JP5627757B2 - Air lift pump device - Google Patents

Air lift pump device Download PDF

Info

Publication number
JP5627757B2
JP5627757B2 JP2013241223A JP2013241223A JP5627757B2 JP 5627757 B2 JP5627757 B2 JP 5627757B2 JP 2013241223 A JP2013241223 A JP 2013241223A JP 2013241223 A JP2013241223 A JP 2013241223A JP 5627757 B2 JP5627757 B2 JP 5627757B2
Authority
JP
Japan
Prior art keywords
water
air
tank
pipe
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013241223A
Other languages
Japanese (ja)
Other versions
JP2014031797A (en
Inventor
泰弘 大川
泰弘 大川
秀樹 秋吉
秀樹 秋吉
壮一郎 矢次
壮一郎 矢次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2013241223A priority Critical patent/JP5627757B2/en
Publication of JP2014031797A publication Critical patent/JP2014031797A/en
Application granted granted Critical
Publication of JP5627757B2 publication Critical patent/JP5627757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、移送対象液中に立設して配置した揚水管内に放出された気泡によるエアリフト効果を利用して、移送対象液を移送するエアリフトポンプ装置に関する。   The present invention relates to an air lift pump device that transfers a liquid to be transferred by using an air lift effect caused by bubbles released into a pumping pipe arranged upright in the liquid to be transferred.

従来、隣接して並設された一方の処理槽から他方の処理槽に被処理水を移送する場合、例えば汚水処理設備や、流量調整槽、汚水浄化槽等では、一方の処理槽内の被処理水を槽外または水中に設置した機械式のポンプ装置によって汲み上げ、他方の処理槽に移送することが行われていた。   Conventionally, when water to be treated is transferred from one treatment tank adjacent to the other to the other treatment tank, for example, in a sewage treatment facility, a flow rate adjustment tank, a sewage purification tank, etc., the treatment in one treatment tank Water has been pumped by a mechanical pump device installed outside or in the water and transferred to the other treatment tank.

しかし、一方の処理槽と他方の処理槽の水位差が大きくなく揚程が比較的低いような場合、そのような低揚程に対応する機械式のポンプが存在しないため、実際にはオーバースペックとなるポンプを使用せざるを得ず、また、移送管の長さに応じて配管抵抗が増大し全揚程が上昇することも相俟って必要以上の動力を消費するという問題や、送水量を調整するためのバルブを移送管に設置する等、部品点数が増加するという問題もあった。   However, if the water level difference between one treatment tank and the other treatment tank is not large and the head is relatively low, there is no mechanical pump that can handle such a low head, so it is actually overspec. The pump must be used, and the pipe resistance increases according to the length of the transfer pipe and the total lift rises. There is also a problem that the number of parts is increased, for example, a valve is installed in the transfer pipe.

そこで、ポンプ動力の低減や配管スペースの低減等の目的のために、機械式のポンプ装置に替えてエアリフトポンプ装置を用いたポンプ装置が設置されることが多くなってきた。   Therefore, in order to reduce the pump power and the piping space, a pump device using an air lift pump device is often installed instead of the mechanical pump device.

例えば、図9に示すように、特許文献1には、汚水浄化設備の好槽、処理水槽または沈殿槽の槽内水を嫌気槽へ循環するエアリフトポンプの構成が開示されている。汚水処理設備は、槽内を仕切壁で仕切り、上流側から嫌気槽、好気槽、処理水槽、消毒槽の順に配列し、一方の処理槽としての処理水槽内の槽内水の一部を処理水質の安定化と脱窒のために、エアリフトポンプ80により揚水し、移送管81によって、他方の処理槽としての嫌気槽へ返送する。 For example, as shown in FIG. 9, Patent Document 1, aerobic tank wastewater purification equipment, construction of an air lift pump for circulating the bath in the water treatment water tank or settling tank into the anaerobic tank is disclosed. The sewage treatment facility partitions the inside of the tank with a partition wall and arranges an anaerobic tank, an aerobic tank, a treated water tank, and a disinfecting tank in this order from the upstream side, and a part of the water in the treated water tank as one treatment tank In order to stabilize the treated water quality and denitrify, the water is pumped by the air lift pump 80 and returned to the anaerobic tank as the other processing tank by the transfer pipe 81.

エアリフトポンプ80は、ブロワ82から調整弁83を介してエアリフトポンプ80へ挿入された空気85が、内管86の下端から吐き出され外管87と内管86の間を上昇する推進力によって、槽内水88を揚水させ、揚水は移行管81から循環水89として嫌気槽へ至るように構成されている。   In the air lift pump 80, the air 85 inserted into the air lift pump 80 from the blower 82 via the adjustment valve 83 is discharged from the lower end of the inner pipe 86, and is lifted between the outer pipe 87 and the inner pipe 86 by a driving force. The internal water 88 is pumped up, and the pumped water is configured to reach the anaerobic tank as the circulating water 89 from the transition pipe 81.

また、図10に示すように、特許文献2には、流量調整槽及び汚水浄化槽に用いるエアリフトポンプ94として、下部に液吸い込み口90、上部に液排出口91を有する揚水管92と、この揚水管92に接続され、その下部に空気を供給するための空気供給管93を備えた構成が開示されている。   As shown in FIG. 10, Patent Document 2 discloses, as an air lift pump 94 used in a flow rate adjustment tank and a sewage purification tank, a pumping pipe 92 having a liquid suction port 90 in the lower part and a liquid discharge port 91 in the upper part, The structure provided with the air supply pipe | tube 93 for connecting with the pipe | tube 92 and supplying air to the lower part is disclosed.

特開平11−104664号公報JP-A-11-104664 特開2002−357200号公報JP 2002-357200 A

しかし、上述の特許文献1に記載されたエアリフトポンプ80は、揚水された被処理水が、外管87と内管86の間を上昇するように構成されているため、内管86自体が被処理水の流れに対する抵抗となり、被処理水の通過断面積が狭くなるので圧力損失が増え、さらに、被処理水を水面以上に揚水するため、ブロワの動力が大きくなるという問題があった。また、内管86の先端に被処理水に含まれる異物が絡みついて閉塞し、揚水量が減少する虞もあった。   However, the air lift pump 80 described in Patent Document 1 described above is configured such that the treated water that has been pumped rises between the outer pipe 87 and the inner pipe 86, and therefore the inner pipe 86 itself is covered. The resistance to the flow of treated water is reduced, and the passage cross-sectional area of the treated water is reduced, resulting in an increase in pressure loss. Further, since the treated water is pumped above the water surface, the power of the blower is increased. In addition, foreign matter contained in the water to be treated is entangled with the tip of the inner pipe 86 and is blocked, and there is a possibility that the amount of pumped water is reduced.

