JP5833791B1 - Aeration control method for activated sludge - Google Patents
Aeration control method for activated sludge Download PDFInfo
- Publication number
- JP5833791B1 JP5833791B1 JP2015136801A JP2015136801A JP5833791B1 JP 5833791 B1 JP5833791 B1 JP 5833791B1 JP 2015136801 A JP2015136801 A JP 2015136801A JP 2015136801 A JP2015136801 A JP 2015136801A JP 5833791 B1 JP5833791 B1 JP 5833791B1
- Authority
- JP
- Japan
- Prior art keywords
- aeration
- amount
- treatment
- activated sludge
- equation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005273 aeration Methods 0.000 title claims abstract description 264
- 239000010802 sludge Substances 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 52
- 238000011282 treatment Methods 0.000 claims abstract description 87
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 70
- 239000001301 oxygen Substances 0.000 claims abstract description 70
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 70
- 238000012545 processing Methods 0.000 claims abstract description 37
- 230000036284 oxygen consumption Effects 0.000 claims abstract description 35
- 230000008859 change Effects 0.000 claims abstract description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 27
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 14
- 238000004090 dissolution Methods 0.000 claims description 12
- 239000002351 wastewater Substances 0.000 claims description 11
- 238000002474 experimental method Methods 0.000 claims description 7
- 238000012937 correction Methods 0.000 claims description 5
- 230000014509 gene expression Effects 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 238000011946 reduction process Methods 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 abstract description 9
- 239000007788 liquid Substances 0.000 abstract description 7
- 239000000243 solution Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 36
- 238000012360 testing method Methods 0.000 description 23
- 238000005259 measurement Methods 0.000 description 18
- 230000007423 decrease Effects 0.000 description 17
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 13
- 230000000694 effects Effects 0.000 description 9
- 244000005700 microbiome Species 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010405 reoxidation reaction Methods 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 5
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 230000001546 nitrifying effect Effects 0.000 description 5
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 229950006238 nadide Drugs 0.000 description 4
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000852 hydrogen donor Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- CBHOOMGKXCMKIR-UHFFFAOYSA-N azane;methanol Chemical compound N.OC CBHOOMGKXCMKIR-UHFFFAOYSA-N 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
【課題】曝気槽内の活性汚泥混合液のDOが殆ど0mg/lの状態で曝気処理(極低DO処理)を行う活性汚泥において、曝気量を適切に制御する方法を提供する。【解決手段】(1-1)極低DO処理運転中に一時的に曝気を強くして曝気槽内のDOを上昇させた後、曝気を停止する操作を行い、(1-2)曝気強時又は曝気停止時のDO値変化に基づいて、曝気強時の平衡DO値C1を計算し、(1-3)C1と、一時的に曝気を強くした曝気量G1等を用いて求めた、曝気による酸素供給能力と混合液の酸素消費速度とが等しくなるときの曝気量(G0)から類推して、極低DO処理運転時の適正曝気量G2を(3)式により求める。G2=k・((Cs−C1)/Cs)・(Ea1/Ea2)・G1 ・・・(3)式但し、kは装置特性等に対応して実験的に設定する比例係数【選択図】図1The present invention provides a method for appropriately controlling the amount of aeration in activated sludge in which aeration treatment (extremely low DO treatment) is performed in a state where the DO of the activated sludge mixed liquid in the aeration tank is almost 0 mg / l. SOLUTION: (1-1) Aeration is temporarily increased during ultra-low DO treatment operation to raise DO in the aeration tank, and then aeration is stopped. (1-2) Aeration is strong Based on the DO value change at the time of aeration or when aeration is stopped, the equilibrium DO value C1 at the time of strong aeration is calculated and calculated using (1-3) C1 and the amount of aeration G1 that temporarily aerated. From the aeration amount (G0) when the oxygen supply capacity by aeration and the oxygen consumption rate of the mixed solution are equal, the appropriate aeration amount G2 at the time of extremely low DO processing operation is obtained by the equation (3). G2 = k · ((Cs-C1) / Cs) · (Ea1 / Ea2) · G1 (3) where k is a proportional coefficient set experimentally according to the device characteristics etc. FIG.
Description
本発明は、活性汚泥における曝気量制御方法に係り、特に微生物により廃水中のBOD成分の処理、又は、BOD成分と脱窒を同時処理する処理装置における曝気量制御方法に関する。 The present invention relates to an aeration amount control method for activated sludge, and more particularly, to an aeration amount control method in a treatment apparatus that treats BOD components in wastewater with microorganisms or simultaneously treats BOD components and denitrification.
廃水中のBOD除去は、活性汚泥を用いて効率的に処理できるが、廃水中の全窒素(以下、T-N)は汚泥の増殖によって取り込まれるもののみ除去可能であり、BOD全量の5%程度が除去されるにすぎない。活性汚泥を用いてさらに多くの窒素を除去するものとして、活性汚泥菌で廃水中の窒素成分をアンモニア態窒素(以下、NH4-N)に変換後、硝化菌により好気環境で亜硝酸態窒素または硝酸態窒素(以下、NOx-N)に変換したのち、嫌気環境にして脱窒菌の作用により窒素ガスに変換する方法がある。 BOD removal in wastewater can be efficiently treated using activated sludge, but total nitrogen (hereinafter referred to as TN) in wastewater can only be removed by sludge growth, and about 5% of the total amount of BOD It is only removed. In order to remove more nitrogen using activated sludge, the nitrogen component in the wastewater is converted to ammonia nitrogen (hereinafter NH4-N) by activated sludge bacteria, and then nitrite nitrogen in an aerobic environment by nitrifying bacteria. Alternatively, after converting to nitrate nitrogen (hereinafter referred to as NO x -N), an anaerobic environment is converted to nitrogen gas by the action of denitrifying bacteria.
廃水中のBODの除去と窒素の除去を同時に行うプロセスは、一般的に生物学的脱窒処理と呼ばれ、具体的な装置として、硝化液循環型脱窒、直流型脱窒、回分式嫌気好気脱窒などがあり、いずれも上述の嫌気・好気を組み合わせて、BODと窒素を処理するものである。
さらに、担体活性汚泥や生物膜処理法のように、曝気槽を明確に嫌気環境にすることなく好気環境のままで、担体や支持体に保持した微生物群内の酸素濃度勾配を利用して、微生物群の表面で好気処理し、担体や支持体側で嫌気処理することにより、BODと窒素の同時処理をおこなう方法も可能である。
The process that simultaneously removes BOD and nitrogen from wastewater is generally called biological denitrification, and specific equipment includes nitrifying-liquid denitrification, DC denitrification, and batch anaerobic. There are aerobic denitrification, etc., both of which treat BOD and nitrogen by combining the above-mentioned anaerobic / aerobic.
Furthermore, as in the case of carrier activated sludge and biofilm treatment methods, the aerobic environment is maintained in an aerobic environment without making the aeration tank clearly anaerobic, and the oxygen concentration gradient in the microorganism group held on the carrier or support is utilized. It is also possible to perform a BOD and nitrogen simultaneous treatment by aerobic treatment on the surface of the microorganism group and anaerobic treatment on the carrier or support side.
活性汚泥においても、汚泥をグラニュール化して微生物フロックを巨大化し、微生物群内の酸素濃度勾配を利用して、微生物群の表面で好気処理し、内部で嫌気処理することで、BODと窒素の同時処理をおこなう方式も提案されている。但し、微生物をグラニュール化するためには、BOD負荷が非常に大きな条件下での操作に限られ、またグラニュール化すること自体、高度の技術を必要とするなどの理由により、一般的な処理にはなっていない。 Also in activated sludge, sludge is granulated to enlarge microbial flocs, and oxygen concentration gradients within the microbial community are used to aerobically treat the surface of the microbial community and anaerobically treat it internally. There has also been proposed a method for performing simultaneous processing. However, in order to granulate microorganisms, it is limited to operation under conditions where the BOD load is very large, and granulation itself is a general reason because it requires advanced technology. It is not processing.
通常の活性汚泥においても、浮遊汚泥はフロックを形成しており、担体活性汚泥や生物膜処理法と同様に、微生物フロック表面で好気、フロック内部で嫌気となる酸素濃度勾配が生じるはずなので同時処理が可能であり、実際に曝気槽の溶存酸素濃度(以下、DO)を0.5mg/l程度で運転することで、BODを除去するとともにある程度脱窒もできることが分かっている。 Even in normal activated sludge, floating sludge forms flocs, and as with carrier activated sludge and biofilm treatment methods, an oxygen concentration gradient that is aerobic on the surface of microbial flocs and anaerobic inside flocs should occur. It can be treated, and it is known that BOD can be removed and denitrification can be performed to some extent by actually operating the dissolved oxygen concentration (hereinafter referred to as DO) in the aeration tank at about 0.5 mg / l.
このように微生物でBODと脱窒を同時処理する方法はいくつかあり、さらに通常の活性汚泥を用いた低DO運転による方法がある。この方法は、既設の活性汚泥を装置的に殆ど改造することなく、BOD・窒素同時処理装置として転用できるメリットがある。低DO運転は、特に窒素処理を意識しないBOD処理だけを目的とする場合でも、曝気装置の動力費を低減できる、メリットの大きい方法である。
しかしながら、曝気槽のDO値が概ね0.5mg/l以下になると、DO値に基づく正確な酸素消費供給バランスの把握が困難となり、曝気槽内の溶存酸素状態を正確に維持することが難しくなる。酸素供給量は、多過ぎると脱窒が不十分となり、少な過ぎるとBODの処理が不十分となったり、硝化活性が低下したりして窒素の除去が不十分となる。
As described above, there are several methods for simultaneously treating BOD and denitrification with microorganisms, and there is a method using low DO operation using ordinary activated sludge. This method has the merit that it can be diverted as a BOD / nitrogen simultaneous treatment device with almost no modification of existing activated sludge. Low-DO operation is a highly advantageous method that can reduce the power cost of the aeration equipment, even when only aiming at BOD processing that is not conscious of nitrogen processing.
However, when the DO value of the aeration tank is approximately 0.5 mg / l or less, it is difficult to accurately grasp the oxygen consumption supply balance based on the DO value, and it becomes difficult to accurately maintain the dissolved oxygen state in the aeration tank. If the oxygen supply amount is too large, denitrification will be insufficient, and if it is too small, the treatment of BOD will be insufficient, or the nitrification activity will decrease, resulting in insufficient nitrogen removal.
低DOによるBOD・脱窒同時処理を正確に行うためには、DO計による管理方法だけでなく、流入水の変動や運転条件の変化に対して曝気による酸素供給量を正確に追従させる制御が重要になる。
脱窒反応は還元反応であるため、脱窒工程の管理には酸化還元電位(以下、ORP)が広く用いられている。しかしながら、嫌気状態であればORPは−100mV〜−300mV、また好気状態では+200mV〜+300mV、のように大きな変化となるが、曝気は行っているが酸素が不足する程度では、ORPは好気状態の+200mV〜+300mVからせいぜい50mV程度減少するだけであるため、原水変動や活性汚泥混合液の状態変化などによる変動と区別がつきにくく、低DO運転の制御には難がある。
In order to accurately perform simultaneous BOD and denitrification with low DO, not only the control method using the DO meter, but also control that accurately follows the oxygen supply amount due to aeration against changes in influent water and changes in operating conditions. Become important.
Since the denitrification reaction is a reduction reaction, an oxidation-reduction potential (hereinafter referred to as ORP) is widely used for managing the denitrification process. However, ORP is -100mV to -300mV in an anaerobic state, and + 200mV to + 300mV in an aerobic state. However, ORP is aerobic to the extent that aeration is performed but oxygen is insufficient. Since it is only reduced by about 50 mV from +200 mV to +300 mV of the state, it is difficult to distinguish from changes due to fluctuations in raw water or changes in the state of the activated sludge mixture, and it is difficult to control low DO operation.
