JP2012000584A - Air lift pump apparatus and wastewater treatment facility - Google Patents

Air lift pump apparatus and wastewater treatment facility Download PDF

Info

Publication number
JP2012000584A
JP2012000584A JP2010139167A JP2010139167A JP2012000584A JP 2012000584 A JP2012000584 A JP 2012000584A JP 2010139167 A JP2010139167 A JP 2010139167A JP 2010139167 A JP2010139167 A JP 2010139167A JP 2012000584 A JP2012000584 A JP 2012000584A
Authority
JP
Japan
Prior art keywords
water
treated
pipe
lift pump
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010139167A
Other languages
Japanese (ja)
Inventor
Hitoshi Yanase
仁志 柳瀬
Yasuhiro Okawa
泰弘 大川
Soichiro Yatsugi
壮一郎 矢次
Takashi Komiyama
貴士 込山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Kubota Environmental Service Co Ltd
Original Assignee
Kubota Corp
Kubota Environmental Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, Kubota Environmental Service Co Ltd filed Critical Kubota Corp
Priority to JP2010139167A priority Critical patent/JP2012000584A/en
Publication of JP2012000584A publication Critical patent/JP2012000584A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air lift pump apparatus dissolving such inconvenience that bubbles are spread on a liquid surface and deposited thickly in a treatment tank which is the transfer destination of water to be treated.SOLUTION: The air lift pump apparatus 40 includes: a pumping pipe 41 erected in an aerobic tank 30; an air diffuser 42 for discharging bubbles to the pumping pipe 41 and pumping the water to be treated inside the air diffuser 30; a water supply pipe 43 communicated with the pumping pipe 41 and horizontally arranged so as to horizontally transfer the water to be treated which is pumped by the pumping pipe 41; a separation wall 48 which is arranged so as to face the flow of the water to be treated supplied by the water supply pipe 43, and which separates the bubbles from the water to be treated by drifting the water to be treated; and a deaeration part 44 which is disposed upstream from the separation wall 48 and which releases the bubbles contained in the water to be treated to the atmosphere.

Description

本発明は、処理槽に立設配置された揚水管と、揚水管に気泡を放出して処理槽内の被処理水を揚水する散気装置と、揚水管と連通され、揚水管に揚水された被処理水を水平方向に移送するべく横設配置された送水管とを備えているエアリフトポンプ装置及び汚水処理設備に関する。   The present invention relates to a pumping pipe installed upright in a treatment tank, an air diffuser for discharging bubbles into the pumping pipe and pumping up water to be treated in the treatment tank, and a pumping pipe connected to the pumping pipe. The present invention relates to an air lift pump device and a sewage treatment facility provided with a water pipe arranged horizontally to transfer the water to be treated.

し尿や生活排水等を含む汚水を浄化する汚水処理設備は、嫌気槽または無酸素槽と好気槽とがそれぞれの槽を区画する区画壁を介して連接するように構築され、嫌気槽または無酸素槽で嫌気処理された被処理水の一部が区画壁に形成された流路から好気槽に流出するように構成されている。好気槽で好気処理された被処理水は、膜分離装置を介して槽外に取り出され、或は最終沈殿池に流出し、沈殿濾過された被処理水が外部に取り出される。   A sewage treatment facility that purifies sewage including human waste and domestic wastewater is constructed so that an anaerobic tank or an anaerobic tank and an aerobic tank are connected via a partition wall that divides each tank. A part of the water to be treated that has been anaerobically treated in the oxygen tank is configured to flow out from the flow path formed in the partition wall to the aerobic tank. The water to be treated which has been aerobically treated in the aerobic tank is taken out of the tank through the membrane separator, or flows out to the final sedimentation basin, and the water to be treated which has been subjected to precipitation filtration is taken out to the outside.

そして、好気槽で好気処理された被処理水の一部を汚泥とともに上流側の嫌気槽または無酸素槽に返送するためにエアリフトポンプ装置が設置されている。   An air lift pump device is installed to return part of the water to be treated in the aerobic tank to the upstream anaerobic tank or anoxic tank together with sludge.

特許文献1には、このようなエアリフトポンプ装置が設けられた排水処理装置が開示されている。当該排水処理装置には、垂直方向に延在する吸入管と、吸入管から水平方向に延在する吐出管と、吸入管内にエアを供給するエア供給手段とを備え、エア供給手段が作動することで被移送物を吸入管内及び吐出管内を通じて移送するエアリフトポンプ装置が設置され、エア供給量を低減するために、吐出管が延在する領域における下限水位以下に吐出管が配置されている。   Patent Document 1 discloses a wastewater treatment apparatus provided with such an air lift pump device. The wastewater treatment apparatus includes a suction pipe extending in the vertical direction, a discharge pipe extending in the horizontal direction from the suction pipe, and an air supply means for supplying air into the suction pipe, and the air supply means operates. In this way, an air lift pump device for transferring the object to be transferred through the suction pipe and the discharge pipe is installed, and in order to reduce the air supply amount, the discharge pipe is disposed below the lower limit water level in the region where the discharge pipe extends.

また、特許文献2には、嫌気濾床槽の被処理水を担体流動生物濾過槽へ移送するエアリフトポンプ装置が設置された汚水処理槽が示されている。当該エアリフトポンプ装置で被処理水を移送する移送配管の吐出部には、被処理水を分散させるキャップ部材が消泡装置として設けられ、当該キャップ部材で被処理水が分散されて担体流動生物濾過槽の液面上部から落水供給される際に、液界面での発泡が物理的に抑制されるように構成されている。   Patent Document 2 discloses a sewage treatment tank in which an air lift pump device for transferring the water to be treated in the anaerobic filter bed tank to the carrier fluid biological filtration tank is installed. A cap member that disperses the water to be treated is provided as a defoaming device at the discharge portion of the transfer pipe that transports the water to be treated by the air lift pump device. When falling water is supplied from the upper surface of the liquid level of the tank, foaming at the liquid interface is physically suppressed.

特開2004‐330003号公報JP 2004-330003 A 特開2002‐1009号公報Japanese Patent Laid-Open No. 2002-1009

しかし、エアリフトポンプ装置で移送される被処理水の性状によっては、散気装置から供給される気泡によって被処理水が発泡し、移送先の処理槽でその発泡状態が維持されて液面に拡散して厚く堆積し、さらには堆積した気泡の層が処理槽の周囲に溢れるという問題や、発泡した被処理水から異臭が発生するという問題があった。   However, depending on the properties of the water to be treated that is transferred by the air lift pump device, the water to be treated is foamed by the bubbles supplied from the air diffuser, and the foamed state is maintained in the treatment tank at the transfer destination and diffused to the liquid level. As a result, there is a problem that a thick layer is deposited, and a layer of accumulated bubbles overflows around the treatment tank, and that a bad odor is generated from the foamed water to be treated.

例えば、特許文献1に開示されたエアリフトポンプ装置では、垂直方向に延在する吸入管の上部に、水平方向に延在し、且つ、下限水位以下に配置される吐出管が接続され、吸入管の上端が大気開放され、気泡を大気に放出する脱気部として機能するように構成されているが、被処理水が発泡し易い性状の場合、脱気部で十分に脱気できずに被処理水とともに気泡が移送され、被処理水とともに移送される気泡で、液面に堆積する発泡層が下方から押し上げられて槽外に溢れるようになる。   For example, in the air lift pump device disclosed in Patent Document 1, a discharge pipe extending in the horizontal direction and arranged below the lower limit water level is connected to an upper part of a suction pipe extending in the vertical direction, and the suction pipe Although the upper end of the water is opened to the atmosphere and functions as a deaeration unit that discharges bubbles to the atmosphere, if the water to be treated is easily foamed, the deaeration unit cannot sufficiently deaerate the The bubbles are transferred together with the treated water, and the foam layer deposited on the liquid surface is pushed up from below by the bubbles transferred together with the water to be treated, and overflows outside the tank.

また、特許文献2に記載された消泡装置は、被処理水が移送先の処理槽の液面に落水する際の発泡を抑制するための構造であって、発泡状態の被処理水を消泡することを目的とするものではなく、移送配管に気泡が溜まると散気装置から供給される気泡によるエアリフト効果が発生せず、被処理水をポンプアップできなくなるという問題があった。   In addition, the defoaming device described in Patent Document 2 is a structure for suppressing foaming when the water to be treated falls onto the liquid surface of the transfer destination treatment tank, and the foamed water to be treated is removed. It is not intended to foam, and if bubbles accumulate in the transfer pipe, there is a problem that the air lift effect due to the bubbles supplied from the air diffuser does not occur and the water to be treated cannot be pumped up.

本発明の目的は、上述した問題点に鑑み、被処理水の移送先の処理槽で気泡が液面に拡散して厚く堆積するような不都合を解消することができるエアリフトポンプ装置及び汚水処理設備を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide an air lift pump device and a sewage treatment facility capable of eliminating the disadvantage that bubbles are diffused and accumulated thickly in a liquid surface in a treatment tank to which water to be treated is transferred. Is to provide

上述の目的を達成するため、本発明によるエアリフトポンプ装置の特徴構成は、特許請求の範囲の請求項1に記載した通り、処理槽に立設配置された揚水管と、前記揚水管に気泡を放出して前記処理槽内の被処理水を揚水する散気装置と、前記揚水管と連通され、前記揚水管に揚水された被処理水を水平方向に移送するべく横設配置された送水管とを備えているエアリフトポンプ装置であって、前記送水管により送水される被処理水の流れに対向するように配置され、被処理水を偏流させて被処理水から気泡を分離する分離壁と、前記分離壁の上流側に設置され、被処理水に含まれる気泡を大気開放する脱気部とを備えている点にある。   In order to achieve the above-described object, the characteristic configuration of the air lift pump device according to the present invention is as described in claim 1 of the present invention, and includes a pumping pipe installed upright in a treatment tank, and bubbles in the pumping pipe. An air diffuser that discharges and pumps up the water to be treated in the treatment tank, and a water pipe that communicates with the pumping pipe and is disposed horizontally to transfer the water to be treated that has been pumped up to the pumping pipe in the horizontal direction. An air lift pump device comprising: a separation wall that is disposed to face a flow of water to be treated that is fed by the water pipe, and that separates bubbles from the water to be treated by drifting the water to be treated. And a deaeration unit that is installed on the upstream side of the separation wall and opens the bubbles contained in the water to be treated to the atmosphere.