上述の特許文献2に記載されたエアリフトポンプ94では、空気を揚水管92の下部に横方向から接続された空気供給管93から供給するため、揚水管92内に供給された空気の流れに偏りが生じ、被処理水の流れが乱れやすく、揚水効率が悪いという問題があった。そして、揚水管において揚水の役割を終えた気泡が揚水管と略同径の送水管に流入するため、被処理水が流れる有効断面積の減少による流路抵抗の増大を来すという問題もあり、特許文献1記載のエアリフトポンプ80と同様に、被処理水を水面以上に揚水するため、ブロワの動力が大きくなるという問題があった。 In the air lift pump 94 described in the above-mentioned Patent Document 2, since air is supplied from the air supply pipe 93 connected to the lower part of the pumping pipe 92 from the lateral direction, it is biased to the flow of air supplied into the pumping pipe 92. As a result, the flow of water to be treated is likely to be disturbed and the pumping efficiency is poor. In addition, since the bubbles that have finished the role of pumping in the pumping pipe flow into the water pipe having the same diameter as that of the pumping pipe, there is a problem that the flow resistance is increased due to a decrease in the effective cross-sectional area through which the water to be treated flows. As with the air lift pump 80 described in Patent Document 1, there is a problem that the power of the blower increases because the water to be treated is pumped above the water surface.

本発明の目的は、上述した問題点に鑑み、隔壁を介して連設された一方の処理槽から他方の処理槽への被処理水の移送に必要な動力を低減でき、効率の良い送水を行えるエアリフトポンプ装置を提供する点にある。   In view of the above-described problems, the object of the present invention is to reduce the power required for transferring the water to be treated from one treatment tank connected to the other through the partition wall to the other treatment tank. An object of the present invention is to provide an air lift pump device that can be used.

上述の目的を達成するため、本発明によるエアリフトポンプ装置の特徴構成は、特許請求の範囲の請求項1に記載した通り、被処理水中に立設して配置された揚水管と、揚水管の下部開口の下方に散気部が配置され、下部開口に向けて散気部より気泡を放出する散気装置と、揚水管の上部開口と連通し散気部から放出される気泡により揚水された被処理水を移送する略水平姿勢の送水管を備え、送水管は下流側ほど断面積が拡大された拡大部を備え、拡大部における送水管の内部上面は下流側に向けて上方に傾斜する点にある。 In order to achieve the above-mentioned object, the characteristic configuration of the air lift pump device according to the present invention is as described in claim 1 of the present invention. spraying component is disposed below the lower opening, which is pumping the air diffuser that emits bubbles from the air diffuser portion toward the lower opening, the bubbles are released from the upper opening and communicating with the spraying component of the riser pipe A water supply pipe having a substantially horizontal posture for transferring the water to be treated is provided. The water supply pipe has an enlarged portion whose cross-sectional area is enlarged toward the downstream side, and the inner upper surface of the water supply pipe in the enlarged portion is inclined upward toward the downstream side. In the point.

上述の構成によれば、散気装置により放出され揚水管内を上昇した気泡は、拡大部により気液分離されるので、揚水管において揚水の役割を終えた気泡を速やかに上方に分離しながら、被処理水が流れる有効断面積の減少による流路抵抗の増大を防止できる。   According to the above-described configuration, the bubbles released by the air diffuser and rising in the pumping pipe are separated into gas and liquid by the enlarged portion, so while quickly separating the bubbles that have finished the role of pumping in the pumping pipe, It is possible to prevent an increase in channel resistance due to a decrease in the effective cross-sectional area through which the water to be treated flows.

同第の特徴構成は、同請求項に記載した通り、上述の第一の特徴構成に加えて、拡大部の下流側で送水管が樋状に形成される点にある。 As described in claim 2 , the second characteristic configuration is that, in addition to the first characteristic configuration described above, the water supply pipe is formed in a bowl shape on the downstream side of the enlarged portion.

上述の構成によれば、拡大部で気液分離された気泡は、樋状の送水路の上端部から大気に放出される。   According to the above-described configuration, the bubbles separated from the gas and liquid at the enlarged portion are discharged to the atmosphere from the upper end portion of the bowl-shaped water channel.

同第の特徴構成は、同請求項に記載した通り、上述の第または第二の特徴構成に加えて、揚水管の上端部と送水管の基端部とが曲管を介して連通接続されている点にある。 In the third characteristic configuration, as described in claim 3 , in addition to the first or second characteristic configuration described above, the upper end portion of the pumping pipe and the proximal end portion of the water supply pipe are connected via a curved pipe. It is in the point where it is connected.

上述の構成によれば、揚水管により揚水された被処理水が、曲管によって緩やかに拡大部へと導かれるため、圧力損失を低減でき、散気量を低減することができる。   According to the above-described configuration, the water to be treated that has been pumped by the pumping pipe is gently guided to the enlarged portion by the curved pipe, so that pressure loss can be reduced and the amount of air diffused can be reduced.

以上説明した通り、本発明によれば、処理槽内の被処理水の移送に必要な動力を低減でき、効率の良い送水を行えるエアリフトポンプ装置を提供することができるようになった。   As described above, according to the present invention, it is possible to provide an air lift pump device that can reduce the power required for transferring the water to be treated in the treatment tank and perform efficient water supply.

本発明によるエアリフトポンプ装置を採用した汚水処理設備を説明する平面図The top view explaining the sewage treatment facility which employ | adopted the air lift pump apparatus by this invention 本発明によるエアリフトポンプ装置を採用した汚水処理設備を説明する断面図Sectional drawing explaining the sewage treatment equipment which employ | adopted the air lift pump apparatus by this invention 本発明によるエアリフトポンプ装置の斜視図The perspective view of the air lift pump apparatus by this invention 本発明によるエアリフトポンプ装置の側面図Side view of an airlift pump device according to the present invention 本発明によるエアリフトポンプ装置の正面図The front view of the air lift pump apparatus by this invention 本発明によるエアリフトポンプ装置の平面図The top view of the air lift pump apparatus by this invention 本発明によるエアリフトポンプ装置の側断面図Side sectional view of an air lift pump device according to the present invention. (a)は本発明によるエアリフトポンプ装置の要部を説明する正面図、(b)は本発明によるエアリフトポンプ装置の要部を説明する側面図、(c)は別実施形態を示し、本発明によるエアリフトポンプ装置の要部を説明する側面図(A) is a front view explaining the principal part of the air lift pump apparatus by this invention, (b) is a side view explaining the principal part of the air lift pump apparatus by this invention, (c) shows another embodiment, this invention Side view explaining the main part of the air lift pump device by 従来のエアリフトポンプ装置の説明図Explanatory drawing of a conventional air lift pump device 従来のエアリフトポンプ装置の説明図Explanatory drawing of a conventional air lift pump device

以下、本発明によるエアリフトポンプ装置を汚水処理設備の好気槽内の被処理水を無酸素槽に返送するポンプとして適用した場合について説明する。   Hereinafter, the case where the air lift pump device according to the present invention is applied as a pump for returning treated water in an aerobic tank of a sewage treatment facility to an anoxic tank will be described.