この問題に対応すべく特許文献1には、処理水BODと汚泥の酸素消費速度からの処理水BOD予測値と硝酸イオン濃度に基づいて、曝気槽内DOを低DOに制御する方法が開示されている。
また非特許文献1には、活性汚泥微生物の呼吸反応に関与する補酵素NADH(nicotinamide adenine dinucleotide)を指標として送風量制御を行い,曝気槽内DOを0.2mg/lから0.6mg/lの範囲に制御して、都市下水に対し75%程度の脱窒を行った事例が報告されている。
NADHセンサーは、好気領域からDO計で測定できない嫌気領域までの変化を測定できる比較的新しいセンサーであるが、廃水中の懸濁物質に影響され、測定値がばらつく問題点があり、特許文献2には、NANDセンサーのばらつきによる制御誤差を軽減する方法も提示されている。
In order to cope with this problem, Patent Document 1 discloses a method of controlling the DO in the aeration tank to a low DO based on the predicted value of the treated water BOD and the nitrate ion concentration based on the oxygen consumption rate of the treated water BOD and sludge. ing.
In Non-Patent Document 1, air volume control is performed using the coenzyme NADH (nicotinamide adenine dinucleotide) involved in the respiratory reaction of activated sludge microorganisms as an index, and DO in the aeration tank ranges from 0.2 mg / l to 0.6 mg / l. A case where about 75% of denitrification was performed on urban sewage was reported.
The NADH sensor is a relatively new sensor that can measure changes from an aerobic region to an anaerobic region that cannot be measured with a DO meter. However, the NADH sensor is affected by suspended substances in wastewater, and there is a problem that the measured value varies. 2 also presents a method for reducing control errors caused by variations in NAND sensors.
以上にように、通常の活性汚泥においても、低DO運転によりBOD単独またはBODと窒素を同時除去する方法は、適切に制御できれば、メリットが非常に大きいプロセスであるが、原水に濃度や成分等の変動が有る場合には、BOD処理と脱窒処理を安定的に維持することが難しいのが実情である。 As mentioned above, even in normal activated sludge, the method of removing BOD alone or BOD and nitrogen at the same time by low DO operation is a very advantageous process if it can be properly controlled. In the case where there are fluctuations, it is difficult to stably maintain the BOD treatment and the denitrification treatment.
上記課題に鑑み、本発明はBOD処理又はBOD・脱窒同時処理において、低DO運転を適切かつ安定的に制御する方法を提供するものである。 In view of the above problems, the present invention provides a method for appropriately and stably controlling low DO operation in BOD treatment or simultaneous BOD / denitrification treatment.
本願発明者は、鋭意研究の結果、低DO運転を適切に安定的に制御するための制御方法を見出した。
(1)曝気槽内の活性汚泥混合液の溶存酸素濃度(以下、DOという)が殆ど0mg/lの状態で曝気処理(以下、極低DO処理という)を行って、廃水中のBOD除去又はBODと窒素分とを同時除去する活性汚泥処理装置において、
(1-1)極低DO処理運転中に、一時的に曝気を強くして曝気槽内のDOを上昇させたのち、曝気を停止する操作を行い、
(1-2)KLaを総括物質移動係数、Csを飽和溶存酸素濃度、Rrを活性汚泥混合液の好気条件下の酸素消費速度とするとき、DO値の時間的変化(dC(t)/dt )が(1)式で表されるとして、
dC(t)/dt = KLa(Cs−C(t))−Rr ・・・(1)式
(1-2-1)曝気を停止したときのDO低下過程におけるC(t)変化に基づいてRrを求め、
(1-2-2)一時的に曝気を強くしたときの平衡DO値C1(dC(t)/dt =0、C(t)=C1)を、曝気を強くしたときのDO上昇過程におけるC(t)変化、及び、(2)式の関係に基づいて求め、
KLa(Cs−C(t))=Rr ・・・(2)式
(1-3)一時的に曝気を強くしたときの曝気量をG1、そのときの酸素溶解効率をEa1とするとき、
曝気による酸素供給能力と混合液の酸素消費速度が等しくなるときの曝気量G0が(3’)式により求められることから類推して、極低DO処理運転時の適正曝気量G2を(3)式により求め、
G0=((Cs−C1)/Cs)・(Ea1/Ea0)・G1 ・・・(3’)式
G2=k・((Cs−C1)/Cs)・(Ea1/Ea2)・G1 ・・・(3)式
(但し、Ea0、Ea2は、それぞれ曝気量G0、G2のときの酸素溶解効率、
kは、当該活性汚泥の特性に応じて実験的に定める比例係数)、
(1-4)極低DO処理運転中の曝気量を、(1-3)により求めたG2に設定する操作(以下、曝気量校正操作という)を極低DO処理運転中に適宜行うことにより、
極低DO処理運転中の曝気量を適正に維持することを特徴とする活性汚泥における曝気量制御方法。
As a result of earnest research, the present inventor has found a control method for appropriately and stably controlling the low DO operation.
(1) Aeration treatment (hereinafter referred to as extremely low DO treatment) is carried out with the dissolved oxygen concentration (hereinafter referred to as DO) in the activated sludge mixture in the aeration tank being almost 0 mg / l to remove BOD in wastewater or In activated sludge treatment equipment that removes BOD and nitrogen content simultaneously,
(1-1) During the ultra-low DO treatment operation, after temporarily increasing the aeration to raise the DO in the aeration tank, perform the operation to stop the aeration,
(1-2) When KLa is the overall mass transfer coefficient, Cs is the saturated dissolved oxygen concentration, and Rr is the oxygen consumption rate under the aerobic condition of the activated sludge mixture, the change in DO value over time (dC (t) / dt) is expressed by equation (1),
dC (t) / dt = K L a (Cs−C (t)) − Rr (1)
(1-2-1) Obtain Rr based on the C (t) change in the DO reduction process when aeration is stopped,
(1-2-2) Equilibrium DO value C1 (dC (t) / dt = 0, C (t) = C1) when aeration is temporarily increased, and C in the DO increase process when aeration is increased (t) Obtained based on the change and the relationship of equation (2),
K L a (Cs−C (t)) = Rr (2)
(1-3) When the amount of aeration when aeration is temporarily increased is G1, and the oxygen dissolution efficiency at that time is Ea1,
By analogizing that the aeration amount G0 when the oxygen supply capacity by aeration and the oxygen consumption rate of the liquid mixture are equal is obtained from the equation (3 '), the appropriate aeration amount G2 at the time of extremely low DO treatment operation is (3) Calculated by the formula
G0 = ((Cs-C1) / Cs) · (Ea1 / Ea0) · G1 (3 ')
G2 = k · ((Cs−C1) / Cs) · (Ea1 / Ea2) · G1 (3) (where Ea0 and Ea2 are the oxygen dissolution efficiency when the aeration amount is G0 and G2, respectively.
k is a proportionality coefficient determined experimentally according to the characteristics of the activated sludge)
(1-4) By appropriately performing an operation during the ultra-low DO treatment operation to set the aeration amount during the ultra-low DO treatment operation to G2 obtained by (1-3) (hereinafter referred to as aeration calibration operation). ,
A method of controlling the amount of aeration in activated sludge, characterized by maintaining an appropriate amount of aeration during ultra-low DO treatment operation.
(2)上記(1)の発明において、前記比例係数kを(4)式により設定することを特徴とする。
k=k1・(Rr−k2・RNOX)/Rr ・・・(4)式
ここに、
RNOX:曝気槽内の活性汚泥混合液をサンプリングして測定した、硝化による酸素消費速度。
Rr:前記(1-2-2)により求めた活性汚泥混合液の酸素消費速度Rr
k1:実験的に定める補正係数。
k2:硝化に要する酸素量のうちBOD処理に使われる酸素量の割合。
(2) In the invention of (1), the proportionality coefficient k is set by the equation (4).
k = k1 · (Rr−k2 · R NOX ) / Rr (4) where
R NOX: Oxygen consumption rate by nitrification measured by sampling the activated sludge mixture in the aeration tank.
Rr : Oxygen consumption rate Rr of the activated sludge mixture obtained by (1-2-2) above
k1 : Correction coefficient determined experimentally.
k2 : Percentage of oxygen used for BOD treatment out of the amount of oxygen required for nitrification.
以下、本願発明の具体的内容について、従来技術との比較も含め、さらに詳細に説明する。なお、以下の説明において、「廃水」とは処理を要する汚濁水を総称する一般概念として用いている。また、処理対象として処理装置に導入される「廃水」については「流入水」(又は原水)と称する。 Hereinafter, the specific contents of the present invention will be described in more detail, including comparison with the prior art. In the following description, “waste water” is used as a general concept that collectively refers to polluted water that requires treatment. Further, “waste water” introduced into the treatment apparatus as a treatment target is referred to as “inflow water” (or raw water).
通常、活性汚泥における酸素供給量の管理は、曝気槽内の活性汚泥混合液のDO値に基づいて行われ、空気曝気の場合、DO値は0.5mg/lから3mg/l程度に管理される。これに対し、本発明によるBOD・窒素同時処理の場合、最も効率的な運転状態においては0.1mg/l程度以下の極低DO値で管理する必要がある。
曝気槽におけるDO測定は、DO計電極を曝気槽の曝気中の活性汚泥混合液に浸漬して行われる。測定されるDO値は、活性汚泥混合液の微生物による酸素消費速度と曝気などによる酸素供給速度のバランスで決まる値である。 DO値が概ね0.5mg/l以下になると、DO計電極の応答速度や電極面への微細気泡の接触や、活性汚泥混合液の酸素消費速度の大きさ、溶存酸素濃度のローカリティなど、さまざまな要因の作用が相対的に大きくなり、上記バランスを正確に反映できなくなる。特に、0.1mg/l程度の極低DO値あたりでは、実質的にDO計によるDO指示値による制御では、曝気による酸素供給量の管理は不可能になる。
Normally, the oxygen supply amount in activated sludge is managed based on the DO value of the activated sludge mixture in the aeration tank. In the case of air aeration, the DO value is managed from 0.5 mg / l to 3 mg / l. . On the other hand, in the case of the BOD / nitrogen simultaneous treatment according to the present invention, it is necessary to manage at an extremely low DO value of about 0.1 mg / l or less in the most efficient operation state.
The DO measurement in the aeration tank is performed by immersing the DO meter electrode in the activated sludge mixed solution being aerated in the aeration tank. The measured DO value is a value determined by the balance between the oxygen consumption rate by microorganisms in the activated sludge mixed solution and the oxygen supply rate by aeration. When the DO value is approximately 0.5 mg / l or less, there are various factors such as DO meter electrode response speed, contact of fine bubbles on the electrode surface, oxygen consumption rate of the activated sludge mixture, locality of dissolved oxygen concentration, etc. The effect of the factor becomes relatively large, and the balance cannot be accurately reflected. In particular, for extremely low DO values of about 0.1 mg / l, the control of the oxygen supply amount by aeration becomes virtually impossible with the control by the DO instruction value by the DO meter.
<曝気量増減操作とKLa、Rr、C1の関係>
曝気を強くした際の曝気槽内活性汚泥混合液のDO値(C(t))の変化(dC(t)/dt )は、KLaを総括物質移動係数、Csを飽和溶存酸素濃度、Rrを活性汚泥混合液の酸素消費速度として、(1)式で表される。
dC(t)/dt = KLa(Cs−C(t))−Rr ・・・(1)式
短時間の曝気量変化ではRrは一定と考えられ、またCsは曝気量校正操作中の短時間では温度は変化しないため定数として扱えるので、(1)式を積分すると、tを経過時間として、C(t)の変化は、初期値を0として、(5)式で表現できる。
C(t)=C1−C1・exp(− KLa・t) ・・・(5)式
ここにC1は、tを十分長くしたときの、酸素供給速度KLa(Cs−C(t))と活性汚泥混合液の酸素消費速度Rrとが等しくなるときのDO値であり、(2)式の関係で表される。
KLa(Cs−C1)=Rr ・・・(2)式
<Relationship between aeration volume increase / decrease operation and KLa, Rr, C1>
The change (dC (t) / dt) of the DO value (C (t)) of the activated sludge mixture in the aeration tank when aeration is strengthened is: KLa is the overall mass transfer coefficient, Cs is the saturated dissolved oxygen concentration, and Rr is The oxygen consumption rate of the activated sludge mixed liquid is expressed by equation (1).
dC (t) / dt = K L a (Cs−C (t)) − Rr (1)
Rr is considered to be constant when the aeration amount changes for a short time, and Cs can be treated as a constant because the temperature does not change during the aeration amount calibration operation. Therefore, when equation (1) is integrated, t is the elapsed time. The change in C (t) can be expressed by equation (5) with an initial value of 0.