上述の構成によれば、送水管により送水される被処理水の流れが分離壁で偏流され、偏流時に被処理水から気泡が効果的に分離されるようになる。そして、分離壁で分離された気泡はその上流側に備えた脱気部で速やかに消泡され、脱気されるので、分離壁を越えて発泡状態が拡散するような事態を効果的に解消することができる。なお、分離壁は被処理水の流れに抵抗を与えて気泡を分離するため、略垂直姿勢または上端が下流側に傾斜する傾斜姿勢で配置されることが好ましく、気泡が分離された被処理水は分離壁の下方に偏流され、分離された気泡は分離壁に沿って上方に上昇して大気と接触して消泡される。   According to the above-described configuration, the flow of the water to be treated fed by the water pipe is drifted by the separation wall, and bubbles are effectively separated from the water to be treated at the time of the drift. The bubbles separated by the separation wall are quickly defoamed and degassed by the deaeration section provided upstream, effectively eliminating the situation where the foaming state diffuses beyond the separation wall. can do. In order to separate the bubbles by giving resistance to the flow of the water to be treated, the separation wall is preferably arranged in a substantially vertical posture or an inclined posture in which the upper end is inclined to the downstream side. Is drifted below the separation wall, and the separated bubbles rise upward along the separation wall and come into contact with the atmosphere to be defoamed.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、前記分離壁が、前記送水管の排出口より下流側に設置されるとともに、前記排出口と前記分離壁との間に、被処理水の下方への流出を許容し、側方への流出を阻止する案内壁が配置されている点にある。   In the second feature configuration, as described in claim 2, in addition to the first feature configuration described above, the separation wall is disposed downstream of the discharge port of the water pipe, and the discharge port And a guide wall that allows outflow of the water to be treated and prevents the outflow to the side between the separation wall and the separation wall.

上述の構成によれば、送水管を介して発泡状態で移送された被処理水が分離壁で偏流され、偏流時に被処理水から気泡が効果的に分離され、その上流側に備えた脱気部で速やかに消泡される。このとき、分離壁と案内壁でその流れが阻止されるので、移送先の処理槽の液面での発泡層の拡散が効果的に防止される。そして、気泡が分離された被処理水は側部が分離壁と案内壁で仕切られる領域の下部開口から槽内に流入し、分離された気泡は側部が分離壁と案内壁で仕切られる領域の上部空間に堆積され、大気と接触して消泡される。   According to the above-described configuration, the water to be treated transferred in a foamed state through the water supply pipe is drifted by the separation wall, and bubbles are effectively separated from the water to be treated at the time of the drift, and the deaeration provided on the upstream side thereof Defoamed quickly at the part. At this time, since the flow is blocked by the separation wall and the guide wall, the diffusion of the foamed layer on the liquid surface of the transfer destination treatment tank is effectively prevented. Then, the water to be treated from which the bubbles are separated flows into the tank from the lower opening of the region where the side is partitioned by the separation wall and the guide wall, and the separated bubbles are the regions where the side is partitioned by the separation wall and the guide wall Is deposited in the upper space of the water and defoamed in contact with the atmosphere.

同第三の特徴構成は、同請求項3に記載した通り、上述の第二特徴構成に加えて、前記分離壁及び前記案内壁の上端が前記処理槽の水面より上方に突出するように形成され、当該突出部に発泡した被処理水の一部が流出可能な開口部が形成されている点にある。   In addition to the second feature configuration described above, the third feature configuration is formed so that the upper ends of the separation wall and the guide wall protrude above the water surface of the treatment tank. In addition, the projecting portion is formed with an opening through which part of the foamed water to be treated can flow out.

上述の構成によれば、分離壁と案内壁で仕切られる領域の大気開放された上部空間に堆積した発泡層が速やかに消泡しない場合であっても、処理槽の水面より上方に突出するように配置された分離壁及び案内壁の上端で区画される領域に発泡層を閉じ込めて、時間を掛けて消泡することができ、処理槽の水面に発泡層が拡散して溢れるような事態が効果的に回避できる。また、発泡層の層厚が大きくなると、突出部に形成された開口部から一部が流出するように構成されているので、一度に大量の発泡層が処理槽の水面に拡散するような不都合も解消できる。   According to the above-described configuration, even when the foam layer deposited in the upper space opened to the atmosphere in the region partitioned by the separation wall and the guide wall does not quickly disappear, it seems to protrude above the water surface of the treatment tank. The foamed layer is confined in the area defined by the upper end of the separation wall and the guide wall arranged in, and the foam can be removed over time, and the foamed layer diffuses and overflows on the water surface of the treatment tank. Can be effectively avoided. Further, when the thickness of the foam layer is increased, a part of the foam layer flows out from the opening formed in the protruding portion, so that a large amount of the foam layer diffuses to the water surface of the treatment tank at a time. Can also be eliminated.

同第四の特徴構成は、同請求項4に記載した通り、上述の第一の特徴構成に加えて、前記脱気部が前記送水管に設けられている点にある。   The fourth characteristic configuration is that, in addition to the first characteristic configuration described above, the deaeration part is provided in the water supply pipe as described in the fourth aspect.

上述の構成によれば、送水管を介して発泡状態で移送された被処理水が分離壁で偏流され、偏流時に被処理水から気泡が効果的に分離され、その上流側送水管に備えた脱気部で速やかに消泡される。なお、送水管の出口部に分離壁を対向配置するとともに、送水管の出口部上面及び下面を切り欠けば、送水管の出口部下面切欠き部から被処理水が処理槽に流入し、送水管の出口部上下面切欠き部から脱気することができるようになる。   According to the above-described configuration, the water to be treated transferred in a foamed state through the water supply pipe is drifted by the separation wall, and bubbles are effectively separated from the water to be treated at the time of the drift, and the upstream water pipe is provided. It is quickly defoamed in the deaeration part. If the separation wall is placed opposite to the outlet of the water pipe and the upper and lower surfaces of the outlet of the water pipe are notched, the water to be treated will flow into the treatment tank from the notch on the lower surface of the outlet of the water pipe, It becomes possible to deaerate from the notch on the upper and lower surfaces of the outlet of the water pipe.

同第五の特徴構成は、同請求項5に記載した通り、上述の第一特徴構成に加えて、前記送水管が水平姿勢から下方への傾斜姿勢に姿勢が変更するように設置され、前記送水管の傾斜部管壁により前記分離壁が構成されている点にある。   In the fifth feature configuration, as described in claim 5, in addition to the first feature configuration described above, the water pipe is installed such that the posture is changed from a horizontal posture to an inclined posture downward, The separation wall is constituted by the inclined pipe wall of the water supply pipe.

被処理水を偏流させて気液分離する分離壁は、必ずしも送水管の出口部下流側に配置しなくとも、送水管自体に備えていてもよい。つまり、水平姿勢から下方への傾斜姿勢に姿勢が変更する送水管の傾斜部管壁が、被処理水を偏流させて気液分離する分離壁として機能するように構成してもよい。   The separation wall that separates the water to be treated for gas-liquid separation may be provided in the water supply pipe itself, not necessarily disposed downstream of the outlet of the water supply pipe. That is, the inclined pipe wall of the water supply pipe whose posture is changed from the horizontal posture to the downward inclined posture may function as a separation wall for causing the water to be treated to drift and separating the gas and liquid.

同第六の特徴構成は、同請求項6に記載した通り、上述の第五特徴構成に加えて、前記傾斜部管壁の上流側直近に前記脱気部が設けられている点にある。   The sixth feature configuration is that, in addition to the fifth feature configuration described above, the deaeration part is provided in the immediate vicinity of the upstream side of the inclined pipe wall.

上述の構成によれば、傾斜部管壁で分離された気泡がその上流側直近に備えた脱気部で消泡して被処理水から脱気される。   According to the above-described configuration, the bubbles separated by the inclined tube wall are defoamed and degassed from the water to be treated by the deaeration unit provided in the immediate vicinity of the upstream side.

同第七の特徴構成は、同請求項7に記載した通り、上述の第五または第六特徴構成に加えて、前記揚水管が配置された処理槽と前記送水管の排出口が配置された処理槽とを区画する区画壁が断面Y字状に形成され、前記傾斜部管壁が当該区画壁の傾斜部に沿って配置されている点にある。   In the seventh feature configuration, in addition to the fifth or sixth feature configuration described above, in addition to the fifth or sixth feature configuration described above, a treatment tank in which the pumping pipe is arranged and a discharge port of the water supply pipe are arranged. A partition wall that partitions the processing tank is formed in a Y-shaped cross section, and the inclined portion tube wall is disposed along the inclined portion of the partition wall.

区画壁が断面Y字状に形成された処理槽では、区画壁の上部側の拡幅部に配管類が配置される空間が形成され、当該区画壁より上方に送水管を横設配置すると、処理槽の水面まで揚水するために必要な揚程以上の揚程が必要となり、散気装置に接続されたブロワーファンの動力が大きくなるという不都合が生じる。また、配管スペースである区画壁の上部側の拡幅部に送水管を設置するのも困難である。そこで、区画壁のうち拡幅部より下方に送水管を設置する場合に、揚水管で処理槽の水面近傍まで揚水された被処理水を送水する送水管を水面近傍から当該区画壁の傾斜部に沿って斜め下方に傾斜するように配設すれば、この傾斜部によって上述の傾斜部管壁により構成される分離壁が容易に実現でき、ブロワーファンの動力が必要以上に要求されることも無く、送水管の設置も容易に行なえるようになる。   In the treatment tank in which the partition wall is formed in a Y-shaped cross section, a space in which piping is arranged is formed in the widened portion on the upper side of the partition wall, and when the water supply pipe is disposed horizontally above the partition wall, There is a disadvantage that a lift higher than that required for pumping up to the surface of the tank is required, and the power of the blower fan connected to the diffuser increases. In addition, it is difficult to install a water supply pipe in the widened portion on the upper side of the partition wall that is a piping space. Therefore, when installing a water pipe below the widened part of the partition wall, the water pipe that feeds the treated water pumped up to the vicinity of the water surface of the treatment tank by the pump pipe from the vicinity of the water surface to the inclined part of the partition wall. If it is arranged so as to be inclined obliquely downward along, it is possible to easily realize the separation wall constituted by the above-mentioned inclined portion tube wall by this inclined portion, and the power of the blower fan is not required more than necessary. The water pipe can be installed easily.

同第八の特徴構成は、同請求項8に記載した通り、上述の第一から第七の何れかの特徴構成に加えて、前記脱気部に堆積した気泡を消泡する消泡手段が、前記脱気部に配置されている点にある。   In the eighth feature configuration, in addition to any one of the first to seventh feature configurations described above, the defoaming means for defoaming the bubbles accumulated in the deaeration unit is provided. In the point which is arrange | positioned at the said deaeration part.

