が硝酸ないし亜硝酸に硝化される。尚、脱窒槽は無酸素槽ともいい、硝化槽は好気槽ともいう。   Patent Document 1 discloses a waste water treatment method employing a circulating nitrification denitrification method. In the circulating nitrification denitrification method, waste water is allowed to flow into the denitrification tank and the nitrification tank in order, part of the nitrification treated water flowing out from the nitrification tank is circulated back to the denitrification tank as the nitrification circulating fluid, and the rest is discharged to the final sedimentation tank It is a biological treatment method, and is a biological treatment method in which nitrogen is removed from sewage by performing nitrification and denitrification with floating activated sludge. In the denitrification tank, BOD components and nitrogen are removed by denitrification reaction, and in the nitrification tank, ammoniacal nitrogen is nitrated to nitric acid or nitrous acid. The denitrification tank is also referred to as an anoxic tank, and the nitrification tank is also referred to as an aerobic tank.

当該汚水処理方法では、設備の小型化を図るべく、浮遊活性汚泥に加えて硝化槽に硝化菌固定化担体が投入されている。浮遊活性汚泥を含む脱窒槽に流入した汚水は槽壁の下部に形成された開口から硝化槽に流出して曝気装置から供給される空気によりアンモニア態窒素が硝酸ないし亜硝酸に硝化される好気処理が行なわれる。   In the said waste water treatment method, in order to miniaturize an installation, in addition to the floating activated sludge, the nitrifying bacteria immobilization carrier is put into the nitrification tank. Sewage which has flowed into denitrification tank containing floating activated sludge flows from the opening formed in the lower part of tank wall to nitrification tank, and the air is supplied from the aeration device, and the air is supplied to the air. Processing is performed.

硝化槽で好気処理された汚水の一部がエアリフトポンプによって揚水され循環路を経由して脱窒槽に返送され、脱窒槽で硝酸が窒素に還元されて除去される。   A part of the sewage treated aerobically in the nitrification tank is pumped up by an air lift pump and returned to the denitrification tank via the circulation path, and the nitric acid is reduced to nitrogen and removed in the denitrification tank.

特許文献2には、膜分離槽のDOを適正な値に保ち、膜ファウリングの原因物質の発生を抑制し、さらには、無酸素槽での脱窒反応を良好な状態に維持することができる膜分離活性汚泥法を採用した汚水処理方法が開示されている。   In Patent Document 2, the DO of the membrane separation tank is maintained at an appropriate value, the generation of the causative agent of the membrane fouling is suppressed, and furthermore, the denitrification reaction in the anoxic tank is maintained in a good state. A sewage treatment method is disclosed that employs a membrane separation activated sludge method.

当該汚水処理方法では、曝気装置を備えた好気槽で微生物により被処理水が好気性処理され、好気槽の後段に配置された膜分離槽で膜分離装置により被処理水が固液分離され、膜分離槽内の被処理水が第1の循環路を介して好気槽へ循環されるように処理され、膜分離槽内の好気性処理の指標である溶存酸素濃度等を測定し、測定値に基づいて循環路の循環量が調節されるように構成されている。さらに、好気槽の上流側に無酸素槽が設置され、膜分離槽の被処理水が第2の循環路を介して無酸素槽へ循環されて脱窒処理されるように構成されている。   In the said waste water treatment method, to-be-processed water is processed aerobically with microorganisms by an aerobic tank provided with an aeration apparatus, to-be-processed water is solid-liquid separation with a membrane separation apparatus by the membrane separation tank arrange | positioned at the back | latter stage of an aerobic tank. Treated water in the membrane separation tank to be circulated to the aerobic tank via the first circulation path, and measure the dissolved oxygen concentration etc. which is an indicator of the aerobic treatment in the membrane separation tank , And the amount of circulation of the circulation path is adjusted based on the measured value. Furthermore, an anoxic tank is installed on the upstream side of the aerobic tank, and the water to be treated in the membrane separation tank is circulated to the anoxic tank via the second circulation path to be denitrified. .

特開平11−47786号公報JP-A-11-47786 特開2010−194481号公報JP, 2010-194481, A

上述した膜分離活性汚泥法を含めて従来の循環式硝化脱窒法では、処理の安定化を図るべく、好気槽内で処理された汚水の一定量が循環路を介して無酸素槽に返送されるように構成されていた。そして循環路に汚水を供給するためにエアリフトポンプや機械式ポンプ等専用のポンプを備えていた。   In the conventional circulating nitrification denitrification method including the membrane separation activated sludge method described above, in order to stabilize the treatment, a certain amount of waste water treated in the aerobic tank is returned to the anoxic tank through the circulation path It was configured to be. And, in order to supply the sewage to the circulation path, it was equipped with a dedicated pump such as an air lift pump or a mechanical pump.

エアリフトポンプを用いる場合には、好気槽に設置された曝気装置に空気を供給するブロワとは別途に専用のブロワを設ける場合が多かった。   When an air lift pump is used, a dedicated blower is often provided separately from the blower for supplying air to the aeration apparatus installed in the aerobic tank.

しかし、膜分離活性汚泥法で処理される有機性排水に含まれるアンモニア態窒素等の窒素負荷が大きく変動した場合、特に窒素負荷が増大した場合に、有機性排水の循環返送量が一定に維持されていると、最終的に処理水の窒素濃度が高くなるという不都合があった。   However, when nitrogen load such as ammonia nitrogen contained in organic wastewater treated by membrane separation activated sludge method fluctuates significantly, especially when nitrogen load increases, the amount of circulating organic wastewater is kept constant. If this is done, there is a disadvantage that the nitrogen concentration of the treated water will eventually increase.

そこで、窒素負荷の程度に応じて有機性排水の循環返送量を可変に調整することが考えられるが、そのために専用の調整機構を設けると、設備コストが嵩むという問題があった。   Then, although it is possible to adjust the amount of circulation return of organic drainage variably according to the grade of nitrogen load, there existed a problem that equipment cost will increase, if an adjustment mechanism for exclusive use is provided.

本発明の目的は、上述した問題点に鑑み、設備コストの上昇を招くことなく窒素負荷の変動に応じて適切に好気槽から無酸素槽への有機性排水の循環返送量を調整可能な有機性排水の処理方法及びその処理システムを提供する点にある。   SUMMARY OF THE INVENTION In view of the problems described above, the object of the present invention is to adjust the amount of circulating organic waste water from an aerobic tank to an anoxic tank appropriately according to fluctuations in nitrogen load without causing an increase in equipment cost. It is in the point of providing the disposal method of organic drainage, and its disposal system.

上述の目的を達成するため、本発明による有機性排水の処理方法の第一特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、有機性排水を活性汚泥が貯留された無酸素槽と好気槽との間で循環させながら生物処理する有機性排水の処理方法であって、前記好気槽は、曝気装置が配置された補助曝気区域と、膜分離装置が配置された膜分離区域を備えて構成され、前記好気槽で好気性処理するための前記曝気装置への給気量の増減に追随して前記好気槽から前記無酸素槽へ活性汚泥を移送するためのエアリフトポンプへの給気量が増減するように、前記曝気装置及び前記エアリフトポンプへの給気を共通のブロワで行ない、活性汚泥の性状を指標として前記ブロワからの給気量を増加または減少調整し、前記エアリフトポンプにより前記膜分離区域の活性汚泥を前記無酸素槽へ移送する点にある。 In order to achieve the above-mentioned object, the first characterizing feature of the method for treating organic wastewater according to the present invention is, as described in claim 1 of the document of the claims, that organic sludge is not stored with activated sludge. It is a processing method of the organic drainage which carries out a biological treatment, making it circulate between an oxygen tank and an aerobic tank, wherein the aerobic tank is provided with an auxiliary aeration area where an aerator is arranged, and a membrane separation device. It is configured to include a membrane separation zone, the order to transfer the activated sludge from the aerobic tank following the air charge of increase and decrease to the aeration device for aerobic treatment in the aerobic tank to the anoxic tank In order to increase or decrease the amount of air supplied to the air lift pump, air is supplied to the aeration apparatus and the air lift pump with a common blower, and the amount of air supplied from the blower is increased or decreased based on the properties of activated sludge. adjusting, by the air lift pump Certain activated sludge Kimaku separation zone to the point of transfer to the anoxic tank.

共通のブロワを介して曝気装置及びエアリフトポンプに給気されるように構成されているので、活性汚泥の性状が窒素負荷の高い状態であればブロワからの給気量が増加調整されることにより曝気装置への給気量が上昇して、好気槽の溶存酸素量の増加により硝化処理が促進され、それに追随して好気槽から無酸素槽へ移送される活性汚泥が適切に増量されることにより脱窒処理が促進されるようになる。逆に、活性汚泥の性状が窒素負荷の低い状態であればブロワからの給気量が減少調整されることにより曝気装置への給気量が下降して、好気槽の溶存酸素量が抑制されて適切に硝化処理が行なわれ、それに追随して好気槽から無酸素槽へ移送される活性汚泥が適切に減量され、不必要な活性汚泥の循環が抑制される。従って、設備コストの上昇を招いたり過剰な酸素を無酸素槽へ供給したりすることなく、窒素負荷の変動に対応して柔軟に脱窒処理できるようになる。 Since the air is supplied to the aeration apparatus and the air lift pump through the common blower, if the property of activated sludge is in a state of high nitrogen load, the amount of air supplied from the blower will be increased and adjusted. As the amount of air supplied to the aeration apparatus increases, the amount of dissolved oxygen in the aerobic tank increases, the nitrification treatment is promoted, and the activated sludge transferred from the aerobic tank to the anoxic tank is appropriately increased accordingly The denitrification treatment is promoted by this. On the contrary, if the property of activated sludge is in a state of low nitrogen load, the amount of air supplied from the blower is decreased and adjusted, the amount of air supplied to the aeration device is decreased, and the amount of dissolved oxygen in the aerobic tank is suppressed. As a result, the amount of activated sludge transferred from the aerobic tank to the anoxic tank is appropriately reduced, and the circulation of unnecessary activated sludge is suppressed. Therefore, without and supplies excess oxygen or cause an increase in equipment cost to the anoxic tank, ing to allow flexibility denitrified in response to variations in the nitrogen load.

そして、窒素負荷の変動に応じて補助曝気区域で適切に硝化処理され、膜分離区域で膜分離された後の有機性排水が活性汚泥とともに無酸素槽へ移送されるので、活性汚泥の窒素負荷が高い場合でも無酸素槽で効率的に脱窒処理が促進されるようになる。 Then, it is properly nitrified auxiliary aeration zone in accordance with a variation in nitrogen load, since membrane separated organic waste water after the membrane separation zone is transferred together with the activated sludge to the anoxic tank, the activated sludge nitrogen Even if the load is high, efficient denitrification treatment will be promoted in the anoxic tank.

同第の特徴構成は、同請求項に記載した通り、上述の第一の特徴構成に加えて、前記指標となる活性汚泥の性状が、溶存酸素濃度、酸化還元電位、全窒素濃度、アンモニア態窒素濃度、硝酸態窒素濃度の何れかで表される点にある。 According to the second characteristic configuration, as described in the second aspect, in addition to the above-mentioned first characteristic configuration, the property of the activated sludge serving as the indicator is the concentration of dissolved oxygen, the redox potential, the total nitrogen concentration, It is a point represented by either ammonia nitrogen concentration or nitrate nitrogen concentration.

活性汚泥の性状として、溶存酸素濃度(以下、「DO:Dissolved Oxygen」とも記す。)、酸化還元電位(以下、「ORP:oxidation-reduction potential」とも記す。)、全窒素濃度、アンモニア態窒素濃度、硝酸態窒素濃度の何れかを指標として用いると、有機性排水の窒素負荷の程度つまり微生物によるアンモニア態窒素等の硝化の程度を適切に把握できるようになる。   As the properties of activated sludge, dissolved oxygen concentration (hereinafter also referred to as "DO: Dissolved Oxygen"), oxidation reduction potential (hereinafter referred to as "ORP: oxidation-reduction potential"), total nitrogen concentration, ammonia nitrogen concentration By using any of the nitrate nitrogen concentration as an index, it is possible to appropriately grasp the degree of nitrogen load of organic drainage, that is, the degree of nitrification of ammonia nitrogen by microorganisms.

例えば、溶存酸素濃度DOが通常値より低い場合にはアンモニア態窒素の硝化に多くの酸素が消費され窒素負荷が高い性状であり、曝気装置への給気量を増加させる必要があると判定できる。全窒素濃度、アンモニア態窒素濃度、硝酸態窒素濃度も同様である。一方、無酸素槽の活性汚泥中のORPが通常値よりも高い場合には酸素が消費されない窒素負荷が低い状態にあると判定でき、曝気装置への給気量を減少させる必要があると判定できる。   For example, when the dissolved oxygen concentration DO is lower than the normal value, a large amount of oxygen is consumed in the nitrification of ammonia nitrogen and the nitrogen load is high, and it can be determined that the amount of air supplied to the aerator needs to be increased. . The same applies to total nitrogen concentration, ammonia nitrogen concentration, and nitrate nitrogen concentration. On the other hand, if the ORP in the activated sludge of the anoxic tank is higher than the normal value, it can be determined that the nitrogen load where oxygen is not consumed is in a low state, and it is determined that the amount of air supplied to the aeration device needs to be reduced. it can.

本発明による有機性排水の処理システムの第一の特徴構成は、同請求項に記載した通り、有機性排水を活性汚泥が貯留された複数の生物処理槽の間で循環させながら生物処理する有機性排水の処理システムであって、無酸素槽と、好気槽と、前記無酸素槽から前記好気槽へ活性汚泥を移送する移送経路と、前記好気槽から前記無酸素槽へ活性汚泥を移送するエアリフトポンプと、前記好気槽に配置された曝気装置と、前記エアリフトポンプ及び前記曝気装置への給気量を可変に調整可能な共通のブロワと、活性汚泥の性状を測定する汚泥性状測定手段と、前記汚泥性状測定手段からの測定値に基づいて前記ブロワからの給気量を増加または減少調整する制御手段とを備え、前記好気槽は、前記曝気装置が配置された補助曝気区域と、膜分離装置が配置された膜分離区域を備えて構成され、前記制御手段による前記ブロワからの給気量の制御に基づく前記曝気装置への給気量の増減に追随して前記エアリフトポンプへの給気量も増減され、前記エアリフトポンプにより前記膜分離区域の活性汚泥を前記無酸素槽へ移送するように構成されている点にある。 The first characterizing feature of the processing system of organic waste water according to the invention the biological treatment while circulating between the plurality of biological treatment tank through, the organic waste water is activated sludge stored as described in the claim 3 An organic waste water treatment system comprising: an anoxic tank; an aerobic tank; a transfer path for transferring activated sludge from the anoxic tank to the aerobic tank; and activity from the aerobic tank to the anoxic tank An air lift pump for transferring sludge, an aeration apparatus disposed in the aerobic tank, a common blower capable of variably adjusting the amount of air supplied to the air lift pump and the aeration apparatus, and properties of activated sludge are measured. And a control means for increasing or decreasing the amount of air supplied from the blower based on the measured value from the sludge property measuring means, and the aerobic tank is provided with the aeration device. Auxiliary aeration area and membrane separation Location is configured with the placed membrane separation zone, the supply of following the air charge of increase and decrease to the aeration device based on the control of the air supply amount from the blower by the control unit to the air-lift pump The amount is also increased or decreased, and the air lift pump is configured to transfer the activated sludge in the membrane separation area to the anoxic tank .

以上説明した通り、本発明によれば、設備コストの上昇を招くことなく窒素負荷の変動に応じて適切に好気槽から無酸素槽への有機性排水の循環返送量を調整可能な有機性排水の処理方法及びその処理システムを提供することができるようになった。   As described above, according to the present invention, it is possible to properly adjust the amount of circulating organic waste water from the aerobic tank to the anoxic tank according to the fluctuation of the nitrogen load without increasing the facility cost. It has become possible to provide a method for treating wastewater and its treatment system.

本発明による有機性排水の処理システムの説明図The explanatory view of the processing system of the organic drainage by the present invention (a)は有機性排水の全窒素濃度の変化に伴う補助曝気風量の制御特性図、(b)は補助曝気空気量とエアリフト風量の相関特性図、(c)はエアリフト風量と汚泥循環量の相関特性図(A) is a control characteristic diagram of the auxiliary aeration air volume according to the change of the total nitrogen concentration of the organic waste water, (b) is a correlation characteristic diagram of the auxiliary aeration air volume and the air lift air volume, (c) is the air lift air volume and sludge circulation volume Correlation characteristic chart 別実施形態を示す有機性排水処理システムの説明図Explanatory drawing of the organic waste water treatment system which shows another embodiment 別実施形態を示す有機性排水処理システムの説明図Explanatory drawing of the organic waste water treatment system which shows another embodiment 別実施形態を示す有機性排水処理システムの説明図Explanatory drawing of the organic waste water treatment system which shows another embodiment

以下、本発明による有機性排水の処理方法及びその処理システムの実施形態を説明する。   Hereinafter, embodiments of the method for treating organic wastewater and the treatment system according to the present invention will be described.

図1に示すように、有機性排水の処理システム1は、活性汚泥と混合された状態の有機性排水を複数の生物処理槽の間で循環させながら生物処理するシステムであり、活性汚泥が貯留された無酸素槽2及び好気槽3と、無酸素槽2から好気槽3へ活性汚泥を移送する移送経路4と、好気槽3から無酸素槽2へ活性汚泥を移送するエアリフトポンプ5とを備えている。   As shown in FIG. 1, the organic waste water treatment system 1 is a system for biological treatment while circulating organic waste water mixed with activated sludge among a plurality of biological treatment tanks, and activated sludge is stored. Anoxic tank 2 and aerobic tank 3, a transfer path 4 for transferring activated sludge from the anoxic tank 2 to the aerobic tank 3, and an air lift pump for transferring activated sludge from the aerobic tank 3 to the anoxic tank 2 It is equipped with five.

好気槽3は、曝気装置6が配置された補助曝気区域3Aと、膜分離装置7が配置された膜分離区域3Bを備えて構成され、エアリフトポンプ5により膜分離区域3Bの活性汚泥が無酸素槽2へ移送されるように構成されている。   The aerobic tank 3 includes an auxiliary aeration area 3A in which the aeration apparatus 6 is disposed, and a membrane separation area 3B in which the membrane separation apparatus 7 is disposed. There is no activated sludge in the membrane separation area 3B by the air lift pump 5 It is configured to be transferred to the oxygen tank 2.

さらに、エアリフトポンプ5及び曝気装置6への給気量を可変に調整可能な共通のブロワ8と、活性汚泥の性状を測定する汚泥性状測定手段10と、汚泥性状測定手段10からの測定値に基づいてブロワ8からの給気量を増加または減少調整する制御手段11を備えている。   Furthermore, to the measurement values from the common property blower 8 capable of variably adjusting the amount of air supplied to the air lift pump 5 and the aeration device 6, the sludge property measuring means 10 for measuring the property of activated sludge, and the sludge property measuring means 10 Control means 11 is provided to increase or decrease the amount of air supplied from the blower 8 based on the control means 11.

エアリフトポンプ5は散気管5aと揚水管5bと略水平姿勢の移送管5cを備えて構成され、膜分離区域3Bの活性汚泥が無酸素槽2の上流側に返送されるように構成されている。   The air lift pump 5 is configured to include a transfer pipe 5c in a substantially horizontal posture with a diffuser pipe 5a and a pumping pipe 5b, and configured so that activated sludge in the membrane separation area 3B is returned to the upstream side of the anoxic tank 2 .

無酸素槽2の排水流入部2aに流入した有機性排水は無酸素条件下で微生物により有機成分の一部が処理された後に無酸素槽2と好気槽3との仕切壁に設けられた堰を越流して好気槽3に流出し、好気槽3の補助曝気区域3Aで曝気された好気条件下でアンモニア態窒素が硝酸態窒素に硝化処理され、さらに膜分離区域3Bに備えた膜分離装置7で透過されることにより浄化された膜透過水が得られる。   The organic waste water flowing into the drainage inflow part 2a of the anoxic tank 2 was provided on the partition wall between the anoxic tank 2 and the aerobic tank 3 after a part of the organic component was treated by microorganisms under anoxic conditions. Ammonia nitrogen is nitrified to nitrate nitrogen under aerobic conditions which overflows into the aerobic tank 3 and overflows into the aerobic tank 3 and is aerated in the auxiliary aeration zone 3A of the aerobic tank 3 and is further provided in the membrane separation zone 3B. Membrane-permeated water purified by being permeated by the membrane separator 7 is obtained.

膜分離区域3Bに流下した活性汚泥は、エアリフトポンプ5により無酸素槽2の上流側に返送され、無酸素条件下の無酸素槽2で硝酸態窒素が還元されることで脱窒処理されて窒素ガスが分離除去される。   The activated sludge that has flowed down to the membrane separation zone 3B is returned to the upstream side of the anoxic tank 2 by the air lift pump 5, and is denitrified by reducing nitrate nitrogen in the anoxic tank 2 under anoxic conditions. Nitrogen gas is separated and removed.

当該有機性排水の処理システム1で浄化処理される有機性排水は、下水、浄化槽汚泥、し尿、食品加工工場で発生した廃水等が対象となり、特にアンモニア等の窒素成分が含まれる有機性排水が好適な処理対象水となる。   Sewage, septic tank sludge, human waste, waste water generated in food processing plant etc. are targeted for organic waste water to be purified by the organic waste water treatment system 1, and especially organic waste water containing nitrogen components such as ammonia etc. It becomes suitable treatment target water.

曝気装置6は複数の小径の噴気孔が形成された曝気部6aと、曝気部6aに空気を供給する給気管6bと、給気管6bに空気を投入するブロワ8で構成され、制御手段11によりブロワ8の回転数が調整されることで給気量が増減調整される。制御手段11として、パーソナルコンピュータやマイクロコンピュータが好適に用いられる。   The aeration device 6 includes an aeration unit 6a in which a plurality of small-diameter injection holes are formed, an air supply pipe 6b for supplying air to the aeration unit 6a, and a blower 8 for injecting air to the air supply pipe 6b. By adjusting the rotational speed of the blower 8, the air supply amount is adjusted to be increased or decreased. As the control means 11, a personal computer or a microcomputer is suitably used.

制御手段11には、活性汚泥の性状を測定する汚泥性状測定手段10からの信号線が接続され、信号線を介して入力された活性汚泥の性状を指標としてブロワ8の回転数が制御される。例えば、ブロワ8の駆動源としてインダクションモータが使用される場合には、制御手段11に接続されたインバータ回路を介してインダクションモータの回転数が制御される。   The control means 11 is connected to a signal line from the sludge property measuring means 10 for measuring the property of the activated sludge, and the rotational speed of the blower 8 is controlled by using the property of the activated sludge inputted through the signal line as an index. . For example, when an induction motor is used as a drive source of the blower 8, the number of rotations of the induction motor is controlled via an inverter circuit connected to the control means 11.

汚泥性状測定手段10として好気槽3に溶存酸素濃度計10aが設置されている。制御手段11は、溶存酸素濃度計10aで計測されたDOが予め設定された目標値より低下すると有機性排水の窒素負荷が上昇していると判断してDOが目標値になるようにブロワ8の回転数を上昇制御し、DOが予め設定された目標値より上昇すると有機性排水の窒素負荷が低下していると判断してDOが目標値になるようにブロワ8の回転数を下降制御する。   A dissolved oxygen concentration meter 10 a is installed in the aerobic tank 3 as the sludge property measuring means 10. The control means 11 determines that the nitrogen load of the organic drainage is rising when the DO measured by the dissolved oxygen concentration meter 10a falls below a preset target value, and the blower 8 makes the DO become the target value. Control the rotation speed of the blower 8 so that the nitrogen load of the organic drainage drops when the DO rises above the preset target value and the DO becomes the target value Do.

有機性排水の窒素負荷の状態をモニタする汚泥性状測定手段10として、溶存酸素濃度計10a以外に酸化還元電位センサ、全窒素濃度計、アンモニア態窒素濃度計(アンモニア濃度計)、硝酸態窒素濃度計等を用いることができる。   As sludge property measurement means 10 to monitor the state of nitrogen load of organic waste water, in addition to dissolved oxygen concentration meter 10a, a redox potential sensor, total nitrogen concentration meter, ammonia nitrogen concentration meter (ammonia concentration meter), nitrate nitrogen concentration A meter etc. can be used.

例えば、好気槽のDOが低い場合には、全窒素濃度計、アンモニア濃度計、硝酸態窒素濃度計の数値はともに高く、窒素負荷が高い状態にあると判定でき、曝気装置への給気量を増加させる必要があると判定でき、無酸素槽のORPが高い場合には、窒素負荷が低い状態であると判断でき、給気量を減少させる必要があると判定できる。   For example, when the DO of the aerobic tank is low, it can be determined that the values of the total nitrogen concentration meter, ammonia concentration meter, and nitrate nitrogen concentration meter are both high, and the nitrogen load is high. It can be determined that the amount needs to be increased, and when the ORP of the anoxic tank is high, it can be determined that the nitrogen load is low, and it can be determined that the air supply amount needs to be reduced.

溶存酸素濃度計、全窒素濃度計、アンモニア濃度計、硝酸態窒素濃度計は主に好気槽3または処理水槽に設置され、酸化還元電位センサは主に無酸素槽2に設置される。   The dissolved oxygen concentration meter, the total nitrogen concentration meter, the ammonia concentration meter, and the nitrate nitrogen concentration meter are mainly installed in the aerobic tank 3 or the treated water tank, and the redox potential sensor is mainly installed in the anoxic tank 2.

ブロワ8に接続された給気管6bには、エアリフトポンプ5の散気管5aに散気用の空気を供給する分岐管5dが分岐接続されている。制御手段11が汚泥性状測定手段10による計測値を指標として有機性排水の窒素負荷が増大したと判断して、ブロワ8からの給気量を増加制御すると、曝気装置6への給気量の増加に追随してエアリフトポンプ5への給気量が増加される。   To the air supply pipe 6b connected to the blower 8, a branch pipe 5d for supplying air for air diffusion to the air diffusion pipe 5a of the air lift pump 5 is branch-connected. When the control means 11 determines that the nitrogen load of the organic waste water has increased using the measurement value of the sludge property measurement means 10 as an index, and increases the amount of air supplied from the blower 8, the amount of air supplied to the aeration device 6 The amount of air supplied to the air lift pump 5 is increased following the increase.

これにより、好気槽3でのアンモニア態窒素に対する硝化処理が促進されて硝酸態窒素が増えると同時に、硝酸態窒素を含む活性汚泥の無酸素槽2への返送量が増して、窒素除去率が高められる。   As a result, the nitrification process for ammonia nitrogen in the aerobic tank 3 is promoted to increase nitrate nitrogen, and at the same time the amount of activated sludge containing nitrate nitrogen is returned to the anoxic tank 2, the nitrogen removal rate is increased. Is enhanced.

尚、膜分離装置7の下部に備えた曝気装置への給気量は活性汚泥の窒素負荷の変動にかかわらず独自に調整する必要があるため、当該曝気装置に接続されるブロワは独立して設けられている。   In addition, since the amount of air supplied to the aeration device provided at the lower part of the membrane separation device 7 needs to be adjusted independently regardless of the fluctuation of nitrogen load of activated sludge, the blower connected to the aeration device is independently It is provided.

制御手段11が汚泥性状測定手段10による計測値を指標として有機性排水の窒素負荷が減少したと判断して、ブロワ8からの給気量を減少制御すると、曝気装置6への給気量の減少に追随してエアリフトポンプ5への給気量が減少される。   If the control means 11 determines that the nitrogen load of the organic waste water has decreased using the measured value by the sludge property measurement means 10 as an index, and controls to decrease the amount of air supplied from the blower 8, the amount of air supplied to the aerator 6 Following the decrease, the amount of air supplied to the air lift pump 5 is reduced.

これにより、好気槽3でのアンモニア態窒素に対する硝化処理に不要な過剰な給気が抑止される。   As a result, excessive air supply unnecessary for the nitrification treatment of ammonia nitrogen in the aerobic tank 3 is suppressed.

図2(a),(b),(c)には、図1で説明した有機性排水の処理システム1の試験データが示されている。図2(a)に示すように、有機性排水である原水の全窒素濃度が時間的に変動して、低下すると補助曝気風量及びエアリフト風量が減少制御され、上昇すると補助曝気風量及びエアリフト風量が増加制御される制御特性が示されている。この時、補助曝気風量が増加するとそれに追随してエアリフト風量が増加する様子が図2(b)に示され、エアリフト風量が増加すると汚泥循環量が増加する様子が図2(c)に示されている。   The test data of the treatment system 1 of the organic waste water demonstrated in FIG. 1 are shown by FIG. 2 (a), (b), (c). As shown in FIG. 2 (a), when the total nitrogen concentration of raw water which is organic drainage fluctuates with time and decreases, the auxiliary aeration air volume and the air lift air volume are controlled to decrease, and when it increases, the auxiliary aeration air volume and the air lift air volume The control characteristics to be incrementally controlled are shown. At this time, Fig. 2 (b) shows how the air lift air volume increases following the increase of the auxiliary aeration air volume, and Fig. 2 (c) shows how the sludge circulation volume increases when the air lift air volume increases. ing.

即ち、上述した有機性排水の処理システム1の制御手段11によって、活性汚泥の性状を指標としてブロワ8からの給気量を増加または減少調整することによりエアリフトポンプ5による汚泥循環量が追随して制御される制御方法が実現されている。   That is, the amount of air supplied from the blower 8 is increased or decreased by using the property of activated sludge as an index by the control means 11 of the organic waste water treatment system 1 described above, and the amount of sludge circulation by the air lift pump 5 follows A controlled method of control is realized.

以下、別実施形態を説明する。
先の実施形態では、好気槽3内に仕切られることなく補助曝気区域3Aと膜分離区域3Bが隣接するように配置された構成を説明したが、補助曝気区域3Aと膜分離区域3Bが隔壁等で明確に分けられるように構成されていてもよい。
Another embodiment will be described below.
Although the previous embodiment described the configuration in which the auxiliary aeration area 3A and the membrane separation area 3B are disposed adjacent to each other without being divided into the aerobic tank 3, the auxiliary aeration area 3A and the membrane separation area 3B are partition walls. Etc. may be configured to be clearly divided.

先の実施形態では曝気装置6に供給される空気量がブロワ8の回転数を調整することにより増減され、それに追随するようにエアリフトポンプ5に供給される給気量が増減される態様を説明したが、図3に示すように、ブロワと給気管6b及び分岐管5dとの間にバルブVを設けて、ブロワ8の回転数を一定に維持しつつ活性汚泥の性状を指標として当該バルブVの開度を調整してもよい。   In the embodiment described above, the amount of air supplied to the aeration device 6 is increased or decreased by adjusting the rotational speed of the blower 8, and the amount of air supplied to the air lift pump 5 is increased or decreased to follow it. However, as shown in FIG. 3, a valve V is provided between the blower and the air supply pipe 6b and the branch pipe 5d to maintain the rotational speed of the blower 8 constant while using the property of activated sludge as an index. You may adjust the opening degree of.

先の実施形態では、好気槽3が、曝気装置6が配置された補助曝気区域3Aと、膜分離装置7が配置された膜分離区域3Bを備えて構成された例を説明したが、図4に示すように、好機槽3に膜分離区域3Bを備えず、補助曝気区域3Aのみで構成された例であっても本願発明を適用することができる。   In the previous embodiment, an example was described in which the aerobic tank 3 was configured to include the auxiliary aeration area 3A in which the aeration device 6 is disposed, and the membrane separation area 3B in which the membrane separation device 7 is disposed. As shown in FIG. 4, the present invention can be applied to an example where the mechanical tank 3 is not provided with the membrane separation area 3B and only the auxiliary aeration area 3A is provided.

先の実施形態では、有機性排水の処理システム1を構成する生物処理槽が、無酸素槽2と好気槽3のみで構成された例を説明したが、さらに嫌気槽9を備えてもよい。図5に示すように、例えば、無酸素槽2の前段に嫌気槽9を備え、好気槽3で活性汚泥に取り込まれたリンを嫌気槽で放出するように構成してもよい。この場合、無酸素槽2の活性汚泥を嫌気槽9に返送する返送路を設けることにより、好気槽3で取り込まれたリンが無酸素槽2で脱窒された後に嫌気槽9で放出されるようになる。   Although the biological treatment tank which comprises the processing system 1 of organic drainage explained the example by which only the anoxic tank 2 and the aerobic tank 3 were comprised in previous embodiment, you may further provide the anaerobic tank 9 . As shown in FIG. 5, for example, an anaerobic tank 9 may be provided at the front stage of the anoxic tank 2, and phosphorus taken into activated sludge in the aerobic tank 3 may be released in the anaerobic tank. In this case, by providing a return path for returning the activated sludge in the anoxic tank 2 to the anaerobic tank 9, the phosphorus taken in the aerobic tank 3 is denitrified in the anoxic tank 2 and then released in the anaerobic tank 9. Become so.

上述した実施形態では、曝気装置6に空気を供給する給気管6bとエアリフトポンプ5に空気を供給する分岐管5dにバルブ等の流量調整手段が設けられていない態様を説明したが、給気管6bと分岐管5dの少なくとも一方にバルブ等を設けてもよい。この場合、当該バルブ等により曝気装置6とエアリフトポンプ5への給気量が所定比となるように一旦調整すれば、あとは共通のブロワ8からの給気量の増減に応じて、曝気装置6とエアリフトポンプ5への給気量が当該所定比を維持した状態で増減されることになる。   In the embodiment described above, an aspect has been described in which the air supply pipe 6b for supplying air to the aeration device 6 and the branch pipe 5d for supplying air to the air lift pump 5 are not provided with flow rate adjusting means such as a valve. A valve or the like may be provided on at least one of the branch pipes 5d. In this case, if the amount of air supplied to the aeration device 6 and the air lift pump 5 is adjusted to a predetermined ratio by the valve or the like, the aeration device is adjusted according to the increase or decrease of the amount of air supplied from the common blower 8 thereafter. The amounts of air supplied to the air lift pump 5 and the air lift pump 5 are increased or decreased while maintaining the predetermined ratio.

上述した実施形態は、何れも本発明の一例であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。また、上述した複数の実施形態の何れかまたは複数を適宜組み合わせてもよい。   The embodiments described above are all examples of the present invention, and the present invention is not limited by the description, and the specific configuration of each part can be appropriately modified and designed within the range where the effects of the present invention can be exhibited. It goes without saying that In addition, any one or more of the plurality of embodiments described above may be combined as appropriate.

1:有機性排水処理システム
2:無酸素槽
3:好気槽
4:移送経路
5:エアリフトポンプ
5a:散気管
5b:揚水管
5c:移送管
5d:分岐管
6:曝気装置
6a:散気部
6b:給気管
8:ブロワ
10:汚泥性状測定手段
11:制御手段
1: Organic waste water treatment system 2: Anoxic tank 3: Aerobic tank 4: Transfer route 5: Air lift pump 5a: Diffuser 5b: Pumping pipe 5c: Transfer pipe 5d: Branch pipe 6: Aeration device 6a: Aeration part 6b: air supply pipe 8: blower 10: sludge property measuring means 11: control means

Claims (3)

有機性排水を活性汚泥が貯留された無酸素槽と好気槽との間で循環させながら生物処理する有機性排水の処理方法であって、
前記好気槽は、曝気装置が配置された補助曝気区域と、膜分離装置が配置された膜分離区域を備えて構成され、
前記好気槽で好気性処理するための前記曝気装置への給気量の増減に追随して前記好気槽から前記無酸素槽へ活性汚泥を移送するためのエアリフトポンプへの給気量が増減するように、前記曝気装置及び前記エアリフトポンプへの給気を共通のブロワで行ない、
活性汚泥の性状を指標として前記ブロワからの給気量を増加または減少調整し、前記エアリフトポンプにより前記膜分離区域の活性汚泥を前記無酸素槽へ移送することを特徴とする有機性排水の処理方法。
A method of treating organic wastewater, wherein the organic wastewater is subjected to biological treatment while being circulated between an anoxic tank where activated sludge is stored and an aerobic tank,
The aerobic tank is configured to include an auxiliary aeration area in which the aeration apparatus is disposed, and a membrane separation area in which the membrane separation apparatus is disposed;
The air charge to the air lift pump for transferring the activated sludge to the anoxic tank to follow the air charge of increasing or decreasing from the aerobic tank to the aeration device for aerobic treatment in the aerobic tank is Supplying air to the aeration apparatus and the air lift pump with a common blower so as to increase or decrease;
Treatment of organic wastewater characterized in that the amount of air supplied from the blower is increased or decreased by using the property of activated sludge as an index, and the activated sludge in the membrane separation area is transferred to the anoxic tank by the air lift pump Method.
前記指標となる活性汚泥の性状が、溶存酸素濃度、酸化還元電位、全窒素濃度、アンモニア態窒素濃度、硝酸態窒素濃度の何れかで表されることを特徴とする請求項記載の有機性排水の処理方法。 Properties of activated sludge to be the index, dissolved oxygen concentration, redox potential, total nitrogen concentration, ammonia nitrogen concentration, organic according to claim 1, characterized by being represented by any one of nitrate nitrogen concentration Wastewater treatment method. 有機性排水を活性汚泥が貯留された複数の生物処理槽の間で循環させながら生物処理する有機性排水の処理システムであって、
無酸素槽と、好気槽と、前記無酸素槽から前記好気槽へ活性汚泥を移送する移送経路と、前記好気槽から前記無酸素槽へ活性汚泥を移送するエアリフトポンプと、前記好気槽に配置された曝気装置と、前記エアリフトポンプ及び前記曝気装置への給気量を可変に調整可能な共通のブロワと、活性汚泥の性状を測定する汚泥性状測定手段と、前記汚泥性状測定手段からの測定値に基づいて前記ブロワからの給気量を増加または減少調整する制御手段とを備え、
前記好気槽は、前記曝気装置が配置された補助曝気区域と、膜分離装置が配置された膜分離区域を備えて構成され、
前記制御手段による前記ブロワからの給気量の制御に基づく前記曝気装置への給気量の増減に追随して前記エアリフトポンプへの給気量も増減され、前記エアリフトポンプにより前記膜分離区域の活性汚泥を前記無酸素槽へ移送するように構成されていることを特徴とする有機性排水の処理システム。
What is claimed is: 1. A system for treating organic wastewater, which bioprocesses organic wastewater while circulating the organic wastewater among a plurality of biological treatment tanks in which activated sludge is stored,
An anoxic tank, an aerobic tank, a transfer path for transferring activated sludge from the anoxic tank to the aerobic tank, an air lift pump for transferring activated sludge from the aerobic tank to the anoxic tank, An aeration apparatus disposed in an air tank, a common blower capable of variably adjusting the amount of air supplied to the air lift pump and the aeration apparatus, sludge property measurement means for measuring properties of activated sludge, and the sludge property measurement Control means for increasing or decreasing the amount of air supplied from the blower based on the measurement value from the means;
The aerobic tank comprises an auxiliary aeration area in which the aeration apparatus is disposed, and a membrane separation area in which the membrane separation apparatus is disposed;
Air supply amount to the air lift pump to follow the air charge of increase and decrease to the aeration device based on the control of the air supply amount from the blower by the control means is also increased or decreased, the membrane separation zone by the air lift pump A system for treating organic wastewater, which is configured to transfer activated sludge to the anoxic tank .
JP2015063549A 2015-03-26 2015-03-26 Method and system for treating organic wastewater Active JP6532723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015063549A JP6532723B2 (en) 2015-03-26 2015-03-26 Method and system for treating organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015063549A JP6532723B2 (en) 2015-03-26 2015-03-26 Method and system for treating organic wastewater

Publications (2)

Publication Number Publication Date
JP2016182551A JP2016182551A (en) 2016-10-20
JP6532723B2 true JP6532723B2 (en) 2019-06-19

Family

ID=57241424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015063549A Active JP6532723B2 (en) 2015-03-26 2015-03-26 Method and system for treating organic wastewater

Country Status (1)

Country Link
JP (1) JP6532723B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6883459B2 (en) 2017-04-04 2021-06-09 株式会社クボタ Organic wastewater treatment method and organic wastewater treatment equipment
CN107651752B (en) * 2017-11-08 2023-04-11 中机国际工程设计研究院有限责任公司 Biological nitrogen and phosphorus removal device for sewage
CN109502733A (en) * 2018-12-29 2019-03-22 欧基(上海)环保科技有限公司 A kind of sewage disposal system
JP6818951B1 (en) * 2020-03-25 2021-01-27 三菱電機株式会社 Water treatment equipment and water treatment method
JP2023084369A (en) * 2021-12-07 2023-06-19 株式会社クボタ Organic wastewater treatment apparatus and method of operating organic wastewater treatment apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466444B2 (en) * 1997-11-21 2003-11-10 株式会社西原環境テクノロジー Wastewater treatment equipment
JP3649632B2 (en) * 1999-11-15 2005-05-18 三菱重工業株式会社 Biological nitrogen removal method
JP2001259689A (en) * 2000-03-23 2001-09-25 Sumitomo Heavy Ind Ltd Device and method for treating waste water
JP4304453B2 (en) * 2003-09-26 2009-07-29 株式会社日立プラントテクノロジー Operation control device for nitrogen removal system
JP5436350B2 (en) * 2010-06-16 2014-03-05 株式会社クボタ Air lift pump device and sewage treatment facility

Also Published As

Publication number Publication date
JP2016182551A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP5890374B2 (en) Biological nitrogen removal apparatus and water treatment system
US7655142B2 (en) Dynamic control of membrane bioreactor system
JP6532723B2 (en) Method and system for treating organic wastewater
JP5878231B2 (en) Waste water treatment device, waste water treatment method, waste water treatment system, control device, control method, and program
JP5140545B2 (en) Air supply system and air supply method
WO2013133443A1 (en) Wastewater treatment device, wastewater treatment method, wastewater treatment system, control device, control method, and program
JP6939724B2 (en) Sewage treatment method and equipment
JP6720100B2 (en) Water treatment method and water treatment device
JP5833791B1 (en) Aeration control method for activated sludge
JP2017144402A (en) Nitrification denitrification method and device for ammoniac nitrogen-containing liquid to be treated
JP5105243B2 (en) Membrane separation activated sludge treatment apparatus and method
JP5956372B2 (en) Water treatment apparatus and water treatment method
JP6774341B2 (en) Nitrogen removal system and nitrogen removal method
JP2012228645A (en) Water treatment apparatus, water treating method, and program for the method
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
JP3379199B2 (en) Operation control method of activated sludge circulation method
JP2015208723A (en) Water treatment process control system
JP2015054271A (en) Effluent treatment apparatus and effluent treatment method
JP2006289277A (en) Nitrate forming nitrification/denitrification method, method for nitrifying/denitrifying ammonia nitrogen-containing liquid and nitrate forming nitrification/denitrification equipment
Schraa et al. Dynamic modeling of membrane-aerated biofilm reactors
JP2019171235A (en) Wastewater treatment apparatus
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
KR100721682B1 (en) A treatment method of wastewater for removing organics and nitrogen compounds simultaneously in a single reactor)
JP3303475B2 (en) Operation control method of activated sludge circulation method
JPH05317884A (en) Anaerobic-aerobic activated sludge treating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190522

R150 Certificate of patent or registration of utility model

Ref document number: 6532723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150