C (t) = C1−C1 ・ exp (−K L a ・ t) (5)
Here, C1 is the DO value when the oxygen supply rate KLa (Cs−C (t)) and the oxygen consumption rate Rr of the activated sludge mixed solution are equal when t is sufficiently long, and the equation (2) It is expressed by the relationship.
K L a (Cs−C1) = Rr (2)
(5)式において、曝気量一定で十分長く曝気することにより、C1はほぼ一定の値になるから、同式を用いて直接C1値を求めることができる。しかしながら、この方法では長時間を要するのが難点である。
例えば、活性汚泥の曝気に一般的に使用されている散気管のKLaを15[1/hr]として計算すると、曝気槽中のバラツキのあるC(t)の値を用いて、(5)式から直接C1値を精度よく求めるには、経験上C(t)がC1の98%程度に達するまでの測定が必要であり、約16分を要する。
In the equation (5), C1 becomes a substantially constant value by performing aeration for a sufficiently long time with a constant aeration amount. Therefore, the C1 value can be directly obtained using the equation. However, this method requires a long time.
For example, when calculating the KLa of the diffuser pipe generally used for aeration of activated sludge as 15 [1 / hr], the value of C (t) with the variation in the aeration tank is used. In order to obtain the C1 value directly from the above, it is necessary to measure until C (t) reaches about 98% of C1, and it takes about 16 minutes.
また、(5)式のC(t)は、KLa、Rr、tの関数であるから、所定のtに対するC(t)の値が同式の計算結果と一致するように、KLaとC1を変化させて繰り返し演算を行うことにより、一致するKLaとC1を求めることもできる。しかし、C1を精度よく求めるには、変数が2つなので、やはり長時間のC(t)演算が必要となる。
KLaとC1を繰り返し演算により精度よく求めるには、経験上C(t)がC1の90%程度に達するまでの測定が必要であり、KLaが15[1/hr]の場合、これには約9分を要する。
さらに曝気を停止して、本発明の適正DO値に戻るまでの時間は、Rrの大きさ次第であるが、例えばRr=12mg/l/hrで、C1=3.0mg/lの90%で曝気を停止した場合には約14分を要する。従って、曝気量校正操作の時間は合計23分となる。
一方、流入水の変動が大きい場合、変動にあわせて曝気量校正操作を行う必要があるが、校正操作時間帯は本発明における適正DO値と比較して酸素過多の状態になる。従って、適正DO値維持の観点から曝気量校正操作をできるだけ短時間で終了させる必要がある。
Since C (t) in equation (5) is a function of KLa, Rr, and t, KLa and C1 are set so that the value of C (t) for a given t agrees with the calculation result of the equation. It is also possible to obtain the matching KLa and C1 by repeatedly performing the calculation while changing. However, in order to obtain C1 with high accuracy, since there are two variables, a long time C (t) operation is required.
In order to obtain KLa and C1 accurately by repeated calculations, it is necessary to measure until C (t) reaches about 90% of C1 based on experience. When KLa is 15 [1 / hr], this is about It takes 9 minutes.
Furthermore, the time from stopping aeration until returning to the appropriate DO value of the present invention depends on the size of Rr. For example, when Rr = 12 mg / l / hr, aeration is performed at 90% of C1 = 3.0 mg / l. It takes about 14 minutes to stop. Therefore, the total time for the aeration calibration operation is 23 minutes.
On the other hand, when the fluctuation of the influent water is large, it is necessary to perform the aeration amount calibration operation in accordance with the fluctuation, but the calibration operation time zone is in an excessive oxygen state as compared with the appropriate DO value in the present invention. Therefore, it is necessary to complete the aeration amount calibration operation in the shortest possible time from the viewpoint of maintaining an appropriate DO value.
以上の各問題点を解決すべく、本発明では極低DO処理運転中の適正曝気量を以下のステップに従い決定する。
<Rrの取得及びKLa、C1の演算>
図2を参照して、今、極低DO処理を行っているときのDO値L1の状態から、曝気を増大すると、DOは(5)式で計算されるL3の曲線に従い、L2のように上昇する。
(5)式より、曝気増大開始からt1時間後のDO値C(t1)、t2時間後のDO値C(t2)とすれば(6)式が導かれる。
In order to solve the above problems, in the present invention, an appropriate aeration amount during the operation of the extremely low DO processing is determined according to the following steps.
<Acquisition of Rr and calculation of KLa and C1>
Referring to FIG. 2, when aeration is increased from the state of DO value L1 when the extremely low DO processing is being performed, DO follows L3 curve calculated by equation (5) as L2. To rise.
From equation (5), equation (6) is derived if the DO value C (t1) after t1 hours from the start of aeration increase and the DO value C (t2) after t2 hours.
また、曝気を停止すると、DO値は(1)式でKLa=0としたL4の変化となるから、曝気を停止してDOが低下する過程の低下速度を測定することにより、活性汚泥混合液の酸素消費速度Rrを求めることができる(上述(1-2-1)に対応)。
(2)式より、C1=Cs−Rr/KLaであるから、(6)式は、
When aeration is stopped, the DO value changes to L4 with KLa = 0 in equation (1). Therefore, the activated sludge mixture is measured by measuring the rate of decrease in the process in which aeration is stopped and DO decreases. Can be obtained (corresponding to the above (1-2-1)).
From the formula (2), C1 = Cs−Rr / KLa, so the formula (6) is
求めたKLa とRrを用いて(2)式からC1を求めることができる(同(1-2-2)に対応)。
また(2)式から、KLa=Rr/(Cs−C1)であるから、(6)式は、
Using the obtained KLa and Rr, C1 can be obtained from equation (2) (corresponding to (1-2-2)).
Also, from equation (2), KLa = Rr / (Cs−C1), so equation (6) is
本発明方法によれば、Rrを取得することにより、(6a)、(6b)式のいずれを用いる場合も、繰り返し演算における変数が1つであるから、上述の変数が2つの場合の演算と比較して、遥かに迅速なC1取得が可能となる。
例えば、前述と同様にKLaを15[1/hr]として、(6a)式または(6b)式からC1値を精度よく求めるには、経験上C(t)がC1の50%程度に達するまでの測定で済み、約3分を要する。さらに曝気を停止して、本発明の適正DO値に戻るまでの時間は、前述と同様にRr=12mg/l/hrとして、C1=3.0mg/lの50%で曝気を停止した場合には、約8分になり、曝気量校正操作の時間は合計11分となり、約半分に短縮できる。
According to the method of the present invention, by obtaining Rr, since either one of the expressions (6a) and (6b) is used, there is one variable in the repetitive calculation. Compared to this, it is possible to obtain C1 much more quickly.
For example, in the same way as described above, with KLa set to 15 [1 / hr], to obtain the C1 value accurately from the formula (6a) or (6b), experience shows that C (t) reaches about 50% of C1. This takes about 3 minutes. Furthermore, when the aeration is stopped and the return to the appropriate DO value of the present invention is the same as described above, Rr = 12 mg / l / hr, and when aeration is stopped at 50% of C1 = 3.0 mg / l. It takes about 8 minutes, and the total aeration calibration time is 11 minutes, which can be reduced to about half.
<極低DO処理運転中の適正曝気量演算>
KLa、曝気量Gと酸素溶解効率Eaとの関係は、酸素量バランスに基づいて(7)式で表される。なお同式は、(社)日本下水道協会:「下水試験方法」及び「下水道施設設計計画・ 設計指針と解説」の記載を根拠とする。
<Appropriate aeration calculation during ultra-low DO processing operation>
The relationship between KLa, aeration amount G, and oxygen dissolution efficiency Ea is expressed by equation (7) based on the oxygen amount balance. This formula is based on the description of Japan Sewerage Association: “Sewage test method” and “Sewerage facility design plan / design guidelines and explanation”.
(7)式において、曝気量G1及びそのときの酸素溶解効率Ea1とすると、(2)式は(8)式のように書き換えられる。
Rr=γ・Ea1・G1・(Cs−C1) ・・・(8)式
但し、γ=ρ/(Cs・V×10-1)
曝気量Gによる酸素供給能力が、活性汚泥混合液の酸素消費速度と同じ状態では、曝気槽のDO値C(t)はほとんど0であるから、そのときの曝気量をG0とし、このときの酸素溶解効率をEa0で表すと(9)式となる。
Rr=γ・Ea0・G0・Cs ・・・(9)式
(8)、(9)式から、
G0=((Cs-C1)/Cs)・(Ea1/Ea0)・G1 ・・・(3’)式
となり、酸素供給能力が、活性汚泥混合液の酸素消費速度と同じになる曝気量G0を求めることができる。
In the equation (7), when the aeration amount G1 and the oxygen dissolution efficiency Ea1 at that time, the equation (2) is rewritten as the equation (8).
Rr = γ ・ Ea1 ・ G1 ・ (Cs−C1) (8) where γ = ρ / (Cs ・ V × 10 -1 )
When the oxygen supply capacity by the aeration amount G is the same as the oxygen consumption rate of the activated sludge mixture, the DO value C (t) of the aeration tank is almost 0, so the aeration amount at that time is G0. When the oxygen dissolution efficiency is represented by Ea0, the equation (9) is obtained.
Rr = γ · Ea0 · G0 · Cs (9) From the equations (8) and (9),
G0 = ((Cs-C1) / Cs) · (Ea1 / Ea0) · G1 (3 ') Equation, and the aeration amount G0 where the oxygen supply capacity is the same as the oxygen consumption rate of the activated sludge mixture Can be sought.
脱窒を行わずにBODを処理する場合は、酸素不足にならないように曝気による酸素供給量を活性汚泥混合液の酸素消費量G0と同程度か少し多くする必要がある。
また、脱窒を効率よく行う場合には、曝気による酸素供給量を活性汚泥混合液の酸素消費量G0と同程度か、またはそれ以下で運転する必要がある。これより、極低DO処理運転中の曝気空気量をG2、そのときの酸素溶解効率をEa2とし、kを概ね1程度以下の比例係数とすれば、(3’)式中のG0、Ea0をG2(=k・G0)、Ea2で置き換えることにより、適正曝気空気量G2を(3)式により推定することができる。
G2=k・((Cs−C1)/Cs)・(Ea1/Ea2)・G1 ・・・(3)式
G2取得後、速やかに曝気槽の曝気量をこの値に設定することにより、適正な極低DO処理運転が可能となる。
When processing BOD without denitrification, it is necessary to increase the amount of oxygen supplied by aeration to be the same as or slightly higher than the oxygen consumption G0 of the activated sludge mixture so as not to run out of oxygen.
Further, in order to efficiently perform denitrification, it is necessary to operate with the oxygen supply amount by aeration being equal to or less than the oxygen consumption amount G0 of the activated sludge mixed solution. From this, if the amount of aerated air during the ultra-low DO treatment operation is G2, the oxygen dissolution efficiency at that time is Ea2, and k is a proportional coefficient of about 1 or less, G0 and Ea0 in equation (3 ') are By substituting with G2 (= k · G0) and Ea2, the appropriate aeration air amount G2 can be estimated by the equation (3).
G2 = k · ((Cs−C1) / Cs) · (Ea1 / Ea2) · G1 (3)
By setting the aeration volume in the aeration tank to this value immediately after obtaining G2, proper ultra-low DO processing operation becomes possible.
