WO2012165121A1 - Air diffuser - Google Patents

Air diffuser Download PDF

Info

Publication number
WO2012165121A1
WO2012165121A1 PCT/JP2012/062145 JP2012062145W WO2012165121A1 WO 2012165121 A1 WO2012165121 A1 WO 2012165121A1 JP 2012062145 W JP2012062145 W JP 2012062145W WO 2012165121 A1 WO2012165121 A1 WO 2012165121A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
diffuser
membrane
air diffuser
air diffusing
Prior art date
Application number
PCT/JP2012/062145
Other languages
French (fr)
Japanese (ja)
Inventor
彰利 中川
寛 野口
泰日 李
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2012165121A1 publication Critical patent/WO2012165121A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231265Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/201Perforated, resilient plastic diffusers, e.g. membranes, sheets, foils, tubes, hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23121Diffusers having injection means, e.g. nozzles with circumferential outlet
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an air diffuser provided in a reaction tank using an immersion type membrane module.
  • a sewage treatment apparatus using a submerged membrane module there is a type in which a plurality of external pressure type solid-liquid separation flat membranes are vertically arranged in a reaction tank.
  • MBR membrane separation activated sludge treatment
  • air bubbles are aerated from an air diffuser installed at the lower part of the reaction tank. This is to supply oxygen to the microorganisms that make up the activated sludge in the reaction tank, and the membrane surface is washed by the water flow generated as the bubbles rise to remove clogging on the membrane surface. It is for suppressing.
  • the MBR sewage treatment apparatus can prevent the turbid components from flowing out, it can be operated with a higher activated sludge concentration than in the case of solid-liquid separation in the final sedimentation basin. As a result, the apparatus can be miniaturized and the generated sludge can be reduced.
  • the diameter of the air diffuser of the air diffuser must be relatively large, 3-10 mm. is there.
  • an air diffuser having a structure in which a plurality of holes of this size are formed in a pipe is used (for example, Patent Document 1).
  • Membrane surface cleaning uses a vigorous gas-liquid mixed flow created by rising aerated bubbles, and the gas-liquid mixed flow sweeps the membrane surface to remove film surface contamination and suppress the accumulation of contamination. To do.
  • the membrane to be used is selected according to the substance to be removed and the target treated water quality.
  • MF membranes and UF membranes are used mainly for the purpose of removing solids, and membranes used in MBR are also usually MF membranes.
  • the material of the film can be roughly classified into an organic film and an inorganic film.
  • MF and UF membranes are PSF (polysulfone), PE (polyethylene), CA (cellulose acetate), PAN (polyacrylonitrile), PP (polypropylene), PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene). Fluoroethylene) is used.
  • NF film and the RO film a polyamide-based organic film is often used.
  • a film using an ceramic MF film, UF film, NF film
  • the shape of the membrane can be classified into a hollow fiber membrane, a flat membrane, a tubular membrane, and a monolith.
  • filtration methods in membrane treatment include total volume filtration (dead-end-filtration) and cross-flow filtration.
  • the cross-flow filtration method always performs filtration while washing the membrane surface with a flow parallel to the membrane surface. This method allows continuous operation in which deposits are removed in parallel with filtration and maintains a high filtration rate. However, in order to create a sufficient parallel flow, the flow rate on the supply water side becomes larger than the filtration flow rate, and filtration is performed. Energy consumption per flow rate increases.
  • the MBR method is a wastewater treatment method that combines membrane filtration with biological treatment by the activated sludge method, but in principle it is necessary to always take measures against clogging (fouling) of the membrane.
  • a preventive method not to deteriorate the membrane filtration performance, it is necessary to always keep the flow velocity at the membrane surface constant by aeration, etc., and there is a problem that the running cost is high because it is necessary to secure the aeration power for that purpose. . Therefore, realization of high flow rate and high-efficiency filtration is required by devising cleaning.
  • the biological reaction tank of the MBR treatment apparatus is composed of an anoxic tank and an aerobic tank as disclosed in Non-Patent Document 1, for example, and a membrane filtration unit is immersed in the aerobic tank.
  • an air diffuser for cleaning the membrane unit is provided in addition to the diffuser for supplying dissolved oxygen to prevent blockage of the membrane unit due to sludge adhesion, and air bubbles provided from the air diffuser.
  • the surface of the membrane is constantly cleaned by Air for air diffusion is supplied to the piping of the air diffuser from a cleaning blower independent of the air diffuser.
  • the inside of the membrane filtration unit is in a negative pressure state by a suction pump, and the filtrate in the water collection channel of the membrane filtration unit is carried out of the aerobic tank by the suction pump.
  • a certain amount of filtered water is stored in the filtered water tank before being discharged out of the system.
  • backwashing is performed using this filtered water at regular intervals.
  • a cleaning chemical solution is added to the filtered water to remove organic substances on the membrane surface, and regular chemical cleaning is also performed.
  • a diffuser for cleaning the membrane must be designed and manufactured so that bubbles are uniformly injected into the reaction tank from each diffuser so that the cleaning effect of the highly efficient membrane surface does not vary.
  • membrane permeation flux membrane flux
  • a portion where the membrane surface is insufficiently washed occurs, so that stable solid-liquid separation treatment is possible. become unable. Therefore, for example, techniques disclosed in Patent Documents 2 to 4 have been proposed as countermeasures against clogging of gas discharge holes in the diffuser.
  • diffuser tubes having a structure that prevents the discharge holes from being blocked by adhering solids by increasing the diameter of the discharge holes of the bubbles in the diffuser pipes have been proposed (patented) References 2, 3). Specifically, by forming a notch or slit for air discharge along the axial direction of the diffuser tube or perpendicular to the axial direction on the lower side of the diffuser tube arranged in the horizontal direction, A reduction in the amount of air discharged from the lower side of the air diffuser is avoided.
  • the bubbles discharged from the diffuser tube are related to the bubble discharge pressure in the diffuser tube installed in the treatment tank (considering the water depth of the diffuser tube) and the air supply pressure of the diffuser air from the blower.
  • the diameter will be greatly affected.
  • the bubbles to be discharged are formed in the minimum area of the opening of the air diffuser.
  • the air bubbles are discharged from a portion where the bubbles are relatively small in diameter.
  • the discharge flow rate of the bubbles tends to be relatively small. For this reason, the discharge flow rate from the air diffuser is small, the effect of cleaning the film surface becomes insufficient, and the MBR process is hindered.
  • the air supply pressure is set to be larger than the bubble discharge pressure
  • the discharged bubbles are discharged from a portion formed in a wider area of the opening of the diffuser tube. Therefore, the bubbles are likely to have a relatively large diameter.
  • a bubble diameter and a flow volume become large.
  • the discharge flow rate from the air diffusing tube increases, so that the cleaning effect on the film surface can be expected to improve.
  • the discharge bubble diameter becomes large, it is difficult to clean the film surface by uniformly distributing the bubbles, and the cleaning effect becomes insufficient, which impedes MBR processing.
  • an air diffuser described in Patent Document 4 having a cleaning function is known as a measure for preventing clogging of other air diffusers.
  • This air diffuser pushes the activated sludge mixed liquid in the air diffuser to the outside from the opening at the tip by air supplied to the air diffuser at the initial stage of aeration. Thereby, the residue of the activated sludge mixed liquid in the diffuser is prevented, and even when the activated sludge concentration is high, blockage of the diffused holes due to drying can be avoided.
  • the realization of the air diffuser having the function of simultaneously satisfying the bubble distribution state and the discharge flow rate required for the air diffuser of the MBR processing apparatus without blocking the discharge hole of the air diffuser is highly efficient in MBR processing. It is important in promoting connection and reducing energy consumption.
  • JP 2009-106874 A Japanese Patent Laid-Open No. 2001-29987 Japanese Patent Laid-Open No. 10-286444 JP 2001-170677 A JP 11-28463 A
  • the air diffuser of the present invention is an air diffuser for cleaning the membrane module, and comprises an air diffuser disposed at the lower part of the membrane module, and the air diffuser discharges contaminants on its lower surface.
  • the opening is formed so as to be arranged along the axial direction of the member, and the shaft is interposed between the opening at a position higher than the opening and lower than the shaft of the member.
  • a plurality of air holes are formed so as to be arranged along the direction.
  • (A) is the front view which showed the positional relationship of the diffuser in Embodiment 1 of invention and the diffuser, and a membrane module
  • (b) is the side view which showed the positional relationship.
  • (A) is a front view of the aeration apparatus in Embodiment 1 of invention,
  • (b) is a side view of the apparatus.
  • (A) is a front view of the aeration apparatus in Embodiment 3 of invention
  • (b) is a side view of the apparatus.
  • FIG. 1 is a front view of the aeration apparatus in Embodiment 4 of invention
  • (b) is a side view of the apparatus.
  • (A) is a perspective view of an air diffuser of Embodiment 5 in which the lower side of the longitudinal section forms a semicircular shape
  • (b) shows the diffuser of Embodiment 5 in which the upper side of the longitudinal section is an obtuse triangle and the lower side forms a semicircular shape.
  • the perspective view of an air member is a perspective view of the diffuser member of Embodiment 5 in which the upper side of the longitudinal section is an acute triangle and the lower side forms a semicircular shape
  • (d) is the embodiment in which the longitudinal section forms a circle.
  • FIG. 5E is a perspective view of the air diffusing member of Embodiment 5 in which the upper side of the longitudinal section is a bell-shaped, while the lower side is a semicircular shape.
  • (A) is a front view of the diffuser in Embodiment 6 of invention,
  • (b) is a side view of the apparatus.
  • the air diffuser 1 according to the embodiment of the present invention shown in FIG. 1 is an air diffuser for cleaning the membrane module 2, and is disposed below the membrane module 2.
  • the membrane module 2 is immersed in the activated sludge suspension in the membrane separation tank 4 of the MBR processing apparatus 3 shown in FIG.
  • the membrane module 2 is exemplified as a flat membrane type or a hollow fiber membrane type, and is arranged vertically in the membrane separation tank 4.
  • a pump P is connected to one end of the pipe 5 connected to the water collecting part of the membrane module 2 so that the filtrate can be transferred out of the membrane separation tank 4 by suction.
  • an aeration device 6 is provided in the membrane separation tank 4.
  • the aeration device 6 is disposed at a lower position than the aeration device 1.
  • the aeration apparatus 6 agitates the activated sludge suspension by supplying the air introduced from the aeration blower B1 into the membrane separation tank 4 and supplies oxygen to the activated sludge.
  • a well-known aeration apparatus adopted in the water treatment field may be applied as the aeration apparatus 6.
  • the air supply amount of the aeration device 6 is preset by the flow rate adjusting valve V1.
  • the diffuser 1 may also serve as an aeration device.
  • the membrane cleaning blower B2 also serves as an aeration blower.
  • the air diffuser 1 introduces air for membrane cleaning and aeration from the membrane cleaning blower B2 through the blower pipe 7. By installing the check valve V2 in the pipe 7, the backflow of the liquid in the tank 4 into the diffuser 1 due to the siphon effect when the membrane cleaning blower B2 is stopped is avoided.
  • the air diffuser 1 includes an air diffuser 10 disposed at the lower part of the membrane module 2 as shown in FIG.
  • the diffuser tube 10 is formed with an opening 11 and a diffuser hole 12.
  • the diffuser tube 10 is formed in a cylindrical shape, and both ends thereof are sealed.
  • the air supply pipe 7 of the membrane cleaning blower B ⁇ b> 2 is connected to one end of the air diffusion pipe 10 or is introduced to the inside of the air diffusion pipe 10. Further, when a spare blower can be prepared, the air supply pipe 7 can be installed for each blower so that the processing can be continued even during maintenance of the blower. In this case, the air supply pipe of the membrane cleaning blower B2 may be connected to both ends of the air diffuser 1 separately. Or you may connect to one edge part collectively.
  • the pressure and the air flow rate of the membrane cleaning blower B2 are adjusted so that the normal air diffused state of the air diffuser 10 is such that the bubbles flow out from the opening 11. If the pressure and the air flow rate of the membrane cleaning blower B2 are appropriately adjusted, there is no problem with the aeration even if the outflow does not occur. However, in order to further improve the effect of the aeration apparatus 1, the setting is such that the outflow from the opening 11 Is good.
  • the opening 11 forms a liquid surface and discharges impurities such as activated sludge flowing into the diffuser 1 from the liquid surface without drying.
  • a plurality of openings 11 are formed on the lower surface of the diffuser tube 10 so as to be disposed along the direction of the axis L1 of the diffuser tube 10.
  • the opening diameter and the number of the openings 11 are not particularly limited, but the opening diameter is set to be at least larger than the diameter of the diffuser holes 12.
  • the air diffuser 12 discharges air for membrane cleaning and aeration provided from the membrane cleaning blower B2.
  • a plurality of air diffusion holes 12 are formed so as to be arranged along the axis L1 direction so as to sandwich the opening 11 at a position higher than the opening 11 and lower than the axis L1.
  • the air diffuser 12 When the air diffuser 12 is formed higher than the axis L1 of the air diffuser 10, the liquid phase outside the tube 10 flows back into the tube 10 little by little from the air diffuser 12, and the liquid phase in the tube 10 is diffused.
  • the air diffusion hole 12 will not be blocked, but a stable air diffusion cannot be performed.
  • the diffuser tube 10 may be divided into a plurality of parts so that the total length is equal to the length of the effective width.
  • the air supply pipe 7 when the diameter D of the air diffusion pipe 10 is equal to the diameter of the air supply pipe 7 of the membrane cleaning blower B2 (about several tens of millimeters), the air supply pipe 7 naturally has a pressure loss that cannot be ignored. Even in this part, pressure loss cannot be ignored. Therefore, the connection portion of the air supply pipe 7 at the end portion of the air diffuser pipe 10 has a pressure distribution such that the air supply pressure is higher than that at the other end portion of the air diffuser pipe 10. As a result, a uniform pressure cannot be maintained in the diffuser tube 10, and it becomes difficult to uniformly distribute bubbles from the diffuser tube 10 and clean the membrane surface of the membrane module 2.
  • the diameter D of the air diffusion pipe 10 is set to be larger than the diameter of the air supply pipe 7, the function as a pressure buffer tank is ensured, and the air supply pressure in the air diffusion pipe 10 becomes substantially uniform. Thereby, the distribution of bubbles from the diffuser tube 10 becomes uniform, and the membrane surface of the membrane module 2 can be evenly cleaned.
  • the plurality of diffuser holes 12 are arranged at the same height level in the diffuser tube 10 as shown in FIG.
  • the air diffuser 12 facing the opening 11 illustrated in FIG. 1 is arranged on a straight line perpendicular to the longitudinal section of the air diffuser 10, but the position of the air diffuser in the invention needs to be limited to this mode. Alternatively, they may be arranged on a straight line that is not perpendicular to the longitudinal section.
  • the diameter and pitch of the air holes 12 are arranged based on a well-known technique.
  • a diffuser device in which a plurality of diffuser holes with a diameter of 5 to 10 mm are formed in a diffuser tube at a pitch of 100 to 200 mm and the air diffuser speed is set to 10 m / s or more is known (Patent Document 5, etc.).
  • the liquid phase in the membrane separation tank 4 to which the water to be treated is supplied is always aerated by the aeration device 1 and the aeration device 6.
  • the activated sludge in the separation membrane tank 4 biologically decomposes pollutants in the liquid phase using oxygen provided by this aeration.
  • the liquid phase in the membrane separation tank 4 is supplied to the membrane module 2 by the water flow by aeration and subjected to solid-liquid separation treatment.
  • the aeration blower B1 is appropriately stopped to control the dissolved oxygen concentration in the liquid phase.
  • air bubbles 100 provided from the membrane cleaning blower B2 are constantly released from the air diffusion holes 12 of the air diffusion tube 10.
  • the air diffuser 10 has a circular vertical cross section, and the position of the air diffuser 12 is set lower than the height of the axis L1 of the air diffuser 10, so that the rising bubbles discharged from the air diffuser 12 are in the air diffuser 10. Ascending while detouring along the outer peripheral surface, the gas-liquid mixed flow is disturbed and bubbles are dispersed.
  • impurities such as activated sludge are discharged from the opening 11 of the air diffuser 10. Furthermore, since the upper half of the vertical cross section of the air diffuser tube 10 is a semicircle, the activated sludge staying in the vicinity of the lower end of the membrane module 2 is guided downward along the peripheral surface of the air diffuser tube 10, and the air diffuser tube Accumulation of activated sludge on the top surface of 10 is avoided. This prevents a reduction in the absolute amount of the activated sludge that contributes to the decomposition of the pollutant.
  • the gas-liquid mixed flow rising along the curved surface of the lower surface of the air diffuser 10 is swirled above the air diffuser 10, and since this swirl is maintained, a vigorous gas-liquid mixed flow is generated above the air diffuser 10. Continues, prompting the bubble group to divide.
  • the violent gas-liquid mixed flow bypassing the division is introduced between the individual separation membranes 20 of the membrane module 2 and used for cleaning the surface of the separation membrane 20.
  • Contaminants separated from the surface of the separation membrane 20 by this washing ride on the gas-liquid mixed flow and are discharged from the upper end opening of the membrane module 2 or settle near the bottom of the membrane separation tank 4.
  • the activated sludge contained in the separated impurities contributes to biological decomposition of the pollutant in the membrane separation tank 4.
  • the inside of the separation membrane 20 of the membrane module 2 is in a negative pressure state by the suction pump P, and the filtered water that has permeated into the water collecting channel of the membrane module 2 is carried out of the membrane separation tank 4 by the suction pump P.
  • the air diffusion device 1 of the present embodiment it is possible to satisfy the bubble distribution state and the discharge flow rate required for the air diffusion device 1 of the MBR processing device 3 without closing the air diffusion holes 12. As a result, the MBR processing efficiency is increased, and the energy consumption can be reduced.
  • the air diffuser 13 according to the second embodiment shown in FIG. 4 is an air diffuser according to the first embodiment except that one end of the blower pipe 7 of the membrane cleaning blower B2 is introduced from the opening 11 of the air diffuser 10.
  • the configuration is the same as that of the device 1. According to this embodiment, even if the air diffuser 13 has an integral structure with the membrane module 2, there is no need to remove the blower pipe 7 from the air diffuser 13, and the membrane module 2 is moved above the membrane separation tank 4. Since it can be moved, the working efficiency during the maintenance of the membrane joule 2 is improved. Even if the air diffuser 13 is not integrated with the membrane module 2, the membrane module 2, the air diffuser 1, and the air supply pipe 7 can be handled individually, so that maintenance is facilitated.
  • the air diffuser 14 of Embodiment 3 shown in FIG. 5 has the same configuration as the air diffuser 1 of Embodiment 1 except that the shape of the longitudinal section of the air diffuser 15 is rectangular. According to this configuration, the manufacture of the air diffuser and the fixing work in the membrane separation tank 4 are facilitated.
  • the air diffuser 16 of Embodiment 4 shown in FIG. 6 has the same configuration as the air diffuser 1 of Embodiment 1 except that the shape of the longitudinal section of the air diffuser tube 17 is an inverted triangle. Since this structure can be composed of three plate-like members, the manufacture of the air diffuser of the present invention is further facilitated.
  • the shape of the longitudinal section of the air diffuser 10 is any of those shown in FIGS. 7 (a) to 7 (e). Is the same configuration as the air diffuser 1 of the first embodiment.
  • the shape of the vertical cross section of the air diffuser 10 is at least the bottom surface of which is formed as a curved surface. After the current collides with the lower surface, a flow along the curved surface is formed. Thereby, the air bubbles discharged from the air diffusion holes of the air diffusion tube 10 can be dispersed in a plane.
  • the vertical cross section of the air diffuser tube 10 is formed in a convex shape upward.
  • the guide can be efficiently guided downward, and accumulation of activated sludge on the air diffuser 10 can be avoided.
  • the acid generators 18d and 18e illustrated in FIGS. 7D and 7E rise along the curved surface of the air diffuser 10.
  • the coming gas-liquid mixed flow can be swirled above the diffuser tube 10, and this swirling flow can be maintained. Thereby, a vigorous gas-liquid mixed flow is continued above the diffuser tube 10, and the division of the bubble group is promoted. Then, the vigorous gas-liquid mixed flow bypassing the division can be provided between the separation membranes 20 of the membrane module 2, and the membrane surface cleaning effect can be maintained.
  • Embodiment 6 The air diffuser 19 of Embodiment 6 shown in FIG. 8 has a mode in which a single opening 11 is continuously opened along the axis L1 direction of the air diffuser 10 at the lower surface of the air diffuser 10. Except for this, the configuration is the same as that of the air diffuser 1 of the first embodiment. According to this configuration, the liquid in the membrane separation tank 4 mixed into the diffuser 19 can be quickly discharged.
  • the diffuser of the present invention can be dealt with by appropriately changing the specifications according to the specifications of the membrane module. For example, the number of installed devices is changed according to the air diffusing area of the air diffusing device, and a plurality of air diffusing devices are installed for a single membrane module. Further, the specifications such as the length of the air diffuser are changed according to the required area of the air diffuser of the membrane module.
  • Air diffuser 2 1, 13, 14, 16, 18a to 18e ...
  • Membrane module 7 Air pipe 10 .
  • Air diffuser (air diffuser) 11 ... Opening 12 .
  • Air diffuser B2 ... Membrane cleaning blower