図1,2に示すように、汚水処理設備1は、未処理の被処理水である原水を流入させる嫌気槽10と、嫌気槽10の下流側に隔壁11を介して連接され、嫌気性微生物により被処理水を脱窒する無酸素槽20と、無酸素槽20の下流側に隔壁21を介して配置され、無酸素槽20から流出した被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽30と、好気槽30で硝化された被処理水の一部を無酸素槽20に返送するエアリフトポンプ装置40を備えている。なお、図中破線矢印は、被処理水の流れを表している。   As shown in FIGS. 1 and 2, the sewage treatment facility 1 is connected to an anaerobic tank 10 into which raw water that is untreated water flows, and an anaerobic microorganism connected to a downstream side of the anaerobic tank 10 via a partition wall 11. The anaerobic tank 20 for denitrifying the water to be treated and the ammonia contained in the water to be treated flowing out of the oxygen-free tank 20 through the partition wall 21 on the downstream side of the oxygen-free tank 20 is nitrified with an aerobic microorganism. An aerobic tank 30 and an air lift pump device 40 for returning a part of the water to be treated nitrified in the aerobic tank 30 to the anoxic tank 20. In addition, the broken line arrow in a figure represents the flow of to-be-processed water.

嫌気槽10では、嫌気条件下で微生物により嫌気処理され、原水に含まれるBOD成分が微生物に取り込まれるとともに、リン化合物が加水分解されて正リン酸としてリンが液中に放出される。嫌気槽10で嫌気処理された被処理水は、隔壁11の下部に形成された連通口12を介して無酸素槽20へ移送される。   In the anaerobic tank 10, anaerobic treatment is performed by microorganisms under anaerobic conditions, and BOD components contained in the raw water are taken into the microorganisms, and phosphorus compounds are hydrolyzed to release phosphorus as normal phosphoric acid into the liquid. The water to be treated that has been anaerobically treated in the anaerobic tank 10 is transferred to the anoxic tank 20 through the communication port 12 formed in the lower part of the partition wall 11.

無酸素槽20では、嫌気条件下で微生物により嫌気処理され、脱窒処理つまり硝酸イオン及び亜硝酸イオンの窒素ガスへの還元処理が行われる。無酸素槽20で嫌気処理された被処理水は、隔壁21の下部に形成された連通口22を介して好気槽30へ移送される。   In the anaerobic tank 20, anaerobic treatment is performed by microorganisms under anaerobic conditions, and denitrification treatment, that is, reduction treatment of nitrate ions and nitrite ions to nitrogen gas is performed. The water to be treated that has been anaerobically treated in the anaerobic tank 20 is transferred to the aerobic tank 30 through the communication port 22 formed in the lower part of the partition wall 21.

好気槽30に、無酸素槽20から流出した被処理水を受け入れる第一領域31と、第一領域31から流入した被処理水を隔壁22に導く第二領域32とに、被処理水の流出方向に沿って好気槽30を分離する分離壁34を設けて、第一領域31に被処理水に散気する複数の散気装置35を設置するとともに、第二領域32に被処理水を固液分離する複数の膜分離装置36を設置し、第二領域32の下流側にエアリフトポンプ装置40が設置されている。なお、分離壁34は、その上縁が水面より上方に突出する略垂直壁で構成され、基端側が隔壁21と接合され、他端側が好気槽30内で開放されている。   In the aerobic tank 30, the first region 31 that receives the treated water flowing out from the oxygen-free tank 20 and the second region 32 that guides the treated water flowing in from the first region 31 to the partition wall 22 A separation wall 34 that separates the aerobic tank 30 along the outflow direction is provided, and a plurality of air diffusers 35 that diffuse the treated water in the first region 31 are installed, and the treated water is disposed in the second region 32. A plurality of membrane separation devices 36 for solid-liquid separation are installed, and an air lift pump device 40 is installed downstream of the second region 32. The separation wall 34 is configured by a substantially vertical wall whose upper edge protrudes above the water surface, the base end side is joined to the partition wall 21, and the other end side is opened in the aerobic tank 30.

第一領域31では、散気装置35による散気による好気条件下で、被処理水に含まれるし尿等由来のアンモニウムイオンが微生物により酸化され、亜硝酸や硝酸に変換される硝化処理が行われ、さらに、被処理水中の正リン酸が汚泥に取り込まれ、ポリリン酸として蓄積される好気性処理が行われる。   In the first region 31, nitrification treatment is performed in which ammonium ions derived from human urine and the like contained in the water to be treated are oxidized by microorganisms and converted into nitrous acid and nitric acid under aerobic conditions by aeration by the aeration device 35. Furthermore, aerobic treatment is performed in which normal phosphoric acid in the water to be treated is taken into sludge and accumulated as polyphosphoric acid.

第二領域32では、膜分離装置36により被処理水から活性汚泥等の固形物が分離され、分離された被処理水が、送水管37によって後段の処理水槽(図示せず)に排出される。なお、膜分離装置36に用いられる分離膜として、限外ろ過膜、精密ろ過膜等が好ましく採用される。膜の形態は、中空糸膜、平膜、チューブラー膜などが好ましく採用される。   In the second region 32, solid matter such as activated sludge is separated from the water to be treated by the membrane separation device 36, and the separated water to be treated is discharged to a treated water tank (not shown) in the subsequent stage through a water pipe 37. . As the separation membrane used in the membrane separation device 36, an ultrafiltration membrane, a microfiltration membrane or the like is preferably employed. As the form of the membrane, a hollow fiber membrane, a flat membrane, a tubular membrane or the like is preferably employed.

なお、分離壁34で分離された第一領域31の容積は、第二領域32の容積より大きくなるように設定されている。特に、第一領域31の容積が第二領域32の容積の2倍程度大きくなるように分離壁34を形成することが好ましい。このように構成することで、第一領域31で好気処理が良好に行われる。   Note that the volume of the first region 31 separated by the separation wall 34 is set to be larger than the volume of the second region 32. In particular, it is preferable to form the separation wall 34 so that the volume of the first region 31 is about twice as large as the volume of the second region 32. By comprising in this way, an aerobic process is favorably performed in the 1st area | region 31. FIG.

複数の膜分離装置36の下部には、夫々の膜分離装置36の膜表面に付着する汚泥を除去洗浄する散気装置38が配設されている。第二領域32では、散気装置38から供給される空気により、好気条件下で活性汚泥により硝化処理が行われる。第二領域32の活性汚泥は、引抜管39により余剰汚泥として排出される。   An air diffuser 38 for removing and cleaning sludge adhering to the membrane surface of each membrane separator 36 is disposed below the plurality of membrane separators 36. In the second region 32, nitrification is performed by activated sludge under aerobic conditions with air supplied from the air diffuser 38. The activated sludge in the second region 32 is discharged as excess sludge through the extraction pipe 39.