酸素溶解効率Eaは、曝気槽の水深や散気管の種類や構造に依存する特性であり、各活性汚泥装置固有の値となるが、一般的には図4のような変化となる。適正使用範囲内では、曝気量Gが少ないとEaは大きく、多いとEaは小さくなる。従って、予め実験などによりEaとGの関係式を求めてコンピュータに入力しておくことにより、(3)式の計算のとき、G2を仮定し、そのときのEa2をEaとGの関係式から求め、Ea2を使って(3)式からG2を求め、仮定したG2と合致するまで繰返し計算を行うことにより、正しいG2の取得が可能である。 The oxygen dissolution efficiency Ea is a characteristic that depends on the water depth of the aeration tank, the type and structure of the air diffuser, and is a value unique to each activated sludge device, but generally changes as shown in FIG. Within the proper use range, Ea is large when the aeration amount G is small, and Ea is small when it is large. Therefore, by calculating the relational expression of Ea and G in advance by experiment and inputting it to the computer, G2 is assumed when calculating (3), and Ea2 at that time is calculated from the relational expression of Ea and G. Obtaining G2 from Eq. (3) using Ea2 and calculating it repeatedly until it matches the assumed G2 makes it possible to obtain the correct G2.
<比例定数kについて>
(3)式のkは、曝気による酸素供給量と酸素消費量が一致する計算上の曝気量G0に対し、どの程度の曝気量が適当かを決める係数であり、BOD単独処理の場合、kは1、もしくは1以上で1に近い数値となる。
BOD・脱窒同時処理の場合には、以下の考慮が必要となる。脱窒反応を起こすためには、微生物がNOx-Nからの酸素を取得せざるを得ないような溶存酸素不足環境にする必要があり、DOが概ね0.5mg/l以上の好気環境になると脱窒が進行しなくなる。
一方、脱窒を起こすためには、予めアンモニア態窒素を亜硝酸態窒素または硝酸態窒素に硝化することが必要である。硝化反応速度は、DOが高い方が大きく、DOが低くなると小さくなることが知られている。また過度の酸素不足は、処理水BODの急激な悪化を招く。
<About proportionality constant k>
K in equation (3) is a coefficient that determines how much aeration amount is appropriate for the calculated aeration amount G0 where the oxygen supply amount and oxygen consumption amount by aeration match. Is 1 or more than 1 and close to 1.
In the case of simultaneous BOD and denitrification, the following considerations are necessary. In order to cause a denitrification reaction, it is necessary to create a dissolved oxygen-deficient environment in which microorganisms must acquire oxygen from NOx-N. Denitrification will not proceed.
On the other hand, in order to cause denitrification, it is necessary to nitrify ammonia nitrogen to nitrite nitrogen or nitrate nitrogen in advance. It is known that the nitrification reaction rate is large when DO is high and decreases when DO is low. In addition, excessive oxygen deficiency causes a rapid deterioration of the treated water BOD.
極低DO処理では、上記3つの作用を、活性汚泥フロックの表面から中心内部への酸素濃度勾配で実現している。曝気槽全体の平均としては、やや酸素過剰の状態であっても、形状の大きいフロックでは、中心内部では酸素不足の状態となり、BOD・脱窒同時処理が可能となる。またBOD分解の酸素消費速度が大きい場合は、比較的形状の小さいフロックでも、中心内部では酸素不足の環境となり得るので、kは概ね1程度から1以下の数値となる。
フロックの形状や、BOD分解のための酸素消費速度や、DOと硝化反応速度の関係などは、個々の活性汚泥に固有であるから、最適なkの値はそれぞれ異なる値となる。また、処理装置の全体構成のなかで、極低DO処理が受け持つ機能によっても異なる。例えば、後述実施例3のように、もっぱら脱窒を目的とする第1曝気槽や第2曝気槽ではkは1以下の数値とし、もっぱらBODの処理を目的とする第3曝気槽ではkは1以上とするのが適当である。さらに実施例3の装置のあとに再酸化槽がある場合には、BODの処理や硝化活性の維持は再酸化槽が受け持ち、第3曝気槽は脱窒未了があった場合に脱窒も行えるように、kを1より少し小さな値とすることも有効である。
このように、kの値は個々の活性汚泥の種々の要因により若干異なる値となるので、最終的には実験により決めるのが実際的である。
In the ultra-low DO treatment, the above three actions are realized by the oxygen concentration gradient from the surface of the activated sludge floc to the center. As an average of the whole aeration tank, even if the state is slightly oxygen excess, a floc having a large shape is in an oxygen-deficient state inside the center, and BOD / denitrification simultaneous processing becomes possible. When the oxygen consumption rate of BOD decomposition is large, even a relatively small floc can be in an oxygen-deficient environment inside the center, so k is a value from about 1 to about 1 or less.
Since the floc shape, the oxygen consumption rate for BOD decomposition, the relationship between DO and nitrification reaction rate, etc. are specific to each activated sludge, the optimum value of k is different. In addition, the overall configuration of the processing device also varies depending on the functions that the ultra-low DO processing is responsible for. For example, as in Example 3 described later, k is a numerical value of 1 or less in the first aeration tank and the second aeration tank exclusively for denitrification, and k is 3 in the third aeration tank exclusively for the treatment of BOD. A value of 1 or more is appropriate. Further, when there is a reoxidation tank after the apparatus of Example 3, the reoxidation tank takes charge of the treatment of BOD and maintenance of nitrification activity, and the third aeration tank also performs denitrification when denitrification has not been completed. It is also effective to make k slightly smaller than 1 so that it can be done.
As described above, the value of k is slightly different depending on various factors of each activated sludge. Therefore, it is practical to finally determine the value by experiment.
<曝気量校正操作(1-4)頻度について>
実験室で、活性汚泥処理条件を一定にしてテストを行う場合には、1回の曝気量校正操作によりG2を求めれば足りる。しかし、実際の活性汚泥処理では原水変動や処理条件変動によりRrが変化するので、変動の都度曝気量校正操作を行い、常に適正な曝気量を求める必要がある。曝気量校正操作の頻度は、個々の活性汚泥の原水変動や処理条件変動により異なるが、一般的には数時間に1回程度である。図3はこの操作をおこなうときのDO変化を概念的に示すものである。
<Frequency of aeration calibration (1-4)>
In the laboratory, when testing with activated sludge treatment conditions being constant, it is sufficient to obtain G2 by a single aeration calibration procedure. However, in actual activated sludge treatment, Rr changes due to fluctuations in raw water and treatment conditions. Therefore, it is necessary to perform an aeration amount calibration operation every time the fluctuation occurs and always obtain an appropriate aeration amount. The frequency of aeration calibration is generally about once every few hours, although it varies depending on the fluctuations in the raw water and treatment conditions of each activated sludge. FIG. 3 conceptually shows the DO change when this operation is performed.
曝気により、DO値(C(t))は(5)式に従い変化する。例えば、C1が3mg/l程度以上になるような強さの曝気量であれば、数分でDOは1.5mg/l程度以上に上昇し、十分な精度でC1を計算できるデータ測定が可能である。また曝気を停止したときのDOの減少速度は、DOが約0.5mg/lまでは、ほぼ一定の速度で低下していくから、DOが1.5mg/l程度以上になったら曝気を停止することにより、数分の測定でRrを精度よく測定できる。
以上説明のように、本発明によれば、1回の曝気量校正操作による適正域逸脱時間を10分程度に短縮することができる。従って、曝気量校正操作を仮に2時間に1回行ったとして、バランスが乱れている時間帯は全体の10%程度以内であるから、原水変動が大きい場合にも十分対応可能となる。
The DO value (C (t)) changes according to the equation (5) by aeration. For example, if the aeration intensity is such that C1 is about 3 mg / l or more, DO will rise to about 1.5 mg / l or more in a few minutes, and data measurement that can calculate C1 with sufficient accuracy is possible. is there. The rate of decrease of DO when aeration is stopped decreases at a substantially constant rate until DO reaches about 0.5 mg / l. Therefore, aeration should be stopped when DO reaches about 1.5 mg / l or more. Therefore, Rr can be measured accurately with a few minutes of measurement.
As described above, according to the present invention, it is possible to reduce the appropriate region departure time by one aeration amount calibration operation to about 10 minutes. Therefore, assuming that the aeration amount calibration operation is performed once every two hours, the time zone in which the balance is disturbed is within about 10% of the whole, so that even when the fluctuation of the raw water is large, it is possible to cope sufficiently.
<Rr測定(1-2-1)について>
Rr測定に際して、数分の短時間とはいえ曝気を停止するため、曝気槽内の流動がなくなり、汚泥が沈殿し始めてMLSSが変化し、Rrの測定値に誤差が生じる懸念がある。しかしながら、汚泥の沈殿によるMLSS変化は表面付近ではMLSSが除々に低下し、汚泥界面が通過すればMLSSが急低下し、深部では圧密によるMLSSが増大していくように、深さにより異なる。従って、予め汚泥の沈降実験を行い、MLSSの変化の小さい深さの位置にDO電極を設置することにより、汚泥の沈降に影響されない測定が可能である。
またDO計は、電極面に流動を必要としないタイプのDO電極を選定するか、電極面の汚泥を流動させる撹拌翼やバイブレータなどを装備すれば、支障なく測定できる。
<About Rr measurement (1-2-1)>
In the Rr measurement, since aeration is stopped for a short time of several minutes, there is a concern that the flow in the aeration tank disappears, the sludge begins to settle, MLSS changes, and an error occurs in the measured value of Rr. However, MLSS changes due to sludge sedimentation vary depending on the depth, such that MLSS gradually decreases near the surface, MLSS rapidly decreases if the sludge interface passes, and MLSS due to consolidation increases in the deep part. Therefore, a sludge sedimentation experiment is performed in advance, and a DO electrode is installed at a position where the MLSS change is small, thereby enabling measurement that is not affected by sludge sedimentation.
The DO meter can be measured without any problems if a DO electrode that does not require flow is selected on the electrode surface, or if a stirring blade or vibrator that moves the sludge on the electrode surface is equipped.
次に(2)の発明について説明する。本発明は、BODと脱窒の同時処理を行う場合であって、曝気槽内にNH4-Nが存在し硝化反応が行われているケースに、特に有効な方法である。
流入水のBOD負荷や窒素負荷の変動が小さい場合は、(1)の発明においてk:一定として適切にBOD、脱窒の同時処理ができるが、流入水変動が大きい場合や、回分式処理でBODの分解による酸素消費速度が経時的に変化する場合には、変動に対応してkの値を可変として、曝気量を制御することが必要となる。本発明は、kが以下の特性を有することを見出し、これを利用した曝気量制御に係る。
Next, the invention (2) will be described. The present invention is a particularly effective method in the case where simultaneous processing of BOD and denitrification is performed and NH4-N is present in the aeration tank and the nitrification reaction is performed.
When fluctuations in the BOD load or nitrogen load of the influent water are small, the BOD and denitrification can be appropriately treated as k: constant in the invention of (1). When the oxygen consumption rate due to the decomposition of BOD changes with time, it is necessary to control the aeration amount by changing the value of k corresponding to the fluctuation. The present invention finds that k has the following characteristics, and relates to aeration control using this.
(3’)式により計算されるG0は、好気環境で測定したRrを用いており、硝化の酸素消費量を含む値である。極低DO処理では、硝化したNOx-N量は速やかにBOD成分を消費して脱窒されるから、結果的に硝化に要した酸素量の一部はBOD成分の処理に使用されたことになる。 G0 calculated by the equation (3 ') uses Rr measured in an aerobic environment and is a value including oxygen consumption of nitrification. In the extremely low DO treatment, the amount of NOx-N that has been nitrified is quickly denitrified by consuming the BOD component, and as a result, part of the amount of oxygen required for nitrification was used for the treatment of the BOD component. Become.
たとえば、アンモニア態窒素を亜硝酸態窒素や硝酸態窒素に酸化したのちメタノールを水素供与体として脱窒する反応式は、(11)〜(14)式で表される。亜硝酸態窒素で脱窒される場合((13)式)は、硝化に要した酸素量の0.5倍が、また、硝酸態窒素で脱窒される場合((14)式)は、硝化に要した酸素量の0.625倍が、それぞれメタノールのBOD分解のために使われることになる。今、この割合をk2とする。 For example, the reaction formula for denitrifying methanol nitrogen as a hydrogen donor after oxidizing ammonia nitrogen to nitrite nitrogen or nitrate nitrogen is expressed by the following equations (11) to (14). When denitrifying with nitrite nitrogen (Equation (13)), 0.5 times the amount of oxygen required for nitrification, and when denitrifying with nitrate nitrogen (Equation (14)) 0.625 times the amount of oxygen required will be used for the BOD decomposition of methanol. This ratio is now k2.