Abstract

An air diffuser (1) cleans a membrane module (2) and is formed from an air diffusing tube (10) disposed in the lower part of the membrane module (2). The air diffusing tube (10) has opening parts (11) formed in the lower surface thereof along the axial (L1) direction and has a plurality of air diffusion holes (12) formed so as to be disposed along the direction of the axis (L1) in a position higher than the opening parts (11) and lower than the axis (L1) and so as to be on either side of the opening parts (11). A plurality of opening parts (11) is formed and is disposed along the direction of the axis (L1).

Description

散気装置Air diffuser
 本発明は浸漬型の膜モジュールを用いた反応槽に備えられる散気装置に関する。 The present invention relates to an air diffuser provided in a reaction tank using an immersion type membrane module.
 浸漬型の膜モジュールを用いた下水処理装置として例えば複数の外圧式固液分離平膜を反応槽内に膜面が鉛直に配置されるタイプのものがある。この膜分離活性汚泥処理(以下、MBRと称する)方式の下水処理装置では反応槽の下部に設置された散気管から空気気泡を曝気している。これは反応槽内の活性汚泥を構成する微生物に酸素を供給するためであることと、気泡上昇に伴って生成される水流により膜表面を洗浄して膜面の付着物を除去して目詰まりを抑制するためである。 As a sewage treatment apparatus using a submerged membrane module, for example, there is a type in which a plurality of external pressure type solid-liquid separation flat membranes are vertically arranged in a reaction tank. In the sewage treatment apparatus of this membrane separation activated sludge treatment (hereinafter referred to as MBR) system, air bubbles are aerated from an air diffuser installed at the lower part of the reaction tank. This is to supply oxygen to the microorganisms that make up the activated sludge in the reaction tank, and the membrane surface is washed by the water flow generated as the bubbles rise to remove clogging on the membrane surface. It is for suppressing.
 MBR方式の下水処理装置は濁質成分の流出を防ぐことが可能であるため、最終沈殿池で固液分離する場合と比べて活性汚泥の濃度を高くして運転することが可能である。その結果、装置を小型化でき、さらに発生汚泥を低減することが可能である。 Since the MBR sewage treatment apparatus can prevent the turbid components from flowing out, it can be operated with a higher activated sludge concentration than in the case of solid-liquid separation in the final sedimentation basin. As a result, the apparatus can be miniaturized and the generated sludge can be reduced.
 MBR方式は活性汚泥濃度が高いことと一定以上の大きさの気泡でなければ膜面の洗浄効果が得られないことから、散気管の散気孔の径は3~10mmと比較的大きくする必要がある。一般にはこのサイズの複数の孔をパイプに空けた構造の散気管が用いられる(例えば特許文献1)。膜面の洗浄は曝気された気泡が上昇することによって生まれる激しい気液混合流を利用し、その気液混合流が膜表面を掃流することにより膜面汚れを除去し、汚れの蓄積を抑制する。 Since the MBR method has a high activated sludge concentration and a bubble cleaning effect cannot be obtained unless the air bubbles are larger than a certain size, the diameter of the air diffuser of the air diffuser must be relatively large, 3-10 mm. is there. In general, an air diffuser having a structure in which a plurality of holes of this size are formed in a pipe is used (for example, Patent Document 1). Membrane surface cleaning uses a vigorous gas-liquid mixed flow created by rising aerated bubbles, and the gas-liquid mixed flow sweeps the membrane surface to remove film surface contamination and suppress the accumulation of contamination. To do.
 下水道分野においては除去対象物質・目標処理水質に応じて使用する膜が選定される。主に固形物の除去を目的とする場合にはMF膜、UF膜が用いられており、MBRで使用される膜も通常MF膜である。膜の材質は大別すると有機膜と無機膜に区分できる。 In the sewerage field, the membrane to be used is selected according to the substance to be removed and the target treated water quality. MF membranes and UF membranes are used mainly for the purpose of removing solids, and membranes used in MBR are also usually MF membranes. The material of the film can be roughly classified into an organic film and an inorganic film.
 有機膜としては,MF膜及びUF膜では、PSF(ポリスルホン)、PE(ポリエチレン)、CA(酢酸セルロース)、PAN(ポリアクリロニトリル)、PP(ポリプロピレン)、PVDF(ポリフッ化ビニリデン)、PTFE(ポリテトラフロロエチレン)のいずれかの材料からなるものが用いられている。NF膜及びRO膜ではポリアミド系の有機膜が多く用いられている。無機膜としては、セラミックを用いた膜(MF膜、UF膜、NF膜)が開発されている。 As organic membranes, MF and UF membranes are PSF (polysulfone), PE (polyethylene), CA (cellulose acetate), PAN (polyacrylonitrile), PP (polypropylene), PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene). Fluoroethylene) is used. For the NF film and the RO film, a polyamide-based organic film is often used. As the inorganic film, a film using an ceramic (MF film, UF film, NF film) has been developed.
 また、膜の形状としては中空糸膜、平膜、管状膜、モノリスに区分できる。さらに,膜処理におけるろ過方式は全量ろ過(デッドエンドろ過:dead-end-filtration)とクロスフローろ過(cross-flow filtration)とがある。 Also, the shape of the membrane can be classified into a hollow fiber membrane, a flat membrane, a tubular membrane, and a monolith. Furthermore, filtration methods in membrane treatment include total volume filtration (dead-end-filtration) and cross-flow filtration.
 全量ろ過方式は膜で阻止されたものが膜に付着しろ過とともに付着物が累積するのである時点で一定時間ごとに必ずろ過を停止させ、累積した付着物の層を除去しなければならない。一方、クロスフローろ過方式は膜表面に平行な流れで常に膜表面を洗浄させながらろ過する。この方式はろ過と並行して付着物の除去が行われる連続運転ができ且つろ過速度を高く維持できるが、十分な平行流を作るためろ過流量に対して供給水側の流量が大きくなり、ろ過流量当りのエネルギー消費が大きくなる。 全 In the total filtration method, what is blocked by the membrane adheres to the membrane and deposits accumulate along with filtration, so filtration must be stopped at regular intervals and the accumulated deposit layer must be removed. On the other hand, the cross-flow filtration method always performs filtration while washing the membrane surface with a flow parallel to the membrane surface. This method allows continuous operation in which deposits are removed in parallel with filtration and maintains a high filtration rate. However, in order to create a sufficient parallel flow, the flow rate on the supply water side becomes larger than the filtration flow rate, and filtration is performed. Energy consumption per flow rate increases.
 MBR法は活性汚泥法による生物処理に膜ろ過を組み合わせた排水処理方法であるが、原理的に膜の目詰まり(ファウリング)を常に対策する必要がある。膜ろ過性能を低下させないための予防方法として、曝気などにより膜表面での流速を常に一定に保つ必要があり、そのための曝気動力を確保しなければならないことから、ランニングコストが高いという問題がある。それゆえに、洗浄を工夫することで高流量及び高効率なろ過処理の実現が必要とされている。 The MBR method is a wastewater treatment method that combines membrane filtration with biological treatment by the activated sludge method, but in principle it is necessary to always take measures against clogging (fouling) of the membrane. As a preventive method not to deteriorate the membrane filtration performance, it is necessary to always keep the flow velocity at the membrane surface constant by aeration, etc., and there is a problem that the running cost is high because it is necessary to secure the aeration power for that purpose. . Therefore, realization of high flow rate and high-efficiency filtration is required by devising cleaning.
 MBR処理装置の生物反応槽は例えば非特許文献1に開示されたように無酸素槽と好気槽とからなり、好気槽内に膜ろ過ユニットを浸漬させている。好気槽内においては汚泥の付着による膜ユニットの閉塞予防のため、溶存酸素供給用の散気装置とは別に膜ユニット洗浄用の散気装置が具備され、この散気装置から供された気泡によって膜の表面を常時洗浄している。前記散気装置の配管へは散気ブロアとは独立した洗浄ブロアから散気用の空気を供給している。また、前記膜ろ過ユニットの内部は吸引ポンプによって負圧状態となっており、膜ろ過ユニットの集水路内のろ過水は当該吸引ポンプによって好気槽の外部に搬出される。ろ過水は系外への排出の前にろ過水槽に一定量貯留される。膜面の汚れによるろ過流量低下を予防するために一定周期でこのろ過水を使って逆洗浄を行われる。さらに、膜表面の有機物除去のため前記ろ過水に洗浄用の薬液が添加されて定期的な薬液洗浄も実施されている。 The biological reaction tank of the MBR treatment apparatus is composed of an anoxic tank and an aerobic tank as disclosed in Non-Patent Document 1, for example, and a membrane filtration unit is immersed in the aerobic tank. In the aerobic tank, an air diffuser for cleaning the membrane unit is provided in addition to the diffuser for supplying dissolved oxygen to prevent blockage of the membrane unit due to sludge adhesion, and air bubbles provided from the air diffuser The surface of the membrane is constantly cleaned by Air for air diffusion is supplied to the piping of the air diffuser from a cleaning blower independent of the air diffuser. The inside of the membrane filtration unit is in a negative pressure state by a suction pump, and the filtrate in the water collection channel of the membrane filtration unit is carried out of the aerobic tank by the suction pump. A certain amount of filtered water is stored in the filtered water tank before being discharged out of the system. In order to prevent a decrease in the filtration flow rate due to dirt on the membrane surface, backwashing is performed using this filtered water at regular intervals. Further, a cleaning chemical solution is added to the filtered water to remove organic substances on the membrane surface, and regular chemical cleaning is also performed.
 このような従来のMBR処理装置においては、膜ろ過性能を低下させないための予防方法として、膜面へ均等となる曝気を実施し、膜表面の流速を確保して洗浄効果を高める必要がある。そのため膜洗浄用の散気装置は、高効率な膜表面の洗浄効果にばらつきが生じないようにそれぞれの散気孔から均一に気泡が反応槽内へ注入されるように設計、製作しなければならない。 In such a conventional MBR processing apparatus, as a preventive method for preventing the membrane filtration performance from being deteriorated, it is necessary to perform uniform aeration on the membrane surface to secure the flow velocity on the membrane surface and to enhance the cleaning effect. Therefore, a diffuser for cleaning the membrane must be designed and manufactured so that bubbles are uniformly injected into the reaction tank from each diffuser so that the cleaning effect of the highly efficient membrane surface does not vary. .
 しかし、散気装置を連続運転していると散気孔へ徐々に固形物が付着しまう問題がある。これは加圧空気の温度が高いので散気孔付近の活性汚泥が乾燥することが原因の一つと考えられる。固形物が付着した散気孔では通過する空気の流量が減少するため、散気孔の外側における活性汚泥液の並行流速度が低下し、付着物の付着がさらに加速される。その結果、散気孔ごとの付着物の量に差異が生じ、散気量の差異が生じて膜表面の洗浄が不均一となる。 However, there is a problem that solid matter gradually adheres to the air holes when the air diffuser is continuously operated. This is probably due to the fact that the activated sludge in the vicinity of the air diffuser dries because the temperature of the pressurized air is high. Since the flow rate of the air passing through the air diffuser to which the solid matter adheres decreases, the parallel flow speed of the activated sludge liquid on the outside of the air diffuser decreases, and the adherence of the adhering matter is further accelerated. As a result, a difference occurs in the amount of adhering matter for each air hole, resulting in a difference in the amount of air diffused and uneven cleaning of the film surface.
 MBR処理槽の設計や処理運転においては膜透過流束(膜フラックス)の維持が重要であるが、上記理由により膜表面の洗浄が不十分な部分が発生するため、安定した固液分離処理ができなくなる。そこで、散気部の気体吐出孔の目詰まり対策として、例えば特許文献2~4に記載の技術が提案されている。 Maintenance of the membrane permeation flux (membrane flux) is important in the design and operation of the MBR treatment tank, but due to the above reasons, a portion where the membrane surface is insufficiently washed occurs, so that stable solid-liquid separation treatment is possible. become unable. Therefore, for example, techniques disclosed in Patent Documents 2 to 4 have been proposed as countermeasures against clogging of gas discharge holes in the diffuser.
 従来の散気管のもつ問題点を改善するために散気管の気泡の吐出孔の径をより大きくすることにより吐出孔を付着固形物によって閉塞から避ける構造を有する散気管が提案されている(特許文献2,3)。具体的には水平方向に配置した散気管の下部側にて空気吐出用の切れ込みやスリットを当該散気管の軸方向に沿ってまたは軸方向に対して垂直に形成することで固形物の付着による散気管下部側からの空気吐出量の減少を回避させている。 In order to improve the problems of conventional diffuser tubes, diffuser tubes having a structure that prevents the discharge holes from being blocked by adhering solids by increasing the diameter of the discharge holes of the bubbles in the diffuser pipes have been proposed (patented) References 2, 3). Specifically, by forming a notch or slit for air discharge along the axial direction of the diffuser tube or perpendicular to the axial direction on the lower side of the diffuser tube arranged in the horizontal direction, A reduction in the amount of air discharged from the lower side of the air diffuser is avoided.
 このような構造では処理槽に設置された散気管における気泡吐出圧(散気管の設置水深が加味される)とブロアからの散気用空気の送気圧との関係にて散気管から吐出する気泡径は大きく影響を受けることとなる。 In such a structure, the bubbles discharged from the diffuser tube are related to the bubble discharge pressure in the diffuser tube installed in the treatment tank (considering the water depth of the diffuser tube) and the air supply pressure of the diffuser air from the blower. The diameter will be greatly affected.
 すなわち、前記気泡吐出圧と前記送気圧とがほぼ等しく維持されている状態で散気管から気泡が吐出されている場合には、吐出される気泡は散気管の開口部の最小面積にて形成される部分から吐出されることとなり、気泡は比較的小径のものとはなる。しかしながら、気泡吐出圧と散気用空気の送気圧との差が小さいため、その気泡の吐出流量は比較的少量となりやすい。そのため、散気管からの吐出流量が少なく、膜表面の洗浄効果が不十分となりMBR処理に支障が生じることとなる。 That is, when bubbles are discharged from the air diffuser while the bubble discharge pressure and the air supply pressure are maintained substantially equal, the bubbles to be discharged are formed in the minimum area of the opening of the air diffuser. The air bubbles are discharged from a portion where the bubbles are relatively small in diameter. However, since the difference between the bubble discharge pressure and the air supply pressure of the air for diffusion is small, the discharge flow rate of the bubbles tends to be relatively small. For this reason, the discharge flow rate from the air diffuser is small, the effect of cleaning the film surface becomes insufficient, and the MBR process is hindered.
 一方、前記気泡吐出圧よりも前記送気圧がよりも大きくとなるように設定した場合には、吐出される気泡は散気管の開口部のより広い面積にて形成される部分から吐出されることとなり、気泡は比較的大径のものとなりやすい。そして、散気用空気の送気圧の増加に応じて、気泡径と流量とが大きくなる。これにより、散気管からの吐出流量が増加するので膜表面の洗浄効果が向上する期待がもてる。しかしながら、吐出気泡径が大きくなるため気泡を均一に分布させて膜表面を洗浄することが困難となり洗浄効果が不十分となりMBR処理に支障が生じることとなる。 On the other hand, when the air supply pressure is set to be larger than the bubble discharge pressure, the discharged bubbles are discharged from a portion formed in a wider area of the opening of the diffuser tube. Therefore, the bubbles are likely to have a relatively large diameter. And according to the increase in the air supply pressure of the air for aeration, a bubble diameter and a flow volume become large. As a result, the discharge flow rate from the air diffusing tube increases, so that the cleaning effect on the film surface can be expected to improve. However, since the discharge bubble diameter becomes large, it is difficult to clean the film surface by uniformly distributing the bubbles, and the cleaning effect becomes insufficient, which impedes MBR processing.
 したがって、高流量のろ過の実現及び高効率な膜表面の洗浄効果にばらつきが生じないように散気管の散気孔から均一に気泡を供給するには散気管の構造と吐出特性を把握したうえで散気用空気の送気圧を調整し、気泡の分布状態と吐出流量を最適化する必要がある。しかしながら、その最適化した吐出状態がMBR処理装置において要求される仕様を満たすとは限らない。 Therefore, in order to supply air bubbles uniformly from the air diffuser holes so that high-flow filtration and high-efficiency membrane surface cleaning effects do not occur, it is necessary to understand the structure and discharge characteristics of the air diffuser. It is necessary to adjust the air pressure of the air for aeration to optimize the bubble distribution and discharge flow rate. However, the optimized discharge state does not always satisfy the specifications required in the MBR processing apparatus.
 また、その他の散気部の目詰まり防止策として洗浄機能を有する特許文献4に記載の散気装置が知られている。この散気装置は曝気の初期時に散気装置に供給する空気によって散気装置内の活性汚泥混合液を先端の開放口から外部へ押し出す。これにより、散気装置内における活性汚泥混合液の残留が防止され、活性汚泥濃度が高い場合にあっても乾燥による散気孔の閉塞を回避できる。 In addition, an air diffuser described in Patent Document 4 having a cleaning function is known as a measure for preventing clogging of other air diffusers. This air diffuser pushes the activated sludge mixed liquid in the air diffuser to the outside from the opening at the tip by air supplied to the air diffuser at the initial stage of aeration. Thereby, the residue of the activated sludge mixed liquid in the diffuser is prevented, and even when the activated sludge concentration is high, blockage of the diffused holes due to drying can be avoided.
 しかしながら、通常の曝気時には送気圧の脈動現象などにより、散気装置の内部へ吐出孔から槽内液が引き込まれ、吐出孔へ徐々に固形物が付着し、乾燥、固形化によって散気装置の目詰まりが生ずることとなるため、目詰まり防止対策は十分ではない。 However, during normal aeration, due to the pulsation phenomenon of the air pressure, the liquid in the tank is drawn into the diffuser from the discharge hole, and solid matter gradually adheres to the discharge hole. Since clogging occurs, measures to prevent clogging are not sufficient.
 以上のことから、散気管の吐出孔を閉塞することなく且つMBR処理装置の散気管に要求される気泡の分布状態と吐出流量を同時に満たす機能を有する散気管の実現がMBR処理の高効率につながり消費エネルギーの削減を進める上で重要となっている。 From the above, the realization of the air diffuser having the function of simultaneously satisfying the bubble distribution state and the discharge flow rate required for the air diffuser of the MBR processing apparatus without blocking the discharge hole of the air diffuser is highly efficient in MBR processing. It is important in promoting connection and reducing energy consumption.
特開2009-106874号公報JP 2009-106874 A 特開2001-29987号公報Japanese Patent Laid-Open No. 2001-29987 特開平10-286444号公報Japanese Patent Laid-Open No. 10-286444 特開2001-170677号公報JP 2001-170677 A 特開平11-28463号公報JP 11-28463 A
 そこで、本発明の散気装置は、膜モジュールを洗浄する散気装置であって、前記膜モジュールの下部に配置される散気部材から成り、この散気部材はその下面にて夾雑物を排出させる開口部が当該部材の軸方向に沿って配置されるように形成されると共に、前記開口部よりも高位であり且つ前記部材の軸よりも低位の位置にて当該開口部を挟むようにして前記軸方向に沿って配置されるように複数の散気孔が形成されたことを特徴とする。 Therefore, the air diffuser of the present invention is an air diffuser for cleaning the membrane module, and comprises an air diffuser disposed at the lower part of the membrane module, and the air diffuser discharges contaminants on its lower surface. The opening is formed so as to be arranged along the axial direction of the member, and the shaft is interposed between the opening at a position higher than the opening and lower than the shaft of the member. A plurality of air holes are formed so as to be arranged along the direction.
(a)は発明の実施形態1における散気装置及び散気装置と膜モジュールとの位置関係を示した正面図,(b)は同位置関係を示した側面図。(A) is the front view which showed the positional relationship of the diffuser in Embodiment 1 of invention and the diffuser, and a membrane module, (b) is the side view which showed the positional relationship. 発明の実施形態1における散気装置を備えた膜分離装置の概略構成図。The schematic block diagram of the membrane separator provided with the air diffusion apparatus in Embodiment 1 of invention. (a)は発明の実施形態1における散気装置の正面図,(b)は同装置の側面図。(A) is a front view of the aeration apparatus in Embodiment 1 of invention, (b) is a side view of the apparatus. 発明の実施形態2における散気装置の側面図。The side view of the aeration apparatus in Embodiment 2 of invention. (a)は発明の実施形態3における散気装置の正面図,(b)は同装置の側面図。(A) is a front view of the aeration apparatus in Embodiment 3 of invention, (b) is a side view of the apparatus. (a)は発明の実施形態4における散気装置の正面図,(b)は同装置の側面図。(A) is a front view of the aeration apparatus in Embodiment 4 of invention, (b) is a side view of the apparatus. (a)は縦断面の下辺が半円形を成す実施形態5の散気部材の斜視図,(b)は縦断面の上辺が鈍角三角形である一方で下辺が半円形を成す実施形態5の散気部材の斜視図,(c)は縦断面の上辺が鋭角三角形である一方で下辺が半円形を成す実施形態5の散気部材の斜視図,(d)は縦断面が円形を成す実施形態5の散気部材の斜視図,(e)は縦断面の上辺が釣鐘状である一方で下辺が半円形を成す実施形態5の散気部材の斜視図。(A) is a perspective view of an air diffuser of Embodiment 5 in which the lower side of the longitudinal section forms a semicircular shape, and (b) shows the diffuser of Embodiment 5 in which the upper side of the longitudinal section is an obtuse triangle and the lower side forms a semicircular shape. The perspective view of an air member, (c) is a perspective view of the diffuser member of Embodiment 5 in which the upper side of the longitudinal section is an acute triangle and the lower side forms a semicircular shape, and (d) is the embodiment in which the longitudinal section forms a circle. FIG. 5E is a perspective view of the air diffusing member of Embodiment 5 in which the upper side of the longitudinal section is a bell-shaped, while the lower side is a semicircular shape. (a)は発明の実施形態6における散気装置の正面図,(b)は同装置の側面図。(A) is a front view of the diffuser in Embodiment 6 of invention, (b) is a side view of the apparatus.
 以下、図面を参照しながら本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施形態1)
 図1に示された本発明の実施形態における散気装置1は膜モジュール2を洗浄する散気装置であって膜モジュール2の下方に配置されている。
(Embodiment 1)
The air diffuser 1 according to the embodiment of the present invention shown in FIG. 1 is an air diffuser for cleaning the membrane module 2, and is disposed below the membrane module 2.
 膜モジュール2は図2に示されたMBR処理装置3の膜分離槽4内の活性汚泥懸濁液に浸漬される。膜モジュール2は平膜タイプ、中空糸膜タイプのもの例示され、膜分離槽4において鉛直に配置される。膜モジュール2の集水部に接続された配管5の一端にはポンプPが接続されて吸引によりろ過液を膜分離槽4外に移送できるようになっている。 The membrane module 2 is immersed in the activated sludge suspension in the membrane separation tank 4 of the MBR processing apparatus 3 shown in FIG. The membrane module 2 is exemplified as a flat membrane type or a hollow fiber membrane type, and is arranged vertically in the membrane separation tank 4. A pump P is connected to one end of the pipe 5 connected to the water collecting part of the membrane module 2 so that the filtrate can be transferred out of the membrane separation tank 4 by suction.
 膜分離槽4内には散気装置1,膜モジュール2の他に曝気装置6が具備されている。曝気装置6は散気装置1よりも低位の位置に配置されている。曝気装置6は曝気ブロアB1から導入した空気を膜分離槽4内に供することで活性汚泥懸濁液を攪拌すると共に活性汚泥に対して酸素を供給する。曝気装置6は水処理分野にて採用されている周知の曝気装置を適用すればよい。曝気装置6の空気供給量は流量調整弁V1によって予め設定されている。 In addition to the diffuser 1 and the membrane module 2, an aeration device 6 is provided in the membrane separation tank 4. The aeration device 6 is disposed at a lower position than the aeration device 1. The aeration apparatus 6 agitates the activated sludge suspension by supplying the air introduced from the aeration blower B1 into the membrane separation tank 4 and supplies oxygen to the activated sludge. A well-known aeration apparatus adopted in the water treatment field may be applied as the aeration apparatus 6. The air supply amount of the aeration device 6 is preset by the flow rate adjusting valve V1.
 散気装置1は曝気装置を兼ねることがあり本態様では膜洗浄ブロアB2が曝気ブロアを兼ねる。散気装置1は送風配管7を介して膜洗浄及び曝気用の空気を膜洗浄ブロアB2から導入する。配管7には逆止弁V2が設置されることで、膜洗浄ブロアB2が停止した時のサイフォン効果による槽4内液の散気装置1内への逆流を回避させている。 The diffuser 1 may also serve as an aeration device. In this embodiment, the membrane cleaning blower B2 also serves as an aeration blower. The air diffuser 1 introduces air for membrane cleaning and aeration from the membrane cleaning blower B2 through the blower pipe 7. By installing the check valve V2 in the pipe 7, the backflow of the liquid in the tank 4 into the diffuser 1 due to the siphon effect when the membrane cleaning blower B2 is stopped is avoided.
 散気装置1は図1に示したように膜モジュール2の下部に配置される散気管10から成る。散気管10には開口部11と散気孔12が形成されている。 The air diffuser 1 includes an air diffuser 10 disposed at the lower part of the membrane module 2 as shown in FIG. The diffuser tube 10 is formed with an opening 11 and a diffuser hole 12.
 散気管10は円筒状に形成され、その両端は密閉されている。膜洗浄ブロアB2の送気配管7は散気管10の一方の端部に接続されるかまたは散気管10の内部まで導入された状態で接続される。また、送気配管7は予備のブロアが準備可能な場合にはブロア毎に設置することによりブロアのメンテナンス時にも処理を継続することが可能となる。尚、その場合の膜洗浄ブロアB2の送気配管は散気装置1の両端部に分けて接続してもよい。または、一方の端部にまとめて接続してもよい。 The diffuser tube 10 is formed in a cylindrical shape, and both ends thereof are sealed. The air supply pipe 7 of the membrane cleaning blower B <b> 2 is connected to one end of the air diffusion pipe 10 or is introduced to the inside of the air diffusion pipe 10. Further, when a spare blower can be prepared, the air supply pipe 7 can be installed for each blower so that the processing can be continued even during maintenance of the blower. In this case, the air supply pipe of the membrane cleaning blower B2 may be connected to both ends of the air diffuser 1 separately. Or you may connect to one edge part collectively.
 散気管10の通常の散気状態は開口部11から気泡が流出する程度となるように膜洗浄ブロアB2の圧力及び空気流量が調整される。膜洗浄ブロアB2の圧力及び空気流量を適切に調整すれば前記流出がなくとも散気に支障はないが、散気装置1の効果をより向上させるにために開口部11から流出する程度の設定がよい。 The pressure and the air flow rate of the membrane cleaning blower B2 are adjusted so that the normal air diffused state of the air diffuser 10 is such that the bubbles flow out from the opening 11. If the pressure and the air flow rate of the membrane cleaning blower B2 are appropriately adjusted, there is no problem with the aeration even if the outflow does not occur. However, in order to further improve the effect of the aeration apparatus 1, the setting is such that the outflow from the opening 11 Is good.
 開口部11は液面を形成し散気装置1の内部に流入してきた活性汚泥等の夾雑物を乾燥させることなく当該液面から排出する。開口部11は散気管10の下面にて当該散気管10の軸L1方向に沿って配置されるように複数形成されている。開口部11の開口径及び個数は特に限定しないが開口径は少なくとも散気孔12の径よりも大きく設定される。 The opening 11 forms a liquid surface and discharges impurities such as activated sludge flowing into the diffuser 1 from the liquid surface without drying. A plurality of openings 11 are formed on the lower surface of the diffuser tube 10 so as to be disposed along the direction of the axis L1 of the diffuser tube 10. The opening diameter and the number of the openings 11 are not particularly limited, but the opening diameter is set to be at least larger than the diameter of the diffuser holes 12.
 散気孔12は膜洗浄ブロアB2から供された膜洗浄及び曝気用の空気を排出する。散気孔12は開口部11よりも高位であり且つ軸L1よりも低位の位置にて開口部11を挟むようにして軸L1方向に沿って配置されるように複数形成されている。上述のように散気孔12が形成されることで、散気孔12から吐出した上昇気泡は散気管10の外周面に沿って迂回して上昇し、気液混合流が乱れて気泡が分散しやすくなり気泡100の平面的な分散効果が上昇する。尚、散気孔12が散気管10の軸L1よりも高位に形成されると、管10外の液相が散気孔12から少しずつ管10内に逆流し、管10内の液相が散気孔12のレベルまで満たされる可能性があり、散気孔12が閉塞することはないが安定した散気ができなくなる。 The air diffuser 12 discharges air for membrane cleaning and aeration provided from the membrane cleaning blower B2. A plurality of air diffusion holes 12 are formed so as to be arranged along the axis L1 direction so as to sandwich the opening 11 at a position higher than the opening 11 and lower than the axis L1. By forming the diffuser holes 12 as described above, the rising bubbles discharged from the diffuser holes 12 are detoured and rise along the outer peripheral surface of the diffuser tube 10, and the gas-liquid mixed flow is disturbed and the bubbles are easily dispersed. Therefore, the planar dispersion effect of the bubbles 100 is increased. When the air diffuser 12 is formed higher than the axis L1 of the air diffuser 10, the liquid phase outside the tube 10 flows back into the tube 10 little by little from the air diffuser 12, and the liquid phase in the tube 10 is diffused. The air diffusion hole 12 will not be blocked, but a stable air diffusion cannot be performed.
 図3に示された散気管10の全長Lは膜モジュール2の有効幅と同等に設定される。散気管10が膜モジュール2の有効幅よりも短く形成された場合は膜モジュール2内の洗浄もれが無いように散気管10が設置される。また、合計全長が前記有効幅の長さと同等となるように散気管10を複数に分割して配置しても良い。 3 is set to be equal to the effective width of the membrane module 2. When the air diffuser 10 is formed to be shorter than the effective width of the membrane module 2, the air diffuser 10 is installed so that there is no leakage from the membrane module 2. Further, the diffuser tube 10 may be divided into a plurality of parts so that the total length is equal to the length of the effective width.
 また、散気管10の散気孔12から吐出した気泡の存在領域は気泡が上昇するに従い平面的に広がるので、散気管10の径Dは散気孔12と膜モジュール2との距離及び散気管10の縦断面を隔てた散気孔12の間隔dに基づき適宜に設定される。散気管10の径Dは例えば散気管10の長手方向の散気孔12のピッチが100~200mm程度で設けられている場合、これに相当する距離で間隔dが設定され得るので径Dの値としては間隔dの最大2倍程度までの径D=100~400mmが取りうる範囲となる。散気管10の径Dの寸法がこの範囲で設定されることで以下の効果が生ずる。 In addition, since the region where the bubbles discharged from the air diffuser 12 of the air diffuser 10 expand in a plane as the air bubbles rise, the diameter D of the air diffuser 10 depends on the distance between the air diffuser 12 and the membrane module 2 and the air diffuser 10. It is set as appropriate based on the distance d between the air diffusion holes 12 separated by the longitudinal section. For example, when the pitch of the air diffusion holes 12 in the longitudinal direction of the air diffusion tube 10 is set to about 100 to 200 mm, the distance d can be set at a distance corresponding to the diameter D. Is a range in which a diameter D = 100 to 400 mm up to about twice the distance d can be taken. By setting the dimension of the diameter D of the air diffusing tube 10 within this range, the following effects are produced.
 例えば、散気管10の径Dが膜洗浄ブロアB2の送気配管7の径(数10mm程度)と同等である場合、送気配管7では当然、圧力損失を無視できないことと同様に散気管10の部分でも圧力損失は無視できない。そのため、散気管10の端部における送気配管7の接続部分は散気管10のもう一方の端部に比べて送気圧が高い状態となるような圧力分布となる。このことにより、散気管10内で均一圧が維持できず、散気管10から気泡を均一に分布させて膜モジュール2の膜表面を洗浄することが困難となる。そこで、散気管10の径Dが送気配管7の径よりも大きく設定されることで、圧力バッファタンクとしての機能が確保され、散気管10内の送気圧が略均一となる。これにより散気管10からの気泡の分布が均一となり膜モジュール2の膜表面を均等に洗浄できる。 For example, when the diameter D of the air diffusion pipe 10 is equal to the diameter of the air supply pipe 7 of the membrane cleaning blower B2 (about several tens of millimeters), the air supply pipe 7 naturally has a pressure loss that cannot be ignored. Even in this part, pressure loss cannot be ignored. Therefore, the connection portion of the air supply pipe 7 at the end portion of the air diffuser pipe 10 has a pressure distribution such that the air supply pressure is higher than that at the other end portion of the air diffuser pipe 10. As a result, a uniform pressure cannot be maintained in the diffuser tube 10, and it becomes difficult to uniformly distribute bubbles from the diffuser tube 10 and clean the membrane surface of the membrane module 2. Therefore, by setting the diameter D of the air diffusion pipe 10 to be larger than the diameter of the air supply pipe 7, the function as a pressure buffer tank is ensured, and the air supply pressure in the air diffusion pipe 10 becomes substantially uniform. Thereby, the distribution of bubbles from the diffuser tube 10 becomes uniform, and the membrane surface of the membrane module 2 can be evenly cleaned.
 前記複数の散気孔12は図1に示したように散気管10にて同一の高さレベルに配置される。図1に例示された開口部11を挟んで向かい合う散気孔12は散気管10の縦断面に対して垂直な直線上に配置されているが、発明における散気孔の位置はこの態様に限定する必要なく当該縦断面に対して垂直でない直線上に配置してもよい。 The plurality of diffuser holes 12 are arranged at the same height level in the diffuser tube 10 as shown in FIG. The air diffuser 12 facing the opening 11 illustrated in FIG. 1 is arranged on a straight line perpendicular to the longitudinal section of the air diffuser 10, but the position of the air diffuser in the invention needs to be limited to this mode. Alternatively, they may be arranged on a straight line that is not perpendicular to the longitudinal section.
 散気孔12の径及びピッチは周知技術に基づき配置される。例えば直径5~10mmの散気孔が100~200mmピッチで散気管に複数形成され、空気散気速度が10m/s以上に設定される散気装置が知られている(特許文献5等)。 The diameter and pitch of the air holes 12 are arranged based on a well-known technique. For example, a diffuser device in which a plurality of diffuser holes with a diameter of 5 to 10 mm are formed in a diffuser tube at a pitch of 100 to 200 mm and the air diffuser speed is set to 10 m / s or more is known (Patent Document 5, etc.).
 図1及び図2を参照しながらMBR処理装置3の動作例について説明する。 An example of the operation of the MBR processing device 3 will be described with reference to FIGS.
 被処理水が供給される膜分離槽4内の液相は散気装置1及び曝気装置6によって常時曝気された状態となっている。分離膜槽4内の活性汚泥はこの曝気によって供された酸素を利用して液相中の汚濁物質を生物学的に分解する。膜分離槽4内の液相は前記曝気による水流によって膜モジュール2に供されて固液分離処理される。尚、膜分離装置4内の液相が過曝気な状態の場合は曝気ブロアB1が適宜に停止されことで当該液相の溶存酸素濃度が制御される。 The liquid phase in the membrane separation tank 4 to which the water to be treated is supplied is always aerated by the aeration device 1 and the aeration device 6. The activated sludge in the separation membrane tank 4 biologically decomposes pollutants in the liquid phase using oxygen provided by this aeration. The liquid phase in the membrane separation tank 4 is supplied to the membrane module 2 by the water flow by aeration and subjected to solid-liquid separation treatment. In the case where the liquid phase in the membrane separation device 4 is in an over-aerated state, the aeration blower B1 is appropriately stopped to control the dissolved oxygen concentration in the liquid phase.
 また、図1に示されたように散気管10の散気孔12からは膜洗浄ブロアB2から供された空気の気泡100が常時放出される。散気管10は縦断面が円形を成していると共に散気孔12の位置が散気管10の軸L1の高さよりも低位に設定されているので散気孔12から吐出した上昇気泡は散気管10の外周面に沿って迂回しながら上昇し、気液混合流が乱れて気泡が分散する。 Further, as shown in FIG. 1, air bubbles 100 provided from the membrane cleaning blower B2 are constantly released from the air diffusion holes 12 of the air diffusion tube 10. The air diffuser 10 has a circular vertical cross section, and the position of the air diffuser 12 is set lower than the height of the axis L1 of the air diffuser 10, so that the rising bubbles discharged from the air diffuser 12 are in the air diffuser 10. Ascending while detouring along the outer peripheral surface, the gas-liquid mixed flow is disturbed and bubbles are dispersed.
 一方、散気管10の開口部11からは活性汚泥等の夾雑物が排出される。さらに、散気管10はその縦断面の上半部が半円となっているので、膜モジュール2の下端付近に滞留する活性汚泥は散気管10の周面に沿って下方に案内され、散気管10の上面における活性汚泥の堆積が回避される。これにより前記汚濁物質の分解に寄与する前記活性汚泥の絶対量の低減が防止される。そして、散気管10の下面の曲面に沿って上昇してくる気液混合流は散気管10の上方において旋回し、この旋回流が維持されるので散気管10の上方にて激しい気液混合流が継続し、気泡群の分割が促される。 On the other hand, impurities such as activated sludge are discharged from the opening 11 of the air diffuser 10. Furthermore, since the upper half of the vertical cross section of the air diffuser tube 10 is a semicircle, the activated sludge staying in the vicinity of the lower end of the membrane module 2 is guided downward along the peripheral surface of the air diffuser tube 10, and the air diffuser tube Accumulation of activated sludge on the top surface of 10 is avoided. This prevents a reduction in the absolute amount of the activated sludge that contributes to the decomposition of the pollutant. The gas-liquid mixed flow rising along the curved surface of the lower surface of the air diffuser 10 is swirled above the air diffuser 10, and since this swirl is maintained, a vigorous gas-liquid mixed flow is generated above the air diffuser 10. Continues, prompting the bubble group to divide.
 前記分割迂回した激しい気液混合流は膜モジュール2の個々の分離膜20間に導入され、分離膜20の表面の洗浄に供される。この洗浄によって分離膜20の表面から剥離された夾雑物は、前記気液混合流に乗って膜モジュール2の上端開口部から排出されるか、または、膜分離槽4の底部付近に沈降する。前記剥離された夾雑物に含まれる活性汚泥は膜分離槽4内における汚濁物質の生物学的分解に寄与する。 The violent gas-liquid mixed flow bypassing the division is introduced between the individual separation membranes 20 of the membrane module 2 and used for cleaning the surface of the separation membrane 20. Contaminants separated from the surface of the separation membrane 20 by this washing ride on the gas-liquid mixed flow and are discharged from the upper end opening of the membrane module 2 or settle near the bottom of the membrane separation tank 4. The activated sludge contained in the separated impurities contributes to biological decomposition of the pollutant in the membrane separation tank 4.
 膜モジュール2の分離膜20の内部は吸引ポンプPによって負圧状態となっており、膜モジュール2の集水路内に透過したろ過水は吸引ポンプPによって膜分離槽4外に搬出される。 The inside of the separation membrane 20 of the membrane module 2 is in a negative pressure state by the suction pump P, and the filtered water that has permeated into the water collecting channel of the membrane module 2 is carried out of the membrane separation tank 4 by the suction pump P.
 以上のように本実施形態の散気装置1によれば散気孔12を閉塞させることなくMBR処理装置3の散気装置1に要求される気泡の分布状態と吐出流量とを充足させることができるので、MBRの処理効率が高まり、消費エネルギーを削減できる。 As described above, according to the air diffusion device 1 of the present embodiment, it is possible to satisfy the bubble distribution state and the discharge flow rate required for the air diffusion device 1 of the MBR processing device 3 without closing the air diffusion holes 12. As a result, the MBR processing efficiency is increased, and the energy consumption can be reduced.
 (実施形態2)
 図4に示された実施形態2の散気装置13は膜洗浄ブロアB2の送風配管7の一端が散気管10の開口部11から導入させた態様となっている以外は実施形態1の散気装置1と同じ構成となっている。本実施形態によれば散気装置13が膜モジュール2と一体的な構造となっていても、送風配管7を散気装置13から取り外す手間がなくなり、膜モジュール2を膜分離槽4の上方へ移動させることができるので、膜ジュール2のメンテナンス時の作業効率が向上する。また、散気装置13が膜モジュール2と一体的な構造となっていなくても、膜モジュール2と散気装置1と送風配管7を個別に取扱うことができるのでメンテナンスしやすくなる。
(Embodiment 2)
The air diffuser 13 according to the second embodiment shown in FIG. 4 is an air diffuser according to the first embodiment except that one end of the blower pipe 7 of the membrane cleaning blower B2 is introduced from the opening 11 of the air diffuser 10. The configuration is the same as that of the device 1. According to this embodiment, even if the air diffuser 13 has an integral structure with the membrane module 2, there is no need to remove the blower pipe 7 from the air diffuser 13, and the membrane module 2 is moved above the membrane separation tank 4. Since it can be moved, the working efficiency during the maintenance of the membrane joule 2 is improved. Even if the air diffuser 13 is not integrated with the membrane module 2, the membrane module 2, the air diffuser 1, and the air supply pipe 7 can be handled individually, so that maintenance is facilitated.
 (実施形態3)
 図5に示された実施形態3の散気装置14は散気管15の縦断面の形状が矩形とすること以外は実施形態1の散気装置1と同じ構成となっている。本構成によれば散気装置の製作及び膜分離槽4内への固定作業が容易となる。
(Embodiment 3)
The air diffuser 14 of Embodiment 3 shown in FIG. 5 has the same configuration as the air diffuser 1 of Embodiment 1 except that the shape of the longitudinal section of the air diffuser 15 is rectangular. According to this configuration, the manufacture of the air diffuser and the fixing work in the membrane separation tank 4 are facilitated.
 (実施形態4)
 図6に示された実施形態4の散気装置16は散気管17の縦断面の形状が逆三角形に形成されていること以外は実施形態1の散気装置1と同じ構成となっている。本構成は板状部材を三枚で構成できるので本発明の散気装置の製作がより一層容易となる。
(Embodiment 4)
The air diffuser 16 of Embodiment 4 shown in FIG. 6 has the same configuration as the air diffuser 1 of Embodiment 1 except that the shape of the longitudinal section of the air diffuser tube 17 is an inverted triangle. Since this structure can be composed of three plate-like members, the manufacture of the air diffuser of the present invention is further facilitated.
 (実施形態5)
 図7に示された実施形態5の散気装置18は散気管10の縦断面の形状が図7(a)~図7(e)に示されたいずれかの形状を成していること以外は実施形態1の散気装置1と同じ構成となっている。
(Embodiment 5)
In the air diffuser 18 of the fifth embodiment shown in FIG. 7, the shape of the longitudinal section of the air diffuser 10 is any of those shown in FIGS. 7 (a) to 7 (e). Is the same configuration as the air diffuser 1 of the first embodiment.
 図7(a)~図7(e)に示された散気装置18a~18eは散気管10の縦断面の形状が少なくともその下面が曲面に形成されているので、膜分離槽4内の流体の流れが当該下面に衝突した後、当該曲面上に沿った流れが形成される。これにより、散気管10の散気孔から吐出された気泡を平面的に分散できる。 In the air diffusers 18a to 18e shown in FIGS. 7 (a) to 7 (e), the shape of the vertical cross section of the air diffuser 10 is at least the bottom surface of which is formed as a curved surface. After the current collides with the lower surface, a flow along the curved surface is formed. Thereby, the air bubbles discharged from the air diffusion holes of the air diffusion tube 10 can be dispersed in a plane.
 特に、図7(b)~図7(e)に示された散気装置18b~18eは散気管10の縦断面が上に凸の形状に形成されているので、活性汚泥を散気管10の下方に効率良く案内でき、散気管10上での活性汚泥の堆積を回避させることができる。 In particular, in the air diffusers 18b to 18e shown in FIGS. 7B to 7E, the vertical cross section of the air diffuser tube 10 is formed in a convex shape upward. The guide can be efficiently guided downward, and accumulation of activated sludge on the air diffuser 10 can be avoided.
 また、図7(d)、図7(e)に例示された酸気装置18d,18eは、散気管10の上面が曲面に形成されているので、散気管10の曲面に沿って上昇してくる気液混合流を散気管10の上方において旋回させ、この旋回流を維持させることができる。これにより、散気管10の上方において激しい気液混合流が継続し、気泡群の分割が促進される。そして、この分割迂回した激しい気液混合流を膜モジュール2の分離膜20間に供することができ、膜面の洗浄効果を維持させることができる。 Moreover, since the upper surface of the air diffuser 10 is formed in a curved surface, the acid generators 18d and 18e illustrated in FIGS. 7D and 7E rise along the curved surface of the air diffuser 10. The coming gas-liquid mixed flow can be swirled above the diffuser tube 10, and this swirling flow can be maintained. Thereby, a vigorous gas-liquid mixed flow is continued above the diffuser tube 10, and the division of the bubble group is promoted. Then, the vigorous gas-liquid mixed flow bypassing the division can be provided between the separation membranes 20 of the membrane module 2, and the membrane surface cleaning effect can be maintained.
 (実施形態6)
 図8に示された実施形態6の散気装置19は単一の開口部11が散気管10の下面にて散気管10の軸L1方向に沿って連続的に開口された態様となっていること以外は実施形態1の散気装置1と同じ構成となっている。本構成によれば散気装置19内へ混入した膜分離槽4内液を迅速に排出できる。
(Embodiment 6)
The air diffuser 19 of Embodiment 6 shown in FIG. 8 has a mode in which a single opening 11 is continuously opened along the axis L1 direction of the air diffuser 10 at the lower surface of the air diffuser 10. Except for this, the configuration is the same as that of the air diffuser 1 of the first embodiment. According to this configuration, the liquid in the membrane separation tank 4 mixed into the diffuser 19 can be quickly discharged.
 以上の実施形態1~6に基づき本発明について具体例にて説明したが、本願発明の散気装置は膜モジュールの仕様に応じて適宜仕様変更して対応可能である。例えば、散気装置の散気可能面積に応じて、その設置個数を変更し、単一膜モジュールに対して複数の散気装置が設置される。また、膜モジュールの散気の必要面積に応じて、散気装置の長さなどの仕様が変更される。 Although the present invention has been described with specific examples based on the above-described Embodiments 1 to 6, the diffuser of the present invention can be dealt with by appropriately changing the specifications according to the specifications of the membrane module. For example, the number of installed devices is changed according to the air diffusing area of the air diffusing device, and a plurality of air diffusing devices are installed for a single membrane module. Further, the specifications such as the length of the air diffuser are changed according to the required area of the air diffuser of the membrane module.
1,13,14,16,18a~18e…散気装置
2…膜モジュール
7…送風配管
10…散気管(散気部材)
11…開口部
12…散気孔
B2…膜洗浄ブロア
1, 13, 14, 16, 18a to 18e ... Air diffuser 2 ... Membrane module 7 ... Air pipe 10 ... Air diffuser (air diffuser)
11 ... Opening 12 ... Air diffuser B2 ... Membrane cleaning blower

Claims (10)

  1.  膜モジュールを洗浄する散気装置であって、
     前記膜モジュールの下部に配置される散気部材から成り、
     この散気部材はその下面にて夾雑物を排出させる開口部が当該部材の軸方向に沿って配置されるように形成されると共に、前記開口部よりも高位であり且つ前記部材の軸よりも低位の位置にて当該開口部を挟むようにして前記軸方向に沿って配置されるように複数の散気孔が形成されたこと
    を特徴とする散気装置。
    A diffuser for cleaning the membrane module,
    Consisting of an air diffuser disposed at the bottom of the membrane module;
    The diffuser member is formed such that an opening for discharging impurities on the lower surface thereof is disposed along the axial direction of the member, and is higher than the opening and higher than the shaft of the member. An air diffusing device, wherein a plurality of air diffusing holes are formed so as to be disposed along the axial direction so as to sandwich the opening at a low position.
  2.  前記開口部は複数形成され、前記軸方向に沿って配置されたことを特徴とする請求項1に記載の散気装置。 The air diffuser according to claim 1, wherein a plurality of the openings are formed and arranged along the axial direction.
  3.  ブロアから供された空気を端部から排出させる配管を備え、前記端部は前記開口部に挿入されるように配置されたことを特徴とする請求項1に記載の散気装置。 The air diffuser according to claim 1, further comprising a pipe for discharging air supplied from a blower from an end portion, the end portion being arranged to be inserted into the opening.
  4.  前記散気部材は円筒状に形成されたことを特徴とする請求項1に記載の散気装置。 The air diffusing device according to claim 1, wherein the air diffusing member is formed in a cylindrical shape.
  5.  前記散気部材はその縦断面の形状が矩形に形成されたことを特徴とする請求項1に記載の散気装置。 The air diffusing device according to claim 1, wherein the air diffusing member has a rectangular shape in a longitudinal section.
  6.  前記散気部材はその縦断面の形状が逆三角形に形成されたことを特徴とする請求項1に記載の散気装置。 The air diffusing device according to claim 1, wherein the air diffusing member has an inverted triangular shape in a longitudinal section.
  7.  前記散気部材はその縦断面の下辺が下に凸の立体に形成されたことを特徴とする請求項1に記載の散気装置。 The air diffusing device according to claim 1, wherein the air diffusing member is formed in a three-dimensional shape with a lower side of a longitudinal section projecting downward.
  8.  前記散気部材はその縦断面の下辺が半円形を成すことを特徴とする請求項7に記載の散気装置。 The air diffuser according to claim 7, wherein the lower side of the air diffuser has a semicircular shape.
  9.  前記散気部材はその縦断面の上辺が三角形である一方で下半部が半円形を成すことを特徴とする請求項8に記載の散気装置。 The air diffusing device according to claim 8, wherein the air diffusing member has a triangular shape on the upper side of the vertical cross section and a semicircular shape on the lower half.
  10.  前記散気部材はその縦断面の上辺が釣鐘状である一方で下半部が半円形を成すことを特徴とする請求項9に記載の散気装置。 10. The air diffuser according to claim 9, wherein the air diffuser has a bell-shaped upper side in the longitudinal section and a semicircular lower half.
PCT/JP2012/062145 2011-06-02 2012-05-11 Air diffuser WO2012165121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011124267A JP5803293B2 (en) 2011-06-02 2011-06-02 Air diffuser
JP2011-124267 2011-06-02

Publications (1)

Publication Number Publication Date
WO2012165121A1 true WO2012165121A1 (en) 2012-12-06

Family

ID=47258985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062145 WO2012165121A1 (en) 2011-06-02 2012-05-11 Air diffuser

Country Status (2)

Country Link
JP (1) JP5803293B2 (en)
WO (1) WO2012165121A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
CN110183030A (en) * 2019-03-27 2019-08-30 广东技术师范学院天河学院 A kind of method of MBR biomembrane backwash decontamination

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103420547A (en) * 2013-08-23 2013-12-04 张晓荣 Small domestic sewage treatment device
JP6419624B2 (en) * 2015-03-30 2018-11-07 住友重機械工業株式会社 Intake system
WO2016158308A1 (en) * 2015-04-02 2016-10-06 住友電気工業株式会社 Diffuser tube and filtration unit
JP2016215165A (en) * 2015-05-25 2016-12-22 三菱レイヨン株式会社 Water treatment method and water treatment device
JP6453783B2 (en) * 2016-01-12 2019-01-16 阿波製紙株式会社 Membrane treatment equipment
JP2019188351A (en) * 2018-04-26 2019-10-31 住友電気工業株式会社 Diffuser pipe and intermittent bubble generating module
KR102354511B1 (en) * 2021-06-14 2022-01-21 오류영 The water treatment apparatus which lower part open type diffuser is included

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114564U (en) * 1975-09-26 1977-08-31
JPH10286444A (en) * 1997-04-11 1998-10-27 Maezawa Ind Inc Immersion type membrane filter device
JP2002102661A (en) * 2000-10-02 2002-04-09 Mitsubishi Rayon Co Ltd Solid-liquid separation apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114564U (en) * 1975-09-26 1977-08-31
JPH10286444A (en) * 1997-04-11 1998-10-27 Maezawa Ind Inc Immersion type membrane filter device
JP2002102661A (en) * 2000-10-02 2002-04-09 Mitsubishi Rayon Co Ltd Solid-liquid separation apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
CN110183030A (en) * 2019-03-27 2019-08-30 广东技术师范学院天河学院 A kind of method of MBR biomembrane backwash decontamination

Also Published As

Publication number Publication date
JP2012250169A (en) 2012-12-20
JP5803293B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5803293B2 (en) Air diffuser
JP5845673B2 (en) Air diffuser
KR101363015B1 (en) Membrane unit and membrane separation device
KR100974912B1 (en) Hollow fiber membrane frame construction and hollow fiber membrane unit using the same
JP5581578B2 (en) Membrane cleaning device, membrane separation device, and wastewater treatment device
JP2006255587A (en) Method for treating water
JPH07155758A (en) Waste water treating device
JPWO2009028435A1 (en) Immersion type membrane separation device, water purification treatment device, and water purification treatment method using the same
JP5823489B2 (en) Membrane separator
JP2006205119A (en) Method for using immersion type membrane separation apparatus and immersion type membrane separation apparatus
JP5648387B2 (en) Aeration device and method of operating membrane separation device
JP2006212486A (en) Membrane separator
WO2018051630A1 (en) Membrane-separation activated sludge treatment system
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
JP4819841B2 (en) Membrane separator
JP4374885B2 (en) Membrane separator
KR20120044594A (en) Air diffuser forming separated diffuser frame and air chamber
JP4143974B2 (en) Immersion flat membrane filtration device
EP1688174A1 (en) Membrane filtration tank and process for filtering a liquid
JP2012000584A (en) Air lift pump apparatus and wastewater treatment facility
JP2011005361A (en) Membrane filtration apparatus
JP4819840B2 (en) Membrane separator
JP2022172580A (en) Water purification treatment system
WO2017057501A1 (en) Membrane-separated activated sludge treatment method and membrane-separated activated sludge treatment system
KR101263561B1 (en) 2-phase flow inducing type MBR system having submerged membrane module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12794063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12794063

Country of ref document: EP

Kind code of ref document: A1