第一領域31で好気性処理が行われた被処理水が、分離壁34の他端側の開放部から第二領域32に向けてU字状に流下するように構成されているため、散気装置35からの散気の流れ、散気装置38からの散気の流れが相互に干渉することによる被処理水の流れの乱れが発生することがない。   Since the water to be treated that has been subjected to the aerobic treatment in the first region 31 is configured to flow in a U shape from the open portion on the other end side of the separation wall 34 toward the second region 32, The turbulent flow of the water to be treated due to the interference between the flow of air diffused from the air device 35 and the flow of air diffused from the air diffuser 38 does not occur.

図3,4,5,6,7に示すように、エアリフトポンプ装置40は、第二領域32(好機槽30)に立設して配置された揚水管41と、揚水管41の下端部に形成された下部開口41aの下方に対向して配置され、下部開口41aに向けて気泡を放出する散気装置42と、気泡により揚水された被処理水を揚水管41の上部から、隔壁21を貫いて第二領域32に隣接する無酸素槽20に移送する略水平姿勢の送水管43を備えている。なお、図中破線矢印は、被処理水や気泡の流れを表し、図5では、隔壁21の記載を省略している。   As shown in FIGS. 3, 4, 5, 6, and 7, the air lift pump device 40 is provided at the lower end portion of the pumping pipe 41 and the pumping pipe 41 arranged upright in the second region 32 (the opportunity tank 30). An air diffuser 42 that is disposed to face the lower opening 41a and discharges air bubbles toward the lower opening 41a, and the treated water pumped up by the air bubbles is separated from the upper portion of the pumping pipe 41 through the partition wall 21. A substantially horizontal water supply pipe 43 is provided that passes through and is transferred to the anoxic tank 20 adjacent to the second region 32. In addition, the broken-line arrow in a figure represents the flow of to-be-processed water or a bubble, and the description of the partition 21 is abbreviate | omitted in FIG.

散気装置42は、下部開口41aと略等面積の範囲に微細気泡を略均等に放出するために同一平面上に分散配置された複数の散気部42aを備え、複数の散気部42aが揚水管41の下部開口41a面と平行に配置されて構成されている。   The air diffuser 42 includes a plurality of air diffusers 42a distributed on the same plane in order to release the fine bubbles substantially evenly in a range of approximately the same area as the lower opening 41a. The pumping pipe 41 is arranged in parallel with the lower opening 41 a surface.

ここで、複数の散気部を用いて下部開口41aと略等面積の範囲から微細気泡を放出するためには、分散して配置した散気部のうち、最も外側に位置する散気部が、下部開口41aの周縁の鉛直下方を含んだ近傍領域内にあることが好ましい。   Here, in order to release fine bubbles from a range of approximately the same area as the lower opening 41a using a plurality of air diffusers, the air diffuser located on the outermost side among the air diffusers arranged in a dispersed manner is used. It is preferable to be in the vicinity region including the vertically lower part of the periphery of the lower opening 41a.

散気部42aは、送気管を介してブロワと接続されている。ブロワから供給される空気が、散気部42aから微細気泡となって放出される。   The air diffuser 42a is connected to a blower via an air pipe. The air supplied from the blower is discharged as fine bubbles from the air diffuser 42a.

従来は、ブロワから供給される空気を配管端部から揚水管内に放出していたため、気泡の大きさはφ10mm以上となり、揚水管内の断面での気泡の偏りが大きく、揚水効率が悪かった。それに対し、散気部42aに微小な複数の散気口を分散形成し、全面曝気の状態となるように散気部42aを略均一に分散して配置し、当該散気口から微細気泡を放出することで、従来のφ10mm程度の気泡に比べて、大きな比表面積を確保でき、揚水管内で気泡の上昇速度が遅く滞留時間が長くなり、被処理水の見掛け上の比重が小さくなり、下端開口及び揚水管内の断面での気泡の偏りが低減され、同量の散気量あたりの揚水量を増やすことができ、従来の大きさの気泡による揚水量と、同じ揚水量を得るためのブロワの消費動力を低減できる。例えば、微細気泡はφ2mm以下の大きさが好ましい。   Conventionally, the air supplied from the blower was discharged from the end of the pipe into the pumping pipe, so that the size of the bubbles was φ10 mm or more, the deviation of the bubbles in the section inside the pumping pipe was large, and the pumping efficiency was poor. On the other hand, a plurality of minute air diffusion holes are dispersedly formed in the air diffusion part 42a, and the air diffusion parts 42a are substantially uniformly distributed so as to be in a state of aeration over the entire surface. By discharging, a large specific surface area can be secured compared to conventional bubbles of about φ10 mm, the rising speed of the bubbles is slow and the residence time is long in the pumping pipe, the apparent specific gravity of the treated water is reduced, and the lower end Blower for obtaining the same pumping amount as the conventional pumping amount by reducing the unevenness of bubbles in the cross section in the opening and the pumping pipe, increasing the pumping amount per amount of diffused air. Power consumption can be reduced. For example, the size of the fine bubbles is preferably 2 mm or less.

ここでφ2mm以下の微細気泡を多く含んだ気泡を低コストで放出できる散気装置としては、可とう性又は弾性を有するチューブやシートに貫通形成した孔又はスリットから気泡を放出するメンブレン型散気装置や、セラミック等の多孔板から気泡を放出するデイフューザー型散気装置がある。なお、マイクロバブルを放出する装置もあるが、放出に必要なエネルギーが大きいため実用的ではない。なお、図3,4,5,7に示す散気装置42の散気部42aは、チューブ形状のメンブレン型散気管であり、揚水管の下部開口の下方に最も外側に位置する散気管が揚水管の下部開口41aの一辺の鉛直下方の近傍となるように、等間隔で4本の散気管を分散して配置している。このように、複数個の散気部42aを間隔を空けて分散配置することは、散気部42aの下方から散気部42a間を通って揚水管内を上昇する被処理水の流れを誘導することができるため、揚水管内の被処理水及び気泡の流れの偏りが低減され好ましい。   Here, as an air diffuser capable of discharging bubbles containing a lot of fine bubbles of φ2 mm or less at a low cost, a membrane type air diffuser that discharges bubbles from holes or slits formed through a tube or sheet having flexibility or elasticity. There is a diffuser type diffuser that discharges air bubbles from a porous plate made of a device or ceramic. There are devices that emit microbubbles, but this is not practical because of the large energy required for emission. The diffuser 42a of the diffuser 42 shown in FIGS. 3, 4, 5, and 7 is a tube-shaped membrane-type diffuser, and the outermost diffuser located below the lower opening of the lifter is the pumping pump. Four diffuser tubes are distributed at equal intervals so as to be near the vertically lower side of one side of the lower opening 41a of the tube. In this way, disposing the plurality of diffuser portions 42a in a spaced manner induces the flow of water to be treated that rises in the pumping pipe from below the diffuser portion 42a through the diffuser portions 42a. Therefore, the unevenness of the water to be treated and the flow of bubbles in the pumping pipe is preferably reduced.

下部開口41aと散気部42a上面は所定距離だけ離隔して配置され、下部開口41aと散気部42a上面の空間を揚水管41の周部から鉛直下方に延びる仮想面で仕切る仮想面で仕切る仮想面44の面積が、下部開口41aの面積以上に設定されている。   The lower opening 41a and the upper surface of the air diffuser 42a are spaced apart from each other by a predetermined distance, and the space between the lower opening 41a and the upper surface of the air diffuser 42a is partitioned by a virtual surface that divides vertically from the periphery of the pumping pipe 41. The area of the virtual surface 44 is set to be equal to or larger than the area of the lower opening 41a.

図8(a),(b)に示すように、下部開口41aと散気部42a上面までの所定距離をHとし、下部開口41aの長手方向の長さをAとし、短手方向の長さをBとする。このとき、下部開口41aの面積S1は、S1=A×B、下部開口41aと散気部42a上面の空間を揚水管41の周部から鉛直下方に延びる仮想面で仕切る仮想面44の合計面積S2は、S2=2(H×A)+2(H×B)で表される。   As shown in FIGS. 8A and 8B, the predetermined distance between the lower opening 41a and the upper surface of the diffuser 42a is H, the length in the longitudinal direction of the lower opening 41a is A, and the length in the short direction. Is B. At this time, the area S1 of the lower opening 41a is S1 = A × B, the total area of the virtual surface 44 that partitions the space of the upper surface of the lower opening 41a and the diffuser portion 42a with a virtual surface extending vertically downward from the periphery of the pumping pipe 41 S2 is represented by S2 = 2 (H × A) +2 (H × B).

つまり、S2≧S1となるように、所定距離Hを設定することで、被処理水が、下部開口41aと散気部42a上面の空間を揚水管41の周部から鉛直下方に延びる仮想面で仕切る仮想面44を通過するときの平均流速が、下部開口41aを通過するときの平均流速以下となるため、仮想面44を通過するときの抵抗を低減することができる。   That is, by setting the predetermined distance H so that S2 ≧ S1, the water to be treated is a virtual surface extending vertically downward from the periphery of the pumping pipe 41 in the space of the upper surface of the lower opening 41a and the diffuser 42a. Since the average flow velocity when passing through the partitioning virtual surface 44 is equal to or less than the average flow velocity when passing through the lower opening 41a, the resistance when passing through the virtual surface 44 can be reduced.

さらに、エアリフトポンプ装置40は、被処理水の揚水量を散気部42aから放出される散気量により調整する散気量調整機構を備えている。散気量調整機構は、図示しないブロワの回転数を制御し、散気量を調整するように構成されている。   Furthermore, the air lift pump device 40 includes an aeration amount adjusting mechanism that adjusts the pumping amount of the water to be treated by the amount of aeration discharged from the aeration unit 42a. The air diffusion amount adjusting mechanism is configured to control the rotational speed of a blower (not shown) and adjust the air diffusion amount.

また、散気量調整機構は、ブロワから散気部21aに到る経路の途中に設けられる図示しないバルブであってもよい。   Further, the air diffusion amount adjusting mechanism may be a valve (not shown) provided in the middle of the path from the blower to the air diffusion part 21a.

そして、例えば、原水の流入量の増減に比例して、第二領域32(好気槽30)から無酸素槽20に返送される被処理水の量を増減させるように、ブロワの回転数を増減させることで汚水処理を安定して行うことができる。   Then, for example, the rotation speed of the blower is set so as to increase or decrease the amount of treated water returned from the second region 32 (aerobic tank 30) to the anoxic tank 20 in proportion to the increase or decrease of the inflow amount of raw water. By increasing or decreasing the amount, the sewage treatment can be performed stably.

揚水管41の上端側に下流側ほど断面積を拡大された拡大部43aを備えた送水管43が接続され、拡大部43aの基端部の上面が被処理水の水面WLの最高水位HWLより下方に位置するように配置されている。   A water supply pipe 43 having an enlarged portion 43a whose cross-sectional area is enlarged toward the downstream side is connected to the upper end side of the pumping pipe 41, and the upper surface of the base end portion of the enlarged portion 43a is higher than the highest water level HWL of the water surface WL of the water to be treated. It arrange | positions so that it may be located below.

このように構成することで、被処理水が水面WLの最低水位LWLより上方を移送されることがないため、揚程を低くすることができるので、ブロワの動力を低減することができる。   By comprising in this way, since to-be-processed water is not transferred above the minimum water level LWL of the water surface WL, since a head can be made low, the motive power of a blower can be reduced.

拡大部43aでは、揚水管41によって移送される被処理水と、散気管42により放出された気泡とが気液分離されるように構成され、拡大部43aにおける送水管43の内部上面は下流側に向けて上方に傾斜するように構成されている。   The enlarged portion 43a is configured so that the water to be treated transferred by the pumping pipe 41 and the bubbles released by the diffuser pipe 42 are separated from each other, and the inner upper surface of the water supply pipe 43 in the enlarged portion 43a is on the downstream side. It is comprised so that it may incline upwards.

散気管42によって放出された気泡が、そのまま全量無酸素槽20に返送されることが防止できるので、無酸素槽20の溶存酸素濃度が高くなり、脱窒効率が低下する虞を低減することができる。   Since it is possible to prevent all the bubbles released by the air diffuser 42 from being returned to the oxygen-free tank 20 as they are, the concentration of dissolved oxygen in the oxygen-free tank 20 becomes high, and the possibility that the denitrification efficiency is lowered can be reduced. it can.

拡大部43aの下流側で送水管43が樋状に形成され、樋状の送水路43bの上端部43cが被処理水の水面WLより上方に位置するように構成されている。   The water supply pipe 43 is formed in a bowl shape on the downstream side of the enlarged portion 43a, and the upper end portion 43c of the bowl-shaped water supply passage 43b is configured to be located above the water surface WL of the water to be treated.

このように構成することで、無酸素槽20内の被処理水が、エアリフトポンプ装置40の送水路43bの上方を通って、第二領域32に溢流することを防止できるため、第一領域31で好気処理が十分にされていない被処理水が無酸素槽20と第二領域32で循環することを防止できる。なお、拡大部43aで気液分離された気泡は、樋状の送水路43bの上端部43cから大気に放出される。   By configuring in this way, the water to be treated in the anoxic tank 20 can be prevented from overflowing to the second region 32 through the upper part of the water supply path 43b of the air lift pump device 40. It can prevent that the to-be-processed water in which the aerobic process is not fully performed by 31 circulates in the anoxic tank 20 and the 2nd area | region 32. Note that the air-liquid-separated air bubbles in the enlarged portion 43a are discharged to the atmosphere from the upper end portion 43c of the bowl-shaped water supply channel 43b.