Rrとして観測される速度は、好気条件下での微生物の内生呼吸による酸素消費速度(RSS)と、BOD成分を分解・摂取するための酸素消費速度(RBOD)と、NH4-NをNOx-Nに硝化するための酸素消費速度(RNOX)と、の合計である。
今、極低DO処理のような低DO環境下においても、RSS、RBOD、RNOXの値が変わらないと仮定すると、曝気量G0による酸素供給量は、tを反応時間として、Rr×tとなる。これに対し、BODの処理に要する酸素消費量のうち、一部は硝化に要した酸素量のk2分が充当されるので、極低DO処理における曝気による必要酸素供給量は、(Rr×t−k2×RNOX×t)となる。
従って計算上、曝気量G2を、
G2=G0×(Rr−k2×RNOX)/Rr ・・・(15)式
とすれば、過不足のない酸素供給量が確保できることになる。
(3’)式のG0を(15)式に代入すると、
G2=(Rr−k2×RNOX)/Rr・((Cs-C1)/Cs)・(Ea1/Ea0)・G1
となる。これを(3)式と対比することにより、(3)式のkは、k1を補正係数として(4)式で表現できる。
k=k1・(Rr−k2・RNOX)/Rr ・・・(4)式
ここに補正係数k1は、後述するように、上記仮定に基づく計算値を実際の運転条件、曝気槽特性等に対応させるための補正係数である。
The rate observed as Rr is the oxygen consumption rate (R SS ) due to endogenous respiration of microorganisms under aerobic conditions, the oxygen consumption rate (R BOD ) for decomposing and ingesting BOD components, and NH4-N Is the sum of oxygen consumption rate (R NOX ) for nitrifying NOx-N.
Assuming that the values of R SS , R BOD , and R NOX do not change even in a low DO environment such as extremely low DO processing, the oxygen supply amount by the aeration amount G0 is Rr × t. On the other hand, part of the oxygen consumption required for the treatment of BOD is a portion of the amount of oxygen required for nitrification, which is k2, so the required oxygen supply by aeration in the extremely low DO treatment is (Rr × t −k2 × R NOX × t).
Therefore, in the calculation, the aeration amount G2 is
G2 = G0 × (Rr−k2 × R NOX ) / Rr (15) As a result, an oxygen supply amount that is not excessive or insufficient can be secured.
Substituting G0 in equation (3 ′) into equation (15),
G2 = (Rr−k2 × R NOX ) / Rr ・ ((Cs-C1) / Cs) ・ (Ea1 / Ea0) ・ G1
It becomes. By comparing this with equation (3), k in equation (3) can be expressed by equation (4) using k1 as a correction coefficient.
k = k1 · (Rr−k2 · R NOX ) / Rr (4) Here, as will be described later, the correction coefficient k1 is calculated based on the above assumptions to actual operating conditions, aeration tank characteristics, etc. It is a correction coefficient for making it correspond.
Rrの値は曝気量校正操作で適宜取得できるから、硝化による酸素消費速度RNOXを知ることができれば、流入水変動や運転条件変動があっても、(15)式によりBODと脱窒を同時処理するための適正な曝気量G2を維持することが可能となる。
(4)式において、k2は亜硝酸態窒素から脱窒されるか、硝酸態窒素から脱窒されるか、の比率により異なる。また、水素供与体の構造にも影響されると思われ、概ね0.5から0.625程度の数値となるが、最終的には実験に基づき決定することが適当である。
Since the value of Rr can be acquired as appropriate by aeration calibration, if the oxygen consumption rate R NOX due to nitrification can be known, BOD and denitrification can be performed simultaneously using Eq. It is possible to maintain an appropriate aeration amount G2 for processing.
In the formula (4), k2 varies depending on the ratio of denitrification from nitrite nitrogen or denitrification from nitrate nitrogen. Moreover, it seems that it is influenced by the structure of the hydrogen donor, and the value is about 0.5 to 0.625. However, it is appropriate to finally determine the value based on experiments.
RNOXの取得は、以下により可能である。すなわち、曝気槽内の活性汚泥混合液をサンプリングして、アンモニア態窒素を測定後、一定時間活性汚泥混合液を曝気したあとのアンモニア態窒素を測定する。次いで、アンモニア態窒素減少量を曝気時間で除した値を、(11)式、(12)式で酸素消費量に換算する。
硝化速度は、アンモニア態窒素濃度にはほとんど依存せず、活性汚泥混合液の硝化菌の活性で決まることが知られており、アンモニア態窒素濃度が変わってもRNOXは変化しないため、曝気槽校正操作の場所と異なる場所でサンプリングして測定した値であっても、曝気槽校正操作の場所でのRNOX値として使用できる。
またRNOXは、硝化速度は硝化菌の活性に依存し、硝化菌は増殖速度が遅いため、曝気量校正操作ほどの測定頻度は必要とせず、流入水の変動や運転条件の変動にもよるが、1日数回程度の測定頻度でも目的が達成できることが多い。
Acquisition of R NOX is possible by: That is, the activated sludge mixed solution in the aeration tank is sampled, the ammonia nitrogen is measured, and then the ammonia nitrogen after the activated sludge mixed solution is aerated for a predetermined time is measured. Next, the value obtained by dividing the ammonia nitrogen reduction amount by the aeration time is converted into the oxygen consumption amount by the equations (11) and (12).
It is known that the nitrification rate is almost independent of the ammonia nitrogen concentration and is determined by the activity of the nitrifying bacteria in the activated sludge mixture, and even if the ammonia nitrogen concentration changes, the R NOX does not change. Even a value measured by sampling at a location different from the calibration operation location can be used as the R NOX value at the location of the aeration tank calibration operation.
R NOX also has a nitrification rate that depends on the activity of nitrifying bacteria, and because nitrifying bacteria have a slow growth rate, measurement frequency is not as high as that of aeration calibration, and it also depends on fluctuations in influent and operating conditions. However, the purpose can often be achieved even with a measurement frequency of several times a day.
上述のように、(4)式は、好気条件下又は極低DO条件下におけるRSS、RBOD、RNOXが変化しないことを前提としている。しかしながら、一般的にはこれらの値はDO値低下に伴い若干低下する。低下程度は、流入水のBOD成分やMLSSなどの運転条件により異なる。また、流入水変動に対し、脱窒性能又はBOD処理のいずれを重視するか、などの考え方にも影響される。さらに、極低DO処理後の再曝気槽の有無や能力によっても影響される。
(4)式のk1は、これらの要素を考慮して決められる係数であり、概ね1付近の値であるが、最終的には実験に基づいて決められる。
As described above, Equation (4) assumes that R SS , R BOD , and R NOX do not change under aerobic conditions or extremely low DO conditions. However, in general, these values slightly decrease as the DO value decreases. The degree of decrease depends on the operating conditions such as the BOD component of the influent water and MLSS. It is also influenced by the idea of whether denitrification performance or BOD treatment should be emphasized with respect to inflow water fluctuation. Furthermore, it is also affected by the presence and capacity of the re-aeration tank after ultra-low DO treatment.
In the equation (4), k1 is a coefficient determined in consideration of these factors, and is a value in the vicinity of 1, but is finally determined based on experiments.
極低DO処理運転によれば、そのままでも放流可能な水質の処理水を得ることができるが、DO値は低い。
また、極低DO処理運転の適正域を酸素不足の方向に逸脱すると、BODが急激に悪化したり、硝化活性が低下して脱窒不良となる可能性がある。その防止のためのバックアップ機能や、DOの高い好気状態で硝化活性を大きくするためにも、極低DO処理の後に曝気を十分に行い、再酸化処理を行うことが、より好ましい。具体的には、回分式操作の場合、流入水への極低DO処理運転後、曝気を十分に行う空曝気操作を経て、静置、排水のように、空曝気工程を加える。また、連続式の場合には、図1のように極低DO処理槽のあとに再酸化槽を設け、処理後の活性汚泥混合液にさらに酸素を十分供給し、曝気処理を行ってから沈殿槽に送液する。
According to the extremely low DO treatment operation, treated water can be obtained that can be discharged as it is, but the DO value is low.
In addition, if the appropriate range for the extremely low DO treatment operation deviates in the direction of oxygen deficiency, BOD may deteriorate rapidly, or nitrification activity may decrease, resulting in denitrification failure. In order to prevent this and to increase the nitrification activity in a highly aerobic state of DO, it is more preferable to perform aeration after the extremely low DO treatment and perform the reoxidation treatment. Specifically, in the case of batch-type operation, after an extremely low DO treatment operation for inflow water, an air aeration process is performed such as standing and draining through an air aeration operation in which aeration is sufficiently performed. In the case of the continuous type, as shown in Fig. 1, a re-oxidation tank is provided after the ultra-low DO treatment tank, oxygen is further supplied to the activated sludge mixed liquid after the treatment, and aeration treatment is performed before precipitation. Transfer to tank.
連続式の嫌気・好気式BOD・脱窒同時処理の曝気槽の場合、脱窒槽は嫌気状態で運転するため、好気槽と嫌気槽を完全に仕切る必要がある。一方、極低DO処理の曝気槽と再曝気槽は曝気の強度が異なるだけであるから、曝気槽が流入端から流出端までの流れ方向に細長い構造の場合で、散気管曝気のような前後の撹拌混合が少ない曝気方式の場合には、1つの曝気槽のなかで流入側を極低DO処理運転、流出端近くを再酸化槽、として使用することが可能である。 In the case of a continuous anaerobic / aerobic BOD / denitrification aeration tank, the denitrification tank operates in an anaerobic state, so it is necessary to completely separate the aerobic tank from the anaerobic tank. On the other hand, the aeration tank with ultra-low DO treatment and the re-aeration tank differ only in the intensity of aeration, so the aeration tank has a long and narrow structure in the flow direction from the inflow end to the outflow end. In the case of an aeration method with little stirring and mixing, it is possible to use an inflow side as an extremely low DO treatment operation and a reoxidation tank near the outflow end in one aeration tank.
また回分式の場合や、連続式であっても曝気槽が完全混合槽の場合には、極低DO処理の曝気量校正操作と曝気量制御を行う装置(以下、制御ユニット)は1つあれば、十分に機能を発揮することができるが、連続式で曝気槽が流入端から流出端までの流れ方向に細長い構造の場合には、流れ方向にRrが変化するため、全体をひとつの制御ユニットでカバーしきれない場合がある。その場合には、図5のように、細長い曝気槽を、曝気槽が流入端から流出端までの流れ方向に複数の制御ユニットを設け、それぞれ独立に制御することが有効である。この場合も複数の制御ユニットごとに曝気槽を仕切ることは必ずしも必要としない。 In case of batch type or continuous type, even if the aeration tank is a complete mixing tank, there is one device (hereinafter referred to as a control unit) that performs the aeration amount calibration operation and aeration amount control for ultra-low DO processing. However, if the aeration tank is a continuous structure that is elongated in the flow direction from the inflow end to the outflow end, Rr changes in the flow direction, so the entire control is performed as a single control. The unit may not be able to cover. In this case, as shown in FIG. 5, it is effective to provide a long and narrow aeration tank with a plurality of control units in the flow direction from the inflow end to the outflow end of the aeration tank and to control them independently. Also in this case, it is not always necessary to partition the aeration tank for each of the plurality of control units.