脱気部に堆積した気泡が自然消泡する速度が遅い場合、脱気部から気泡がオーバーフローする虞があるが、そのような場合であっても消泡手段により、脱気部で効率的に脱気させることができる。なお、消泡手段としては、発泡層に被処理水や処理済みの水を散水する散水機構や、発泡層の上部に消泡用の多孔板やメッシュ、或は消泡用の突起が複数形成された板状体を備え、被処理水の表面張力で発泡している気泡の一部に物理的力を加えて消泡する構成や、消泡剤を用いて化学的に消泡する構成が採用できる。   When the bubbles that have accumulated in the deaeration part are slowly defoamed slowly, the bubbles may overflow from the deaeration part. Can be degassed. In addition, as a defoaming means, a water spray mechanism for spraying treated water or treated water to the foam layer, or a plurality of defoaming porous plates and meshes or a plurality of defoam projections on the foam layer. With a plate-like body, a structure that applies a physical force to some of the bubbles that are foamed by the surface tension of the water to be treated, and a structure that chemically defoams using an antifoaming agent. Can be adopted.

本発明による汚水処理設備の特徴構成は、同請求項9に記載した通り、上述の第一から第八の何れかの特徴構成を備えたエアリフトポンプ装置を備えた点にある。   The characteristic configuration of the sewage treatment facility according to the present invention is that, as described in claim 9, the air lift pump device having any one of the first to eighth characteristic configurations described above is provided.

以上説明した通り、本発明によれば、被処理水の移送先の処理槽で気泡が液面に拡散して厚く堆積するような不都合を解消することができるエアリフトポンプ装置及び汚水処理設備を提供することができるようになった。   As described above, according to the present invention, there is provided an air lift pump device and sewage treatment equipment that can eliminate the disadvantage that bubbles are diffused and accumulated on the liquid surface in a treatment tank to which water to be treated is transferred. I was able to do that.

本発明によるエアリフトポンプ装置を採用した汚水処理設備の平面図The top view of the sewage treatment equipment which employ | adopted the air lift pump apparatus by this invention 本発明によるエアリフトポンプ装置を採用した汚水処理設備の断面図Sectional drawing of the sewage treatment equipment which employ | adopted the air lift pump apparatus by this invention エアリフトポンプ装置の斜視図Perspective view of air lift pump device エアリフトポンプ装置の側面断面図Side sectional view of the air lift pump device 別実施形態によるエアリフトポンプ装置の斜視図The perspective view of the air lift pump apparatus by another embodiment 別実施形態によるエアリフトポンプ装置の斜視図The perspective view of the air lift pump apparatus by another embodiment 別実施形態によるエアリフトポンプ装置を採用した汚水処理設備の説明図Explanatory drawing of the sewage treatment facility which employ | adopted the air lift pump apparatus by another embodiment. 別実施形態によるエアリフトポンプ装置を採用した汚水処理設備の説明図Explanatory drawing of the sewage treatment facility which employ | adopted the air lift pump apparatus by another embodiment. 別実施形態によるエアリフトポンプ装置を採用した汚水処理設備の概略平面図Schematic plan view of a sewage treatment facility employing an air lift pump device according to another embodiment 別実施形態によるエアリフトポンプ装置を採用した汚水処理設備の概略平面図Schematic plan view of a sewage treatment facility employing an air lift pump device according to another embodiment

以下、本発明によるエアリフトポンプ装置を、汚水処理設備の好気槽内の被処理水を無酸素槽に返送するポンプ装置として適用した場合について説明する。   Hereinafter, the case where the air lift pump apparatus by this invention is applied as a pump apparatus which returns the to-be-processed water in the aerobic tank of a sewage treatment facility to an anoxic tank is demonstrated.

図1及び図2に示すように、生活排水等を脱リン・脱窒して浄化する高度処理が可能な汚水処理設備1は、未処理の被処理水である原水を流入させる嫌気槽10と、嫌気槽10の下流側に区画壁11を介して連接され、嫌気性微生物により被処理水を脱窒する無酸素槽20と、無酸素槽20の下流側に区画壁21を介して配置され、無酸素槽20から流出した被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽30と、好気槽30で硝化された被処理水の一部を無酸素槽20に返送するエアリフトポンプ装置40を備えている。   As shown in FIG. 1 and FIG. 2, a sewage treatment facility 1 capable of advanced treatment that purifies domestic wastewater by dephosphorization and denitrification includes an anaerobic tank 10 into which raw water that is untreated water flows. The anaerobic tank 10 is connected to the downstream side of the anaerobic tank 10 via the partition wall 11, and is disposed through the partition wall 21 on the downstream side of the anaerobic tank 20. The aerobic tank 30 for nitrifying ammonia contained in the water to be treated flowing out of the anaerobic tank 20 with an aerobic microorganism, and a part of the water to be treated nitrified in the aerobic tank 30 are returned to the anoxic tank 20. An air lift pump device 40 is provided.

各処理槽は、例えば、地中に掘削形成した凹部にコンクリートを打設することにより構成され、図1及び図2中の破線で示された矢印は、被処理水の流れを表している。   Each processing tank is configured by, for example, placing concrete in a recess formed by excavation in the ground, and arrows indicated by broken lines in FIGS. 1 and 2 represent the flow of water to be treated.

嫌気槽10では、嫌気条件下で微生物により嫌気処理され、原水に含まれるBOD成分が微生物に取り込まれるとともに、リン化合物が加水分解されて正リン酸としてリンが液中に放出される。嫌気槽10で嫌気処理された被処理水は、区画壁11の下部に形成された連通口12を介して無酸素槽20へ移送される。   In the anaerobic tank 10, anaerobic treatment is performed by microorganisms under anaerobic conditions, and BOD components contained in the raw water are taken into the microorganisms, and phosphorus compounds are hydrolyzed to release phosphorus as normal phosphoric acid into the liquid. The water to be treated that has been anaerobically treated in the anaerobic tank 10 is transferred to the anoxic tank 20 through the communication port 12 formed in the lower part of the partition wall 11.

無酸素槽20では、嫌気条件下で微生物により嫌気処理され、脱窒処理つまり硝酸イオン及び亜硝酸イオンの窒素ガスへの還元処理が行われる。無酸素槽20で嫌気処理された被処理水は、区画壁21の下部に形成された連通口22を介して好気槽30へ移送される。   In the anaerobic tank 20, anaerobic treatment is performed by microorganisms under anaerobic conditions, and denitrification treatment, that is, reduction treatment of nitrate ions and nitrite ions to nitrogen gas is performed. The water to be treated that has been anaerobically treated in the anaerobic tank 20 is transferred to the aerobic tank 30 through the communication port 22 formed in the lower part of the partition wall 21.

好気槽30に、無酸素槽20から流出した被処理水を受け入れる第一領域31と、第一領域31から流入した被処理水を区画壁21に導く第二領域32とに、被処理水の流出方向に沿って好気槽30を分離する分離壁34を設けて、第一領域31に被処理水に散気する複数の散気装置35を設置するとともに、第二領域32に被処理水を固液分離する複数の膜分離装置36を設置し、第二領域32の下流側にエアリフトポンプ装置40が設置されている。なお、分離壁34は、その上縁が水面より上方に突出する略垂直壁で構成され、基端側が区画壁21と接合され、他端側が好気槽30内で開放されている。   Water to be treated is supplied to the aerobic tank 30 into a first region 31 that receives the water to be treated flowing out of the oxygen-free tank 20 and a second region 32 that guides the water to be treated flowing from the first region 31 to the partition wall 21. A separation wall 34 for separating the aerobic tank 30 along the outflow direction is provided, and a plurality of air diffusers 35 that diffuse the treated water in the first region 31 are installed, and the second region 32 is treated. A plurality of membrane separation devices 36 for solid-liquid separation of water are installed, and an air lift pump device 40 is installed downstream of the second region 32. The separation wall 34 is configured by a substantially vertical wall whose upper edge protrudes above the water surface, the base end side is joined to the partition wall 21, and the other end side is opened in the aerobic tank 30.

第一領域31では、散気装置35からの散気による好気条件下で、被処理水に含まれるし尿等由来のアンモニウムイオンが微生物により酸化され、亜硝酸や硝酸に変換される硝化処理が行われ、さらに、被処理水中の正リン酸が汚泥に取り込まれ、ポリリン酸として蓄積される好気性処理が行われる。   In the first region 31, nitrification treatment is performed in which ammonium ions derived from human urine and the like contained in the water to be treated are oxidized by microorganisms and converted into nitrous acid and nitric acid under aerobic conditions due to aeration from the aeration device 35. In addition, an aerobic treatment is performed in which normal phosphoric acid in the water to be treated is taken into sludge and accumulated as polyphosphoric acid.

第二領域32では、膜分離装置36により被処理水から活性汚泥等の固形物が分離され、分離された被処理水が、送水管37によって後段の処理水槽(図示せず)に排出される。なお、嫌気槽10に流入する未処理の被処理水である原水の量は一定ではなく変動するが、膜分離装置36は、図示しない制御部により各処理槽の水位が所定の最低水位LWL以上であって最高水位HWL以下となるように排出量を調整するように構成されている。   In the second region 32, solid matter such as activated sludge is separated from the water to be treated by the membrane separation device 36, and the separated water to be treated is discharged to a treated water tank (not shown) in the subsequent stage through a water pipe 37. . Note that the amount of raw water that is untreated water that flows into the anaerobic tank 10 is not constant and varies, but the membrane separation device 36 is configured so that the water level of each treatment tank is equal to or higher than a predetermined minimum water level LWL by a control unit (not shown). However, the discharge amount is adjusted so as to be equal to or lower than the maximum water level HWL.

膜分離装置36に用いられる分離膜として、限外濾過膜、精密濾過膜等が好ましく採用される。膜の形態は、中空糸膜、平膜、チューブラー膜などが好ましく採用される。   As the separation membrane used in the membrane separation device 36, an ultrafiltration membrane, a microfiltration membrane or the like is preferably employed. As the form of the membrane, a hollow fiber membrane, a flat membrane, a tubular membrane or the like is preferably employed.

複数の膜分離装置36の下部には、夫々の膜分離装置36の膜表面に付着する汚泥を除去洗浄する散気装置38が配設されている。第二領域32では、散気装置38から供給される空気により、好気条件下で活性汚泥により硝化処理が行われる。第二領域32の活性汚泥は、引抜管39により余剰汚泥として排出される。   An air diffuser 38 for removing and cleaning sludge adhering to the membrane surface of each membrane separator 36 is disposed below the plurality of membrane separators 36. In the second region 32, nitrification is performed by activated sludge under aerobic conditions with air supplied from the air diffuser 38. The activated sludge in the second region 32 is discharged as excess sludge through the extraction pipe 39.