さらに、揚水管41の上端部と拡大部43aの基端部とが曲管46を介して連通接続されている。このように構成することで、揚水管41により揚水された被処理水が、曲管46によって緩やかに拡大部43aへと導かれるため、揚水管41の上端部と拡大部43aの基端部を直角に接続する場合に比べて、圧力損失を低減でき、散気量、つまりブロワの動力を低減することができる。   Further, the upper end portion of the pumped water pipe 41 and the proximal end portion of the enlarged portion 43 a are connected in communication via a curved pipe 46. By configuring in this way, the treated water pumped by the pumping pipe 41 is gently guided to the enlarged portion 43a by the curved pipe 46, so that the upper end of the pumped pipe 41 and the base end of the enlarged portion 43a are The pressure loss can be reduced and the amount of diffused air, that is, the power of the blower can be reduced as compared with the case of connecting at right angles.

なお、揚水管41は、架台45によって支持され、エアリフトポンプ装置40は隔壁21の近傍の適当な位置に設置される。なお、設置される槽によって、天井がある場合には、送水管43を天井から吊るされた支持部によって支持してもよい。   The pumping pipe 41 is supported by a gantry 45, and the air lift pump device 40 is installed at an appropriate position near the partition wall 21. In addition, when there exists a ceiling with the tank installed, you may support the water pipe 43 with the support part suspended from the ceiling.

好気槽30で硝化処理された被処理水は、上述のように構成されたエアリフトポンプ装置40で無酸素槽20の上流側に返送される。これにより、好気槽30の硝化処理により被処理水に含まれる硝酸イオン及び亜硝酸イオンが、無酸素槽20へ循環されて、脱窒処理が行われる。   The water to be treated that has been nitrified in the aerobic tank 30 is returned to the upstream side of the anoxic tank 20 by the air lift pump device 40 configured as described above. As a result, nitrate ions and nitrite ions contained in the water to be treated are circulated to the anaerobic tank 20 by the nitrification treatment of the aerobic tank 30 to perform the denitrification treatment.

エアリフトポンプ装置40を、隔壁21の近傍に配置して送水路43を短く、つまり全揚程を短くすることで、被処理水の送水に必要な散気量、つまりブロワの動力を低減することができ、また、散気量を減らすことで溶存酸素濃度が高い被処理水が無酸素槽20に流れ込むことを防止できるので、無酸素槽20の脱窒効率を低減させる虞を低減することができる。   By disposing the air lift pump device 40 in the vicinity of the partition wall 21 and shortening the water supply path 43, that is, shortening the total head, it is possible to reduce the amount of aeration necessary for water supply of the water to be treated, that is, the power of the blower. Moreover, since it can prevent that the to-be-processed water with high dissolved oxygen concentration flows into the anoxic tank 20 by reducing the amount of aeration, the possibility of reducing the denitrification efficiency of the anoxic tank 20 can be reduced. .

さらに、エアリフトポンプ装置40を介して無酸素槽20に返送された被処理水の一部は送水路23を介して嫌気槽10に返送される。リンを取り込んだ膜分離槽30内の微生物が送水路23を介して嫌気槽10へ循環されて、正リン酸としてリンが液中に放出される。   Furthermore, part of the water to be treated returned to the anoxic tank 20 via the air lift pump device 40 is returned to the anaerobic tank 10 via the water supply path 23. Microorganisms in the membrane separation tank 30 having taken in phosphorus are circulated to the anaerobic tank 10 through the water supply channel 23, and phosphorus is released into the liquid as normal phosphoric acid.

好気槽30から活性汚泥を含む被処理水が無酸素槽20に返送され、無酸素槽20から被処理水が嫌気槽10に返送されるように構成されているため、無酸素槽20で脱窒処理され硝酸性窒素、亜硝酸性窒素を含まず、酸素が消費された被処理水が嫌気槽10に返送され、嫌気槽10でのリンの放出条件である無NOx及び無酸素状態を維持することができる。   Since the water to be treated containing activated sludge is returned from the aerobic tank 30 to the anaerobic tank 20 and the water to be treated is returned from the anoxic tank 20 to the anaerobic tank 10, The water to be treated which is denitrified and does not contain nitrate nitrogen and nitrite nitrogen and consumes oxygen is returned to the anaerobic tank 10, and the NOx and oxygen-free conditions that are the conditions for releasing phosphorus in the anaerobic tank 10 Can be maintained.

よって、嫌気槽10ではリン化合物が正リン酸として効率的に放出され、放出された正リン酸が後段の好気槽30において嫌気槽10で放出した量以上に活性汚泥に取り込まれることにより、被処理水からリンを高度に除去することが可能となる。   Therefore, in the anaerobic tank 10, the phosphorus compound is efficiently released as normal phosphoric acid, and the released normal phosphoric acid is taken into the activated sludge more than the amount released in the anaerobic tank 10 in the subsequent aerobic tank 30, It becomes possible to remove phosphorus from treated water to a high degree.

なお、上述した実施形態では、詳述していないが、嫌気槽10及び無酸素槽20には、それぞれの処理が均一に行われるように、被処理水を撹拌する撹拌機構を備えている。   Although not described in detail in the above-described embodiment, the anaerobic tank 10 and the oxygen-free tank 20 are provided with a stirring mechanism that stirs the water to be treated so that each process is performed uniformly.

以上の構成により、好気槽30から無酸素槽20への返送に必要なエアリフトポンプ装置40の動力を低減でき、効率の良い被処理水の移送が行えるのである。   With the above configuration, the power of the air lift pump device 40 required for returning from the aerobic tank 30 to the anoxic tank 20 can be reduced, and the water to be treated can be efficiently transferred.

特に、汚泥処理設備では、処理槽である無酸素槽20と好気槽30を備えた被処理水の処理系路が複数並列して配置されている場合が多く、配管の設置スペースが限られることから、槽外に設置された一台の陸上ポンプにより各好気槽の最下流側から分岐管を介してそれぞれ被処理水を吸込み、一本の合流管で無酸素槽の上流側に送水した後に、分岐管を介して各無酸素槽に返送するポンプ装置が設けられていたが、処理系路毎に好気処理の程度が異なる被処理水を合流管で混合した後に各無酸素槽に返送される結果、各処理系路で浄化処理にばらつきが発生し、浄化処理効率が低下する虞があるという問題がある。   In particular, in sludge treatment facilities, there are many cases where a plurality of treatment paths for the water to be treated including the anaerobic tank 20 and the aerobic tank 30 as treatment tanks are arranged in parallel, and the installation space of the piping is limited. Therefore, the water to be treated is sucked through the branch pipe from the most downstream side of each aerobic tank by a single on-site pump installed outside the tank, and the water is sent to the upstream side of the anaerobic tank through one junction pipe. Pumps that are returned to each anaerobic tank via branch pipes are provided, but each anaerobic tank is mixed with water to be treated having a different degree of aerobic treatment for each treatment system in the junction pipe. As a result, there is a problem that the purification process varies in each processing path, and the purification process efficiency may be reduced.

しかし、本発明によるエアリフトポンプ装置によると、無酸素槽20と好気槽30を備えた被処理水の処理系路が複数並列して配置されている場合であっても、夫々の好気槽30の被処理水を夫々備えたエアリフトポンプ装置によって夫々の無酸素槽20に返送するように構成することができるので、夫々の無酸素槽20、好気槽30の処理系路での処理効率を低下させることもない。   However, according to the air lift pump device of the present invention, each aerobic tank is provided even when a plurality of treatment paths for the water to be treated including the anaerobic tank 20 and the aerobic tank 30 are arranged in parallel. Since it can be configured to be returned to each oxygen-free tank 20 by an air lift pump device provided with 30 water to be treated, the processing efficiency in the processing path of each oxygen-free tank 20 and aerobic tank 30 It does not decrease

次に、本発明による別実施形態を説明する。   Next, another embodiment according to the present invention will be described.

上述した実施形態では、散気管42は、下部開口41aと略等面積の範囲に均等に微細気泡を放出するように配置された構成について説明したが、図8(c)に示すように、散気管42の設置間隔は均等である必要はなく、下部開口においてより均一な全面曝気の状態となるように、散気部42aから放出される散気量が、下部開口41aの中央部より、その周囲の方が多くなるように散気管42を周囲側に偏らせて配置してもよい。   In the above-described embodiment, the diffuser tube 42 has been described as having a structure in which fine bubbles are evenly released in a range of approximately the same area as the lower opening 41a. However, as shown in FIG. The installation interval of the trachea 42 does not need to be uniform, and the amount of air diffused from the air diffuser 42a is greater than the central portion of the lower opening 41a so that a more uniform overall aeration is achieved in the lower opening. The air diffuser 42 may be arranged so as to be biased toward the peripheral side so that the surrounding area is increased.

揚水管41の下部開口41a近傍では、周囲から揚水管41に流れ込む被処理で、散気装置42から放出された気泡が揚水管41の中央部に集中しやすく、下部開口から吸込み口直後で、揚水管41の内壁面から被処理水の流れが剥離して圧力損失が増えやすい。   In the vicinity of the lower opening 41a of the pumping pipe 41, the bubbles discharged from the air diffuser 42 are likely to concentrate on the central part of the pumping pipe 41 due to the treatment to flow into the pumping pipe 41 from the surroundings. The flow of water to be treated is peeled off from the inner wall surface of the pumping pipe 41 and the pressure loss tends to increase.

しかし、上述の構成によれば、被処理水は、当該中央部からも下部開口41aに対して流入しやすくなるため、気泡の偏りを低減でき、揚水管41の内部で被処理水の上昇流をスムーズに発生させることができる。   However, according to the above-described configuration, since the water to be treated can easily flow into the lower opening 41a from the central portion, it is possible to reduce the unevenness of bubbles and the upward flow of the water to be treated inside the pumping pipe 41. Can be generated smoothly.

上述した実施形態では、複数の散気管42を分散して配置しているが、複数のディスク形状のメンブレン型散気装置やディフーザー型の散気装置を分散して配置してもよく、パネル形状のメンブレン型散気装置等、1つの散気部42aを備えたものであってもよい。   In the above-described embodiment, the plurality of diffuser tubes 42 are arranged in a distributed manner, but a plurality of disk-shaped membrane-type diffuser devices and diffuser-type diffuser devices may be arranged in a dispersed manner, and the panel shape Such a membrane type air diffuser may be provided with one air diffuser 42a.

上述した実施形態では、第二領域32内の被処理水を無酸素槽20へ返送するエアリフトポンプ装置40と、無酸素槽20内の被処理水を嫌気槽10へ返送する送水路23を備えた構成について説明したが、送水路23に替えてエアリフトポンプ装置40によって、無酸素槽20の被処理水を嫌気槽10に返送するように構成してもよい。また、一台のエアリフトポンプ装置40で送水した第二領域32の被処理水を、無酸素槽20と嫌気槽10の夫々に所定量返送するように構成してもよい。流入量Qに対し、好機槽30から無酸素槽20への返送水量は3Q、無酸素槽20から嫌気槽10への返送水量はQとなるように設定することが処理効率の観点から好ましい。   In embodiment mentioned above, the air lift pump apparatus 40 which returns the to-be-processed water in the 2nd area | region 32 to the anaerobic tank 20, and the water supply path 23 which returns the to-be-processed water in the anoxic tank 20 to the anaerobic tank 10 are provided. However, the water to be treated in the oxygen-free tank 20 may be returned to the anaerobic tank 10 by the air lift pump device 40 instead of the water supply path 23. Moreover, you may comprise so that the to-be-processed water of the 2nd area | region 32 sent with the one air lift pump apparatus 40 may be returned to each of the anaerobic tank 20 and the anaerobic tank 10 by predetermined amount. It is preferable from the viewpoint of processing efficiency that the amount of water returned from the machine tank 30 to the anaerobic tank 20 is 3Q and the amount of water returned from the anaerobic tank 20 to the anaerobic tank 10 is Q with respect to the inflow amount Q.

上述した実施形態では、エアリフトポンプ装置を矩形状の揚水管及び送水管で構成する場合について説明したが、揚水管及び送水管は、矩形状に限らず、丸管であってもよい。また、下部開口や、被処理水の吐出口の形状はベルマウス形状であってもよい。   In the above-described embodiment, the case where the air lift pump device is configured by a rectangular pumping pipe and a water feeding pipe has been described. However, the pumping pipe and the water feeding pipe are not limited to a rectangular shape, and may be a round pipe. Further, the shape of the lower opening and the discharge port of the water to be treated may be a bell mouth shape.

上述した実施形態では、エアリフトポンプ装置を構成する揚水管及び送水管の材質について明示しなかったが、本発明によるエアリフトポンプ装置が設置される処理槽の被処理水の性状によって、耐薬品、耐蝕性等を考慮して適当な材質のものを用いればよい。   In the above-described embodiment, the material of the pumping pipe and the water supply pipe constituting the air lift pump device was not specified, but depending on the property of the water to be treated in the treatment tank in which the air lift pump device according to the present invention is installed, chemical resistance, corrosion resistance An appropriate material may be used in consideration of the properties and the like.

上述の実施形態では、本発明によるエアリフトポンプ装置が、膜分離装置を備えた膜分離式活性汚泥法を採用した汚泥処理設備の好機槽内の被処理水の一部を無酸素槽へ返送するように設置する構成について説明したが、無酸素槽内の被処理水の一部を嫌気槽へ返送するように設置してもよい。   In the above-described embodiment, the air lift pump device according to the present invention returns a part of the water to be treated in the machine tank of the sludge treatment facility adopting the membrane separation type activated sludge method equipped with the membrane separation device to the anoxic tank. However, it may be installed so that a part of the water to be treated in the oxygen-free tank is returned to the anaerobic tank.

さらに、本発明によるエアリフトポンプ装置は、膜分離式活性汚泥法を採用した汚泥処理設備に備えられる場合に限らず、膜分離式活性汚泥法を採用しない硝化液循環活性汚泥法や生物循環式嫌気好気法を採用した汚泥処理設備、流量調整槽、汚水浄化槽等において隔壁を介して設置された一方の処理槽から他方の処理槽に被処理水を移送する場合のポンプ装置として適用することができ、さらには、移送対象である被処理水の種類や、移送元、移送先に限定はない。   Furthermore, the air lift pump device according to the present invention is not limited to a case where it is provided in a sludge treatment facility that employs a membrane separation type activated sludge method, and a nitrification liquid circulation activated sludge method or a biological circulation type anaerobic method that does not employ a membrane separation type activated sludge method. It can be applied as a pump device when water to be treated is transferred from one treatment tank installed through a partition wall to sludge treatment equipment, flow rate adjustment tank, sewage septic tank, etc. adopting the aerobic method Further, there is no limitation on the type of water to be transferred, the transfer source, and the transfer destination.

上述した実施形態は、何れも本発明の一例であり、当該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say.

1:汚水処理設備
10:嫌気槽
11:隔壁
12:連通口
20:無酸素槽
21:隔壁
22:連通口
23:送水路
30:好気槽
31:第一領域
32:第二領域
34:分離壁
35:散気装置
36:膜分離装置
37:送水管
38:散気装置
39:引抜管
40:エアリフトポンプ装置
41:揚水管
41a:下部開口
42:散気装置
42a:散気部
43:送水管
43a:拡大部
43b:樋状の送水路
43c上端部
44:仮想面
45:架台
46:曲管
47:給気管
1: Sewage treatment facility 10: Anaerobic tank 11: Partition 12: Communication port 20: Anoxic tank 21: Partition 22: Communication port 23: Water supply channel 30: Aerobic tank 31: First region 32: Second region 34: Separation Wall 35: Air diffuser 36: Membrane separator 37: Water supply pipe 38: Air diffuser 39: Extraction pipe 40: Air lift pump device 41: Water pump 41a: Lower opening 42: Air diffuser 42a: Air diffuser 43: Water pipe 43a: Enlarged part 43b: bowl-shaped water supply channel 43c upper end 44: virtual surface 45: mount 46: curved pipe 47: air supply pipe

Claims (3)

被処理水中に立設して配置された揚水管と、揚水管の下部開口の下方に散気部が配置され、下部開口に向けて散気部より気泡を放出する散気装置と、揚水管の上部開口と連通し散気部から放出される気泡により揚水された被処理水を移送する略水平姿勢の送水管を備え、
送水管は下流側ほど断面積が拡大された拡大部を備え、拡大部における送水管の内部上面は下流側に向けて上方に傾斜するエアリフトポンプ装置。
A pumping pipe arranged upright in the treated water, an air diffuser in which an air diffuser is disposed below the lower opening of the pumped pipe, and air bubbles are discharged from the air diffuser toward the lower opening, and the water pump A water pipe having a substantially horizontal posture for transferring the treated water pumped up by air bubbles communicating with the upper opening of the air diffuser ,
An air lift pump device in which a water pipe includes an enlarged portion whose cross-sectional area is enlarged toward the downstream side, and an inner upper surface of the water pipe in the enlarged portion is inclined upward toward the downstream side .
拡大部の下流側で送水管が樋状に形成される請求項記載のエアリフトポンプ装置。 Air lift pump apparatus according to claim 1, wherein the water pipe downstream of the enlarged portion is formed trough. 揚水管の上端部と送水管の基端部とが曲管を介して連通接続されている請求項1または2記載のエアリフトポンプ装置。 The air lift pump device according to claim 1 or 2, wherein an upper end portion of the water pumping pipe and a proximal end portion of the water feeding pipe are connected in communication via a curved pipe.
JP2013241223A 2013-11-21 2013-11-21 Air lift pump device Active JP5627757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013241223A JP5627757B2 (en) 2013-11-21 2013-11-21 Air lift pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013241223A JP5627757B2 (en) 2013-11-21 2013-11-21 Air lift pump device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009147048A Division JP5420985B2 (en) 2009-06-19 2009-06-19 Air lift pump device

Publications (2)

Publication Number Publication Date
JP2014031797A JP2014031797A (en) 2014-02-20
JP5627757B2 true JP5627757B2 (en) 2014-11-19

Family

ID=50281802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013241223A Active JP5627757B2 (en) 2013-11-21 2013-11-21 Air lift pump device

Country Status (1)

Country Link
JP (1) JP5627757B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016108523A2 (en) * 2014-12-31 2016-07-07 명노환 Dual airlift device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218800A (en) * 1985-03-23 1986-09-29 Kango Iida Air bubble type water pump
JPH0813359B2 (en) * 1990-03-13 1996-02-14 株式会社クボタ Wastewater treatment equipment containing nitrogen
JPH0957262A (en) * 1995-08-24 1997-03-04 Kubota Corp Method for dissolving air into water to be treated in septic tank and septic tank

Also Published As

Publication number Publication date
JP2014031797A (en) 2014-02-20

Similar Documents

Publication Publication Date Title
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
US8110108B2 (en) Wastewater treatment system
RU2446866C2 (en) Method of mixing and/or aeration of fluids, particularly, effluents by, particularly, drowned aerator
JP7011671B2 (en) Low pressure reversible airlift mixing system for use with membrane aeration biofilm reactors
WO2012165121A1 (en) Air diffuser
JP5260417B2 (en) Sewage treatment facilities and methods for renovating sewage treatment facilities
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP2020054980A (en) Organic wastewater treatment apparatus
JP5420985B2 (en) Air lift pump device
KR101969768B1 (en) Equipment for Circulating of media and Preventing of media sweep in Moving Bed Biofilm Reactor
JP5627757B2 (en) Air lift pump device
JP5436350B2 (en) Air lift pump device and sewage treatment facility
JP2009261994A (en) Treatment method and treatment apparatus of drainage
JP5745011B2 (en) Air lift pump device
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP2012000584A (en) Air lift pump apparatus and wastewater treatment facility
JP2020075224A (en) Sewage treatment device and method of sewage treatment
JP4819841B2 (en) Membrane separator
JP2019076887A (en) Waste water treatment apparatus and waste water treatment method
JP2003117583A (en) Bioreaction chamber and agitating method for the same
KR102300414B1 (en) High efficiency advanced wastewater treatment system
JP6775364B2 (en) Sewage treatment equipment and sewage treatment method
JP2017205734A (en) Waste water treatment device
JP3560510B2 (en) Aeration device with carrier separation function
KR101670359B1 (en) Method and apparatus for processing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131217

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5627757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150