RNOX>0であれば、(4)式の(Rr−k2・RNOX)/Rrは1以下になるから、k1を1とすると、(4)式は1以下となる。活性汚泥全体としては硝化活性があるが、曝気量校正操作で、NH4-Nが少なくRrの値にRNOXが含まれない曝気槽では、(4)式によりkを計算して設定変更すると、その曝気槽での必要酸素量より少なくなり酸素不足になってしまう。例えば回分式における曝気工程の終盤や、図5のような連続式で複数の制御ユニットにより制御する場合であって、第1曝気槽、第2曝気槽までに脱窒処理が実質的に終了し、第3曝気槽ではBOD処理のみ行うケースが該当する。このような場合は、第1曝気槽、第2曝気槽では極低DO処理において(4)式を用いて原水変動に対応させてk値を設定変更し、第3曝気槽はk固定で運転することが適当である。 If R NOX > 0, (Rr−k2 · R NOX ) / Rr in equation (4) is 1 or less, so if k1 is 1, equation (4) is 1 or less. The activated sludge as a whole has nitrification activity, but in an aeration tank where NH4-N is small and R NOX is not included in the aeration volume calibration operation, if k is changed by setting (4), It becomes less than the required oxygen amount in the aeration tank, resulting in insufficient oxygen. For example, in the final stage of the batch-type aeration process, or when controlled by a plurality of control units in a continuous manner as shown in FIG. 5, the denitrification process is substantially completed by the first aeration tank and the second aeration tank. In the third aeration tank, the case where only BOD processing is performed corresponds. In such a case, the 1st aeration tank and the 2nd aeration tank are set to change the k value in accordance with the fluctuation of the raw water using the formula (4) in the extremely low DO treatment, and the third aeration tank is operated with k fixed. It is appropriate to do.
従来、流入水(原水)の成分等変動に適切に追従できる方法がなく処理が安定しないことが、活性汚泥における極低DO処理によるBOD単独またはBOD・脱窒同時除去が普及しない理由であったが、本発明により適正曝気量域が狭い条件であっても、適正制御が可能となった。
本発明により、活性汚泥処理装置の大きな改造を要することなくBODと脱窒が可能になり、且つ曝気動力も削減できるという効果がある。
Conventionally, there is no method that can appropriately follow fluctuations in the components of influent water (raw water) and the treatment is not stable, which is why BOD alone or simultaneous removal of BOD and denitrification by ultra-low DO treatment in activated sludge is not widespread. However, according to the present invention, proper control is possible even under conditions where the proper aeration amount range is narrow.
According to the present invention, there is an effect that BOD and denitrification can be performed and aeration power can be reduced without requiring a large modification of the activated sludge treatment apparatus.
以下、図1を参照して、本発明に係る活性汚泥酸素消費指標取得のための測定装置、及び、その具体的取得方法についてさらに詳細に説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の各実施形態に限定されないことはいうまでもない。 Hereinafter, with reference to FIG. 1, the measuring apparatus for the activated sludge oxygen consumption index acquisition which concerns on this invention, and its specific acquisition method are demonstrated in detail. It is needless to say that the scope of the present invention is described in the claims and is not limited to the following embodiments.
(BOD・脱窒同時処理装置の全体構成)
図1を参照して、本実施形態に係る処理装置1は、流入水のBODを除去し窒素分を脱窒する本発明の極低DO処理を行う曝気槽2と、曝気槽2からの流出液をさらに溶存酸素濃度十分の状態で曝気処理する再酸化槽3と、沈殿槽4と、沈殿槽4から曝気槽2に汚泥を戻す返送汚泥ライン5と、を主要構成として備えている。
再酸化槽3は処理目的によっては必ずしも必要としないが、より良質な処理水が必要な場合や、極低DO処理のバックアップが必要な場合や、窒素負荷が高く大きな硝化速度を必要とする場合には、設置することが好ましい。曝気槽2には、散気管6と曝気ブロア7と、曝気ブロア7の曝気風量を自動調節するインバータ8と、曝気風量計9と、曝気槽内活性汚泥混合液の温度及びDOを測定する温度計10と、DO計11と、が付設されている。さらに、これら各計器から送られる測定値を管理し、曝気ブロア7のインバータ8を制御するコンピュータを主要構成とする制御装置12を備えている。
(Overall configuration of BOD / denitrification simultaneous processing equipment)
Referring to FIG. 1, a treatment apparatus 1 according to the present embodiment includes an aeration tank 2 that performs the ultra-low DO treatment of the present invention that removes BOD of influent water and denitrifies nitrogen, and an outflow from the aeration tank 2. The main components are a
The
再酸化槽3には、図示しないが独立した曝気ブロアと、曝気風量調節装置と、散気管と、さらに(2)の発明に対応するためのRNOX測定装置13と、が付設されている。RNOX測定に係る操作、測定値の取得についても、制御装置12が行うように構成されている。
なお、曝気量制御については、曝気風量計と曝気風量を調節する自動バルブの開度制御や、表面曝気方式の場合には、モーターの回転数制御など、曝気方式により他の制御方式を用いることもできる。
曝気槽2は、曝気による酸素供給量を下記極低DO処理制御方法で制御して極低DO処理をおこなう。再曝気槽3は、曝気槽のDOを2mg/lから4mg/l程度に保ち、酸素の供給量を十分な状態で運転する。
制御装置のコンピュータには、予め曝気量校正操作に関するk値、曝気量と酸素溶解効率の関係式と、温度と飽和溶存酸素濃度の関係、インバータ出力と曝気量の関係、RNOX、k1、k2値などが保存されている。
Although not shown, the
For aeration control, use another control method depending on the aeration method, such as the opening control of the aeration flow meter and the automatic valve that adjusts the aeration air volume, or in the case of the surface aeration method, such as motor rotation speed control. You can also.
The aeration tank 2 performs the ultra-low DO process by controlling the oxygen supply amount by aeration by the following ultra-low DO process control method. The
The computer of the control device contains in advance the k value related to the aeration amount calibration operation, the relationship between the aeration amount and the oxygen dissolution efficiency, the relationship between the temperature and the saturated dissolved oxygen concentration, the relationship between the inverter output and the aeration amount, R NOX , k1, k2 Values are stored.
(極低DO処理制御方法)
以下、処理装置1における極低DO処理制御方法について説明する。
曝気槽2において、極低DO処理運転中に曝気量校正操作をおこなうタイミングになったら、(2)の発明を含む場合には、RNOX測定が行われたことをチェックし、行われていればkの値を更新し、コンピュータに保存しておく。
次に、制御装置12からインバータ8を操作して一次的に曝気量を強くし、そのときの温度Tを温度計10から、曝気量G1を曝気風量計9から、時間経過とともに上昇する活性汚泥混合液のDO値(C(t))をDO計10から、それぞれ取得する。C(t)の値が概ね1.5mg/l以上まで上昇したら、曝気を停止し、C(t)の低下速度に基づいてRrを計算する。Rrの値とC(t)が上昇していく過程のデータに基づき(6a)式によりKLaを計算する。
さらにKLaとRrから(2)式によりC1を計算し、G1のときのEa1、温度TのときのCs、kの値、G2のときのEa2、を用いて、(3)式に基づいて設定曝気量G2を計算する。次いで、インバータ出力と曝気量の関係に基づき、曝気ブロアーによる曝気風量が設定曝気量G2になるようにインバータ8を制御する。
(2)の発明を付加している場合は、RNOX測定装置13を用いて曝気量校正操作とは別のタイミングでRNOX値を測定し、測定結果を制御装置12に保存しておく。
曝気量校正操作時に、保存された測定値及び各係数を使って(4)式によりkを求め、さらに(3)式により求めた設定曝気量G2になるようにインバータ8を制御する。
(Extremely low DO processing control method)
Hereinafter, an extremely low DO processing control method in the processing apparatus 1 will be described.
In the aeration tank 2, when it is time to perform the aeration amount calibration operation during the ultra-low DO processing operation, if the invention of (2) is included, check that the R NOX measurement has been performed. Update the value of k and save it on your computer.
Next, the aeration amount is temporarily increased by operating the inverter 8 from the
Furthermore, C1 is calculated from Eq. (2) from KLa and Rr, and is set based on Eq. (3) using Ea1 at G1, Cs at temperature T, k, and Ea2 at G2. Calculate the aeration amount G2. Next, based on the relationship between the inverter output and the aeration amount, the inverter 8 is controlled so that the aeration air amount by the aeration blower becomes the set aeration amount G2.
When the invention (2) is added, the R NOX measurement device 13 is used to measure the R NOX value at a timing different from the aeration amount calibration operation, and the measurement result is stored in the
At the time of the aeration calibration operation, k is obtained by the equation (4) using the stored measurement value and each coefficient, and the inverter 8 is controlled so that the set aeration amount G2 obtained by the equation (3) is obtained.
(RNOX測定方法)
RNOXの測定は、曝気槽内の活性汚泥混合液をサンプリングして、アンモニア態窒素を測定後、一定時間活性汚泥混合液を曝気したあとのアンモニア態窒素を測定し、アンモニア態窒素減少量を曝気時間で除した値を、(11)式、(12)式で酸素消費量に換算することにより可能である。アンモニア態窒素は、市販のアンモニウムイオン測定装置やJISのK0102に記載の方法で測定できる。
さらにこれに限らず、本願発明者による特開2001−235462等に開示の方法に従い、極低DO処理後の活性汚泥混合液をサンプリングして、内生呼吸状態にするとともにアンモニア態窒素を除去したのち、アンモニウムイオンを定量添加して、時間と酸素の消費量を測定することにより定量することもできる。
(R NOX measurement method)
R NOX is measured by sampling the activated sludge mixture in the aeration tank, measuring ammonia nitrogen, measuring the ammonia nitrogen after aeration of the activated sludge mixture for a certain period of time, and measuring the decrease in ammonia nitrogen. This can be done by converting the value divided by the aeration time into oxygen consumption by the equations (11) and (12). Ammonia nitrogen can be measured by a commercially available ammonium ion measuring device or a method described in JIS K0102.
Furthermore, according to the method disclosed in JP 2001-235462 A by the inventors of the present application, the activated sludge mixed solution after the ultra-low DO treatment is sampled to be in an endogenous breathing state and ammonia nitrogen is removed. After that, it is also possible to quantitatively add ammonium ion and measure the time and oxygen consumption.
以下、本発明に係る活性汚泥処理装置における極低DO処理制御により、BODと脱窒の同時処理を実施した例を示す。
<実施例1>
本実施例は、合成廃水を使った処理テストの例(テストランA)である。
原水(流入水)組成を表1に示す。処理方法として曝気槽を半回分操作で使用した。また、処理サイクルとして、原水添加と極低DO処理を300分行ったのち(工程1)、静置を30分して汚泥を沈降分離し(工程2)、上澄み液の排出を30分行う(工程3)、工程を繰り返す操作を行った。
曝気槽条件は、スタート時汚泥量1.1リットル、MLSSは3,200mg/l、工程1での原水添加量は88cc/hr、温度約24℃で運転した。曝気条件を表2に、工程1の150分経過時の処理結果を表3に示す。
比較のため、工程1においてDOが0.5mg/l以上になるように曝気を行う通常の活性汚泥処理によるテストNo.0を併行しておこなった。
また表2には、曝気量校正操作時の各数値及び曝気量G2を用いて(1)式の関係に基づき逆算したkを含めた。曝気空気量と酸素溶解効率Eaの関係は、事前に曝気時間によるDOの上昇変化の実験により求めた。
表3より、テストNo.2がBOD・脱窒同時処理の適正条件であり、そのときのk値は表2から0.89であることが分かる。No.1はk値が1.10と0.89より大きく、酸素過多状態でNO3-Nが残り、脱窒が不十分である。No.3、No.4はk値がそれぞれ0.64、0.48と0.89より小さく、酸素が過不足状態であることから、処理水TOCが悪化し硝化が進まず、NH4-Nが多く残留することが判る。
本実施例より、kを0.89に設定して、(1)式より求めた曝気量G2に設定して曝気量校正操作を行うことにより、BOD・脱窒同時処理を最適に行えることが実証された。
Hereinafter, an example in which the simultaneous treatment of BOD and denitrification is performed by the extremely low DO treatment control in the activated sludge treatment apparatus according to the present invention will be shown.
<Example 1>
The present example is an example of a test using test wastewater (test run A).
Table 1 shows the composition of raw water (influent water). As a treatment method, an aeration tank was used in a semi-batch operation. In addition, as a treatment cycle, after adding raw water and ultra-low DO treatment for 300 minutes (Step 1), let stand for 30 minutes to settle and separate sludge (Step 2), and discharge the supernatant for 30 minutes ( Step 3) was repeated.