図3及び図4に示すように、エアリフトポンプ装置40は、処理槽としての好気槽30に立設配置された断面矩形の揚水管41と、揚水管41の下端部に形成された下部開口41aの下方に対向して配置され、下部開口41aに向けて気泡を放出することで、好気槽30内の被処理水を揚水する散気装置42と、揚水管41と連通され、揚水管41に揚水された被処理水を水平方向に移送し、好気槽30に隣接する無酸素槽20へと返送するべく横設配置された断面矩形の送水管43とを備えている。図4中、破線矢印は、被処理水や気泡の流れを表している。   As shown in FIG. 3 and FIG. 4, the air lift pump device 40 includes a pumping pipe 41 having a rectangular cross-section standing on an aerobic tank 30 as a processing tank, and a lower opening formed at the lower end of the pumping pipe 41. It is arranged to face the lower side of 41a and discharges bubbles toward the lower opening 41a, thereby communicating with the air diffuser 42 for pumping up the treated water in the aerobic tank 30, and the pumping pipe 41, and the pumping pipe A water supply pipe 43 having a rectangular cross section is provided so as to transfer the treated water pumped by 41 in the horizontal direction and return it to the anaerobic tank 20 adjacent to the aerobic tank 30. In FIG. 4, broken line arrows represent the flow of water to be treated and bubbles.

揚水管41は、処理槽の底部に配置された架台45に支持されている。処理槽に天井がある場合には、天井から吊るされた支持部に揚水管41や送水管43を支持してもよい。   The pumping pipe 41 is supported by a gantry 45 disposed at the bottom of the treatment tank. When the treatment tank has a ceiling, the pumping pipe 41 and the water supply pipe 43 may be supported by a support unit suspended from the ceiling.

散気装置42は、下部開口41a面積と略等しい面積となる範囲に、微細気泡を略均等に放出するために、同一平面上に分散配置された複数の散気部42aを備え、複数の散気部42aが揚水管41の下部開口41a面と平行に配置されている。   The air diffuser 42 includes a plurality of air diffusers 42a dispersed and arranged on the same plane in order to release the fine bubbles substantially uniformly in a range that is approximately equal to the area of the lower opening 41a. The air part 42 a is disposed in parallel with the surface of the lower opening 41 a of the water pump 41.

揚水管41の上端高さが好気槽30の最低水位LWL以下の高さに設定され、揚水管41と送水管43が曲管46を介して連通されている。そのため円滑な流れが確保でき、送水管43を揚水管41の上端部に直角に連通する場合に発生する圧力損失を補うように散気装置42の駆動動力を高く設定する必要がない。   The upper end height of the pumping pipe 41 is set to a height equal to or lower than the lowest water level LWL of the aerobic tank 30, and the pumping pipe 41 and the water feeding pipe 43 are communicated with each other through a curved pipe 46. Therefore, a smooth flow can be ensured, and it is not necessary to set the driving power of the air diffuser 42 high so as to compensate for the pressure loss that occurs when the water pipe 43 communicates with the upper end of the water pump pipe 41 at a right angle.

送水管43の排出口43bより下流側には、送水管43により送水される被処理水の流れに対向するように配置され、被処理水を偏流させて被処理水から気泡を分離する分離壁48が設置されている。   On the downstream side of the discharge port 43b of the water supply pipe 43, a separation wall is arranged so as to face the flow of the water to be treated fed by the water feed pipe 43 and separates the bubbles from the water to be treated by drifting the water to be treated. 48 is installed.

送水管43の排出口43bと分離壁48との間に、被処理水の下方への流出を許容し、側方への流出を阻止する案内壁48aが配置されている。分離壁48及び案内壁48aの上端は無酸素槽20の水面より上方に突出するように形成され、下端は送水管43の管底より下方に突出するように形成されている。突出部には発泡した被処理水の一部が流出可能な開口部48bが形成されている。分離壁48の上流側には、被処理水に含まれる気泡を大気開放する脱気部44が設置されている。案内壁48aの水平方向長さは、分離壁48及び案内壁48aに区画される領域内の気泡の量に応じて適宜設定すればよい。   Between the discharge port 43b of the water supply pipe 43 and the separation wall 48, a guide wall 48a that allows outflow of the water to be treated and prevents the outflow to the side is disposed. The upper ends of the separation wall 48 and the guide wall 48 a are formed so as to protrude upward from the water surface of the oxygen-free tank 20, and the lower ends are formed so as to protrude downward from the bottom of the water supply pipe 43. An opening 48b through which a part of the foamed water to be treated can flow out is formed in the protrusion. On the upstream side of the separation wall 48, a deaeration unit 44 that opens air bubbles contained in the water to be treated to the atmosphere is installed. The horizontal length of the guide wall 48a may be appropriately set according to the amount of bubbles in the region partitioned by the separation wall 48 and the guide wall 48a.

送水管43の上側管壁43aは、無酸素槽20の水面より上方に突出するように形成された案内壁48aの上端に連なるように脱気部44にかけて高さが次第に高くなるように下流側に向けて上方に傾斜する傾斜面で構成されている。   The upper pipe wall 43a of the water supply pipe 43 is arranged on the downstream side so that the height gradually increases toward the deaeration part 44 so as to continue to the upper end of the guide wall 48a formed so as to protrude above the water surface of the anoxic tank 20. It is comprised by the inclined surface which inclines upwards.

以上のように構成することで、送水管43により送水される被処理水の流れが分離壁48で偏流され、偏流時に被処理水から気泡が効果的に分離されるようになる。そして、分離壁48で分離された気泡はその上流側に備えた脱気部44で速やかに消泡され、脱気される。   By configuring as described above, the flow of the water to be treated fed by the water feeding pipe 43 is drifted by the separation wall 48, and the bubbles are effectively separated from the water to be treated at the time of the drift. Then, the bubbles separated by the separation wall 48 are quickly defoamed and deaerated by the deaeration unit 44 provided on the upstream side.

このとき、分離壁48と案内壁48aで気泡の流れが阻止されるので、分離壁48と案内壁48aを越えて無酸素槽20の液面全体に発泡層が拡散するような事態を効果的に防止することができる。そして、気泡が分離された被処理水は側部が分離壁48と案内壁48aで仕切られる領域の下部開口48cから槽内に流入し、分離された気泡は側部が分離壁48と案内壁48aで仕切られる領域の上部空間に堆積され、大気と接触して消泡される。   At this time, since the flow of bubbles is blocked by the separation wall 48 and the guide wall 48a, it is effective to prevent the foam layer from diffusing across the liquid level of the anoxic tank 20 beyond the separation wall 48 and the guide wall 48a. Can be prevented. Then, the water to be treated from which the bubbles are separated flows into the tank through the lower opening 48c of the region partitioned by the separation wall 48 and the guide wall 48a, and the separated bubbles are separated from the separation wall 48 and the guide wall by the sides. Deposited in the upper space of the area partitioned by 48a, defoamed in contact with the atmosphere.

なお、分離壁48は被処理水の流れに抵抗を与えて気泡を分離するため、略垂直姿勢または上端が下流側に傾斜する傾斜姿勢で配置されることが好ましく、気泡が分離された被処理水は分離壁の下方に偏流され、分離された気泡は分離壁に沿って上方に上昇して大気と接触して消泡される。分離壁48の傾斜の程度は、気泡の発生の程度に応じて適宜設定される。また、分離壁48は、平板状である場合に限らず、被処理水の流れの方向に対して上下にまたは左右に湾曲した形状であってもよい。   The separation wall 48 provides a resistance to the flow of the water to be treated and separates the bubbles. Therefore, the separation wall 48 is preferably arranged in a substantially vertical posture or an inclined posture in which the upper end is inclined to the downstream side. The water is drifted below the separation wall, and the separated bubbles rise upward along the separation wall and come into contact with the atmosphere to be defoamed. The degree of inclination of the separation wall 48 is appropriately set according to the degree of generation of bubbles. In addition, the separation wall 48 is not limited to a flat plate shape, and may have a shape curved vertically or horizontally with respect to the direction of the water to be treated.

さらに、分離壁48及び案内壁48aの上端は無酸素槽20の水面より上方に突出するように形成されているので、分離壁48と案内壁48aで仕切られる領域の大気開放された上部空間に堆積した発泡層が速やかに消泡しない場合であっても、処理槽の水面より上方に突出するように配置された分離壁48及び案内壁48aの上端で区画される領域に発泡層を閉じ込めて、時間を掛けて消泡することができ、無酸素槽20の水面に発泡層が拡散して溢れるような事態が効果的に回避できる。   Furthermore, since the upper ends of the separation wall 48 and the guide wall 48a are formed so as to protrude above the water surface of the anoxic tank 20, the upper space opened to the atmosphere in the region partitioned by the separation wall 48 and the guide wall 48a is formed. Even if the deposited foam layer does not quickly defoam, the foam layer is confined in the region defined by the separation wall 48 and the upper end of the guide wall 48a arranged so as to protrude above the water surface of the treatment tank. The defoaming can be performed over time, and the situation where the foamed layer diffuses and overflows on the water surface of the anoxic tank 20 can be effectively avoided.

また、分離壁48及び案内壁48bは送水管43の管底より下方に延出形成されているので、分離壁48によって偏流されて気液分離された気泡が、被処理水とともに無酸素槽20内へと流入する虞を低減することができる。   Further, since the separation wall 48 and the guide wall 48b are formed to extend downward from the bottom of the water supply pipe 43, the air bubbles separated by the separation wall 48 and separated into gas and liquid together with the water to be treated are added to the oxygen-free tank 20. It is possible to reduce the risk of flowing into the inside.

また、発泡層の層厚が大きくなると、突出部に形成された開口部48dから一部が流出するように構成されているので、一度に大量の発泡層が無酸素槽20の水面に拡散するような不都合も解消できる。   Further, when the thickness of the foam layer increases, a part of the foam layer flows out from the opening 48d formed in the projecting portion, so that a large amount of the foam layer diffuses to the water surface of the anoxic tank 20 at one time. Such inconvenience can be solved.

なお、開口部48aは矩形状の開口を4つ備える構成に限らず、円形状や多角形状を適当な個数形成すればよい。さらに、案内壁48aの上端の一部を切り欠いて発泡層が無酸素槽20の水面へとオーバーフローする構成であってもよく、分離壁48及び案内壁48aの上端で区画される領域に閉じ込められた発泡層の一部が徐々に流出するように形成されていればよい。   Note that the opening 48a is not limited to a configuration having four rectangular openings, and an appropriate number of circular or polygonal shapes may be formed. Further, a part of the upper end of the guide wall 48a may be cut away so that the foamed layer overflows to the water surface of the anoxic tank 20, and is confined in a region defined by the separation wall 48 and the upper end of the guide wall 48a. It suffices if a part of the foamed layer is formed so as to gradually flow out.

さらに、図4に示すように、脱気部44の上方空間には、脱気部44の水面に発生した気泡を消泡する消泡手段としての消泡機構49が備えられている。消泡機構49は、無酸素槽20の槽内または槽外に設置したポンプ機構により、無酸素槽20内の被処理水を揚水して、または、上水を供給して、脱気部44の水面に発生した気泡に向けて散水する散水機構で構成されている。   Further, as shown in FIG. 4, a defoaming mechanism 49 is provided in the upper space of the deaeration unit 44 as defoaming means for defoaming bubbles generated on the water surface of the deaeration unit 44. The defoaming mechanism 49 pumps up the water to be treated in the oxygen-free tank 20 or supplies clean water by a pump mechanism installed inside or outside the tank of the oxygen-free tank 20. It is composed of a sprinkling mechanism that sprinkles water toward the bubbles generated on the water surface.

脱気部44に堆積した気泡が自然消泡する速度が遅い場合、脱気部44から無酸素槽20内へと気泡がオーバーフローする虞があるが、そのような場合であっても消泡機構49を備えることにより、脱気部44で効率的に脱気させることができる。なお、消泡機構49として、被処理水の表面張力で発泡している気泡の一部に物理的力を加えて消泡させる物理的な機構を採用することが好ましい。例えば、発泡層に被処理水や処理済みの水を散水する散水機構や、発泡層の上部に消泡用の多孔板やメッシュ、或は消泡用の突起が複数形成された板状体を備えることにより実現できる。また、消泡機構49は、脱気部44の全面を消泡する構成に限らず、脱気部44の一部のみを消泡する構成であってもよい。   When the speed at which bubbles accumulated in the deaeration unit 44 naturally defoam is slow, the bubbles may overflow from the deaeration unit 44 into the anoxic tank 20, but even in such a case, the defoaming mechanism By providing 49, the deaeration part 44 can efficiently deaerate. In addition, as the defoaming mechanism 49, it is preferable to employ a physical mechanism that applies a physical force to some of the bubbles foamed by the surface tension of the water to be treated to defoam. For example, a sprinkling mechanism for spraying treated water or treated water to the foam layer, or a plate-like body having a plurality of defoaming porous plates or meshes or a plurality of defoaming projections on the foam layer. It can be realized by providing. Further, the defoaming mechanism 49 is not limited to the configuration for defoaming the entire surface of the deaeration unit 44, and may be configured to defoam only a part of the deaeration unit 44.

なお、図5に示すように、分離壁48及び案内壁48aの下端は送水管43の管底より下方に突出させずにエアリフトポンプ装置を構成してもよい。また、分離壁48及び案内壁48bの上端の高さに対して発泡層の層厚が大きくなりすぎず、分離壁48及び案内壁48aの上端で区画される領域内で発泡層を十分に消泡することができるときは、案内壁48aに開口部48dを形成しなくてもよい。送水管43の排出口43bから排出される被処理水の流速が遅い場合は、分離壁48によって偏流されて気液分離された気泡が、被処理水とともに無酸素槽20内へと流入しにくいからである。   In addition, as shown in FIG. 5, you may comprise an air lift pump apparatus, without making the lower end of the separation wall 48 and the guide wall 48a protrude below the pipe bottom of the water supply pipe 43. As shown in FIG. In addition, the thickness of the foam layer does not become too large with respect to the height of the upper ends of the separation wall 48 and the guide wall 48b, and the foam layer is sufficiently removed in the region defined by the upper ends of the separation wall 48 and the guide wall 48a. When foaming is possible, the opening 48d may not be formed in the guide wall 48a. When the flow rate of the water to be treated discharged from the discharge port 43b of the water supply pipe 43 is slow, the bubbles that are drifted by the separation wall 48 and separated into gas and liquid are unlikely to flow into the anoxic tank 20 together with the water to be treated. Because.

さらに、図6に示すように、送水管43の下流側に案内壁48aを備えず分離壁48を備えてエアリフトポンプ装置を構成してもよい。   Furthermore, as shown in FIG. 6, the air lift pump device may be configured by providing a separation wall 48 instead of the guide wall 48 a on the downstream side of the water supply pipe 43.

このような構成であっても送水管43により送水される被処理水の流れが分離壁48で偏流され、偏流時に被処理水から気泡が効果的に分離されるようになる。そして、分離壁48で分離された気泡はその上流側に備えた脱気部44で速やかに消泡され、脱気されるので、分離壁48を越えて発泡状態が拡散するような事態を効果的に解消することができる。   Even in such a configuration, the flow of the water to be treated fed by the water feeding pipe 43 is drifted by the separation wall 48, and bubbles are effectively separated from the water to be treated at the time of the drift. The bubbles separated by the separation wall 48 are quickly defoamed and degassed by the deaeration unit 44 provided on the upstream side thereof, so that the situation where the foamed state diffuses beyond the separation wall 48 is effective. Can be eliminated.

図3から図6に示す散気装置42の散気部42aは、チューブ形状のメンブレン型散気管であり、揚水管の下部開口の下方に最も外側に位置する散気管が揚水管の下部開口41aの一辺の鉛直下方の近傍となるように、等間隔で4本の散気管が分散して配置され、送気管を介してブロワ(図示せず)と接続されている。ブロワから供給される空気が、散気部42aから微細気泡となって放出される。例えば、微細気泡はφ2mm以下の大きさが好ましい。   The diffuser 42a of the diffuser 42 shown in FIGS. 3 to 6 is a tube-shaped membrane-type diffuser pipe, and the diffuser pipe located on the outermost side below the lower opening of the pumped pipe is the lower opening 41a of the pumped pipe. Four diffuser tubes are distributed at equal intervals so as to be in the vicinity of one side vertically below, and are connected to a blower (not shown) via the air supply tube. The air supplied from the blower is discharged as fine bubbles from the air diffuser 42a. For example, the size of the fine bubbles is preferably 2 mm or less.

φ2mm以下の微細気泡を多く含んだ気泡を低コストで放出できる散気装置として、可撓性または弾性を有するチューブやシートに貫通形成した孔またはスリットから気泡を放出するメンブレン型散気装置や、セラミック等の多孔板から気泡を放出するデイフューザー型散気装置を採用できる。   A membrane-type air diffuser that discharges air bubbles from holes or slits formed through a flexible tube or sheet having flexibility or elasticity as an air diffuser that can discharge bubbles containing a lot of fine bubbles of φ2 mm or less at a low cost, A diffuser type diffuser that discharges air bubbles from a porous plate such as ceramic can be employed.

また、散気装置42の散気部は、粗大気泡散気管を用いてもよい。例えば、粗大気泡散気管はφ5〜20mm程度の孔径のものを用いることができる。   Further, a coarse bubble diffusing tube may be used as the diffusing portion of the diffusing device 42. For example, a coarse bubble diffusing tube having a hole diameter of about φ5 to 20 mm can be used.

このように、複数個の散気部42aを間隔を空けて分散配置すれば、散気部42aの下方から散気部42a間を通って揚水管内を上昇する被処理水の流れを誘導することができるため、揚水管内の被処理水及び気泡の流れの偏りが低減される点で好ましい。   In this way, if the plurality of diffuser portions 42a are dispersed and arranged at intervals, the flow of the water to be treated that rises in the pumping pipe through the diffuser portions 42a from below the diffuser portion 42a is induced. Therefore, it is preferable in that the unevenness of the water to be treated and the flow of bubbles in the pumping pipe is reduced.

エアリフトポンプ装置40には、被処理水の揚水量を調整するために、散気装置42から放出される気泡の供給量をブロワの回転数によって調整する調整用のボリュームを備えた散気量調整機構が設けられている。散気量調整機構は、ブロワから散気部21aに到る経路の途中に設けられるバルブで構成してもよい。   The air lift pump device 40 includes an adjustment volume for adjusting the supply amount of bubbles discharged from the air diffusion device 42 according to the rotation speed of the blower in order to adjust the pumping amount of the water to be treated. A mechanism is provided. The air diffusion amount adjusting mechanism may be configured by a valve provided in the middle of a path from the blower to the air diffusion part 21a.

そして、例えば、原水の流入量の増減に比例して、第二領域32(好気槽30)から無酸素槽20に返送される被処理水の量を増減させるように、ブロワの回転数を増減させることで汚水処理を安定して行なうことができる。   Then, for example, the rotation speed of the blower is set so as to increase or decrease the amount of treated water returned from the second region 32 (aerobic tank 30) to the anoxic tank 20 in proportion to the increase or decrease of the inflow amount of raw water. By increasing or decreasing the amount, the sewage treatment can be performed stably.

好気槽30で硝化処理された被処理水は、上述のように構成されたエアリフトポンプ装置40で無酸素槽20の上流側に返送される。これにより、好気槽30の硝化処理により被処理水に含まれる硝酸イオン及び亜硝酸イオンが、無酸素槽20へ循環されて、脱窒処理が行われる。   The water to be treated that has been nitrified in the aerobic tank 30 is returned to the upstream side of the anoxic tank 20 by the air lift pump device 40 configured as described above. As a result, nitrate ions and nitrite ions contained in the water to be treated are circulated to the anaerobic tank 20 by the nitrification treatment of the aerobic tank 30 to perform the denitrification treatment.

エアリフトポンプ装置40を、区画壁21の近傍に配置して送水路43を短く、つまり全揚程を短くすることで、被処理水の送水に必要な散気量、つまりブロワの動力を低減することができ、また、散気量を減らすことで脱気部44に発生する気泡の量を少なくすることができる。   By disposing the air lift pump device 40 in the vicinity of the partition wall 21 and shortening the water supply passage 43, that is, shortening the total head, reducing the amount of air required for water supply of the water to be treated, that is, the power of the blower. In addition, the amount of bubbles generated in the deaeration unit 44 can be reduced by reducing the amount of air diffused.

エアリフトポンプ装置40を介して無酸素槽20に返送された被処理水の一部は送水路23を介して嫌気槽10に返送される。リンを取り込んだ膜分離槽30内の微生物が送水路23を介して嫌気槽10へ循環されて、正リン酸としてリンが液中に放出される。   A portion of the water to be treated returned to the anoxic tank 20 via the air lift pump device 40 is returned to the anaerobic tank 10 via the water supply path 23. Microorganisms in the membrane separation tank 30 having taken in phosphorus are circulated to the anaerobic tank 10 through the water supply channel 23, and phosphorus is released into the liquid as normal phosphoric acid.

好気槽30から活性汚泥を含む被処理水が無酸素槽20に返送され、無酸素槽20から被処理水が嫌気槽10に返送されるように構成されているため、無酸素槽20で脱窒処理され硝酸性窒素、亜硝酸性窒素を含まず、酸素が消費された被処理水が嫌気槽10に返送され、嫌気槽10でのリンの放出条件である無NOx及び無酸素状態を維持することができる。   Since the water to be treated containing activated sludge is returned from the aerobic tank 30 to the anaerobic tank 20 and the water to be treated is returned from the anoxic tank 20 to the anaerobic tank 10, The water to be treated which is denitrified and does not contain nitrate nitrogen and nitrite nitrogen and consumes oxygen is returned to the anaerobic tank 10, and the NOx and oxygen-free conditions that are the conditions for releasing phosphorus in the anaerobic tank 10 Can be maintained.

よって、嫌気槽10ではリン化合物が正リン酸として効率的に放出され、放出された正リン酸が後段の好気槽30において嫌気槽10で放出した量以上に活性汚泥に取り込まれることにより、被処理水からリンを高度に除去することが可能となる。   Therefore, in the anaerobic tank 10, the phosphorus compound is efficiently released as normal phosphoric acid, and the released normal phosphoric acid is taken into the activated sludge more than the amount released in the anaerobic tank 10 in the subsequent aerobic tank 30, It becomes possible to remove phosphorus from treated water to a high degree.

なお、上述した実施形態では、詳述していないが、嫌気槽10及び無酸素槽20には、それぞれの処理が均一に行われるように、被処理水を撹拌する撹拌機構を備えている。   Although not described in detail in the above-described embodiment, the anaerobic tank 10 and the oxygen-free tank 20 are provided with a stirring mechanism that stirs the water to be treated so that each process is performed uniformly.

なお、上述した実施形態では、第二領域32内の被処理水を無酸素槽20へ返送するエアリフトポンプ装置40と、無酸素槽20内の被処理水を嫌気槽10へ返送する送水路23を備えた構成について説明したが、送水路23に替えてエアリフトポンプ装置40によって、無酸素槽20の被処理水を嫌気槽10に返送するように構成してもよい。また、一台のエアリフトポンプ装置40で送水した第二領域32の被処理水を、無酸素槽20と嫌気槽10の夫々に所定量返送するように構成してもよい。流入量Qに対し、好機槽30から無酸素槽20への返送水量は3Q、無酸素槽20から嫌気槽10への返送水量はQとなるように設定することが処理効率の観点から好ましい。   In the above-described embodiment, the air lift pump device 40 that returns the treated water in the second region 32 to the anoxic tank 20 and the water supply path 23 that returns the treated water in the anoxic tank 20 to the anaerobic tank 10. Although the structure provided with was demonstrated, you may comprise so that the to-be-processed water of the anoxic tank 20 may be returned to the anaerobic tank 10 with the air lift pump apparatus 40 instead of the water supply path 23. FIG. Moreover, you may comprise so that the to-be-processed water of the 2nd area | region 32 sent with the one air lift pump apparatus 40 may be returned to each of the anaerobic tank 20 and the anaerobic tank 10 by predetermined amount. It is preferable from the viewpoint of processing efficiency that the amount of water returned from the machine tank 30 to the anaerobic tank 20 is 3Q and the amount of water returned from the anaerobic tank 20 to the anaerobic tank 10 is Q with respect to the inflow amount Q.

以上の構成により、被処理水の移送先の処理槽で気泡が液面に拡散して厚く堆積するような不都合を解消することができるエアリフトポンプ装置を提供することができるのである。   With the above configuration, it is possible to provide an air lift pump device that can eliminate the inconvenience of bubbles being diffused and accumulated thickly in the liquid surface in the treatment tank to which the water to be treated is transferred.

次に、本発明による別実施形態を説明する。
図7及び図8に示すように、処理槽としての無酸素槽20と好気槽30を区画する区画壁60は断面Y字状に形成されている場合、区画壁60の上部側の拡幅部に配管61等が配置される空間が形成され、区画壁60より上方にエアリフトポンプ装置の送水管を横設配置すると、処理槽の水面まで揚水するために必要な揚程以上の揚程が必要となり、散気装置52に接続されたブロワーファンの動力が大きくなるという不都合が生じる。また、配管スペースである区画壁60の上部側の拡幅部62に送水管を設置するのも困難である。
Next, another embodiment according to the present invention will be described.
As shown in FIGS. 7 and 8, when the partition wall 60 that partitions the anaerobic tank 20 and the aerobic tank 30 as a processing tank is formed in a Y-shaped cross section, the widened portion on the upper side of the partition wall 60 When a space for arranging the pipe 61 and the like is formed in the pipe, and the water pipe of the air lift pump device is disposed horizontally above the partition wall 60, a head higher than the head required for pumping up to the water surface of the treatment tank is required. There arises a disadvantage that the power of the blower fan connected to the air diffuser 52 is increased. It is also difficult to install a water supply pipe in the widened portion 62 on the upper side of the partition wall 60 that is a piping space.

そこで、上述のような断面Y字状の区画壁60を介して隣接する好気槽30から無酸素槽20へと被処理水を返送するエアリフトポンプ装置50について説明する。   Therefore, the air lift pump device 50 that returns the treated water from the adjacent aerobic tank 30 to the anoxic tank 20 through the partition wall 60 having a Y-shaped section as described above will be described.

エアリフトポンプ装置50は、処理槽としての好気槽30に立設配置された断面矩形の揚水管51と、揚水管51の下端部に形成された下部開口51aの下方に対向して配置され、下部開口51aに向けて気泡を放出することで、好気槽30内の被処理水を揚水する散気装置52と、揚水管51と連通され、揚水管51に揚水された被処理水を水平方向に移送し、好気槽30に隣接する無酸素槽20へと返送するべく横設配置された断面矩形の送水管53とを備えている。図8中、破線矢印は、被処理水や気泡の流れを表している   The air lift pump device 50 is disposed to face a lower side of a lifting pipe 51 having a rectangular cross-section that is erected and disposed in an aerobic tank 30 as a processing tank, and a lower opening 51a formed at the lower end of the lifting pipe 51, By discharging bubbles toward the lower opening 51a, the diffuser 52 for pumping up the water to be treated in the aerobic tank 30 and the pumping pipe 51 are connected to the pumping water 51, and the water to be treated pumped up to the pumping pipe 51 is horizontal. It is provided with a water supply pipe 53 having a rectangular cross section that is horizontally disposed so as to be transferred in the direction and returned to the anaerobic tank 20 adjacent to the aerobic tank 30. In FIG. 8, broken line arrows represent the flow of water to be treated and bubbles.

揚水管51は、処理槽の底部に配置された架台55に支持されている。処理槽に天井がある場合には、天井から吊るされた支持部に揚水管51や送水管53を支持してもよい。   The pumping pipe 51 is supported by a pedestal 55 disposed at the bottom of the treatment tank. When the treatment tank has a ceiling, the pumping pipe 51 and the water supply pipe 53 may be supported by a support unit suspended from the ceiling.

散気装置52は、下部開口51a面積と略等しい面積となる範囲に、微細気泡を略均等に放出するために、同一平面上に分散配置された複数の散気部52aを備え、複数の散気部52aが揚水管51の下部開口51a面と平行に配置されている。   The air diffuser 52 includes a plurality of air diffusers 52a distributed on the same plane in order to discharge the fine bubbles substantially uniformly in an area that is approximately equal to the area of the lower opening 51a. The air part 52 a is arranged in parallel with the surface of the lower opening 51 a of the water pump 51.

揚水管51の上端高さが好気槽30の最低水位LWL以下の高さに設定され、揚水管51と送水管53が曲管56を介して連通されている。そのため円滑な流れが確保でき、送水管53を揚水管51の上端部に直角に連通する場合に発生する圧力損失を補うように散気装置52の駆動動力を高く設定する必要がない。   The upper end height of the pumping pipe 51 is set to a height equal to or lower than the lowest water level LWL of the aerobic tank 30, and the pumping pipe 51 and the water feeding pipe 53 are communicated with each other via a curved pipe 56. Therefore, a smooth flow can be ensured, and there is no need to set the driving power of the air diffuser 52 high so as to compensate for the pressure loss that occurs when the water pipe 53 communicates with the upper end of the water pump pipe 51 at right angles.

送水管53は、水平姿勢の送水管53aと、送水管53aの下流側に接続され下流側に向けて下方に傾斜する送水管53bと、送水管53bの下流側に接続された水平姿勢の送水管53cで構成されている。揚水された好気槽30の被処理水は送水管53cの排出口53dから無酸素槽20に排出される。   The water supply pipe 53 includes a horizontal water supply pipe 53a, a water supply pipe 53b connected to the downstream side of the water supply pipe 53a and inclined downward toward the downstream side, and a horizontal posture of the water supply pipe 53b connected to the downstream side of the water supply pipe 53b. It consists of a water pipe 53c. The treated water in the aerobic tank 30 that has been pumped is discharged to the anoxic tank 20 from the discharge port 53d of the water supply pipe 53c.

水平姿勢の送水管53aの下側管壁70は、好気槽30の最低水位LWLより低い高さに配置され、上側管壁53eは下流側にかけて高さが次第に高くなるように上方に傾斜する傾斜面71で構成されている。上端部は好気槽30の最高水位HWLより高い高さに配置され、大気開放されている。   The lower pipe wall 70 of the horizontal water supply pipe 53a is disposed at a height lower than the lowest water level LWL of the aerobic tank 30, and the upper pipe wall 53e is inclined upward so that the height gradually increases toward the downstream side. An inclined surface 71 is used. The upper end is disposed at a height higher than the highest water level HWL of the aerobic tank 30 and is open to the atmosphere.

送水管53bの上側管壁72及び下側管壁73は、送水管53aとの境界部から下流側に向けて下方に傾斜する傾斜面で構成されている。送水管53cの上側管壁74は、送水管53aの下側管壁70より低い位置に配置され、送水管53cは、区画壁60の上部側の拡幅部62より下方の幅の狭い箇所を貫通するように配置される。   The upper pipe wall 72 and the lower pipe wall 73 of the water supply pipe 53b are configured by inclined surfaces that are inclined downward from the boundary with the water supply pipe 53a toward the downstream side. The upper pipe wall 74 of the water pipe 53c is disposed at a position lower than the lower pipe wall 70 of the water pipe 53a, and the water pipe 53c passes through a narrow portion below the widened portion 62 on the upper side of the partition wall 60. To be arranged.

送水管53bの傾斜部管壁である上側管壁72は区画壁60の傾斜部63に沿って配置され、被処理水を偏流させて気液分離する分離壁58として機能する。分離壁58で分離された気泡は、その上流側直近に備えられた脱気部54で消泡して被処理水から脱気される。つまり、被処理水を偏流させて気液分離する分離壁58及び脱気部54は送水管53自体に設けられることとなる。   The upper pipe wall 72, which is the inclined pipe wall of the water supply pipe 53b, is arranged along the inclined part 63 of the partition wall 60, and functions as a separation wall 58 that separates the water to be treated and separates the gas and liquid. The bubbles separated by the separation wall 58 are defoamed and degassed from the water to be treated by the deaeration unit 54 provided in the immediate vicinity of the upstream side. That is, the separation wall 58 and the deaeration unit 54 that separates the water to be treated for gas-liquid separation are provided in the water supply pipe 53 itself.

さらに、脱気部54の上方空間には脱気部54の水面に発生した気泡を消泡する消泡機構49が備えられている。消泡機構49は、無酸素槽20の槽内または槽外に設置したポンプ機構により、無酸素槽20内の被処理水を揚水して、または、処理水を供給して、脱気部54の水面に発生した気泡に向けて散水する散水機構で構成されている。脱気部54に堆積した気泡が自然消泡する速度が遅い場合、脱気部54から好気槽30内へと気泡がオーバーフローする虞があるが、そのような場合であっても消泡機構49を備えることにより、脱気部54で効率的に脱気させることができる。なお、消泡機構49として、被処理水の表面張力で発泡している気泡の一部に物理的力を加えて消泡させる物理的な機構を採用することが好ましい。例えば、発泡層に被処理水や処理済みの水を散水する散水機構や、発泡層の上部に消泡用の多孔板やメッシュ、或は消泡用の突起が複数形成された板状体を備えることにより実現できる。また、消泡機構49は、脱気部54の全面を消泡する構成に限らず、脱気部54の一部のみを消泡する構成であってもよい。   Further, a defoaming mechanism 49 for defoaming bubbles generated on the water surface of the deaeration unit 54 is provided in the space above the deaeration unit 54. The defoaming mechanism 49 pumps up the water to be treated in the oxygen-free tank 20 or supplies the treated water by a pump mechanism installed inside or outside the tank of the oxygen-free tank 20 to remove the deaeration unit 54. It is composed of a sprinkling mechanism that sprinkles water toward the bubbles generated on the water surface. If the bubbles that have accumulated in the deaeration unit 54 are slowly defoamed slowly, the bubbles may overflow from the deaeration unit 54 into the aerobic tank 30. Even in such a case, the defoaming mechanism By providing 49, the deaeration unit 54 can efficiently deaerate. In addition, as the defoaming mechanism 49, it is preferable to employ a physical mechanism that applies a physical force to some of the bubbles foamed by the surface tension of the water to be treated to defoam. For example, a sprinkling mechanism for spraying treated water or treated water to the foam layer, or a plate-like body having a plurality of defoaming porous plates or meshes or a plurality of defoaming projections on the foam layer. It can be realized by providing. Further, the defoaming mechanism 49 is not limited to the configuration for defoaming the entire surface of the deaeration unit 54, and may be configured to defoam only a part of the deaeration unit 54.

このように、区画壁60のうち拡幅部62より下方に送水管53を設置する場合に、揚水管51で好気槽30の水面近傍まで揚水された被処理水を送水する送水管53を水面近傍から区画壁61の傾斜部63に沿って斜め下方に傾斜するように配設することで、この傾斜部63によって上述の傾斜部管壁としての上側管壁72によって分離壁が容易に実現でき、ブロワーファンの動力が必要以上に要求されることも無く、送水管53の設置も容易に行なえるようになるのである。   As described above, when the water supply pipe 53 is installed below the widened portion 62 in the partition wall 60, the water supply pipe 53 for supplying the treated water pumped up to the vicinity of the water surface of the aerobic tank 30 by the pumping pipe 51 is provided on the water surface. By arranging to be inclined obliquely downward along the inclined portion 63 of the partition wall 61 from the vicinity, a separation wall can be easily realized by the upper tube wall 72 as the inclined portion tube wall described above. The power of the blower fan is not required more than necessary, and the water supply pipe 53 can be easily installed.

次に、本発明によるさらに別実施形態を説明する。
上述の実施形態では、エアリフトポンプ装置の送水管が、好気槽30と隣接する無酸素槽20を区画する区画壁21を貫いて横設配置される構成について説明したが、エアリフトポンプ装置の送水管は、必ずしも区画壁21を貫いて横設配置される構成でなくてもよい。
Next, still another embodiment according to the present invention will be described.
In the above-described embodiment, the structure in which the water supply pipe of the air lift pump device is disposed horizontally through the partition wall 21 that partitions the anaerobic tank 20 adjacent to the aerobic tank 30 has been described. The water pipe does not necessarily have to be arranged horizontally through the partition wall 21.

例えば、図9に示すように、エアリフトポンプ装置60の揚水管61及び散気装置52は好気槽30内に配置し、送水管63を好気槽30及び無酸素槽20の槽外に横設配置して、送水管63の排出口63aを無酸素槽20の槽内に配置する構成であってもよい。このようなエアリフトポンプ装置60であっても、排出口63aの下流側に、送水管により送水される被処理水の流れに対向するように配置され、被処理水を偏流させて被処理水から気泡を分離する分離壁68を備えれば、上述の実施形態と同様の効果を奏することができる。図9中、破線矢印は、被処理水や気泡の流れを表している。なお、図9は概略図であり、嫌気槽10や散気装置35、膜分離装置36等の記載を省略している。   For example, as shown in FIG. 9, the pumping pipe 61 and the air diffuser 52 of the air lift pump device 60 are arranged in the aerobic tank 30, and the water supply pipe 63 is placed outside the aerobic tank 30 and the anaerobic tank 20. The structure which arrange | positions and arrange | positions and arrange | positions the discharge port 63a of the water pipe 63 in the tank of the anoxic tank 20 may be sufficient. Even in such an air lift pump device 60, it is disposed on the downstream side of the discharge port 63a so as to face the flow of the water to be treated fed by the water pipe, and the water to be treated drifts away from the water to be treated. If the separation wall 68 for separating the bubbles is provided, the same effects as those of the above-described embodiment can be obtained. In FIG. 9, broken line arrows represent the flow of water to be treated and bubbles. FIG. 9 is a schematic diagram, and illustrations of the anaerobic tank 10, the air diffuser 35, the membrane separator 36, and the like are omitted.

また、分離壁68に加えて、または、替えて、脱気部64の水面に発生した気泡を消泡する消泡機構69を備えてもよい。消泡機構69は、無酸素槽20の槽内または槽外に設置したポンプ機構により、無酸素槽20内の被処理水を揚水して、脱気部64の水面に発生した気泡に向けて散水する散水機構で構成されている。消泡機構69としての散水装置は、脱気部54に堆積する気泡が、無酸素槽20の水面全体に広がるのを防ぐ方向に散水することが好ましい。   Further, in addition to or instead of the separation wall 68, a defoaming mechanism 69 for defoaming bubbles generated on the water surface of the deaeration unit 64 may be provided. The defoaming mechanism 69 pumps up the water to be treated in the oxygen-free tank 20 by a pump mechanism installed inside or outside the oxygen-free tank 20 toward the bubbles generated on the water surface of the deaeration unit 64. It consists of a watering mechanism that sprinkles water. The watering device as the defoaming mechanism 69 preferably sprays water in a direction to prevent bubbles accumulated in the deaeration unit 54 from spreading over the entire water surface of the anoxic tank 20.

上述の実施形態では、送水管63の下流側に分離壁を備える構成について説明したが、図10に示すように、分離壁68を備えずに、消泡機構69のみを備える構成であってもよく、消泡機構69を多重に配置してもよい。図10中、破線矢印は、被処理水や気泡の流れを表している。なお、図10は概略図であり、嫌気槽10や散気装置35、膜分離装置36等の記載を省略している。   In the above-described embodiment, the configuration including the separation wall on the downstream side of the water supply pipe 63 has been described. However, as illustrated in FIG. 10, even if the configuration includes only the defoaming mechanism 69 without including the separation wall 68. The defoaming mechanism 69 may be arranged in multiple. In FIG. 10, broken line arrows represent the flow of water to be treated and bubbles. FIG. 10 is a schematic diagram, and the description of the anaerobic tank 10, the air diffuser 35, the membrane separator 36, and the like is omitted.

上述した実施形態では、消泡手段が、散水機構で構成された消泡機構のように物理的手段によって消泡する構成について説明したが、消泡手段は、消泡剤を用いて化学的手段によって液面に発生した泡を消泡する構成であってもよい。このような消泡剤としてシリコーン系消泡剤を挙げることができる。   In the above-described embodiment, the configuration in which the defoaming means defoams by physical means like the defoaming mechanism constituted by the watering mechanism has been described. However, the defoaming means is a chemical means using an antifoaming agent. The structure which defoams the foam which generate | occur | produced on the liquid level by may be sufficient. An example of such an antifoaming agent is a silicone-based antifoaming agent.

上述の何れの実施形態でも、送水管は、送水管の下側管壁が処理槽の水位より下になるように設置されていればよい。   In any of the embodiments described above, the water pipe may be installed so that the lower pipe wall of the water pipe is below the water level of the treatment tank.

上述した実施形態では、エアリフトポンプ装置を矩形状の揚水管及び送水管で構成する場合について説明したが、揚水管及び送水管は、矩形状に限らず、丸管であってもよい。また、下部開口や、被処理水の排出口の形状はベルマウス形状であってもよい。   In the above-described embodiment, the case where the air lift pump device is configured by a rectangular pumping pipe and a water feeding pipe has been described. However, the pumping pipe and the water feeding pipe are not limited to a rectangular shape, and may be a round pipe. Further, the shape of the lower opening and the outlet of the water to be treated may be a bell mouth shape.

上述した実施形態では、エアリフトポンプ装置を構成する揚水管及び送水管の材質について明示しなかったが、本発明によるエアリフトポンプ装置が設置される処理槽の被処理水の性状によって、耐薬品、耐蝕性等を考慮して適当な材質のものを用いればよい。   In the above-described embodiment, the material of the pumping pipe and the water supply pipe constituting the air lift pump device was not specified, but depending on the property of the water to be treated in the treatment tank in which the air lift pump device according to the present invention is installed, chemical resistance, corrosion resistance An appropriate material may be used in consideration of the properties and the like.

上述の実施形態では、本発明によるエアリフトポンプ装置が、膜分離装置を備えた膜分離式活性汚泥法を採用した汚泥処理設備の好機槽内の被処理水の一部を無酸素槽へ返送するように設置する構成について説明したが、無酸素槽内の被処理水の一部を嫌気槽へ返送するように設置してもよい。   In the above-described embodiment, the air lift pump device according to the present invention returns a part of the water to be treated in the machine tank of the sludge treatment facility adopting the membrane separation type activated sludge method equipped with the membrane separation device to the anoxic tank. However, it may be installed so that a part of the water to be treated in the oxygen-free tank is returned to the anaerobic tank.

本発明によるエアリフトポンプ装置によると、大規模な汚水処理設備、特に、膜分離活性汚泥法を採用する大型の汚水処理設備としての下水処理場では、被処理水の返送量が多い、つまり、エアリフトポンプ装置が備える散気装置の散気量が、担体流動生物濾過を採用した小型の浄化槽のエアリフトポンプ装置が備える散気装置による散気量より多く、また、前記浄化槽では、被処理水のMLSS濃度が2000mg/L程度であるのに対し、大型の下水処理設備に採用される膜分離活性汚泥法ではMLSS濃度が、例えば8000〜15000mg/L(平均約10000mg/L程度)と高く、返送水の返送先である嫌気槽や無酸素槽の水面に気泡が発生しやすいため、特に効果的に気泡による処理槽の汚れの虞を低減可能になるのである。   According to the airlift pump device of the present invention, in a large-scale sewage treatment facility, particularly a sewage treatment plant as a large-scale sewage treatment facility that employs a membrane separation activated sludge method, the amount of return of treated water is large. The amount of air diffused by the air diffuser provided in the pump device is larger than the amount of air diffused by the air diffuser provided in the air lift pump device of a small septic tank employing carrier flow biological filtration. Whereas the concentration is about 2000 mg / L, the membrane separation activated sludge method employed in a large sewage treatment facility has a high MLSS concentration of, for example, 8000 to 15000 mg / L (average of about 10000 mg / L), and the return water Bubbles are likely to be generated on the water surface of anaerobic tanks and oxygen-free tanks, which are the return destinations, so it is possible to reduce the risk of contamination of the processing tanks due to bubbles. .

上述した実施形態は、何れも本発明の一例であり、当該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say.

1:汚水処理設備
10:嫌気槽
11:区画壁
12:連通口
20:無酸素槽
21:区画壁
22:連通口
23:送水管
30:好気槽
31:第一領域
32:第二領域
34:分離壁
35:散気装置
36:膜分離装置
37:送水管
38:散気装置
39:引抜管
40:エアリフトポンプ装置
41:揚水管
41a:下部開口
42:散気装置
42a:散気部
43:送水管
43a:拡大部
43b:樋状の送水管
43c上端部
44:脱気部
45:架台
46:曲管
47:給気管
48:分離壁
48a:開口部
49:消泡機構
1: Sewage treatment equipment 10: Anaerobic tank 11: Partition wall 12: Communication port 20: Anoxic tank 21: Partition wall 22: Communication port 23: Water pipe 30: Aerobic tank 31: First region 32: Second region 34 : Separation wall 35: Air diffuser 36: Membrane separator 37: Water supply pipe 38: Air diffuser 39: Extraction pipe 40: Air lift pump device 41: Water pump 41 a: Lower opening 42: Air diffuser 42 a: Air diffuser 43 : Water supply pipe 43a: enlarged portion 43b: bowl-shaped water supply pipe 43c upper end 44: deaeration part 45: mount 46: curved pipe 47: air supply pipe 48: separation wall 48a: opening 49: defoaming mechanism

Claims (9)

処理槽に立設配置された揚水管と、前記揚水管に気泡を放出して前記処理槽内の被処理水を揚水する散気装置と、前記揚水管と連通され、前記揚水管に揚水された被処理水を水平方向に移送するべく横設配置された送水管とを備えているエアリフトポンプ装置であって、
前記送水管により送水される被処理水の流れに対向するように配置され、被処理水を偏流させて被処理水から気泡を分離する分離壁と、
前記分離壁の上流側に設置され、被処理水に含まれる気泡を大気開放する脱気部とを備えているエアリフトポンプ装置。
A pumping pipe arranged upright in the treatment tank, an air diffuser that discharges air bubbles to the pumping pipe to pump up the water to be treated in the treatment tank, communicated with the pumping pipe, and pumped to the pumping pipe. An air lift pump device provided with a water pipe arranged horizontally to transfer the treated water in the horizontal direction,
A separation wall that is disposed so as to face the flow of the water to be treated fed by the water pipe, and separates bubbles from the water to be treated by drifting the water to be treated;
An air lift pump device comprising a deaeration unit that is installed on the upstream side of the separation wall and opens air bubbles contained in the water to be treated to the atmosphere.
前記分離壁が、前記送水管の排出口より下流側に設置されるとともに、前記排出口と前記分離壁との間に、被処理水の下方への流出を許容し、側方への流出を阻止する案内壁が配置されている請求項1記載のエアリフトポンプ装置。   The separation wall is installed on the downstream side of the discharge port of the water supply pipe, and allows outflow of water to be treated between the discharge port and the separation wall. The air lift pump device according to claim 1, wherein a guide wall for blocking is arranged. 前記分離壁及び前記案内壁の上端が前記処理槽の水面より上方に突出するように形成され、当該突出部に発泡した被処理水の一部が流出可能な開口部が形成されている請求項2記載のエアリフトポンプ装置。   The upper end of the separation wall and the guide wall is formed so as to protrude above the water surface of the treatment tank, and an opening through which a part of the foamed water to be treated flows out is formed in the protrusion. 2. The air lift pump device according to 2. 前記脱気部が前記送水管に設けられている請求項1記載のエアリフトポンプ装置。   The air lift pump device according to claim 1, wherein the deaeration unit is provided in the water supply pipe. 前記送水管が水平姿勢から下方への傾斜姿勢に姿勢が変更するように設置され、前記送水管の傾斜部管壁により前記分離壁が構成されている請求項1記載のエアリフトポンプ装置。   2. The air lift pump device according to claim 1, wherein the water supply pipe is installed so that the posture is changed from a horizontal posture to a downward inclined posture, and the separation wall is configured by an inclined pipe wall of the water supply pipe. 前記傾斜部管壁の上流側直近に前記脱気部が設けられている請求項5記載のエアリフトポンプ装置。   The air lift pump device according to claim 5, wherein the deaeration part is provided in the immediate vicinity of the upstream side of the inclined part pipe wall. 前記揚水管が配置された処理槽と前記送水管の排出口が配置された処理槽とを区画する区画壁が断面Y字状に形成され、前記傾斜部管壁が当該区画壁の傾斜部に沿って配置されている請求項5または6記載のエアリフトポンプ装置。   A partition wall that partitions the treatment tank in which the pumping pipe is disposed and the treatment tank in which the discharge port of the water supply pipe is disposed is formed in a Y-shaped cross section, and the inclined tube wall is formed in the inclined portion of the partition wall. The air lift pump apparatus of Claim 5 or 6 arrange | positioned along. 前記脱気部に堆積した気泡を消泡する消泡手段が、前記脱気部に配置されている請求項1から7の何れかに記載のエアリフトポンプ装置。   The air lift pump device according to any one of claims 1 to 7, wherein a defoaming means for defoaming bubbles accumulated in the deaeration unit is disposed in the deaeration unit. 請求項1から8の何れかに記載のエアリフトポンプ装置を備えた汚水処理設備。   A sewage treatment facility comprising the air lift pump device according to any one of claims 1 to 8.
JP2010139167A 2010-06-18 2010-06-18 Air lift pump apparatus and wastewater treatment facility Withdrawn JP2012000584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010139167A JP2012000584A (en) 2010-06-18 2010-06-18 Air lift pump apparatus and wastewater treatment facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139167A JP2012000584A (en) 2010-06-18 2010-06-18 Air lift pump apparatus and wastewater treatment facility

Publications (1)

Publication Number Publication Date
JP2012000584A true JP2012000584A (en) 2012-01-05

Family

ID=45533210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139167A Withdrawn JP2012000584A (en) 2010-06-18 2010-06-18 Air lift pump apparatus and wastewater treatment facility

Country Status (1)

Country Link
JP (1) JP2012000584A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045957A1 (en) * 2013-09-30 2015-04-02 三菱日立パワーシステムズ株式会社 Air diffuser for seawater desulfurization and seawater desulfurization device provided with same
JP2016175048A (en) * 2015-03-20 2016-10-06 フジクリーン工業株式会社 Water treatment equipment
CN109152966A (en) * 2016-07-11 2019-01-04 惠普发展公司,有限责任合伙企业 Foam merges

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045957A1 (en) * 2013-09-30 2015-04-02 三菱日立パワーシステムズ株式会社 Air diffuser for seawater desulfurization and seawater desulfurization device provided with same
JP2015066526A (en) * 2013-09-30 2015-04-13 三菱重工業株式会社 Air diffuser for seawater desulfurization and seawater desulfurization apparatus with the same
JP2016175048A (en) * 2015-03-20 2016-10-06 フジクリーン工業株式会社 Water treatment equipment
CN109152966A (en) * 2016-07-11 2019-01-04 惠普发展公司,有限责任合伙企业 Foam merges
CN109152966B (en) * 2016-07-11 2021-10-29 惠普发展公司,有限责任合伙企业 Foam merging

Similar Documents

Publication Publication Date Title
JP5803293B2 (en) Air diffuser
JP7105162B2 (en) Organic wastewater treatment equipment
JP2011110520A (en) Apparatus for treating organic waste water and method of treating organic waste water
EP3582883B1 (en) Enclosure system for use with a membrane module of a membrane aerated biofilm reactor and comprising a low pressure airlift mixing system
JP2007136389A (en) Aeration device
WO2013008522A1 (en) Air diffuser
KR20190022388A (en) Equipment for Circulating of media and Preventing of media sweep in Moving Bed Biofilm Reactor
JP5823489B2 (en) Membrane separator
JP2012000584A (en) Air lift pump apparatus and wastewater treatment facility
EP2222608B1 (en) Improvements relating to water treatment
JP5436350B2 (en) Air lift pump device and sewage treatment facility
WO2018150055A1 (en) A low-pressure, reversible airlift mixing system for use with a membrane aerated biofilm reactor
JP5420985B2 (en) Air lift pump device
WO2012049909A1 (en) Waste water treatment equipment
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
WO2018051630A1 (en) Membrane-separation activated sludge treatment system
JP3263267B2 (en) Septic tank
JP4819841B2 (en) Membrane separator
EP3266515A1 (en) Submerged membrane modules formed with patterned membrane arrays of vertically aligned hollow fibers
JP5627757B2 (en) Air lift pump device
JP5745011B2 (en) Air lift pump device
JP2006263585A (en) Method for preventing clogging of air diffuser and method for operating air diffuser using this method
JP2017205734A (en) Waste water treatment device
JP2014057906A (en) Apparatus for both of filtration and air lift, and water treatment system
TWI838480B (en) Aeration tank, sewage treatment device and sewage treatment method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903