JP5436350B2 - Air lift pump device and sewage treatment facility - Google Patents

Air lift pump device and sewage treatment facility Download PDF

Info

Publication number
JP5436350B2
JP5436350B2 JP2010137144A JP2010137144A JP5436350B2 JP 5436350 B2 JP5436350 B2 JP 5436350B2 JP 2010137144 A JP2010137144 A JP 2010137144A JP 2010137144 A JP2010137144 A JP 2010137144A JP 5436350 B2 JP5436350 B2 JP 5436350B2
Authority
JP
Japan
Prior art keywords
water
pipe
treated
tank
lift pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010137144A
Other languages
Japanese (ja)
Other versions
JP2012002124A (en
Inventor
泰弘 大川
壮一郎 矢次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2010137144A priority Critical patent/JP5436350B2/en
Publication of JP2012002124A publication Critical patent/JP2012002124A/en
Application granted granted Critical
Publication of JP5436350B2 publication Critical patent/JP5436350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Jet Pumps And Other Pumps (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、処理槽に立設配置された揚水管と、前記揚水管に気泡を放出して、気泡によるエアリフト効果で前記処理槽内の被処理水を揚水する散気装置と、前記揚水管と連通され、前記揚水管に揚水された被処理水を水平方向に移送するべく横設配置された送水管とを備えているエアリフトポンプ装置及び汚水処理設備に関する。   The present invention relates to a pumping pipe installed upright in a treatment tank, an air diffuser that discharges air bubbles to the pumping pipe, and pumps up the water to be treated in the processing tank by an air lift effect due to the air bubbles, and the pumping pipe The present invention relates to an air lift pump device and a sewage treatment facility that include a water supply pipe that is communicated with the water supply pipe and that is disposed horizontally to transfer the water to be treated that has been pumped up to the pumping pipe.

し尿や生活排水等を含む汚水を浄化する汚水処理設備は、嫌気槽または無酸素槽と好気槽が連接して構築され、両処理槽を仕切る隔壁に、嫌気槽または無酸素槽で嫌気処理された被処理水が好気槽に流出し、好気槽で好気処理された被処理水が膜分離装置を介して槽外に取り出され、或は最終沈殿池に流出するように構成され、さらに、好気槽で好気処理された被処理水の一部を汚泥とともに上流側の嫌気槽または無酸素槽に返送するエアリフトポンプ装置が設置されている。   The sewage treatment facility that purifies sewage including human waste and domestic wastewater is constructed by connecting an anaerobic tank or anaerobic tank and an aerobic tank. The treated water that has been treated flows out into the aerobic tank, and the treated water that has been subjected to the aerobic treatment in the aerobic tank is taken out of the tank through the membrane separator, or flows out into the final sedimentation tank. Furthermore, an air lift pump device is provided for returning a part of the water to be treated in the aerobic tank to the upstream anaerobic tank or anoxic tank together with the sludge.

嫌気槽では、原水に含まれるBOD成分が嫌気性微生物に取り込まれるとともに、リン化合物が加水分解されて正リン酸としてリンが液中に放出され、無酸素槽では脱窒処理が行われ、さらに、好気槽では好気性微生物によって硝化処理が行われ、さらに、被処理水中の正リン酸が汚泥に取り込まれる好気性処理が行われる。   In the anaerobic tank, the BOD component contained in the raw water is taken into the anaerobic microorganisms, the phosphorus compound is hydrolyzed and phosphorus is released into the liquid as normal phosphoric acid, and in the anaerobic tank, denitrification treatment is performed. In the aerobic tank, nitrification is performed by aerobic microorganisms, and further, aerobic treatment is performed in which normal phosphoric acid in the water to be treated is taken into sludge.

そして、窒素やリンを除去する高度処理では、汚水処理設備に流入する被処理水が変動する場合であっても、その処理効率を高い状態に維持するために、エアリフトポンプ装置によって嫌気槽または無酸素槽に返送する被処理水の量を適正量に調整する必要があり、そのため送水管を通流する被処理水の流量を精度良く計測する技術が求められている。   In the advanced treatment for removing nitrogen and phosphorus, even if the water to be treated flowing into the sewage treatment facility fluctuates, an anaerobic tank or non-removable tank is used by an air lift pump device to maintain a high treatment efficiency. It is necessary to adjust the amount of water to be treated returned to the oxygen tank to an appropriate amount. Therefore, a technique for accurately measuring the flow rate of water to be treated flowing through the water pipe is required.

樋状の送水路に流れる被処理水の流量を正確に計測する技術として、水路の途中に、一定の形状と寸法をもつ絞り部を設けて下流側水位に影響されない流れを作り、このときに流量と上流側水位との間に一定の関係が成り立つことを利用して、この水位を測定することにより流量を求めるフリューム式排水流量計が知られている。   In order to accurately measure the flow rate of water to be treated flowing in a bowl-shaped water channel, a throttle part with a certain shape and size is provided in the middle of the channel to create a flow that is not affected by the downstream water level. A flume type drainage flow meter is known in which a certain relationship is established between the flow rate and the upstream water level, and the flow rate is determined by measuring the water level.

フリューム式排水流量計では、haをフリュームの上流側水深(m)、K,mをフリュームの形状、サイズ、スロート幅等により決まる定数とした場合に、流量Q(m/h)が以下の数式で求められる。
Q=K・ha・m
In the flume drainage flow meter, when ha is the upstream water depth (m) and K and m are constants determined by the shape, size, throat width, etc. of the flume, the flow rate Q (m 3 / h) is as follows: It is calculated by a mathematical formula.
Q = K ・ ha ・ m

同様に、水路の途中に一定の形状と寸法をもつ堰板を設けて下流側水位に影響されない流れを作り、このときに流量と上流側水位との間に一定の関係が成り立つことを利用して、この水位を測定することにより流量を求める堰式排水流量計が知られている。   Similarly, a weir plate having a certain shape and size is provided in the middle of the water channel to create a flow that is not affected by the downstream water level, and at this time, a constant relationship is established between the flow rate and the upstream water level. Thus, weir-type drainage flowmeters are known that determine the flow rate by measuring the water level.

三角堰を用いた堰式排水流量計では、Kを水路幅、切欠き幅、切欠き下縁までの高さにより決まる定数、hを堰水頭(堰板の切欠き下縁からの越流水深、ただし全幅堰の場合は上縁からの越流水深)(m)とする場合に、流量Q(m/s)が以下の数式で求められる。
Q=K・h5/2・1/60
In a weir-type drainage flow meter using a triangular weir, K is a constant determined by the channel width, notch width, and height to the notch lower edge, and h is a weir head (overflow depth from the notch lower edge of the weir plate) However, in the case of a full width weir, the flow rate Q (m 3 / s) can be obtained by the following formula when the overflow water depth (m) from the upper edge is set.
Q = K ・ h 5/2・ 1/60

特許文献1には、堰式排水流量計を用いたエアリフトポンプ装置として、循環水を計量する三角堰と循環水量を調整する戻り堰を備え、揚水管から過剰に揚水された被処理水から必要な循環水量のみを三角堰から越流させる分配計量装置を有するエアリフトポンプ装置が開示されている。   In Patent Document 1, as an air lift pump device using a weir-type drainage flow meter, a triangular weir that measures circulating water and a return weir that adjusts the amount of circulating water are provided, and it is necessary from the treated water that is excessively pumped from the pumping pipe. An air lift pump device having a distribution metering device for allowing only a circulating water amount to overflow from a triangular weir is disclosed.

また、特許文献1には、揚水管に放出される気泡の量を調整する調整弁を備え、送水管の流出側開口部に循環水量の目安線が形成されたエアリフトポンプ装置が開示されている。   Further, Patent Document 1 discloses an air lift pump device that includes an adjustment valve that adjusts the amount of bubbles released to the pumping pipe and that has a reference line for the circulating water amount formed at the outlet side opening of the water pipe. .

特開平11−104664号公報JP-A-11-104664

しかし、エアリフトポンプ装置で返送される被処理水の流量を、上述したフリューム式排水流量計や堰式排水流量計を用いて計測する場合には、計測に必要な水頭差を確保するために、被処理水の上流側処理槽への返送に必要な水頭差よりも大きな水頭差まで揚水する必要があり、そのために散気装置から過剰な散気量で揚水管に気泡を供給することになりエネルギー効率が悪いという問題があった。   However, when measuring the flow rate of the treated water returned by the air lift pump device using the above-described flume type drainage flow meter or weir type drainage flow meter, in order to ensure the water head difference necessary for measurement, It is necessary to pump up to a head difference larger than the head difference required for returning the treated water to the upstream treatment tank, and for that reason, bubbles will be supplied from the air diffuser to the pump pipe with an excessive amount of air diffused. There was a problem of poor energy efficiency.

さらに、多量の被処理水を浄化処理する必要がある浄水施設に設置される高度汚水処理設備では、コンクリート躯体で構成される大容量の嫌気槽や好気槽が構築され、比較的大型のエアリフトポンプ装置が設置されるため、好気槽からの返送水の流量を計測するために、堰式排水流量計を設けると非常に大型となり設備コストのみならず、散気装置の動力コストも嵩むという問題もあった。   Furthermore, in advanced sewage treatment facilities installed in water purification facilities that need to purify a large amount of treated water, large-capacity anaerobic tanks and aerobic tanks composed of concrete frames are constructed, and relatively large airlifts are installed. Since a pump device is installed, installing a weir-type drainage flow meter to measure the flow rate of the return water from the aerobic tank is very large and increases not only the equipment cost but also the power cost of the diffuser. There was also a problem.

そこで、例えば、図7に示すように、好気槽60に立設して配置された揚水管71と、揚水管71に向けて気泡を放出する散気装置72と、気泡により揚水された被処理水を揚水管71の上部から、隔壁62を貫いて好気槽60に隣接する無酸素槽61に移送する略水平姿勢の送水管73を備えたエアリフトポンプ装置70を構成する場合に、無酸素槽61の水面近傍まで揚水された被処理水を移送する樋状の送水管73に流速計80を設置して、当該流速計80で計測した流速に基づいて平均流速を算出し、算出した平均流速と送水管の被処理水が通過する断面積との積で移送量を算出することが考えられる。   Therefore, for example, as shown in FIG. 7, a pumping pipe 71 arranged upright in the aerobic tank 60, an air diffuser 72 that discharges bubbles toward the pumping pipe 71, and a cover pumped up by the bubbles When the air lift pump device 70 having the substantially horizontal water supply pipe 73 for transferring the treated water from the upper part of the pumping pipe 71 through the partition wall 62 to the anaerobic tank 61 adjacent to the aerobic tank 60 is provided. A flow velocity meter 80 is installed in a bowl-shaped water supply pipe 73 for transferring the treated water pumped up to the vicinity of the water surface of the oxygen tank 61, and an average flow velocity is calculated based on the flow velocity measured by the flow velocity meter 80. It is conceivable to calculate the transfer amount by the product of the average flow velocity and the cross-sectional area through which the water to be treated passes.

この場合、自由水面から樋状の送水管73の底面までの深さを1として、自由水面からの水深が0.6の位置に流速計80を設置し、流速計80で計測された流速を平均流速とする。   In this case, assuming that the depth from the free water surface to the bottom surface of the bowl-shaped water pipe 73 is 1, the velocimeter 80 is installed at a position where the water depth from the free water surface is 0.6, and the flow velocity measured by the velocimeter 80 is Average flow rate.

しかし、処理槽の水位が変動すると、それに伴って流速計80が設置された水深が変動するため、算出される送水管73の代表流速に信頼性が確保できないという問題がある。   However, when the water level of the treatment tank changes, the water depth at which the velocity meter 80 is installed fluctuates accordingly. Therefore, there is a problem that reliability cannot be ensured for the representative flow velocity of the water pipe 73 calculated.

図8(a)には、矩形の送水管73の幅をWとし、処理槽の水位が最低水位LWLのときに、送水管73内の水深をDLとしたときに、水深0.6DLの位置に流速計80を設置し、流速計80で計測された流速vを平均流速vとして算出する例が示されている。平均流速vと流量計50を設置した箇所の通過断面積A(=DL×W)の積から流量Q(=v×A)が算出される。   In FIG. 8A, when the width of the rectangular water supply pipe 73 is W, and the water level in the water supply pipe 73 is DL when the water level of the treatment tank is the lowest water level LWL, the position of the water depth 0.6DL is shown. An example is shown in which a velocimeter 80 is installed in the apparatus and the flow velocity v measured by the velocimeter 80 is calculated as the average flow velocity v. The flow rate Q (= v × A) is calculated from the product of the average flow velocity v and the passage cross-sectional area A (= DL × W) where the flow meter 50 is installed.

図8(b)に示すように、処理槽の水位が最高水位HWLまで上昇すると、送水管73の水深がDHに上昇する。このとき、平均流速を算出するには水深0.6DHの位置の流速vを計測しなければならない。しかし、流速計80は処理槽の水位が最低水位LWLのときに、水深0.6DLの位置に設置されているため、流量計80により検出される流速は最早平均流速を示す値では無くなるのである。   As shown in FIG. 8B, when the water level of the treatment tank rises to the highest water level HWL, the water depth of the water supply pipe 73 rises to DH. At this time, in order to calculate the average flow velocity, the flow velocity v at the position of the water depth 0.6DH must be measured. However, since the flowmeter 80 is installed at a water depth of 0.6 DL when the water level of the treatment tank is the lowest water level LWL, the flow velocity detected by the flow meter 80 is no longer a value indicating the average flow velocity. .

本発明の目的は、上述した問題点に鑑み、設備コストや運転コストを低減させながら、送水される被処理水の流量を精度良く計測できるエアリフトポンプ装置及び汚水処理設備を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide an air lift pump device and a sewage treatment facility that can accurately measure the flow rate of water to be treated while reducing facility costs and operation costs.

上述の目的を達成するため、本発明によるエアリフトポンプ装置の特徴構成は、特許請求の範囲の請求項1に記載した通り、処理槽に立設配置された揚水管と、前記揚水管に気泡を放出して前記処理槽内の被処理水を揚水する散気装置と、前記揚水管と連通され、前記揚水管に揚水された被処理水を水平方向に移送するべく横設配置された送水管とを備えているエアリフトポンプ装置であって、前記揚水管の上端高さが前記送水管が配置された領域における前記処理槽の最低水位以下の高さに設定され、前記揚水管に供給された気泡を大気開放する脱気部が前記送水管に設けられ、前記送水管のうち前記脱気部の下流側が前記処理槽の最低水位より低い高さに配置されるとともに、当該下流側に流速計が設置されている点にある。   In order to achieve the above-described object, the characteristic configuration of the air lift pump device according to the present invention is as described in claim 1 of the present invention, and includes a pumping pipe installed upright in a treatment tank, and bubbles in the pumping pipe. An air diffuser that discharges and pumps up the water to be treated in the treatment tank, and a water pipe that communicates with the pumping pipe and is disposed horizontally to transfer the water to be treated that has been pumped up to the pumping pipe in the horizontal direction. The upper end height of the pumping pipe is set to a height equal to or lower than the lowest water level of the treatment tank in the region where the water feeding pipe is arranged, and is supplied to the pumping pipe. A deaeration part for opening bubbles to the atmosphere is provided in the water supply pipe, and the downstream side of the deaeration part in the water supply pipe is disposed at a height lower than the lowest water level of the treatment tank, and a velocimeter on the downstream side. Is in the point where is installed.

上述の構成によると、送水管のうち脱気部の下流側が処理槽の最低水位より低い高さに配置されているため、脱気部の下流側の送水管は常に返送水で満たされるようになり、そのような送水管の下流部に配置した流速計によれば、処理槽の水位が変動する場合であっても常に正確な代表流速を算出するための基準流速を計測することができるようになる。なお、この場合、送水管の中心部に流速計を設置することにより、常にその最大流速を基準流速として計測することができる。   According to the above configuration, since the downstream side of the deaeration part of the water supply pipe is arranged at a height lower than the lowest water level of the treatment tank, the water supply pipe on the downstream side of the deaeration part is always filled with the return water. Therefore, according to the anemometer arranged in the downstream portion of such a water pipe, even if the water level of the treatment tank fluctuates, it is possible to always measure the reference velocity for calculating the representative representative velocity. become. In this case, the maximum flow velocity can always be measured as the reference flow velocity by installing an anemometer at the center of the water pipe.

また、揚水管の上端高さが前記送水管が配置された領域における前記処理槽の最低水位以下の高さに設定されているため、被処理水の返送のために必要となる最小限の揚程だけ揚水すればよいので、散気装置に必要な動力も揚水のための最小の動力で済み、返送水の流量を計測するためにフリューム式排水流量計等を用いる場合に必要となる余分な動力を消費する必要が無くなる。   Further, since the upper end height of the pumping pipe is set to a height equal to or lower than the lowest water level of the treatment tank in the area where the water feeding pipe is disposed, the minimum head required for returning the treated water Therefore, the power required for the air diffuser is minimal, and the extra power required when using a flume-type drainage flow meter to measure the flow rate of the return water. Need not be consumed.

さらに、揚水管に供給された気泡を大気開放する脱気部が、横設配置された送水管に設けられているため、気泡を送水管内で十分に上昇させた後に、脱気部で大気に開放することができ、多量の気泡が混入した状態で送水管を通流することが解消されるため、流速計で計測される返送水の流速が信頼性の高い値となる。なお、揚水管の上端に脱気部を備える場合には、上昇流を効率良く水平流に変換できないうえ、揚水管で十分に気泡が除去されず、一定量の気泡とともに被処理水が送水管に導かれ、流速計で計測される返送水の流速が気泡の影響で変動して正確な値を得ることが困難になる。   Furthermore, since the deaeration part that opens the air bubbles supplied to the pumping pipe to the atmosphere is provided in the water pipe arranged horizontally, after the bubbles are sufficiently raised in the water supply pipe, Since it can be opened and the flow through the water supply pipe in a state where a large amount of air bubbles are mixed is eliminated, the flow rate of the return water measured by the anemometer becomes a highly reliable value. In addition, when the degassing part is provided at the upper end of the pumping pipe, the upward flow cannot be efficiently converted into a horizontal flow, and the bubbles are not sufficiently removed by the pumping pipe, and the water to be treated is transported along with a certain amount of bubbles. It is difficult to obtain an accurate value because the flow rate of the return water measured by the anemometer fluctuates due to bubbles.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、前記送水管のうち少なくとも前記脱気部の上流側が、前記処理槽の最高水位以下で最低水位以上の高さに配置されている点にある。   In addition to the first feature configuration described above, the second feature configuration is at least the upstream side of the deaeration unit of the water supply pipe at least below the maximum water level of the treatment tank. It is located at a height above the water level.

上述の構成によれば、揚水管によって処理槽の最低水位以下の高さまで揚水された被処理水が、処理槽の最高水位以下で最低水位以上の高さに配置されている送水管と連結されるため、処理槽の水位が変動する場合であっても、散気装置に必要な動力も揚水のための動力変動も極めて少なくすることができる。   According to the above-described configuration, the water to be treated which has been pumped up to the height below the minimum water level of the treatment tank by the pumping pipe is connected to the water pipe arranged below the maximum water level of the treatment tank and above the minimum water level. Therefore, even when the water level of the treatment tank fluctuates, the power required for the air diffuser and the power fluctuation for pumping can be extremely reduced.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二の特徴構成に加えて、前記送水管に、前記脱気部の下流側の上側管壁が上流側の上側管壁より低くなるように段差部が形成されている点にある。   In the third characteristic configuration, as described in the third aspect, in addition to the first or second characteristic configuration described above, the upper pipe wall on the downstream side of the deaeration unit is provided on the upstream side in the water supply pipe. The step portion is formed so as to be lower than the upper tube wall.

上述の構成によれば、送水管の上流側から脱気部に向けて流れる過程で、被処理水に混入した気泡が上昇した後に脱気部で大気に開放されるので、効率的に気泡を分離することができ、気泡が除去された被処理水が脱気部からその下流側に流れるのであるが、脱気部で十分に脱気されず被処理水の表面近傍に存在する僅かな気泡であっても、段差部から下方に被処理水が流下する際に被処理水から確実に分離されるようになり、より確実に正確な流速を計測できるようになる。   According to the above-described configuration, in the process of flowing from the upstream side of the water pipe toward the deaeration unit, the bubbles mixed in the water to be treated are released and then released to the atmosphere in the deaeration unit. The water to be treated, which can be separated and from which bubbles have been removed, flows from the deaeration part to the downstream side, but there are few bubbles present near the surface of the water to be treated that are not sufficiently deaerated at the deaeration part. Even so, when the water to be treated flows downward from the stepped portion, the water is surely separated from the water to be treated, and an accurate flow rate can be measured more reliably.

同第四の特徴構成は、同請求項4に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、前記送水管のうち、前記脱気部の下流側の断面積が前記脱気部の上流側の断面積よりも小さくなるように構成されている点にある。   In the fourth feature configuration, as described in claim 4, in addition to any of the first to third feature configurations described above, the cross-sectional area of the water supply pipe on the downstream side of the deaeration unit. Is configured to be smaller than the cross-sectional area on the upstream side of the deaeration part.

上述の構成によれば、脱気部の下流側を流れる被処理水の流速が、脱気部の上流側を流れる被処理水の流速よりも大きな値になる。従って、脱気部の上流側では、比較的低い流速で流れる間に効率的に気泡を上昇させることができ、脱気部の下流側では、被処理水が返送管内を比較的高い流速で流れるために、流速計により正確に流速を計測することができるようになる。また、そのような比較的高い流速で返送された処理槽で、被処理水の攪拌効果も向上させることができる。   According to the above-described configuration, the flow rate of the water to be treated flowing on the downstream side of the deaeration unit is larger than the flow rate of the water to be treated flowing on the upstream side of the deaeration unit. Accordingly, the air bubbles can be efficiently raised while flowing at a relatively low flow rate on the upstream side of the deaeration unit, and the water to be treated flows in the return pipe at a relatively high flow rate on the downstream side of the deaeration unit. Therefore, the flow velocity can be accurately measured by the anemometer. Moreover, the stirring effect of to-be-processed water can be improved in the processing tank returned by such a comparatively high flow rate.

同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、前記送水管のうち、前記脱気部の下流側の断面積が前記脱気部の上流側の断面積の0.5倍から2倍の範囲となるように構成されている点にある。   In the fifth feature configuration, in addition to any one of the first to third feature configurations described above, the cross-sectional area on the downstream side of the deaeration unit in the water pipe is as described in the fifth aspect. However, it is comprised so that it may become the range of 0.5 to 2 times the cross-sectional area of the upstream of the said deaeration part.

送水管のうち、脱気部の下流側の断面積が脱気部の上流側の断面積の0.5倍程度であれば、送水管を流れる被処理水の圧力損失もそれほど大きくならず、被処理水が返送管内を比較的高い流速で流れるために、流速計により正確に流速を計測することができる。また、比較的高い流速で処理槽の被処理水が返送され、処理槽内が局部的に大きく攪拌されることが好ましくない場合には、脱気部の下流側の断面積が脱気部の上流側の断面積の2倍程度に設定すれば、比較的緩やかに被処理水が処理用に返送されながらも、返送量の調整に困難を来たさない程度の精度で流速計により流速を計測することができるようになる。   If the cross-sectional area on the downstream side of the degassing part is about 0.5 times the cross-sectional area on the upstream side of the degassing part, the pressure loss of the water to be treated flowing through the water supply pipe is not so large. Since the water to be treated flows in the return pipe at a relatively high flow velocity, the flow velocity can be accurately measured by the anemometer. In addition, when it is not preferable that the water to be treated in the treatment tank is returned at a relatively high flow rate and the inside of the treatment tank is locally agitated largely, the cross-sectional area on the downstream side of the deaeration part is If it is set to about twice the cross-sectional area on the upstream side, while the treated water is returned for processing relatively slowly, the flow rate is adjusted with an anemometer with an accuracy that does not cause difficulty in adjusting the return amount. It becomes possible to measure.

同第六の特徴構成は、同請求項6に記載した通り、上述の第一から第五の何れかの特徴構成に加えて、前記脱気部の下流側送水管の断面形状が矩形である点にある。   In the sixth feature configuration, as described in claim 6, in addition to any of the first to fifth feature configurations described above, the cross-sectional shape of the downstream water supply pipe of the deaeration unit is rectangular. In the point.

上述の構成によれば、断面形状が矩形である送水管の方が製作がし易いため加工費が安価であり、同じ通過断面積の場合断面形状が円形であるより矩形である方が、高さ方向の寸法を小さくすることができる。   According to the above-described configuration, the water pipe having a rectangular cross-sectional shape is easier to manufacture, so the processing cost is low, and in the case of the same cross-sectional area, the rectangular cross-sectional shape is higher than the circular cross-sectional shape. The vertical dimension can be reduced.

同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記流速計により検知された流速に基づいて前記散気装置からの気泡の供給量を調整する制御装置を備えている点にある。   In addition to any one of the first to sixth feature configurations described above, the seventh feature configuration is based on the flow rate detected by the anemometer from the air diffuser as described in claim 7. It is in the point provided with the control device which adjusts the amount of bubbles supplied.

上述の構成によれば、制御装置によって、流速計により検知された流速に基づいて散気装置からの気泡の供給量が適正に調整できるようになるので、原水の処理槽への流入量が変動する場合であっても、安定した窒素やリンの除去処理が可能な高度処理が実現できるようになる。   According to the above configuration, since the amount of bubbles supplied from the air diffuser can be appropriately adjusted by the control device based on the flow velocity detected by the anemometer, the amount of inflow of the raw water into the treatment tank varies. Even in this case, it is possible to realize advanced processing capable of stably removing nitrogen and phosphorus.

本発明による汚水処理設備の特徴構成は、同請求項8に記載した通り、上述の第一から第七の何れかの特徴構成を備えたエアリフトポンプ装置を備えた点にある。   The characteristic configuration of the sewage treatment facility according to the present invention lies in that an air lift pump device having any one of the first to seventh characteristic configurations described above is provided, as described in claim 8.

以上説明した通り、本発明によれば、設備コストや運転コストを低減させながら、送水される被処理水の流量を精度良く計測できるエアリフトポンプ装置及び汚水処理設備を提供することができるようになった。   As described above, according to the present invention, it is possible to provide an air lift pump device and a sewage treatment facility that can accurately measure the flow rate of water to be treated while reducing facility costs and operation costs. It was.

エアリフトポンプ装置を採用した汚水処理設備を説明する平面図Plan view explaining sewage treatment equipment that employs an air lift pump device 本エアリフトポンプ装置を採用した汚水処理設備を説明する断面図Sectional drawing explaining the sewage treatment equipment which employ | adopted this air lift pump apparatus エアリフトポンプ装置の斜視図Perspective view of air lift pump device エアリフトポンプ装置の側面図Side view of air lift pump device エアリフトポンプ装置の概略断面図Schematic cross section of the air lift pump device (a)は別実施形態によるエアリフトポンプ装置の概略断面図、(b)は別実施形態によるエアリフトポンプ装置の概略断面図(A) is schematic sectional drawing of the air lift pump apparatus by another embodiment, (b) is schematic sectional drawing of the air lift pump apparatus by another embodiment. 返送管に流速計を設置したエアリフトポンプ装置の説明図Explanatory drawing of an air lift pump device with a flow meter installed in the return pipe 返送管での流速分布の説明図であって、(a)は処理槽の水位が最低水位である場合の流速分布の説明図、(b)は処理槽の水位が最高水位である場合の流速分布の説明図It is explanatory drawing of flow velocity distribution in a return pipe, Comprising: (a) is explanatory drawing of flow velocity distribution in case the water level of a processing tank is the lowest water level, (b) is flow velocity in case the water level of a processing tank is the highest water level. Illustration of distribution

以下、本発明によるエアリフトポンプ装置を、汚水処理設備の好気槽内の被処理水を無酸素槽に返送するポンプ装置として適用した場合について説明する。   Hereinafter, the case where the air lift pump apparatus by this invention is applied as a pump apparatus which returns the to-be-processed water in the aerobic tank of a sewage treatment facility to an anoxic tank is demonstrated.

図1,2に示すように、汚水処理設備1は、未処理の被処理水である原水を流入させる嫌気槽10と、嫌気槽10の下流側に隔壁11を介して連接され、嫌気性微生物により被処理水を脱窒する無酸素槽20と、無酸素槽20の下流側に隔壁21を介して配置され、無酸素槽20から流出した被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽30と、好気槽30で硝化された被処理水の一部を無酸素槽20に返送するエアリフトポンプ装置40を備えている。なお、図1,2中の破線で示された矢印は、被処理水の流れを表している。   As shown in FIGS. 1 and 2, the sewage treatment facility 1 is connected to an anaerobic tank 10 into which raw water that is untreated water flows, and an anaerobic microorganism connected to a downstream side of the anaerobic tank 10 via a partition wall 11. The anaerobic tank 20 for denitrifying the water to be treated and the ammonia contained in the water to be treated flowing out of the oxygen-free tank 20 through the partition wall 21 on the downstream side of the oxygen-free tank 20 is nitrified with an aerobic microorganism. An aerobic tank 30 and an air lift pump device 40 for returning a part of the water to be treated nitrified in the aerobic tank 30 to the anoxic tank 20. In addition, the arrow shown with the broken line in FIG. 1,2 represents the flow of to-be-processed water.

嫌気槽10では、嫌気条件下で微生物により嫌気処理され、原水に含まれるBOD成分が微生物に取り込まれるとともに、リン化合物が加水分解されて正リン酸としてリンが液中に放出される。嫌気槽10で嫌気処理された被処理水は、隔壁11の下部に形成された連通口12を介して無酸素槽20へ移送される。   In the anaerobic tank 10, anaerobic treatment is performed by microorganisms under anaerobic conditions, and BOD components contained in the raw water are taken into the microorganisms, and phosphorus compounds are hydrolyzed to release phosphorus as normal phosphoric acid into the liquid. The water to be treated that has been anaerobically treated in the anaerobic tank 10 is transferred to the anoxic tank 20 through the communication port 12 formed in the lower part of the partition wall 11.

無酸素槽20では、嫌気条件下で微生物により嫌気処理され、脱窒処理つまり硝酸イオン及び亜硝酸イオンの窒素ガスへの還元処理が行われる。無酸素槽20で嫌気処理された被処理水は、隔壁21の下部に形成された連通口22を介して好気槽30へ移送される。   In the anaerobic tank 20, anaerobic treatment is performed by microorganisms under anaerobic conditions, and denitrification treatment, that is, reduction treatment of nitrate ions and nitrite ions to nitrogen gas is performed. The water to be treated that has been anaerobically treated in the anaerobic tank 20 is transferred to the aerobic tank 30 through the communication port 22 formed in the lower part of the partition wall 21.

好気槽30に、無酸素槽20から流出した被処理水を受け入れる第一領域31と、第一領域31から流入した被処理水を隔壁21に導く第二領域32とに、被処理水の流出方向に沿って好気槽30を分離する分離壁34を設けて、第一領域31に被処理水に散気する複数の散気装置35を設置するとともに、第二領域32に被処理水を固液分離する複数の膜分離装置36を設置し、第二領域32の下流側にエアリフトポンプ装置40が設置されている。なお、分離壁34は、その上縁が水面より上方に突出する略垂直壁で構成され、基端側が隔壁21と接合され、他端側が好気槽30内で開放されている。   In the aerobic tank 30, the first region 31 that receives the treated water flowing out from the oxygen-free tank 20 and the second region 32 that guides the treated water flowing in from the first region 31 to the partition wall 21. A separation wall 34 that separates the aerobic tank 30 along the outflow direction is provided, and a plurality of air diffusers 35 that diffuse the treated water in the first region 31 are installed, and the treated water is disposed in the second region 32. A plurality of membrane separation devices 36 for solid-liquid separation are installed, and an air lift pump device 40 is installed downstream of the second region 32. The separation wall 34 is configured by a substantially vertical wall whose upper edge protrudes above the water surface, the base end side is joined to the partition wall 21, and the other end side is opened in the aerobic tank 30.

第一領域31では、散気装置35からの散気による好気条件下で、被処理水に含まれるし尿等由来のアンモニウムイオンが微生物により酸化され、亜硝酸や硝酸に変換される硝化処理が行われ、さらに、被処理水中の正リン酸が汚泥に取り込まれ、ポリリン酸として蓄積される好気性処理が行われる。   In the first region 31, nitrification treatment is performed in which ammonium ions derived from human urine and the like contained in the water to be treated are oxidized by microorganisms and converted into nitrous acid and nitric acid under aerobic conditions due to aeration from the aeration device 35. In addition, an aerobic treatment is performed in which normal phosphoric acid in the water to be treated is taken into sludge and accumulated as polyphosphoric acid.

第二領域32では、膜分離装置36により被処理水から活性汚泥等の固形物が分離され、分離された被処理水が、送水管37によって後段の処理水槽(図示せず)に排出される。なお、嫌気槽10に流入する未処理の被処理水である原水の量は一定ではなく変動するが、膜分離装置36は、図示しない制御部により各処理槽の水位が所定の最低水位LWL以上であって最高水位HWL以下となるように排出量を調整するように構成されている。   In the second region 32, solid matter such as activated sludge is separated from the water to be treated by the membrane separation device 36, and the separated water to be treated is discharged to a treated water tank (not shown) in the subsequent stage through a water pipe 37. . Note that the amount of raw water that is untreated water that flows into the anaerobic tank 10 is not constant, but varies. However, the discharge amount is adjusted so as to be equal to or lower than the maximum water level HWL.

膜分離装置36に用いられる分離膜として、限外ろ過膜、精密ろ過膜等が好ましく採用される。膜の形態は、中空糸膜、平膜、チューブラー膜などが好ましく採用される。   As the separation membrane used in the membrane separation device 36, an ultrafiltration membrane, a microfiltration membrane or the like is preferably employed. As the form of the membrane, a hollow fiber membrane, a flat membrane, a tubular membrane or the like is preferably employed.

なお、分離壁34で分離された第一領域31の容積は、第二領域32の容積より大きくなるように設定されている。特に、第一領域31の容積が第二領域32の容積の2倍程度大きくなるように分離壁34を形成することが好ましい。このように構成することで、第一領域31で好気処理が良好に行われる。   Note that the volume of the first region 31 separated by the separation wall 34 is set to be larger than the volume of the second region 32. In particular, it is preferable to form the separation wall 34 so that the volume of the first region 31 is about twice as large as the volume of the second region 32. By comprising in this way, an aerobic process is favorably performed in the 1st area | region 31. FIG.

複数の膜分離装置36の下部には、夫々の膜分離装置36の膜表面に付着する汚泥を除去洗浄する散気装置38が配設されている。第二領域32では、散気装置38から供給される空気により、好気条件下で活性汚泥により硝化処理が行われる。第二領域32の活性汚泥は、引抜管39により余剰汚泥として排出される。   An air diffuser 38 for removing and cleaning sludge adhering to the membrane surface of each membrane separator 36 is disposed below the plurality of membrane separators 36. In the second region 32, nitrification is performed by activated sludge under aerobic conditions with air supplied from the air diffuser 38. The activated sludge in the second region 32 is discharged as excess sludge through the extraction pipe 39.

第一領域31で好気性処理が行われた被処理水が、分離壁34の他端側の開放部から第二領域32に向けてU字状に流下するように構成されているため、散気装置35からの散気の流れ、散気装置38からの散気の流れが相互に干渉することによる被処理水の流れの乱れが発生することがない。   Since the water to be treated that has been subjected to the aerobic treatment in the first region 31 is configured to flow in a U shape from the open portion on the other end side of the separation wall 34 toward the second region 32, The turbulent flow of the water to be treated due to the interference between the flow of air diffused from the air device 35 and the flow of air diffused from the air diffuser 38 does not occur.

図3から図5に示すように、エアリフトポンプ装置40は、処理槽としての好気槽30に立設配置された断面矩形の揚水管41と、揚水管41の下端部に形成された下部開口41aの下方に対向して配置され、下部開口41aに向けて気泡を放出することで、好気槽30内の被処理水を揚水する散気装置42と、揚水管41と連通され、揚水管41に揚水された被処理水を水平方向に移送し、好気槽30に隣接する無酸素槽20へと返送するべく横設配置された断面矩形の送水管43とを備えている。図5中、破線矢印は、被処理水や気泡の流れを表している。   As shown in FIG. 3 to FIG. 5, the air lift pump device 40 includes a pumping pipe 41 having a rectangular cross section that is erected and disposed in an aerobic tank 30 as a processing tank, and a lower opening formed at the lower end of the pumping pipe 41. It is arranged to face the lower side of 41a and discharges bubbles toward the lower opening 41a, thereby communicating with the air diffuser 42 for pumping up the treated water in the aerobic tank 30, and the pumping pipe 41, and the pumping pipe A water supply pipe 43 having a rectangular cross section is provided so as to transfer the treated water pumped by 41 in the horizontal direction and return it to the anaerobic tank 20 adjacent to the aerobic tank 30. In FIG. 5, broken line arrows represent the flow of water to be treated and bubbles.

揚水管41は、処理槽の底部に配置された架台45に支持されている。処理槽に天井がある場合には、天井から吊るされた支持部に揚水管41や送水管43を支持してもよい。   The pumping pipe 41 is supported by a gantry 45 disposed at the bottom of the treatment tank. When the treatment tank has a ceiling, the pumping pipe 41 and the water supply pipe 43 may be supported by a support unit suspended from the ceiling.

散気装置42は、下部開口41a面積と略等しい面積となる範囲に、微細気泡を略均等に放出するために、同一平面上に分散配置された複数の散気部42aを備え、複数の散気部42aが揚水管41の下部開口41a面と平行に配置されている。   The air diffuser 42 includes a plurality of air diffusers 42a dispersed and arranged on the same plane in order to release the fine bubbles substantially uniformly in a range that is approximately equal to the area of the lower opening 41a. The air part 42 a is disposed in parallel with the surface of the lower opening 41 a of the water pump 41.

揚水管41の上端高さが好気槽30の最低水位LWL以下の高さに設定され、揚水管41と送水管43が曲管46を介して連通されている。そのため円滑な流れが確保でき、送水管43を揚水管41の上端部に直角に連通する場合に発生する圧力損失を補うように散気装置42の駆動動力を高く設定する必要が無い。   The upper end height of the pumping pipe 41 is set to a height equal to or lower than the lowest water level LWL of the aerobic tank 30, and the pumping pipe 41 and the water feeding pipe 43 are communicated with each other through a curved pipe 46. Therefore, a smooth flow can be secured, and there is no need to set the driving power of the air diffuser 42 high so as to compensate for the pressure loss that occurs when the water pipe 43 communicates with the upper end of the water pump pipe 41 at right angles.

送水管43には、揚水管41に供給された気泡を大気開放する脱気部44が設けられている。散気管42によって放出された気泡が、脱気部44で被処理水から脱気され、散気装置から供給される気泡がそのまま無酸素槽20に返送されることが無いので、無酸素槽20の溶存酸素濃度が高くなり、脱窒効率が低下するような不都合な事態の発生を回避することができる。   The water supply pipe 43 is provided with a deaeration unit 44 for releasing bubbles supplied to the pumping pipe 41 to the atmosphere. The bubbles released by the diffuser pipe 42 are degassed from the water to be treated by the deaeration unit 44, and the bubbles supplied from the diffuser are not returned to the anoxic tank 20 as they are. It is possible to avoid the occurrence of an unfavorable situation in which the concentration of dissolved oxygen increases and the denitrification efficiency decreases.

このように、脱気部44を送水管43の途中に設けることで、揚水管41内で被処理水の揚水のために散気された気泡が送水管43を流れるうちに、送水管43の上側管壁43bに集まり脱気部44により効率的に脱気することができる。なお、揚水管41の直上に脱気部を設けると、十分に脱気されずに被処理水が送水管43に移送されるので好ましくない。   Thus, by providing the deaeration unit 44 in the middle of the water supply pipe 43, while the air bubbles diffused for pumping the water to be treated flow through the water supply pipe 43 in the water supply pipe 41, It is possible to efficiently deaerate by gathering on the upper tube wall 43b by the deaeration part 44. In addition, if a deaeration part is provided immediately above the pumping pipe 41, the water to be treated is transferred to the water pipe 43 without being sufficiently deaerated, which is not preferable.

送水管43のうち脱気部44の下流側に流速計50が設置されるとともに、流速計50により検知された流速に基づいて被処理水の流量を算出し、散気装置42からの気泡の供給量を調整して被処理水の流量を目標値に制御するための制御装置51が設けられている。   A flowmeter 50 is installed on the downstream side of the deaeration unit 44 in the water supply pipe 43, and the flow rate of the water to be treated is calculated based on the flow velocity detected by the flowmeter 50, so that bubbles from the air diffuser 42 are removed. A control device 51 for adjusting the supply amount to control the flow rate of the water to be treated to the target value is provided.

揚水管41により揚水された被処理水に、散気装置42により散気された気泡が多量に含まれた状態で流速を計測すると正確な流速が検知できず、適切に被処理水の循環量を調整することができない虞がある。そこで、脱気部44より下流側の送水管43に流量計50を設置して、脱気された後の被処理水の流速が精度良く計測されるように構成されている。   If the flow rate is measured in a state in which a large amount of bubbles diffused by the air diffuser 42 are contained in the treated water pumped by the pumping pipe 41, an accurate flow rate cannot be detected, and the circulation amount of the treated water appropriately. May not be adjusted. Therefore, a flow meter 50 is installed in the water supply pipe 43 on the downstream side of the deaeration unit 44 so that the flow rate of the water to be treated after deaeration is accurately measured.

好気槽30から無酸素槽20への被処理水の移送量が多いと無酸素槽30に余分な空気を持ち込むこととなり、溶存酸素濃度が高くなり、脱窒効率が低下し、逆に被処理水の移送量が少ないと被処理水の循環量が低下することにより、脱窒量が低下する。よって、制御装置51により散気装置の気泡の供給量を調整して、被処理水の移送量を適正に調整するのである。   If the amount of treated water transferred from the aerobic tank 30 to the anaerobic tank 20 is large, excess air will be brought into the anoxic tank 30, the dissolved oxygen concentration will increase, the denitrification efficiency will decrease, and conversely If the amount of treated water transferred is small, the amount of denitrification decreases due to a decrease in the amount of treated water circulating. Therefore, the control device 51 adjusts the amount of bubbles supplied to the diffuser to appropriately adjust the amount of water to be treated.

脱気部44の下流側の送水管43の高さをH、幅をWとすると、流速計50は、送水管43の高さHの中央、及び、幅Wの中央に配置されている。よって、送水管43内を流れる被処理水の流れが層流であっても乱流であっても最大流速が計測できる。さらに、流速計50は脱気部44の下流側の送水管43の入り口から10H程度離れた位置に配置されている。送水管43内を流れる被処理水の流れが安定する点で好ましい。処理槽の大きさ等の条件により、脱気部44の下流側の送水管43を長く構成できない場合であっても、流速計50は、脱気部44の下流側の送水管43の入り口から3H程度離れた位置に配置することが好ましい。   If the height of the water supply pipe 43 on the downstream side of the deaeration unit 44 is H and the width is W, the velocimeter 50 is arranged at the center of the height H of the water supply pipe 43 and at the center of the width W. Therefore, the maximum flow velocity can be measured regardless of whether the flow of water to be treated flowing in the water supply pipe 43 is a laminar flow or a turbulent flow. Further, the velocimeter 50 is arranged at a position about 10H away from the inlet of the water supply pipe 43 on the downstream side of the deaeration unit 44. This is preferable in that the water to be treated flowing in the water supply pipe 43 is stabilized. Even if the water supply pipe 43 on the downstream side of the deaeration unit 44 cannot be configured long due to conditions such as the size of the treatment tank, the velocimeter 50 is connected to the water supply pipe 43 on the downstream side of the deaeration unit 44 from the entrance. It is preferable to arrange at a position separated by about 3H.

送水管43のうち少なくとも脱気部44の上流側の下側管壁43aは、好気槽30の最低水位LWLより低い高さに配置され、送水管43のうち少なくとも脱気部44の下流側は、無酸素槽20の最低水位LWLより低い高さに配置されている。よって、流速計50が設置された脱気部44の下流側の送水管43は、無酸素槽20の水位の変動によらず、常に水面下に設置され、送水管43内は被処理水に満たされているため、精度良く流速を計測することができるのである。   The lower pipe wall 43a at least upstream of the deaeration unit 44 in the water supply pipe 43 is disposed at a height lower than the lowest water level LWL of the aerobic tank 30, and at least downstream of the deaeration unit 44 in the water supply pipe 43. Is arranged at a height lower than the lowest water level LWL of the anaerobic tank 20. Therefore, the water supply pipe 43 on the downstream side of the deaeration unit 44 in which the anemometer 50 is installed is always installed below the surface of the water regardless of the fluctuation of the water level in the anaerobic tank 20, and the water supply pipe 43 is treated with water to be treated. Since it is satisfied, the flow velocity can be measured with high accuracy.

送水管43のうち少なくとも脱気部44の上流側が、処理槽の最高水位HWL以下で最低水位LWL以上の高さに配置されていることが好ましい。処理槽の水位が変動する場合であっても、散気装置に必要な動力も揚水のための動力変動も極めて少なくすることができるからである。   It is preferable that at least the upstream side of the deaeration unit 44 in the water supply pipe 43 is disposed at a height equal to or lower than the highest water level HWL of the treatment tank and equal to or higher than the lowest water level LWL. This is because even if the water level of the treatment tank fluctuates, the power required for the air diffuser and the power fluctuation for pumping can be extremely reduced.

送水管43のうち脱気部44の上流側の上側管壁43bは、脱気部44にかけて高さが次第に高くなるように下流側に向けて上方に傾斜する傾斜面で構成されている。従って、散気装置42により放出され揚水管41内を上昇した気泡が、送水管43内で水面に上昇して、傾斜面で構成された上側管壁43bに沿って脱気部44で大気開放されるので、揚水管41で揚水の役割を終えた気泡を、水平姿勢の送水管43内で速やかに上方に分離することができる。   The upper pipe wall 43 b on the upstream side of the deaeration unit 44 in the water supply pipe 43 is configured by an inclined surface that is inclined upward toward the downstream side so that the height gradually increases toward the deaeration unit 44. Accordingly, the bubbles released by the air diffuser 42 and rising in the pumping pipe 41 rise to the water surface in the water supply pipe 43 and are released to the atmosphere by the deaeration unit 44 along the upper pipe wall 43b formed of an inclined surface. Therefore, the air bubbles that have finished the role of pumping up by the pumping pipe 41 can be quickly separated upward in the water supply pipe 43 in a horizontal posture.

送水管43のうち脱気部44の下流側の上側管壁43d及び下側管壁43cは、脱気部44から上側管壁43d及び下側管壁43cにかけて高さが次第に低くなるように下流側に向けて下方に傾斜する傾斜面47b,47aで構成されている。   The upper pipe wall 43d and the lower pipe wall 43c on the downstream side of the deaeration part 44 in the water supply pipe 43 are downstream so that the height gradually decreases from the deaeration part 44 to the upper pipe wall 43d and the lower pipe wall 43c. It is comprised by the inclined surfaces 47b and 47a which incline below toward the side.

そして、送水管43には、揚水管41から曲管46を介して連通された送水管43の上側管壁43bの最低高さよりも、脱気部44の下流側の上側管壁43dが低い位置となるような段差部が形成されている。   Further, the upper pipe wall 43d on the downstream side of the deaeration unit 44 is lower than the minimum height of the upper pipe wall 43b of the water feed pipe 43 communicated with the water feed pipe 43 through the curved pipe 46 from the pumping pipe 41. A stepped portion is formed so that

当該段差部は、上述した傾斜面47bの一部で実現され、送水管43の上流側から脱気部44に向けて被処理水が流れる過程で、被処理水に混入した気泡が水面に上昇した後に脱気部で大気に開放されるので、揚水管41の直上に脱気部を設ける場合に比較して、被処理水から効率的に気泡を分離することができる。   The stepped portion is realized by a part of the inclined surface 47b described above, and bubbles mixed in the water to be treated rise to the water surface in the process in which the water to be treated flows from the upstream side of the water supply pipe 43 toward the deaeration unit 44. Then, since the air is released to the atmosphere at the deaeration part, it is possible to efficiently separate the bubbles from the water to be treated as compared with the case where the deaeration part is provided immediately above the pumping pipe 41.

さらに、気泡が除去された被処理水が脱気部44からその下流側の送水管43に流れる際に、脱気部44でも十分に脱気されず、被処理水の表面近傍に僅かな気泡が存在しても、段差部より下方に位置する下流側の送水管43に被処理水が流下する際に、当該段差部で被処理水から気泡が確実に分離されるようになり、より確実に正確な流速を計測できるようになる。   Furthermore, when the water to be treated from which bubbles have been removed flows from the deaeration unit 44 to the water supply pipe 43 on the downstream side, the deaeration unit 44 is not sufficiently deaerated, and there are a few bubbles near the surface of the water to be treated. Even when there is water, when the water to be treated flows down to the downstream water supply pipe 43 located below the stepped portion, bubbles are reliably separated from the water to be treated at the stepped portion. It becomes possible to measure the accurate flow rate.

散気部42aは、送気管を介してブロワと接続されている。ブロワから供給される空気が、散気部42aから微細気泡となって放出される。なお、微細気泡はφ2mm以下の大きさが好ましい。   The air diffuser 42a is connected to a blower via an air pipe. The air supplied from the blower is discharged as fine bubbles from the air diffuser 42a. The fine bubbles preferably have a size of φ2 mm or less.

φ2mm以下の微細気泡を多く含んだ気泡を低コストで放出できる散気装置として、可撓性または弾性を有するチューブやシートに貫通形成した孔またはスリットから気泡を放出するメンブレン型散気装置や、セラミック等の多孔板から気泡を放出するデイフューザー型散気装置を採用できる。   A membrane-type air diffuser that discharges air bubbles from holes or slits formed through a flexible tube or sheet having flexibility or elasticity as an air diffuser that can discharge bubbles containing a lot of fine bubbles of φ2 mm or less at a low cost, A diffuser type diffuser that discharges air bubbles from a porous plate such as ceramic can be employed.

図3,4,5に示す散気装置42の散気部42aは、チューブ形状のメンブレン型散気管であり、揚水管の下部開口の下方に最も外側に位置する散気管が揚水管の下部開口41aの一辺の鉛直下方の近傍となるように、等間隔で4本の散気管が分散して配置されている。   The diffuser 42a of the diffuser 42 shown in FIGS. 3, 4, and 5 is a tube-shaped membrane-type diffuser tube, and the diffuser tube located on the outermost side below the lower opening of the pumped pipe is the lower opening of the pumped pipe. Four diffuser tubes are distributed and arranged at equal intervals so as to be in the vicinity of one side of 41a vertically below.

このように、複数個の散気部42aを間隔を空けて分散配置すれば、散気部42aの下方から散気部42a間を通って揚水管内を上昇する被処理水の流れを誘導することができるため、揚水管内の被処理水及び気泡の流れの偏りが低減され好ましい。   In this way, if the plurality of diffuser portions 42a are dispersed and arranged at intervals, the flow of the water to be treated that rises in the pumping pipe through the diffuser portions 42a from below the diffuser portion 42a is induced. Therefore, the unevenness of the water to be treated and the flow of bubbles in the pumping pipe is preferably reduced.

エアリフトポンプ装置40には、被処理水の揚水量を調整するために、散気装置42から放出される気泡の供給量をブロワの回転数によって調整する調整用のボリュームを備えた散気量調整機構が設けられている。また、制御装置51には、流速計50で検知された被処理水の流速に基づいて算出した流量を表示する表示部が設けられている。   The air lift pump device 40 includes an adjustment volume for adjusting the supply amount of bubbles discharged from the air diffusion device 42 according to the rotation speed of the blower in order to adjust the pumping amount of the water to be treated. A mechanism is provided. In addition, the control device 51 is provided with a display unit that displays a flow rate calculated based on the flow rate of the water to be treated detected by the anemometer 50.

操作者は、表示部に表示された被処理水の返送流量を目視して、その流量が目標流量となるように、ボリュームを操作してブロワの回転数を調整し、散気装置42からの気泡の供給量を調整する。   The operator visually checks the return flow rate of the water to be treated displayed on the display unit, operates the volume so that the flow rate becomes the target flow rate, adjusts the rotation speed of the blower, and Adjust the air supply rate.

なお、操作者がボリュームを手動操作する構成に限らず、制御装置51が、算出した被処理水の返送流量を目標流量に制御すべく、ブロワの回転数を自動調整するフィードバック制御機構を備えてもよい。   The control device 51 includes a feedback control mechanism that automatically adjusts the rotation speed of the blower so as to control the calculated return flow rate of the treated water to the target flow rate, without being limited to the configuration in which the operator manually operates the volume. Also good.

好気槽30で硝化処理された被処理水は、上述のように構成されたエアリフトポンプ装置40で無酸素槽20の上流側に返送される。これにより、好気槽30の硝化処理により被処理水に含まれる硝酸イオン及び亜硝酸イオンが、無酸素槽20へ循環されて、脱窒処理が行われる。   The water to be treated that has been nitrified in the aerobic tank 30 is returned to the upstream side of the anoxic tank 20 by the air lift pump device 40 configured as described above. As a result, nitrate ions and nitrite ions contained in the water to be treated are circulated to the anaerobic tank 20 by the nitrification treatment of the aerobic tank 30 to perform the denitrification treatment.

エアリフトポンプ装置40を、隔壁21の近傍に配置して送水路43を短く、つまり全揚程を短くすることで、被処理水の送水に必要な散気量、つまりブロワの動力を低減することができ、また、散気量を減らすことで溶存酸素濃度が高い被処理水が無酸素槽20に流れ込むことを防止できるので、無酸素槽20の脱窒効率を低減させる虞を低減することができる。   By disposing the air lift pump device 40 in the vicinity of the partition wall 21 and shortening the water supply path 43, that is, shortening the total head, it is possible to reduce the amount of aeration necessary for water supply of the water to be treated, that is, the power of the blower. Moreover, since it can prevent that the to-be-processed water with high dissolved oxygen concentration flows into the anoxic tank 20 by reducing the amount of aeration, the possibility of reducing the denitrification efficiency of the anoxic tank 20 can be reduced. .

さらに、エアリフトポンプ装置40を介して無酸素槽20に返送された被処理水の一部は送水路23を介して嫌気槽10に返送される。リンを取り込んだ膜分離槽30内の微生物が送水路23を介して嫌気槽10へ循環されて、正リン酸としてリンが液中に放出される。   Furthermore, part of the water to be treated returned to the anoxic tank 20 via the air lift pump device 40 is returned to the anaerobic tank 10 via the water supply path 23. Microorganisms in the membrane separation tank 30 having taken in phosphorus are circulated to the anaerobic tank 10 through the water supply channel 23, and phosphorus is released into the liquid as normal phosphoric acid.

好気槽30から活性汚泥を含む被処理水が無酸素槽20に返送され、無酸素槽20から被処理水が嫌気槽10に返送されるように構成されているため、無酸素槽20で脱窒処理され硝酸性窒素、亜硝酸性窒素を含まず、酸素が消費された被処理水が嫌気槽10に返送され、嫌気槽10でのリンの放出条件である無NOx及び無酸素状態を維持することができる。   Since the water to be treated containing activated sludge is returned from the aerobic tank 30 to the anaerobic tank 20 and the water to be treated is returned from the anoxic tank 20 to the anaerobic tank 10, The water to be treated which is denitrified and does not contain nitrate nitrogen and nitrite nitrogen and consumes oxygen is returned to the anaerobic tank 10, and the NOx and oxygen-free conditions that are the conditions for releasing phosphorus in the anaerobic tank 10 Can be maintained.

よって、嫌気槽10ではリン化合物が正リン酸として効率的に放出され、放出された正リン酸が後段の好気槽30において嫌気槽10で放出した量以上に活性汚泥に取り込まれることにより、被処理水からリンを高度に除去することが可能となる。   Therefore, in the anaerobic tank 10, the phosphorus compound is efficiently released as normal phosphoric acid, and the released normal phosphoric acid is taken into the activated sludge more than the amount released in the anaerobic tank 10 in the subsequent aerobic tank 30, It becomes possible to remove phosphorus from treated water to a high degree.

なお、上述した実施形態では、詳述していないが、嫌気槽10及び無酸素槽20には、それぞれの処理が均一に行われるように、被処理水を撹拌する撹拌機構を備えている。   Although not described in detail in the above-described embodiment, the anaerobic tank 10 and the oxygen-free tank 20 are provided with a stirring mechanism that stirs the water to be treated so that each process is performed uniformly.

以上の構成により、好気槽30から無酸素槽20への返送に必要なエアリフトポンプ装置40の動力を低減でき、効率の良い被処理水の移送が行えるのである。   With the above configuration, the power of the air lift pump device 40 required for returning from the aerobic tank 30 to the anoxic tank 20 can be reduced, and the water to be treated can be efficiently transferred.

次に、本発明による別実施形態を説明する。
図6(a)に示すように、送水管43のうち脱気部44の下流側の上側管壁43dが、処理槽(無酸素槽30)の最低水位LWLより低い高さに配置されていれば、送水管43のうち脱気部44の上流側の上側管壁43bが、好気槽30の最低水位LWLより高く、最高水位HWLより低い高さに配置されていてもよく、上流側の送水管43より高い位置に設置されていてもよい。
Next, another embodiment according to the present invention will be described.
As shown in FIG. 6A, the upper pipe wall 43d on the downstream side of the deaeration unit 44 in the water supply pipe 43 is disposed at a height lower than the lowest water level LWL of the treatment tank (oxygen-free tank 30). For example, the upper pipe wall 43b on the upstream side of the deaeration unit 44 in the water supply pipe 43 may be disposed at a height higher than the lowest water level LWL of the aerobic tank 30 and lower than the highest water level HWL. It may be installed at a position higher than the water pipe 43.

また、図6(b)に示すように、送水管43のうち脱気部44の下流側の上側管壁43dが、処理槽(無酸素槽30)の最低水位LWLより低い高さに配置されていれば、送水管43のうち脱気部44の上流側の上側管壁43bが、好気槽30の最高水位HWLより高い位置に配置されていてもよい。また、脱気部44に傾斜面を必ずしも備えなくてもよい。さらに、脱気部44より上流側の送水管43の下側管壁43aと、下流側の送水管43の下側管壁43cが同じ高さに設定されていてもよい。   Moreover, as shown in FIG.6 (b), 43 d of upper side pipe walls of the downstream of the deaeration part 44 among the water supply pipes 43 are arrange | positioned in the height lower than the minimum water level LWL of a processing tank (anoxic tank 30). If so, the upper pipe wall 43 b on the upstream side of the deaeration unit 44 in the water supply pipe 43 may be disposed at a position higher than the highest water level HWL of the aerobic tank 30. In addition, the deaeration unit 44 does not necessarily have an inclined surface. Furthermore, the lower pipe wall 43a of the water supply pipe 43 upstream from the deaeration unit 44 and the lower pipe wall 43c of the downstream water supply pipe 43 may be set at the same height.

送水管43のうち、脱気部44の下流側の断面積が脱気部44の上流側の断面積よりも小さくなるように構成されていることが好ましい。脱気部44の下流側を流れる被処理水の流速が、脱気部44の上流側を流れる被処理水の流速よりも大きな値になる。従って、脱気部の上流側では、比較的低い流速で流れる間に効率的に気泡を上昇させることができ、脱気部の下流側では、被処理水が返送管内を比較的高い流速で流れるために、流速計により正確に流速を計測することができるようになる。また、そのような比較的高い流速で返送された処理槽で、被処理水の攪拌効果も向上させることができる。   In the water supply pipe 43, the cross-sectional area on the downstream side of the deaeration unit 44 is preferably configured to be smaller than the cross-sectional area on the upstream side of the deaeration unit 44. The flow rate of the water to be treated flowing on the downstream side of the deaeration unit 44 is larger than the flow rate of the water to be treated flowing on the upstream side of the deaeration unit 44. Accordingly, the air bubbles can be efficiently raised while flowing at a relatively low flow rate on the upstream side of the deaeration unit, and the water to be treated flows in the return pipe at a relatively high flow rate on the downstream side of the deaeration unit. Therefore, the flow velocity can be accurately measured by the anemometer. Moreover, the stirring effect of to-be-processed water can be improved in the processing tank returned by such a comparatively high flow rate.

また、送水管43のうち、脱気部44の下流側の断面積が脱気部44の上流側の断面積の0.5倍から2倍の範囲となるように構成されていることが好ましい。送水管のうち、脱気部の下流側の断面積が脱気部の上流側の断面積の0.5倍程度であれば、送水管を流れる被処理水の圧力損失もそれほど大きくならず、被処理水が返送管内を比較的高い流速で流れるために、流速計により正確に流速を計測することができる。また、比較的高い流速で処理槽の被処理水が返送され、処理槽内が局部的に大きく攪拌されることが好ましくない場合には、脱気部の下流側の断面積が脱気部の上流側の断面積の2倍程度に設定すれば、比較的緩やかに被処理水が処理用に返送されながらも、返送量の調整に困難を来たさない程度の精度で流速計により流速を計測することができるようになる。   Further, in the water supply pipe 43, the cross-sectional area on the downstream side of the deaeration unit 44 is preferably configured to be in the range of 0.5 to 2 times the cross-sectional area on the upstream side of the deaeration unit 44. . If the cross-sectional area on the downstream side of the degassing part is about 0.5 times the cross-sectional area on the upstream side of the degassing part, the pressure loss of the water to be treated flowing through the water supply pipe is not so large. Since the water to be treated flows in the return pipe at a relatively high flow velocity, the flow velocity can be accurately measured by the anemometer. In addition, when it is not preferable that the water to be treated in the treatment tank is returned at a relatively high flow rate and the inside of the treatment tank is locally agitated largely, the cross-sectional area on the downstream side of the deaeration part is If it is set to about twice the cross-sectional area on the upstream side, while the treated water is returned for processing relatively slowly, the flow rate is adjusted with an anemometer with an accuracy that does not cause difficulty in adjusting the return amount. It becomes possible to measure.

上述した実施形態では、第二領域32内の被処理水を無酸素槽20へ返送するエアリフトポンプ装置40と、無酸素槽20内の被処理水を嫌気槽10へ返送する送水路23を備えた構成について説明したが、送水路23に替えてエアリフトポンプ装置40によって、無酸素槽20の被処理水を嫌気槽10に返送するように構成してもよい。また、一台のエアリフトポンプ装置40で送水した第二領域32の被処理水を、無酸素槽20と嫌気槽10の夫々に所定量返送するように構成してもよい。流入量qに対し、好機槽30から無酸素槽20への返送水量は3q、無酸素槽20から嫌気槽10への返送水量はqとなるように設定することが処理効率の観点から好ましい。   In embodiment mentioned above, the air lift pump apparatus 40 which returns the to-be-processed water in the 2nd area | region 32 to the anaerobic tank 20, and the water supply path 23 which returns the to-be-processed water in the anoxic tank 20 to the anaerobic tank 10 are provided. However, the water to be treated in the oxygen-free tank 20 may be returned to the anaerobic tank 10 by the air lift pump device 40 instead of the water supply path 23. Moreover, you may comprise so that the to-be-processed water of the 2nd area | region 32 sent with the one air lift pump apparatus 40 may be returned to each of the anaerobic tank 20 and the anaerobic tank 10 by predetermined amount. From the viewpoint of processing efficiency, it is preferable to set the return water amount from the machine tank 30 to the anaerobic tank 20 to 3q and the return water amount from the anaerobic tank 20 to the anaerobic tank 10 to q with respect to the inflow amount q.

上述した実施形態では、エアリフトポンプ装置を矩形状の揚水管及び送水管で構成する場合について説明したが、揚水管及び送水管は、矩形状に限らず、丸管であってもよい。また、下部開口や、被処理水の吐出口の形状はベルマウス形状であってもよい。   In the above-described embodiment, the case where the air lift pump device is configured by a rectangular pumping pipe and a water feeding pipe has been described. However, the pumping pipe and the water feeding pipe are not limited to a rectangular shape, and may be a round pipe. Further, the shape of the lower opening and the discharge port of the water to be treated may be a bell mouth shape.

上述した実施形態では、エアリフトポンプ装置を構成する揚水管及び送水管の材質について明示しなかったが、本発明によるエアリフトポンプ装置が設置される処理槽の被処理水の性状によって、耐薬品、耐蝕性等を考慮して適当な材質のものを用いればよい。   In the above-described embodiment, the material of the pumping pipe and the water supply pipe constituting the air lift pump device was not specified, but depending on the property of the water to be treated in the treatment tank in which the air lift pump device according to the present invention is installed, chemical resistance, corrosion resistance An appropriate material may be used in consideration of the properties and the like.

上述の実施形態では、本発明によるエアリフトポンプ装置が、膜分離装置を備えた膜分離式活性汚泥法を採用した汚泥処理設備の好機槽内の被処理水の一部を無酸素槽へ返送するように設置する構成について説明したが、無酸素槽内の被処理水の一部を嫌気槽へ返送するように設置してもよい。   In the above-described embodiment, the air lift pump device according to the present invention returns a part of the water to be treated in the machine tank of the sludge treatment facility adopting the membrane separation type activated sludge method equipped with the membrane separation device to the anoxic tank. However, it may be installed so that a part of the water to be treated in the oxygen-free tank is returned to the anaerobic tank.

さらに、本発明によるエアリフトポンプ装置は、膜分離式活性汚泥法を採用した汚泥処理設備に備えられる場合に限らず、膜分離式活性汚泥法を採用しない硝化液循環活性汚泥法や生物循環式嫌気好気法を採用した汚泥処理設備、流量調整槽、汚水浄化槽等において隔壁を介して設置された一方の処理槽から他方の処理槽に被処理水を移送する場合のポンプ装置として適用することができ、さらには、移送対象である被処理水の種類や、移送元、移送先に限定はない。   Furthermore, the air lift pump device according to the present invention is not limited to a case where it is provided in a sludge treatment facility that employs a membrane separation type activated sludge method, and a nitrification liquid circulation activated sludge method or a biological circulation type anaerobic method that does not employ a membrane separation type activated sludge method It can be applied as a pump device when water to be treated is transferred from one treatment tank installed through a partition wall to sludge treatment equipment, flow rate adjustment tank, sewage septic tank, etc. adopting the aerobic method Further, there is no limitation on the type of water to be transferred, the transfer source, and the transfer destination.

上述した実施形態は、何れも本発明の一例であり、当該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say.

1:汚水処理設備
10:嫌気槽
11:隔壁
12:連通口
20:無酸素槽
21:隔壁
22:連通口
23:送水路
30:好気槽
31:第一領域
32:第二領域
34:分離壁
35:散気装置
36:膜分離装置
37:送水管
38:散気装置
39:引抜管
40:エアリフトポンプ装置
41:揚水管
41a:下部開口
42:散気装置
42a:散気部
43:送水管
43a:下側管壁
43b:上側管壁
43c:下側管壁
43d:上側管壁
44:脱気部
45:架台
46:曲管
47:段差部
47a:下側管壁
47b:上側管壁
50:流速計
51:制御装置

1: Sewage treatment facility 10: Anaerobic tank 11: Partition 12: Communication port 20: Anoxic tank 21: Partition 22: Communication port 23: Water supply channel 30: Aerobic tank 31: First region 32: Second region 34: Separation Wall 35: Air diffuser 36: Membrane separator 37: Water supply pipe 38: Air diffuser 39: Extraction pipe 40: Air lift pump device 41: Water pump 41a: Lower opening 42: Air diffuser 42a: Air diffuser 43: Water pipe 43a: Lower pipe wall 43b: Upper pipe wall 43c: Lower pipe wall 43d: Upper pipe wall 44: Deaeration part 45: Deposition part 46: Curved pipe 47: Step part 47a: Lower pipe wall 47b: Upper pipe wall 50: Current meter 51: Control device

Claims (8)

処理槽に立設配置された揚水管と、前記揚水管に気泡を放出して前記処理槽内の被処理水を揚水する散気装置と、前記揚水管と連通され、前記揚水管に揚水された被処理水を水平方向に移送するべく横設配置された送水管とを備えているエアリフトポンプ装置であって、
前記揚水管の上端高さが前記送水管が配置された領域における前記処理槽の最低水位以下の高さに設定され、前記揚水管に供給された気泡を大気開放する脱気部が前記送水管に設けられ、前記送水管のうち前記脱気部の下流側が前記処理槽の最低水位より低い高さに配置されるとともに、当該下流側に流速計が設置されているエアリフトポンプ装置。
A pumping pipe installed upright in the treatment tank, an air diffuser that discharges air bubbles to the pumping pipe to pump up the water to be treated in the treatment tank, communicated with the pumping pipe, and pumped to the pumping pipe. An air lift pump device provided with a water pipe arranged horizontally to transfer the treated water in the horizontal direction,
The upper end height of the pumping pipe is set to a height equal to or lower than the lowest water level of the treatment tank in the region where the water feeding pipe is arranged, and a deaeration unit that opens the bubbles supplied to the pumping pipe to the atmosphere is the water feeding pipe. An air lift pump device in which a downstream side of the deaeration unit in the water supply pipe is disposed at a height lower than the lowest water level of the processing tank, and a current meter is installed on the downstream side.
前記送水管のうち少なくとも前記脱気部の上流側が、前記処理槽の最高水位以下で最低水位以上の高さに配置されている請求項1記載のエアリフトポンプ装置。   2. The air lift pump device according to claim 1, wherein at least an upstream side of the deaeration unit in the water supply pipe is disposed at a height equal to or lower than a maximum water level of the processing tank and equal to or higher than a minimum water level. 前記送水管に、前記脱気部の下流側の上側管壁が上流側の上側管壁より低くなるように段差部が形成されている請求項1または2記載のエアリフトポンプ装置。   The air lift pump device according to claim 1 or 2, wherein a stepped portion is formed in the water supply pipe so that an upper pipe wall on the downstream side of the deaeration part is lower than an upper pipe wall on the upstream side. 前記送水管のうち、前記脱気部の下流側の断面積が前記脱気部の上流側の断面積よりも小さくなるように構成されている請求項1から3の何れかに記載のエアリフトポンプ装置。   The air lift pump according to any one of claims 1 to 3, wherein a cross-sectional area on the downstream side of the deaeration part in the water supply pipe is configured to be smaller than a cross-sectional area on the upstream side of the deaeration part. apparatus. 前記送水管のうち、前記脱気部の下流側の断面積が前記脱気部の上流側の断面積の0.5倍から2倍の範囲となるように構成されている請求項1から3の何れかに記載のエアリフトポンプ装置。   The cross-sectional area of the downstream of the deaeration part among the said water supply pipes is comprised so that it may become the range of 0.5 to 2 times the cross-sectional area of the upstream of the said deaeration part. The air lift pump device according to any one of the above. 前記脱気部の下流側送水管の断面形状が矩形である請求項1から5の何れかに記載のエアリフトポンプ装置。   The air lift pump device according to any one of claims 1 to 5, wherein a cross-sectional shape of a downstream water supply pipe of the deaeration unit is rectangular. 前記流速計により検知された流速に基づいて前記散気装置からの気泡の供給量を調整する制御装置を備えている請求項1から6の何れかに記載のエアリフトポンプ装置。   The air lift pump device according to any one of claims 1 to 6, further comprising a control device that adjusts a supply amount of bubbles from the air diffuser based on a flow velocity detected by the anemometer. 請求項1から7の何れかに記載のエアリフトポンプ装置を備えた汚水処理設備。   A sewage treatment facility comprising the air lift pump device according to any one of claims 1 to 7.
JP2010137144A 2010-06-16 2010-06-16 Air lift pump device and sewage treatment facility Active JP5436350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010137144A JP5436350B2 (en) 2010-06-16 2010-06-16 Air lift pump device and sewage treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010137144A JP5436350B2 (en) 2010-06-16 2010-06-16 Air lift pump device and sewage treatment facility

Publications (2)

Publication Number Publication Date
JP2012002124A JP2012002124A (en) 2012-01-05
JP5436350B2 true JP5436350B2 (en) 2014-03-05

Family

ID=45534387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010137144A Active JP5436350B2 (en) 2010-06-16 2010-06-16 Air lift pump device and sewage treatment facility

Country Status (1)

Country Link
JP (1) JP5436350B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5595219B2 (en) * 2010-10-20 2014-09-24 株式会社日立製作所 Air lift pump
JP5566868B2 (en) * 2010-11-26 2014-08-06 株式会社日立製作所 Sewage supply device from the first sedimentation basin to the biological reactor
JP6532723B2 (en) * 2015-03-26 2019-06-19 株式会社クボタ Method and system for treating organic wastewater
JPWO2017057501A1 (en) * 2015-10-01 2018-07-19 住友電気工業株式会社 Membrane separation activated sludge treatment method and membrane separation activated sludge treatment system

Also Published As

Publication number Publication date
JP2012002124A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5822264B2 (en) Operation method of membrane separation activated sludge treatment equipment
JP6522966B2 (en) Method and apparatus for treating organic wastewater
JP5436350B2 (en) Air lift pump device and sewage treatment facility
US12006239B2 (en) Oxygen infusion module for wastewater treatment
JP4603395B2 (en) Filtration membrane cleaning method
KR100913727B1 (en) Waste water treatment system maintaining do level by use of pure oxygen gas and treatment method employing the same
WO2024015867A2 (en) Systems and methods of gas infusion for wastewater treatment
JP2009261994A (en) Treatment method and treatment apparatus of drainage
JP5636862B2 (en) Waste water treatment equipment
WO2020080953A1 (en) A simultaneous, quadruple, low energy, high flow, gravity fed bio-filtration device with self-balancing aeration
JP2014113511A (en) Membrane separation apparatus, and operation method of membrane separation apparatus
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP5420985B2 (en) Air lift pump device
JP2012000584A (en) Air lift pump apparatus and wastewater treatment facility
JP6851608B2 (en) Wastewater treatment equipment
JP2008212930A (en) Membrane separator
JP5273935B2 (en) Water collector
JP2006007132A (en) Apparatus for treating sewage
KR20180017199A (en) Biological treatment device
JP2001062471A (en) Device for treating sewage containing nitrogen
CN213652010U (en) Sewage treatment device
JP5745011B2 (en) Air lift pump device
CN208218498U (en) MBR reaction tank combination unit with inner circulation structure
JP2014031797A (en) Air lift pump device
Barnard et al. Hydraulics in BNR plants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130508

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130626

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5436350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150