The aeration tank was operated at a starting sludge volume of 1.1 liters, MLSS of 3,200 mg / l, raw water addition of 88 cc / hr, and a temperature of about 24 ° C. Table 2 shows the aeration conditions, and Table 3 shows the processing results after 150 minutes of step 1.
For comparison, the test No. 0 was carried out along with the normal activated sludge treatment in which aeration was performed so that DO was 0.5 mg / l or more in Step 1.
Table 2 also includes k calculated backward based on the relationship of equation (1) using each numerical value and aeration amount G2 during the aeration amount calibration operation. The relationship between the amount of aerated air and the oxygen dissolution efficiency Ea was obtained in advance by experiments on the change in DO increase with aeration time.
From Table 3, it can be seen that Test No. 2 is an appropriate condition for simultaneous BOD / denitrification treatment, and the k value at that time is 0.89 from Table 2. No. 1 has a k value of 1.10, which is larger than 0.89, and NO3-N remains in an excessive oxygen state, resulting in insufficient denitrification. No.3 and No.4 have k values smaller than 0.64, 0.48, and 0.89, respectively, and oxygen is in excess or deficiency, so the treated water TOC deteriorates and nitrification does not progress, and much NH4-N remains. I understand.
This example demonstrates that BOD and denitrification simultaneous processing can be optimally performed by setting k to 0.89, setting the aeration amount G2 obtained from equation (1), and performing the aeration amount calibration operation. It was.
<実施例2>
本実施例は、(2)の発明に対応し、原水のBOD成分の組成やT-N濃度を変えて、結果的にRrとRNOXが異なるようにした処理テストにおいて、実際に極低DO処理を行い適正k値を求めた場合と、(4)式によりk値を計算した場合と、を比較したものである。
処理方法としては、実施例1と同様に曝気槽を半回分操作で使用した。処理サイクルとして、原水添加と極低DO処理を300分行ったのち(工程1)、静置を30分して汚泥を沈降分離し(工程2)、30分上澄み液を排出する(工程3)、操作を繰り返す処理を行った。スタート時汚泥量1.1リットル、工程1での原水添加量は88cc/hrである。
曝気槽条件は、テストランA’については実施例1と同一である。テストランBについては、MLSS=3,400mg/l、温度約24.4℃と24.5℃、テストランCについては、MLSS=3,060mg/l、温度25.2℃と23.2℃、で運転した。測定は、工程1の150分経過時におこなった。
<Example 2>
This example corresponds to the invention of (2), and in the processing test in which the composition of the BOD component of the raw water and the TN concentration were changed so that Rr and RNOX differed as a result, extremely low DO processing was actually performed. This is a comparison between the case where the appropriate k value is obtained and the case where the k value is calculated by the equation (4).
As a treatment method, the aeration tank was used in a semi-batch operation as in Example 1. As a treatment cycle, after adding raw water and ultra-low DO treatment for 300 minutes (step 1), let stand for 30 minutes to settle and separate sludge (step 2), and discharge the supernatant for 30 minutes (step 3) The process of repeating the operation was performed. The amount of sludge at the start is 1.1 liters, and the amount of raw water added in process 1 is 88 cc / hr.
The aeration tank conditions are the same as in Example 1 for test run A ′. Test run B was operated at MLSS = 3,400 mg / l, temperatures of about 24.4 ° C. and 24.5 ° C., and test run C was operated at MLSS = 3,060 mg / l, temperatures of 25.2 ° C. and 23.2 ° C. The measurement was performed after 150 minutes of step 1.
表4に各テストランの原水組成を示す。なお、テストランA’については実施例1の表1と同一である。
表5に各テストランの曝気量条件を示す。テストランA’については、実施例1の表2と同一である。なおk1、k2をそれぞれ1.0、0.56とした。
表6に各テストランの処理結果を示す。
Table 4 shows the raw water composition of each test run. The test run A ′ is the same as Table 1 in the first embodiment.
Table 5 shows the aeration amount conditions for each test run. The test run A ′ is the same as Table 2 in the first embodiment. Note that k1 and k2 were 1.0 and 0.56, respectively.
Table 6 shows the processing results of each test run.
表6の処理結果から、テストランA’ではテストNo.2が窒素除去率が最良で適正条件であり、テスト条件から逆算したk値は0.89である(表2、No.2参照)。一方、RrとRNOXから(4)式で計算したk値は0.87であり、両者はほぼ一致している。
同様に、テストランBでは、テストNo.7が窒素除去率が最良で適正条件であり、表5の曝気量条件から逆算したk値は0.90である。一方、表6の処理結果から、RrとRNOXから(4)式で計算したk値は0.90であり、両者は一致している。
同様に、テストランCでは、テストNo.10はNOx-Nが残りやや脱窒不足で曝気過剰であり、テストNo.12はNH4-Nが増加しやや曝気不足である。表5の曝気量条件から逆算したk値は、No.10が0.86でNo.11が0.73である。これに対し、表6の処理結果から、RrとRNOXから(4)式で計算したk値は0.79であり、上述のNo.10がやや曝気過剰、No.11がやや曝気不足であることと符合している。。
以上の結果から、流入水組成の変動に対応して曝気量の適正値は変化するが、(4)式で計算したkを使うことにより適正に制御できることが実証された。
From the processing results in Table 6, in test run A ′, test No. 2 has the best nitrogen removal rate and is the appropriate condition, and the k value calculated back from the test conditions is 0.89 (see Table 2, No. 2). On the other hand, the k value calculated by the equation (4) from Rr and R NOX is 0.87, and they are almost the same.
Similarly, in test run B, test No. 7 has the best nitrogen removal rate and is an appropriate condition, and the k value calculated backward from the aeration amount condition in Table 5 is 0.90. On the other hand, from the processing results in Table 6, the k value calculated from Rr and R NOX by the equation (4) is 0.90, and they are in agreement.
Similarly, in test run C, test No. 10 has NOx-N remaining slightly denitrified and aeration is excessive, and test No. 12 is NH4N increased and slightly aerated. The k values calculated from the aeration amount conditions in Table 5 are 0.86 for No. 10 and 0.73 for No. 11. On the other hand, from the processing results in Table 6, the k value calculated from Eq. (4) from Rr and R NOX is 0.79, and the above No. 10 is slightly over-aerated and No. 11 is slightly under-aerated. It matches. .
From the above results, it was proved that the appropriate value of the aeration amount changes corresponding to the fluctuation of the influent composition, but it can be controlled appropriately by using k calculated by the equation (4).
<実施例3>
本実施例は、(1)及び(2)の発明に対応し、図5に示す3つの曝気槽に3つの独立した極低DO制御ユニットを配置した処理槽において、BOD・脱窒同時処理運転を行う例である。
原水添加量は264cc/hr、MLSS=3,300mg/l、温度24.4℃、の条件で運転した。原水組成、k値設定条件、曝気量条件を、それぞれ表7・1〜表7・3に示す。
RNOXの測定は、第3曝気槽の汚泥で測定した。なおk1は1.0、k2は0.56を使用した。
処理結果を表7・4に示す。なお、同表において第1、第2曝気槽の除去率を空欄としたのは、第3曝気槽で新たなNOx-Nが発生して脱窒で低下する変化になり第1、第2曝気槽では処理水のNは反応途中であるためである。
<Example 3>
This embodiment corresponds to the inventions of (1) and (2), and in the treatment tank in which three independent ultra-low DO control units are arranged in the three aeration tanks shown in FIG. Is an example of
The raw water was added under the conditions of 264 cc / hr, MLSS = 3,300 mg / l, temperature 24.4 ° C. The raw water composition, the k value setting condition, and the aeration amount condition are shown in Tables 7-1 to 7.3, respectively.
R NOX was measured with sludge in the third aeration tank. Note that k1 was 1.0 and k2 was 0.56.
The processing results are shown in Tables 7 and 4. In the same table, the removal rates of the first and second aeration tanks are blank, because new NOx-N is generated in the third aeration tank and decreases due to denitrification. This is because N of the treated water is in the middle of the reaction in the tank.
各曝気槽では、原水BODの分解による酸素消費速度や硝化による酸素消費量や同時脱窒量などが異なるため、各曝気槽での適正曝気量も異なるが、曝気量校正操作を行って、第1曝気槽と第2曝気槽では(4)式に基づきk値を設定し、第3曝気槽ではk値を固定し、それぞれ(3)式による曝気量G2で曝気した。これにより、表7・4に示すように良好な処理ができた。 Each aeration tank has different oxygen consumption rate due to decomposition of raw water BOD, oxygen consumption due to nitrification, and simultaneous denitrification amount.Therefore, the appropriate aeration amount in each aeration tank is also different. In the first aeration tank and the second aeration tank, the k value was set based on the equation (4), and in the third aeration tank, the k value was fixed, and aeration was performed with the aeration amount G2 according to the equation (3). As a result, good treatment was achieved as shown in Tables 7 and 4.
第2曝気槽までで必要な脱窒は完了しており、第3曝気槽ではBODの単独除去を目的としている。第3曝気槽では硝化能力に対しNH4-Nが不足しており、(4)式によるk値で制御するとBOD処理のための酸素量が不足するため、k値を固定した。
硝化能力に対しNH4-Nが不足しているか否かは、表7・3に示すように、第3曝気槽のRrが第2曝気槽のRrより大きく低下して、ほぼ内生呼吸による酸素消費量に近い値であり、RNOXが含まれていないと推定されることから容易に判断できる。
The necessary denitrification has been completed up to the second aeration tank, and the third aeration tank aims to remove BOD alone. In the third aeration tank, NH4-N is insufficient for the nitrification capacity, and when the k value is controlled by the equation (4), the oxygen amount for BOD treatment is insufficient, so the k value was fixed.
As shown in Tables 7 and 3, whether or not NH4-N is deficient in nitrification capacity depends on the fact that Rr in the third aeration tank is significantly lower than Rr in the second aeration tank, and oxygen due to endogenous respiration. It is a value close to consumption, and it can be easily judged from the assumption that R NOX is not included.
本発明は、図1の単槽汚泥システム、硝化液循環システム、回分式脱窒システムなど、いろいろな形式の生物的脱窒方法の脱窒工程への還元剤添加量の制御に広く適用可能である。
さらに本発明は、脱窒を目的とせず、省エネのみ目的とする通常の活性汚泥の曝気風量削減のための運転にも適用できることはいうまでもない。
The present invention can be widely applied to control the amount of reducing agent added to the denitrification process of various types of biological denitrification methods such as the single tank sludge system, nitrification liquid circulation system, batch denitrification system of FIG. is there.
Furthermore, it goes without saying that the present invention can also be applied to an operation for reducing the aeration air volume of a normal activated sludge that does not aim at denitrification but only aims at energy saving.
1・・・・極低DO処理装置
2・・・・曝気槽
3・・・・再酸化槽
4・・・・沈殿槽
5・・・・返送汚泥ライン
6・・・・散気装置
7・・・・曝気ブロアー
8・・・・インバータ
9・・・・曝気風量計
10・・・温度計
11・・・DO計
12・・・制御装置
13・・・RNOX測定装置
DESCRIPTION OF SYMBOLS 1 ... Very low DO processing device 2 ...
Claims (2)
(1-1)極低DO処理運転中に、一時的に曝気を強くして曝気槽内のDOを上昇させたのち、曝気を停止する操作を行い、
(1-2)KLaを総括物質移動係数、Csを飽和溶存酸素濃度、Rrを活性汚泥混合液の好気条件下の酸素消費速度とするとき、DO値の時間的変化(dC(t)/dt )が(1)式で表されるとして、
dC(t)/dt = KLa(Cs−C(t))−Rr ・・・(1)式
(1-2-1)曝気を停止したときのDO低下過程におけるC(t)変化に基づいてRrを求め、
(1-2-2)一時的に曝気を強くしたときの平衡DO値C1(dC(t)/dt =0、C(t)=C1)を、曝気を強くしたときのDO上昇過程におけるC(t)変化、及び、(2)式の関係に基づいて、KLa又はC1を変化させた繰り返し演算により求め、
KLa(Cs−C1)=Rr ・・・(2)式
(1-3)一時的に曝気を強くしたときの曝気量をG1、そのときの酸素溶解効率をEa1とするとき、曝気による酸素供給能力と混合液の酸素消費速度が等しくなるときの曝気量G0が(3’)式により求められることから類推して、極低DO処理運転時の適正曝気量G2を(3)式を用いて繰り返し演算により求め、
G0=((Cs−C1)/Cs)・(Ea1/Ea0)・G1 ・・・(3’)式
G2=k・((Cs−C1)/Cs)・(Ea1/Ea2)・G1 ・・・(3)式
但し、Ea0、Ea2は、それぞれ曝気量G0、G2のときの酸素溶解効率であって、予め実験等に基づいて求めたEaとGの関係式を用いて取得できる、
kは、(3’)式類推による計算上の適正曝気量から、当該極低DO処理条件における適正曝気量G2を導く比例係数であって、予め種々の処理条件について適正曝気量を測定して各処理条件に対するk最適値を取得しておき、当該極低DO処理条件に対応するk最適値を(3)式に適用する、
(1-4)極低DO処理運転中の曝気量を、(1-3)により求めたG2に設定する操作を、極低DO処理運転中に適宜行うことにより、
極低DO処理運転中の曝気量を適正に維持することを特徴とする活性汚泥における曝気量制御方法。 When the dissolved oxygen concentration (hereinafter referred to as DO) in the activated sludge mixture in the aeration tank is 0.5 mg / l or less , aeration treatment (hereinafter referred to as extremely low DO treatment) is performed to remove BOD or BOD in wastewater. In activated sludge treatment equipment that removes nitrogen content at the same time,
(1-1) During the ultra-low DO treatment operation, after temporarily increasing the aeration to raise the DO in the aeration tank, perform the operation to stop the aeration,
(1-2) When KLa is the overall mass transfer coefficient, Cs is the saturated dissolved oxygen concentration, and Rr is the oxygen consumption rate under the aerobic condition of the activated sludge mixture, the change in DO value over time (dC (t) / dt) is expressed by equation (1),
dC (t) / dt = K L a (Cs−C (t)) − Rr (1)
(1-2-1) Obtain Rr based on the C (t) change in the DO reduction process when aeration is stopped,
(1-2-2) Equilibrium DO value C1 (dC (t) / dt = 0, C (t) = C1) when aeration is temporarily increased, and C in the DO increase process when aeration is increased (t) Based on the change and the relationship of the equation (2), it is obtained by iterative calculation with changing KLa or C1 ,
K L a (Cs−C 1 ) = Rr (2)
(1-3) When the aeration volume when the aeration is temporarily strengthened is G1 and the oxygen dissolution efficiency at that time is Ea1, the aeration volume when the oxygen supply capacity by aeration and the oxygen consumption rate of the mixture are equal By analogy from the fact that G0 is obtained from equation (3 ′), the appropriate aeration amount G2 during the operation of extremely low DO treatment is obtained by repeated calculation using equation (3).
G0 = ((Cs-C1) / Cs) · (Ea1 / Ea0) · G1 (3 ')
G2 = k · ((Cs- C1) / Cs) · (Ea1 / Ea2) · G1 ··· (3) equation However, EA0, Ea2 is an oxygen dissolution efficiency when the aeration amount G0, G2 respectively , Can be obtained using the relational expression of Ea and G obtained in advance based on experiments ,
k is a proportional coefficient for deriving the appropriate aeration amount G2 under the extremely low DO processing conditions from the appropriate aeration amount calculated by the equation (3 ′), and the appropriate aeration amount is measured in advance for various processing conditions. K optimal values for each processing condition are acquired, and k optimal values corresponding to the extremely low DO processing conditions are applied to Equation (3).
(1-4) By appropriately performing the operation to set the amount of aeration during the ultra-low DO treatment operation to G2 obtained in (1-3) during the ultra-low DO treatment operation,
A method of controlling the amount of aeration in activated sludge, characterized by maintaining an appropriate amount of aeration during ultra-low DO treatment operation.
k=k1・(Rr−k2・RNOX)/Rr ・・・(4)式
ここに、
RNOX:曝気槽内の活性汚泥混合液をサンプリングして測定した、硝化による酸素消費速度。
Rr:前記(1-2-2)により求めた活性汚泥混合液の酸素消費速度。
k1:実験的に定める補正係数。
k2:硝化に要する酸素量のうちBOD処理に使われる酸素量の割合。
The aeration amount control method in activated sludge according to claim 1, wherein the proportional coefficient k is set by the equation (4).
k = k1 · (Rr−k2 · R NOX ) / Rr (4) where
R NOX: Oxygen consumption rate by nitrification measured by sampling the activated sludge mixture in the aeration tank.
Rr : Oxygen consumption rate of the activated sludge mixture obtained by (1-2-2) above.
k1 : Correction coefficient determined experimentally.
k2 : Percentage of oxygen used for BOD treatment out of the amount of oxygen required for nitrification.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015136801A JP5833791B1 (en) | 2015-06-17 | 2015-07-08 | Aeration control method for activated sludge |
PCT/JP2015/085300 WO2016203675A1 (en) | 2015-06-17 | 2015-12-17 | Method for controlling amount of aeration in activated sludge |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015121674 | 2015-06-17 | ||
JP2015121674 | 2015-06-17 | ||
JP2015136801A JP5833791B1 (en) | 2015-06-17 | 2015-07-08 | Aeration control method for activated sludge |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5833791B1 true JP5833791B1 (en) | 2015-12-16 |
JP2017006894A JP2017006894A (en) | 2017-01-12 |
Family
ID=54874366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015136801A Expired - Fee Related JP5833791B1 (en) | 2015-06-17 | 2015-07-08 | Aeration control method for activated sludge |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5833791B1 (en) |
WO (1) | WO2016203675A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105699601A (en) * | 2016-03-16 | 2016-06-22 | 西安建筑科技大学 | Method for determining activated sludge treatment capacity |
WO2017104182A1 (en) * | 2015-12-17 | 2017-06-22 | 株式会社小川環境研究所 | Method for controlling amount of aeration in activated sludge |
CN111039418A (en) * | 2019-12-30 | 2020-04-21 | 正大食品企业(秦皇岛)有限公司 | Oxygen content control system for supporter groove of sewage station |
CN113620528A (en) * | 2021-08-16 | 2021-11-09 | 中国环境科学研究院 | Intelligent oxygen supply sewage treatment device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7550118B2 (en) | 2021-08-23 | 2024-09-12 | 株式会社クボタ | Multi-layer treatment tank and wastewater treatment system |
JP7122486B1 (en) * | 2022-04-22 | 2022-08-19 | 株式会社 小川環境研究所 | Method for measuring BOD of treated water of activated sludge |
JP7438484B1 (en) | 2023-11-24 | 2024-02-27 | 株式会社 小川環境研究所 | How to obtain activated sludge treated water COD |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56130296A (en) * | 1980-03-19 | 1981-10-13 | Yaskawa Electric Mfg Co Ltd | Controlling of airflow in aeration tank |
JPS6190796A (en) * | 1984-10-08 | 1986-05-08 | Showa Denko Kk | Treatment of sewage containing nitrogen |
JP2001255319A (en) * | 2000-03-09 | 2001-09-21 | Ogawa Kankyo Kenkyusho:Kk | Test method for wastewater treatment |
JP2011005354A (en) * | 2009-06-23 | 2011-01-13 | Ogawa Kankyo Kenkyusho:Kk | Method of operating activated sludge capable of simultaneously treating bod and nitrogen |
-
2015
- 2015-07-08 JP JP2015136801A patent/JP5833791B1/en not_active Expired - Fee Related
- 2015-12-17 WO PCT/JP2015/085300 patent/WO2016203675A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56130296A (en) * | 1980-03-19 | 1981-10-13 | Yaskawa Electric Mfg Co Ltd | Controlling of airflow in aeration tank |
JPS6190796A (en) * | 1984-10-08 | 1986-05-08 | Showa Denko Kk | Treatment of sewage containing nitrogen |
JP2001255319A (en) * | 2000-03-09 | 2001-09-21 | Ogawa Kankyo Kenkyusho:Kk | Test method for wastewater treatment |
JP2011005354A (en) * | 2009-06-23 | 2011-01-13 | Ogawa Kankyo Kenkyusho:Kk | Method of operating activated sludge capable of simultaneously treating bod and nitrogen |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017104182A1 (en) * | 2015-12-17 | 2017-06-22 | 株式会社小川環境研究所 | Method for controlling amount of aeration in activated sludge |
CN107207301A (en) * | 2015-12-17 | 2017-09-26 | 株式会社小川环境研究所 | Aeration control method in activated sludge |
EP3222590A4 (en) * | 2015-12-17 | 2018-05-16 | Ogawa Environmental Research Institute, Inc. | Method for controlling amount of aeration in activated sludge |
US10329181B2 (en) | 2015-12-17 | 2019-06-25 | Ogawa Environmental Research Institute Inc. | Method for controlling aeration volume in activated sludge |
CN107207301B (en) * | 2015-12-17 | 2020-12-04 | 株式会社小川环境研究所 | Method for controlling aeration amount in activated sludge |
CN105699601A (en) * | 2016-03-16 | 2016-06-22 | 西安建筑科技大学 | Method for determining activated sludge treatment capacity |
CN105699601B (en) * | 2016-03-16 | 2017-09-01 | 西安建筑科技大学 | A kind of method for judging active sludge treatment ability |
CN111039418A (en) * | 2019-12-30 | 2020-04-21 | 正大食品企业(秦皇岛)有限公司 | Oxygen content control system for supporter groove of sewage station |
CN113620528A (en) * | 2021-08-16 | 2021-11-09 | 中国环境科学研究院 | Intelligent oxygen supply sewage treatment device |
Also Published As
Publication number | Publication date |
---|---|
WO2016203675A1 (en) | 2016-12-22 |
JP2017006894A (en) | 2017-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5833791B1 (en) | Aeration control method for activated sludge | |
TWI402221B (en) | Nitration of ammonia - containing nitrogen water and its treatment | |
AU2011347092B2 (en) | Method and facility for treating water by nitritation/denitritation comprising at least one aerated step and one step for controlling the oxygen input during the aerated step | |
CN107207301B (en) | Method for controlling aeration amount in activated sludge | |
JP6720100B2 (en) | Water treatment method and water treatment device | |
AU2016204416A1 (en) | Wastewater treatment apparatus, wastewater treatment method, wastewater treatment system, control device, control method, and program | |
JP5140545B2 (en) | Air supply system and air supply method | |
JP2016182551A (en) | Treatment method for organic waste water and treatment system therefor | |
CN113651417B (en) | Sewage treatment system and method for environmental engineering | |
KR20180104413A (en) | Oxygen control system for activated sludge process using harmony search algorithm | |
JP2006136820A (en) | Method for removing phosphorus and/or nitrogen from sewage | |
Guglielmi et al. | Alternate anoxic/aerobic operation for nitrogen removal in a membrane bioreactor for municipal wastewater treatment | |
JP2018111061A (en) | Nitrogen removing system and nitrogen removing method | |
JPH07299495A (en) | Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate | |
JP5656656B2 (en) | Water treatment equipment | |
JP2015208723A (en) | Water treatment process control system | |
JP2006289277A (en) | Nitrate forming nitrification/denitrification method, method for nitrifying/denitrifying ammonia nitrogen-containing liquid and nitrate forming nitrification/denitrification equipment | |
JP3707526B2 (en) | Waste water nitrification method and apparatus | |
JP6375257B2 (en) | Water treatment equipment | |
JP4190177B2 (en) | Method and apparatus for adding organic carbon source in biological denitrification treatment | |
JP5801506B1 (en) | Operation method of biological denitrification equipment | |
JP2000051892A (en) | Method and apparatus for nitrating waste water and activity detector | |
KR101229455B1 (en) | System for managing water quality of discharging water | |
JP2005000715A (en) | Method for controlling operation of aerating stirrer | |
JP2006142166A (en) | Apparatus for treating waste water biologically and method for controlling operation of the apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151027 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151029 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5833791 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |