JP2001255319A - Test method for wastewater treatment - Google Patents

Test method for wastewater treatment

Info

Publication number
JP2001255319A
JP2001255319A JP2000065799A JP2000065799A JP2001255319A JP 2001255319 A JP2001255319 A JP 2001255319A JP 2000065799 A JP2000065799 A JP 2000065799A JP 2000065799 A JP2000065799 A JP 2000065799A JP 2001255319 A JP2001255319 A JP 2001255319A
Authority
JP
Japan
Prior art keywords
bod
aeration
dissolved oxygen
oxygen concentration
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000065799A
Other languages
Japanese (ja)
Other versions
JP3301428B2 (en
Inventor
Takao Ogawa
尊夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OGAWA KANKYO KENKYUSHO KK
Ogawa Kankyo Kenkyusho KK
Original Assignee
OGAWA KANKYO KENKYUSHO KK
Ogawa Kankyo Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OGAWA KANKYO KENKYUSHO KK, Ogawa Kankyo Kenkyusho KK filed Critical OGAWA KANKYO KENKYUSHO KK
Priority to JP2000065799A priority Critical patent/JP3301428B2/en
Publication of JP2001255319A publication Critical patent/JP2001255319A/en
Application granted granted Critical
Publication of JP3301428B2 publication Critical patent/JP3301428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a test method for controlling the operation state of an activated sludge method and a biological denitrification method. SOLUTION: The general mass transfer coefficient of the oxygen dissolving speed of an aeration device at the time of aeration of an activated sludge mixed waste liquid is set to Kabs and the waste liquid is sufficiently aerated to obtain a value at a point of time when the concentration of dissolved oxygen becomes almost constant and the area S1 which is surrounded by a dissolved oxygen concentration change curve, which is obtained when the waste liquid to which a set amount of an easily decomposable BOD substance is added is aerated until the concentration D01 of dissolved oxygen at the start time of aeration becomes the obtained value, and an imaginary dissolved oxygen concentration change curve, which is calculated from a formula when aeration is started from the initial value D01 at the start time of aeration, is multiplied by Kabs to obtain a value BOD1 while the mixed liquid is brought to an anaerobic state for a definite time after a set amount of the easily decomposable BOD substance is added and, thereafter, aeration is started from the concentration D02 of dissolved oxygen at the start time of aeration to obtain a dissolved oxygen change curve and a value BOD2 is calculated from the formula corresponding to the initial value D02 by the same technique and, from the difference between BOD1 and BOD2, the concentration of nitrite ions or nitrite ions in the mixed waste liquid and the reaction quantity of denitrification reaction are measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は活性汚泥処理法およ
び生物学的脱窒素法の運転状態を管理する試験方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a test method for controlling operating conditions of an activated sludge treatment method and a biological denitrification method.

【0002】[0002]

【従来の技術】廃水処理の方法として、好気性微生物を
利用した生物処理法は広く一般的に用いられる廃水処理
法である。その代表的なプロセスとして活性汚泥処理法
がある。その処理原理は、好気性微生物が廃水中の汚濁
物を捕捉し酸素の供給を得て分解することにより生物活
動するためのエネルギーを得たり、廃水中の汚濁物を分
解、合成して自己の生体を維持、増殖する自然界の生物
活動を高度に濃縮することにより廃水を浄化することで
ある。
2. Description of the Related Art As a wastewater treatment method, a biological treatment method using an aerobic microorganism is a widely used wastewater treatment method. A typical process is an activated sludge treatment method. The treatment principle is that aerobic microorganisms capture the pollutants in the wastewater and obtain oxygen supply to decompose and obtain energy for biological activity, or decompose and synthesize the pollutants in the wastewater to produce their own. Purifying wastewater by highly concentrating the biological activities of the natural world that maintain and proliferate the living body.

【0003】活性汚泥処理装置は一般的には微生物に酸
素を供給して汚濁物を分解する曝気槽と処理された液と
微生物を分離する沈殿槽から構成される。実際の活性汚
泥処理装置を安定に操業するうえで、この沈殿槽での汚
泥の沈降不良により、汚泥が処理水とともに流出するト
ラブルが活性汚泥処理装置の運転に非常に大きな問題で
ある。汚泥の沈降性不良の原因は大別して以下の3つが
ある。 活性汚泥の生物種に糸状菌が優勢となり、汚泥の沈降
性が悪くなる。 処理水中の硝酸イオンや亜硝酸イオンが沈殿槽で脱窒
菌により窒素ガスに還元され、発生した窒素ガス等によ
り、汚泥が浮上する。 沈殿槽内で酸欠により、汚泥が腐敗して発生するメタ
ンガス等により汚泥が浮上する。 これらの発生原因は活性汚泥の運転状況により異
なるが、浮上の程度が大きくなると活性汚泥処理装置の
操業が不能になってしまう重大なトラブルである。
[0003] An activated sludge treatment apparatus generally comprises an aeration tank for supplying oxygen to microorganisms to decompose pollutants, and a sedimentation tank for separating treated liquid from microorganisms. In operating the actual activated sludge treatment apparatus stably, the trouble of sludge flowing out together with the treated water due to poor sedimentation of the sludge in the sedimentation tank is a very serious problem in the operation of the activated sludge treatment apparatus. The causes of poor sedimentation of sludge are roughly classified into the following three. Activated sludge is predominant in filamentous fungi, and sludge sedimentation is poor. Nitrate ions and nitrite ions in the treated water are reduced to nitrogen gas by denitrifying bacteria in the sedimentation tank, and sludge floats by the generated nitrogen gas and the like. Due to lack of oxygen in the sedimentation tank, the sludge rises due to the methane gas generated by the sludge being putrefied. The causes of these occurrences vary depending on the operating conditions of the activated sludge, but they are serious troubles in which the operation of the activated sludge treatment device becomes impossible when the degree of floating increases.

【0004】上記のうちは曝気空気量不足や沈殿槽内
の汚泥掻き寄せ機の不良等原因が単純なため対策は比較
的容易であるが、は曝気空気量等の運転条件にもよる
が、原水中の汚濁成分による要因が大きく、原因の除去
が難しいため根本的な対策は容易ではない。は発生の
メカニズムは後述のように解明されており、生物学的脱
窒素法ではこのメカニズムを利用して廃水中の窒素分を
除去しているが、活性汚泥処理や生物学的脱窒素法の運
転管理において、簡便に発生を予知する手法がなく、し
かもと異なりの現象は急速に発生するため活性汚泥
法においては対策が遅れ被害が甚大となる傾向がある。
活性汚泥処理法はいろいろな廃液に適用でき、処理能
力、処理性能、処理コスト等他の廃水処理法と比較し、
たいへん有用な方法であるが、汚泥の浮上防止管理が難
しいのが最大の難点といってよい。
[0004] Among the above, countermeasures are relatively easy because the causes such as insufficient amount of aerated air and defective sludge scraper in the sedimentation tank are simple, but depending on the operating conditions such as the amount of aerated air, Fundamental countermeasures are not easy because the factors caused by the pollutants in the raw water are large and it is difficult to remove the cause. The mechanism of the generation has been elucidated as described below, and the biological denitrification method uses this mechanism to remove nitrogen from wastewater. In operation management, there is no simple method for predicting the occurrence, and a different phenomenon occurs rapidly. Therefore, in the activated sludge method, countermeasures are delayed, and the damage tends to be enormous.
The activated sludge treatment method can be applied to various waste liquids, and compared with other waste water treatment methods such as treatment capacity, treatment performance, treatment cost,
Although it is a very useful method, the biggest difficulty is that sludge floating prevention management is difficult.

【0005】の発生メカニズムは以下のとおりであ
る。微生物が活動していくうえには窒素やリンが必要で
ある。一般に廃水中の組成割合はBOD:N:P=100:
5:1がよいとされており、原水中にNが含まれていない
場合はN源を補給する。原水中のNは分子構造のなかで
さまざまな形態で含まれているが、単純に表現すれば微
生物はBODの分解過程でNをアンモニア性の窒素に変
える。さらにアンモニア性窒素は好気状態で硝化菌によ
り次式のように硝酸イオンや亜硝酸イオンに変える。 (1) (2)式は硝化反応とよばれる。硝酸イオンや亜硝酸
イオンはさらに嫌気状態で脱窒素菌により次式のように
窒素ガスに還元される。 (3) (4)式は脱窒素反応とよばれる。廃水中の窒素はBO
D:N:P=100:5:1程度であれば生体に取り込まれるた
め、(3)(4)式の反応は少ないが、余剰の窒素があり、
かつその他の条件が整えば(3)(4)式の反応が進む。(3)
(4)式は活性汚泥法では通常沈殿槽内で起こるため発生
する窒素ガスや炭酸ガスにより汚泥が浮上するトラブル
となる。
The mechanism of occurrence is as follows. Microorganisms require nitrogen and phosphorus to work. Generally, the composition ratio in wastewater is BOD: N: P = 100:
5: 1 is said to be good, and if the raw water does not contain N, replenish the N source. N in raw water is contained in various forms in its molecular structure, but in simple terms, microorganisms convert N to ammonia nitrogen during the BOD degradation process. Further, ammoniacal nitrogen is converted into nitrate ions and nitrite ions by nitrifying bacteria in an aerobic state as shown in the following formula. Equations (1) and (2) are called a nitrification reaction. Nitrate ions and nitrite ions are further reduced in an anaerobic state by a denitrifying bacterium to nitrogen gas as in the following formula. (3) Equation (4) is called a denitrification reaction. Nitrogen in wastewater is BO
If D: N: P = 100: 5: 1, it will be taken into the living body, so the reaction of formulas (3) and (4) is small, but there is excess nitrogen,
If the other conditions are satisfied, the reactions of equations (3) and (4) proceed. (3)
In the activated sludge method, equation (4) usually occurs in the sedimentation tank, and the generated nitrogen gas or carbon dioxide gas causes sludge to float.

【0006】硝化反応が進む条件は、活性汚泥中に硝化
菌が存在し、廃水中の溶存酸素濃度がある状態であれ
ば、BODの処理とともに進行するが、特にBOD処理
の終盤において活発に進行する。これは硝化菌の増殖速
度が一般のBOD分解菌より小さいうえ、アンモニア性
窒素を硝酸性窒素にかえるには、まず廃液中の窒素をB
OD処理でアンモニア性窒素にかえる必要があるためで
ある。
[0006] The conditions under which the nitrification reaction proceeds proceed with BOD treatment if nitrifying bacteria are present in the activated sludge and there is a dissolved oxygen concentration in the wastewater, but especially at the end of the BOD treatment. I do. This is because the growth rate of nitrifying bacteria is lower than that of general BOD-degrading bacteria, and in order to convert ammoniacal nitrogen to nitrate nitrogen, nitrogen in the waste liquid must first be converted to B
This is because it is necessary to change to ammonia nitrogen in the OD treatment.

【0007】脱窒素反応は活性汚泥中に脱窒素菌が存在
し、嫌気状態で硝酸を還元するため分解容易な有機物と
pHを適切に保つための酸が必要である。(3)(4)式では
有機物としてメタノールを使用した場合の反応式であ
る。また反応速度は溶存酸素濃度や温度やpHの条件の
他、有機物の種類や有機物と窒素の割合、脱窒素菌の活
性、濃度等により変化する。
In the denitrification reaction, denitrifying bacteria are present in the activated sludge, and reduce nitric acid in an anaerobic condition. Therefore, an organic substance which can be easily decomposed and an acid for maintaining an appropriate pH are required. Equations (3) and (4) are reaction equations when methanol is used as an organic substance. The reaction rate varies depending on the dissolved oxygen concentration, temperature and pH conditions, the type of organic substance, the ratio of organic substance to nitrogen, the activity and concentration of denitrifying bacteria, and the like.

【0008】硝化脱窒素による汚泥の浮上トラブルは廃
水中に窒素分を多量に含む廃水を処理する場合には、普
通に起こりうる現象で、上記の条件さえ整えばいつでも
発生する危険性がある。典型的な発生ケースは、窒素分
の高い廃水が流入し、曝気槽内が十分に高い溶存酸素濃
度に保たれBODの処理は良好に維持されて廃水中の窒
素分が硝酸イオンに酸化されて曝気槽および沈殿槽内に
蓄積されたあと、曝気槽に高いBOD濃度の廃水が流入
して曝気槽で処理しきれずに沈殿槽がBOD物質で汚染
された状態になると、脱窒素反応が急激に進行し、発生
したガスで汚泥が浮上する。激しい場合、沈殿槽のオー
バフロー堰から汚泥が流出するとともに沈殿槽の表面は
浮上した汚泥で厚く一面覆われ、まったく操業不可とな
る。廃水中に窒素を含む廃水は、アミノ酸を含む食品廃
水をはじめ多くの廃水がある。
[0008] Sludge floating problems due to nitrification and denitrification are common phenomena when treating wastewater containing a large amount of nitrogen in the wastewater, and may occur whenever the above conditions are met. In a typical case, wastewater with a high nitrogen content flows in, the inside of the aeration tank is kept at a sufficiently high dissolved oxygen concentration, the BOD treatment is maintained well, and the nitrogen content in the wastewater is oxidized to nitrate ions. After accumulated in the aeration tank and the sedimentation tank, wastewater with a high BOD concentration flows into the aeration tank and cannot be treated in the aeration tank. The sludge rises with the generated gas. In severe cases, the sludge flows out of the overflow weir of the sedimentation tank, and the surface of the sedimentation tank is thickly covered with the sludge that floats, making it impossible to operate at all. Wastewater containing nitrogen in wastewater includes many wastewaters, including food wastewater containing amino acids.

【0009】また生物学的脱窒素法は(1)〜(4)式を積極
的にとりいれて廃水中の窒素分を除去する方法であり、
活性汚泥法がBOD処理をおこなう曝気槽と固液分離を
おこなう沈殿槽から構成されるのに対し、基本的には曝
気を十分おこなってBODの処理と硝化反応を進行させ
る硝化槽と嫌気状態にして脱窒素反応を進行させる脱窒
素槽と汚泥と処理水を沈降分離する沈殿槽から構成され
る。装置構成は嫌気槽→硝化槽→嫌気槽→再曝気槽→沈
殿槽が一般的であるが、主として脱窒素反応に必要な有
機物の供給法やpHのコントロール法の違いでいろいろ
なバリエーションがある。生物学的脱窒素法では沈殿槽
にいく前に嫌気槽で窒素を除去し、再曝気槽で気泡を除
去して汚泥浮上をさせないようにしている。
[0009] The biological denitrification method is a method of removing the nitrogen content in the wastewater by positively adopting the equations (1) to (4).
The activated sludge method consists of an aeration tank for BOD treatment and a sedimentation tank for solid-liquid separation. And a sedimentation tank for sedimenting and separating sludge and treated water. The apparatus configuration is generally anaerobic tank → nitrification tank → anaerobic tank → re-aeration tank → sedimentation tank, but there are various variations mainly due to differences in the method of supplying organic substances necessary for the denitrification reaction and the method of controlling pH. In the biological denitrification method, nitrogen is removed in an anaerobic tank before going to a settling tank, and bubbles are removed in a re-aeration tank to prevent sludge from floating.

【0010】硝化脱窒素反応は活性汚泥においてはトラ
ブルとなり、生物学的脱窒素法では反応をおこさせるこ
とが目的であるが、両者とも硝化脱窒素反応の反応の起
こりやすさを管理する必要がある。しかしながら活性汚
泥法においては通常はシリンダーでの汚泥の沈降性を測
定するSV30を測定するくらいなものであり、汚泥浮上
トラブルの危険性大の廃水でも時々原水中の窒素分の分
析、沈殿槽に流入する処理水の硝酸イオン、沈殿槽流出
処理水の硝酸イオンを測定する程度である。生物学的脱
窒素法でも同程度である。これは廃水中の窒素分やアン
モニア態窒素、硝酸イオンの分析が自動測定器は大変高
価で維持に手間がかかったり、簡易測定では精度に問題
があるなど、加えて廃水中の濃度はいろいろな要素で変
化するため、測定頻度を多くしないと実効のあるデータ
がとれないため、とても管理できないためである。この
ようにニーズはあるものの硝化脱窒素反応は十分に管理
されているとはとてもいえない状況である。
[0010] The nitrification denitrification reaction is a problem in activated sludge, and the purpose of the biological denitrification method is to cause the reaction. However, in both cases, it is necessary to control the likelihood of the nitrification denitrification reaction. is there. However, the activated sludge method usually only measures SV30, which measures the sedimentation of sludge in a cylinder. Even wastewater with a high risk of sludge floating trouble is sometimes analyzed for nitrogen in raw water, It is only necessary to measure the nitrate ion of the inflowing treated water and the nitrate ion of the treated water flowing out of the precipitation tank. Biological denitrification is similar. This is because the analysis of nitrogen content, ammonia nitrogen, and nitrate ion in wastewater is very expensive and time-consuming to maintain, and there is a problem with accuracy in simple measurement. This is because data cannot be obtained unless the measurement frequency is increased, so that it cannot be managed very much. Although there is a need as described above, the nitrification denitrification reaction is not very well controlled.

【0011】[0011]

【発明が解決しようとする課題】本特許は活性汚泥にお
いては硝化脱窒素による汚泥浮上トラブルの危険性を予
知し、生物学的脱窒素法においては窒素除去が正常にお
こなわれているか否かを判断する手段として、混合液中
の硝酸イオンや亜硝酸イオン濃度を計量するか脱窒素反
応の反応量を評価する廃水処理試験方法を提供するもの
である。
The present invention predicts the danger of sludge floating trouble due to nitrification denitrification in activated sludge, and determines whether nitrogen removal is normally performed in biological denitrification. As a means for judging, an object of the present invention is to provide a wastewater treatment test method in which the concentration of nitrate ions or nitrite ions in a mixed solution is measured or the reaction amount of a denitrification reaction is evaluated.

【0012】[0012]

【課題を解決するための手段】好気性微生物を利用する
廃水処理での処理試験方法において、活性汚泥と廃液を
含む混合液を曝気装置で曝気したときに、該混合液に酸
素が溶解する速度は該混合液の飽和溶存酸素濃度とその
時点の該混合液の溶存酸素濃度の差を推進力とするとし
たときの総括物質移動係数をKabsの記号で表したとき、
該混合液を十分長く曝気し、溶存酸素濃度がほぼ一定に
なった時点の値highfinalDOを取得し、該混合液中に分
解容易なBOD物質を設定量添加して該曝気装置で曝気
開始時点の溶存酸素濃度DO1からhighfinalDOになるまで
曝気したときに得られる曝気経過時間tによる溶存酸素
濃度DOの変化曲線と曝気開始同時刻で同初期値DO1から
曝気をスタートしたとしたとき DO=highfinalDO-(highfinalDO-DO1)exp(-Kabs・t) の計算式で計算される仮想の溶存酸素濃度変化曲線で囲
まれる面積S1にKabsを掛けた値BOD1と、分解容易な
BOD物質を設定量添加したあと一定時間外部からの酸
素の供給を断って混合液を嫌気状態にしたあと曝気開始
時点の溶存酸素濃度DO2から曝気を開始して得られる溶
存酸素の変化曲線と曝気開始同時刻で同初期値DO2から
曝気をスタートしたとしたとき DO=highfinalDO-(highfinalDO-DO2)exp(-Kabs・t) の計算式で計算される仮想の溶存酸素濃度変化曲線で囲
まれる面積S2にKabsを掛けた値BOD2を求め、BOD
1とBOD2の差から混合液中の硝酸イオンや亜硝酸イオ
ン濃度を計量、または脱窒素反応の反応量を計量する。
In a treatment test method for wastewater treatment using aerobic microorganisms, the rate at which oxygen dissolves in a mixed liquid containing activated sludge and waste liquid when the mixed liquid is aerated with an aeration device. The total mass transfer coefficient when the difference between the saturated dissolved oxygen concentration of the mixture and the dissolved oxygen concentration of the mixture at that time is defined as the driving force is represented by the symbol of Kabs,
The mixture is aerated for a sufficiently long time to obtain a value of highfinalDO when the dissolved oxygen concentration becomes substantially constant, a set amount of easily decomposable BOD substance is added to the mixture, and the aeration apparatus starts aeration at the time of aeration. When the aeration is started from the same initial value DO 1 at the same time as the aeration start time, the change curve of the dissolved oxygen concentration DO according to the aeration elapsed time t obtained when the aeration is performed from the dissolved oxygen concentration DO 1 to the high-final DO DO = highfinalDO -(highfinalDO-DO 1 ) exp (-Kabs ・ t) The value BOD 1 obtained by multiplying the area S 1 surrounded by the virtual dissolved oxygen concentration change curve by Kabs and the easily decomposable BOD substance After the addition of the set amount, the supply of oxygen from the outside was stopped for a certain period of time to make the mixture anaerobic, and then the dissolved oxygen concentration curve at the start of aeration and the aeration from the dissolved oxygen concentration DO 2 were obtained. Aeration started from the same initial value DO 2 at time DO = highfinalDO- (highfinalDO-DO 2 ) exp (−Kabs · t) The value BOD 2 is obtained by multiplying Kas by the area S 2 surrounded by the virtual dissolved oxygen concentration change curve calculated by the formula: , BOD
From the difference between 1 and BOD 2, the concentration of nitrate ions or nitrite ions in the mixture is measured, or the reaction amount of the denitrification reaction is measured.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【実施例】はじめに本方法の原理について簡単にのべ
る。曝気槽内の混合液をサンプリングして本方法の曝気
装置で曝気していくと廃水中の溶存酸素濃度DOは曝気経
過時間tとともに上昇していくが、その変化は(5)式で
表される。 ここにDOsatは飽和酸素濃度[mg/l]、DOは曝気槽内酸素
濃度[mg/l]、Kabsは総括物質移動係数[1/min]、ASactは
活性汚泥が呼吸で使う酸素消費速度[mg/l/min]、BODac
tは活性汚泥がBOD成分の分解で使う酸素消費速度[mg
/l/min]である。(5)式右辺第1項は曝気装置から酸素供
給速度であり、第2項は活性汚泥が呼吸およびBODの
分解で使う酸素消費速度である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the principle of the present method will be briefly described. When the mixed solution in the aeration tank is sampled and aerated by the aeration device of the present method, the dissolved oxygen concentration DO in the wastewater increases with the aeration elapsed time t, and the change is expressed by equation (5). You. Where DOsat is the saturated oxygen concentration [mg / l], DO is the oxygen concentration in the aeration tank [mg / l], Kabs is the overall mass transfer coefficient [1 / min], and ASact is the oxygen consumption rate used by activated sludge for breathing [ mg / l / min], BODac
t is the oxygen consumption rate used by activated sludge to decompose the BOD component [mg
/ l / min]. The first term on the right side of the equation (5) is the oxygen supply rate from the aeration device, and the second term is the oxygen consumption rate used by the activated sludge for respiration and BOD decomposition.

【0014】ASactは汚泥の基礎呼吸による酸素の消費
速度である。基礎呼吸なのでBOD成分とは直接無関係
で短時間内ではほとんど一定である。ASactは概ねDO値
が0.5mg/l以上あれば、ASactはDO値に無関係に一定であ
ることが知られており、またこのことはBOD成分がほ
とんど0mg/lの混合液を酸素の供給を断った状態で溶存
酸素濃度が高い状態からDOの変化を測定すると直線状に
減少していくことで容易に実証できる。
ASact is the rate of consumption of oxygen by the basic respiration of sludge. Since it is basal respiration, it is not directly related to the BOD component and is almost constant within a short time. It is known that ASact is constant regardless of the DO value if the DO value is approximately 0.5 mg / l or more, and this means that the mixture containing almost 0 mg / l of BOD component can be supplied with oxygen. When the change of DO is measured from a state where the dissolved oxygen concentration is high in a state where it is turned off, it can be easily proved by a linear decrease.

【0015】BODactは汚泥がBOD成分を分解している
ときに使う酸素の消費速度である。BODactは汚泥がその
物質に馴化しているかどうか、汚泥の状態、水温、p
H、塩濃度等の棲息環境などで変化する。微生物がBO
D成分を分解する場合、反応はBOD成分に対応した酵
素等によりおこなわれ、その成分ごとに固有の反応速度
を示す。一般に有機物が微生物により最終的に水と炭酸
ガスに分解される過程では、いくつかの中間生成物を経
由し、それぞれの中間生成物の分解にはそれぞれの反応
速度がある。このため廃水処理における原水のように多
様なBOD成分を含む場合には反応過程が複雑に重複す
るため、BOD成分と1対1に特定できにくいが、廃液
の組成が少ない場合は、各成分毎の分解速度に対応した
階段状の分解曲線となり、容易にBOD成分と1対1に
特定できる。
BODact is the consumption rate of oxygen used when sludge is decomposing BOD components. BODact determines whether the sludge is acclimated to the substance, the condition of the sludge, the water temperature,
It changes with habitat such as H and salt concentration. The microorganism is BO
When decomposing the D component, the reaction is carried out by an enzyme or the like corresponding to the BOD component, and each component has a specific reaction rate. Generally, in the process in which an organic substance is finally decomposed into water and carbon dioxide by a microorganism, it passes through several intermediate products, and the decomposition of each intermediate product has its own reaction rate. For this reason, when various BOD components are contained, such as raw water in wastewater treatment, the reaction processes are complicatedly overlapped, and it is difficult to specify one-to-one with the BOD components. And a step-like decomposition curve corresponding to the decomposition rate of the BOD component can be easily specified one-to-one with the BOD component.

【0016】曝気過程でBODactが変化する場合には(5)
式は簡単には積分できないが、BOD成分が殆ど0mg/l
の混合液の場合、(5)式のBODactは殆ど0となり(5)式は
以下のようになる ASactは前述のごとく概ねDO>0.5mg/lではDOに無関係に
一定であるから概ねDO>0.5mg/lの範囲で(6)式は容易に
積分でき(7)式で表される。 DO=α−(α−DO0)exp(−Kabs・t) (7)式 但しα=DOsat−ASact/Kabs DO0は曝気を開始したときの初期値である。また(7)式
は曝気経過時間tが十分な大きさになれば右辺第2項は
無視できるから DO=α=DOsat−ASact/Kabs (8)式 の値で一定となり、この値をhighfinalDOで表せば、hig
hfinalDOはBOD成分が殆ど0mg/lの混合液を曝気した
場合、最終的に到達するDO値と定義でき、(8)式は DO=highfinalDO−(highfinalDO−DO0)exp(−Kabs・t) (9)式 と書き直せる。(9)式によるDOの変化は図1の1の点線
に示すような曲線となる。
When BODact changes during the aeration process (5)
The equation cannot be easily integrated, but the BOD component is almost 0mg / l
In the case of the mixed solution of formula (5), the BODact in equation (5) is almost 0, and equation (5) is as follows ASact is constant regardless of DO at approximately DO> 0.5 mg / l, as described above. Therefore, equation (6) can be easily integrated in the range of DO> 0.5 mg / l and expressed by equation (7). DO = α− (α−DO 0 ) exp (−Kabs · t) (7) where α = DOsat−ASact / Kabs DO 0 is an initial value when aeration is started. In equation (7), the second term on the right-hand side can be neglected if the aeration elapsed time t becomes sufficiently large, so DO = α = DOsat−ASact / Kabs (8) becomes constant, and this value is calculated by highfinalDO. Expressed as hig
hfinalDO If BOD component has little aerated a mixture of 0 mg / l, and finally can DO value and definition to arrive, (8) the DO = highfinalDO- (highfinalDO-DO 0 ) exp (-Kabs · t) (9) can be rewritten as The change of DO according to equation (9) is a curve as shown by the dotted line 1 in FIG.

【0017】一方混合液中にBOD成分が存在する場
合、BODactは無視できない値をもち、さらにBODactの値
は主として分解対象のBOD成分が変わるため、曝気経
過時間tとともに大きな値から小さな値へ変化し、最終
的に分解できるBOD成分がなくなればBODactはほとん
ど0になる変化をする。このため(5)式は単純に(9)式の
ように積分できないが、DOの変化は図1の2の実線の曲
線で示すような曲線となる。この曲線はメタノールや酢
酸のような単純なBOD成分の場合には、分解中はDOは
酸素供給速度とASact+BODactの酸素消費速度でバラン
スする低いレベルで一定となり、分解が終了すると、速
やかにhighfinalDOで一定となる図1の2の実線のよう
な典型的な2段曲線となる。
On the other hand, when the BOD component is present in the mixture, the BODact has a non-negligible value, and the value of BODact changes from a large value to a small value with the aeration elapsed time t, mainly because the BOD component to be decomposed changes. However, when the BOD component that can be decomposed finally disappears, BODact changes to almost zero. For this reason, equation (5) cannot be simply integrated as in equation (9), but the change in DO is a curve as shown by the solid curve 2 in FIG. This curve shows that for simple BOD components such as methanol and acetic acid, the DO is constant at a low level that is balanced by the oxygen supply rate and the oxygen consumption rate of ASact + BODact during decomposition, and when decomposition is complete, It becomes a typical two-step curve like a constant line in FIG.

【0018】今、曝気を開始したときのDOの初期値DO0
を同じとし、混合液中のBOD成分が殆ど0mg/lの混合
液を曝気したときの(9)式で表されるDO変化曲線を図1
の1の点線で表し、混合液中のBOD成分が存在する場
合の混合液を曝気した場合のDO変化曲線を図1の2の実
線で表した場合、各曝気経過時間における、点線と実線
の値の差はその時点における、BODを分解するに使用
される酸素消費速度による差を表し、この差を曝気経過
時間tで積分した値は両曲線で囲まれた面積Sに相当
し、この値にKabsを掛けた値は微生物がBOD成分を分
解するために使用する酸素量に相当する。この値はJI
S法で定められたBODの測定法とは異なるが、微生物
が分解するに要する酸素量を測定するという測定原理そ
のものは同じである。JIS法のBOD測定法は5日間
という長時間を要するが、本測定法はすでに十分馴養さ
れた汚泥を使用し、且つ数千mg/lという高濃度の汚泥を
使用するため数10分程度の短時間でJIS法のBODと
きわめて相関性の高い値が測定可能である。本測定原理
そのものは特願平9-342261や特願平10-119919や特願200
0-48412のなかですでに詳しく記述されているが、本発
明は上記の原理を別の角度から活用した方法である。
Now, an initial value DO 0 of DO when aeration is started.
And the DO change curve represented by the equation (9) when the BOD component in the mixture was almost 0 mg / l was aerated.
When the DO change curve when the mixture is aerated when the BOD component is present in the mixture is represented by the solid line in FIG. 1, the dotted line and the solid line at each aeration elapsed time The difference between the values represents the difference due to the oxygen consumption rate used to decompose the BOD at that time, and the value obtained by integrating this difference with the elapsed aeration time t corresponds to the area S enclosed by both curves. Multiplied by Kabs corresponds to the amount of oxygen used by the microorganism to decompose the BOD component. This value is JI
Although different from the BOD measurement method defined by the S method, the measurement principle itself of measuring the amount of oxygen required for microorganisms to decompose is the same. The BOD measurement method of the JIS method requires a long time of 5 days, but this measurement method uses sludge that has already been sufficiently acclimated and uses a sludge with a high concentration of several thousand mg / l, so it takes about several tens of minutes. A value highly correlated with the BOD of the JIS method can be measured in a short time. This measurement principle itself is described in Japanese Patent Application Nos. 9-342261, 10-119919, and 200.
As already described in detail in U.S. Pat. No. 4,064,412, the present invention is a method utilizing the above principle from another angle.

【0019】以下に具体的な操作法を述べる。曝気槽の
中からサンプリングした混合液のBODが殆ど0mg/lの
混合液、またはサンプリングした当初はBOD成分が残
っていても測定装置内で十分曝気をしてBODが殆ど0m
g/lになった混合液に、分解容易な有機物を規定濃度含
む液(以下BOD基準液と称す)を設定量該混合液に添
加混合したのち、設定時間だけ外部からの酸素の供給を
断って混合液を嫌気状態に保ち、その後該混合液を測定
装置の曝気装置で曝気し、その間のDOの変化曲線を測定
する。混合液中に硝酸イオンが存在し、活性汚泥中に脱
窒素菌が活動できる環境があれば、嫌気期間中に脱窒素
菌は(3)(4)式で表されるように硝酸イオンや亜硝酸イオ
ンをBOD基準液中の有機物を使って窒素に還元する。
このため嫌気期間後曝気して上昇するDO変化曲線から前
述の原理に基づく計算でBOD量を測定した値をBOD
2とし、嫌気期間をおかずにBOD基準液を添加後すぐ
に曝気を開始したDO変化曲線から計算したBOD量をB
OD1とすると、BOD2はBOD1より小さな値とな
る。BOD1−BOD2は硝酸イオン、亜硝酸イオンの還
元で使用される分と脱窒素菌の増殖に使用される分に相
当する。またその有機物の消費量はBOD基準液の成分
や濃度を一定とすれば硝酸イオン量や脱窒素菌の活力や
濃度による。したがってBOD1とBOD2を比較するこ
とにより、混合液中の硝酸イオンや亜硝酸イオン濃度を
計量でき、脱窒素反応の反応量を評価できる。
A specific operation method will be described below. BOD of the mixed liquid sampled from the aeration tank is almost 0 mg / l, or even if BOD components remain at the beginning of the sampling, the BOD is sufficiently aerated in the measuring device and the BOD is almost 0 m
To the g / l mixed solution, a solution containing a specified concentration of an easily decomposable organic substance (hereinafter referred to as a BOD standard solution) was added to the mixed solution in a set amount, and then mixed with the mixed solution. The mixed solution is kept in an anaerobic state by aeration, and then the mixed solution is aerated by an aeration device of a measuring device, and a change curve of DO during that time is measured. If nitric acid ions are present in the mixed solution and there is an environment in which the denitrifying bacteria can be active in the activated sludge, the denitrifying bacteria will react with nitric acid Nitrate ions are reduced to nitrogen using organic matter in the BOD standard solution.
For this reason, the value obtained by measuring the BOD amount by the calculation based on the above-described principle from the DO change curve that rises by aeration after the anaerobic period is calculated as BOD
The BOD amount calculated from the DO change curve in which aeration was started immediately after the addition of the BOD standard solution without an anaerobic period was defined as B.
When OD 1, BOD 2 becomes a value smaller than the BOD 1. BOD 1 -BOD 2 corresponds to the amount used for reducing nitrate ions and nitrite ions and the amount used for growing denitrifying bacteria. Further, the amount of the organic matter consumed depends on the amount of nitrate ions and the vitality and concentration of the denitrifying bacteria, provided that the components and the concentration of the BOD standard solution are fixed. Thus by comparing the BOD 1 and BOD 2, a nitrate ion and nitrite ion concentration in the mixed liquor can be metered, it can be evaluated and the reaction amount of denitrification.

【0020】ここにBOD が殆ど0の混合液とは、BODa
ctが小さな値で測定時間内ではほとんど変化しない廃液
という意味であり、JIS法のBODのように長時間で
測定した場合、長時間かけてゆっくりと分解するごく小
さな分解速度をもつBOD成分があってもBOD1とB
OD2の両者に等しく影響するため計算上誤差は小さく
殆ど的に支障ない。
Here, the mixed solution having a BOD of almost 0 means BODa
This means that the waste liquid has a small value of ct and hardly changes within the measurement time, and when measured over a long period of time such as the BOD of the JIS method, there is a BOD component having a very small decomposition rate that decomposes slowly over a long period of time. Even BOD 1 and B
Since it affects both OD 2 equally, the calculation error is small and almost does not hinder.

【0021】BOD基準液の有機物はテストに使用する
活性汚泥が十分馴化している原水中に含まれる最も分解
しやすい有機物が適用できるが、一般的には(3)(4)式に
示すメタノールやエタノールや酢酸等が使用できる。
As the organic substance of the BOD standard solution, the most easily decomposable organic substance contained in raw water, to which the activated sludge used for the test has been sufficiently acclimated, can be used. Generally, methanol represented by the formulas (3) and (4) is used. Or ethanol or acetic acid.

【0022】次に上記の測定原理の基づく具体的な測定
法の一例を示す。この測定法は運転中の活性汚泥装置ま
たは生物学的脱窒素装置に設置する運転管理装置として
使用することを想定したものであり以下測定法1と称
す。図2はこの様子を示した図である。測定方法はStep
1とStep3の2つの工程からなり、Step3はさらにStep3-
1、Step3-2、Step3-3の3つのサブ工程からなる。Step1
とStep3を1サイクルとし、このサイクルを繰り返す。St
ep1はサンプリングポンプで曝気槽内の混合液を装置内
にくみ上げ、装置内を新たなサンプル液で十分置換する
工程である。Step3ではStep3-1工程としてまずサンプリ
ングした混合液を曝気装置で曝気し、混合液中のBOD
成分を分解して溶存酸素濃度がhighfinalDOになるまで
曝気を続ける。溶存酸素濃度がhighfinalDOになった時
点でStep3-2工程に移行する。図2の3の実線はこのと
きの溶存酸素濃度変化曲線を示す。Step3-2ではまず先
頭で混合液にBOD基準液を設定量添加して曝気する。
溶存酸素濃度はhighfinalDOからスタートしBOD基準
液中のBOD成分を分解するためhighfinalDO−BODact/
Kabsに相当する値に向かって低下し、BOD基準液中の
BOD成分を分解し終わるとhighfinalDOに向かって上
昇し、highfinalDOで一定となった時点でStep3-3工程に
移行する。図2の5の実線はこのときの溶存酸素濃度変
化曲線を示す。Step3-3ではまず先頭で混合液にBOD
基準液をStep3-2工程と同量添加して曝気を停止する。
分解容易なBOD成分が添加され外部からの酸素の供給
がないため溶存酸素濃度は急激に低下し殆ど0mg/lとな
り嫌気状態になる。この状態で一定時間経過後再び曝気
を開始し、混合液中の残りのBOD成分が分解され溶存
酸素濃度がhighfinalDOになったらStep3-3を終了し、St
ep3全体が終了する。図2の7の実線はこのときの溶存
酸素濃度変化曲線を示す。Step3-1は曝気により予め混
合液中のBOD成分を分解しておく工程であり、図2の
3の実線とBODが殆ど0mg/lの仮想溶存酸素濃度曲線
4で囲まれた面積Sから混合液のBODが計算できる。
Step3-2工程のBOD基準液を添加して曝気する溶存酸
素濃度変化曲線5とBODが殆ど0mg/lの仮想溶存酸素
濃度曲線6で囲まれた面積S1からBOD1の値が求ま
り、Step3-3工程のBOD基準液を添加して嫌気状態を
作った後曝気する溶存酸素変化曲線7とBODが殆ど0m
g/lの仮想溶存酸素濃度曲線8で囲まれた面積S2からB
OD2の値が求まる。より正確にはBOD2の値にはStep
3-3工程スタート時のhighfinalDOから嫌気状態になるま
での溶存酸素濃度差もBODの好気性微生物の酸素によ
る分解量として曝気後の溶存酸素変化曲線から求めた値
に若干の補正量として加算する。BOD1-BOD2の差
が大きければ、(3)(4)式の反応が活発におこなわれたこ
とになり、差が小さければ反応は鈍かったことになる。
Next, an example of a specific measuring method based on the above measuring principle will be described. This measurement method is intended to be used as an operation management device installed in a running activated sludge device or biological denitrification device, and is hereinafter referred to as measurement method 1. FIG. 2 is a diagram showing this state. Measurement method is Step
Step 1 consists of two steps, Step 3 and Step 3
It consists of three sub-steps: 1, Step 3-2 and Step 3-3. Step1
And Step 3 are defined as one cycle, and this cycle is repeated. St
ep1 is a process of pumping the mixed solution in the aeration tank into the device by a sampling pump and sufficiently replacing the inside of the device with a new sample solution. In Step 3, the sampled mixture is first aerated with an aeration device as Step 3-1 and the BOD in the mixture is
Aeration is continued until the dissolved oxygen concentration becomes highfinalDO by decomposing the components. When the dissolved oxygen concentration becomes highfinalDO, the process proceeds to Step 3-2. The solid line 3 in FIG. 2 shows the dissolved oxygen concentration change curve at this time. In Step 3-2, a set amount of a BOD reference solution is first added to the mixed solution and aerated.
The dissolved oxygen concentration starts from highfinalDO and decomposes the BOD component in the BOD standard solution by using highfinalDO-BODact /
The value decreases toward the value corresponding to Kabs. When the BOD component in the BOD standard solution is completely decomposed, the value increases toward highfinalDO. When the value becomes constant at highfinalDO, the process proceeds to Step 3-3. The solid line 5 in FIG. 2 shows the dissolved oxygen concentration change curve at this time. In Step3-3, BOD is first added to the mixture at the beginning
The aeration is stopped by adding the same amount of the reference solution as in Step 3-2.
Since a readily decomposable BOD component is added and there is no supply of oxygen from the outside, the dissolved oxygen concentration drops sharply to almost 0 mg / l and becomes anaerobic. In this state, aeration is started again after a certain period of time, and when the remaining BOD component in the mixed solution is decomposed and the dissolved oxygen concentration becomes highfinal DO, Step 3-3 is terminated, and St.
The entire ep3 ends. The solid line 7 in FIG. 2 shows the dissolved oxygen concentration change curve at this time. Step 3-1 is a step of previously decomposing the BOD component in the mixed solution by aeration. The solid line of FIG. 2 and the BOD are mixed from the area S surrounded by the virtual dissolved oxygen concentration curve 4 of almost 0 mg / l. The BOD of the liquid can be calculated.
Step3-2 aerated by the addition of BOD standard solution of step the dissolved oxygen concentration variation curves 5 and BOD is Motomari value of BOD 1 from the virtual dissolved oxygen concentration curve area S 1 surrounded by 6 most 0 mg / l, Step3 -3 Process BOD standard solution is added to create an anaerobic state and then aeration is performed.
from the area S 2 surrounded by the virtual dissolved oxygen concentration curve 8 of g / l to B
The value of OD 2 is obtained. More precisely, the value of BOD 2 is Step
3-3 The difference in dissolved oxygen concentration from highfinalDO to anaerobic state at the start of the process is also added as a slight correction to the value obtained from the dissolved oxygen change curve after aeration as the amount of BOD aerobic microorganisms decomposed by oxygen. . If the difference between BOD 1 and BOD 2 is large, the reactions of equations (3) and (4) are actively performed, and if the difference is small, the reaction is slow.

【0023】上記例ではサンプリングした混合液のBO
D成分を分解し、溶存酸素濃度がhighfinalDOになった
時点で引き続き、BOD1を求める測定に移行している
ため、DO1はhighfinalDOと等しい値になるため、仮想溶
存酸素濃度曲線6はhighfinalDOで一定の直線となる。
またBOD2を求める工程では曝気は嫌気状態からスタ
ートするため、通常DO2は0mg/lとなる。このため仮想溶
存酸素濃度曲線8を計算する(9)式は、厳密には成り
立たないが、BODが殆ど0mg/lの廃液の場合はきわめ
て短時間でASactが一定となる概ね0.5mg/l以上にDOは上
昇するため、BODが殆ど0mg/lの仮想廃液に初めから
(9)式を適用しても誤差は小さく、実用上支障ない。
In the above example, the BO of the sampled mixture is
Decomposing D component, subsequently when the dissolved oxygen concentration became HighfinalDO, because of the transition to the measurement to determine the BOD 1, DO 1 is to become equal to the HighfinalDO, virtual dissolved oxygen concentration curve 6 in HighfinalDO It becomes a constant straight line.
In the step of obtaining BOD 2 , aeration starts from an anaerobic state, so that DO 2 is usually 0 mg / l. Therefore, the equation (9) for calculating the hypothetical dissolved oxygen concentration curve 8 does not hold strictly. However, in the case of a waste liquid having a BOD of almost 0 mg / l, the ASact becomes constant in a very short time, approximately 0.5 mg / l or more. Since the DO rises, the BOD becomes almost 0mg / l virtual waste liquid from the beginning.
Applying equation (9) has a small error and does not hinder practical use.

【0024】Step3-1工程は混合液中のBODを予め殆
ど0mg/lにする操作であるが、混合液中のBODが既に
殆ど0mg/lに近い場合や別の方法でBOD値が判明して
おり、測定期間中の変化の程度がわかっているのであれ
ば、上記測定値から引き算で求めることができ省略が可
能である。またStep3-2工程とStep3-3工程を逆にしても
目的は同様に達成できる。
Step 3-1 is an operation for previously bringing the BOD in the mixture to almost 0 mg / l. However, when the BOD in the mixture is already almost 0 mg / l, or when the BOD value is determined by another method, If the degree of change during the measurement period is known, it can be obtained by subtraction from the above measured value and can be omitted. In addition, the object can be similarly achieved by reversing Step 3-2 and Step 3-3.

【0025】測定法1では毎サイクル添加BOD基準液
のBODを測定するStep3-2工程をいれているが、活性
汚泥の活性が安定している場合は毎回同じ値を示すた
め、全体の測定時間を短縮する目的で毎サイクルでなく
2〜3サイクルに一度に省略することが可能である。しか
し活性汚泥はいつ汚泥の活性が変化するか予想しがたい
ため、連続して何サイクルもStep3-2工程を省略するこ
とは好ましくない。
The measuring method 1 includes a Step 3-2 step of measuring the BOD of the BOD standard solution added every cycle, but when the activity of the activated sludge is stable, the same value is obtained every time. Not every cycle to reduce
It is possible to omit at once every 2-3 cycles. However, when activated sludge changes its activity, it is difficult to predict when the activity of sludge changes. Therefore, it is not preferable to continuously omit Step 3-2 for many cycles.

【0026】次に上記の測定法1を具体化する装置例を
示す。図3には本発明による装置を活性汚泥処理装置に
設置する場合の具体例を示す。9は曝気槽、10は沈殿
槽である。11は本発明による装置の制御部である。該
制御部の主装置はパソコンである。12は本発明による
装置の測定部である。13は該検査装置部の一部である
サンプリングポンプである。本発明による装置は制御部
からの指令でサンプリングポンプで曝気槽から混合液を
くみ上げ、測定部で実施例のStep1からStep3までの検査
を行い、そのDOの変化データを制御部に伝送して制御部
で解析する。サンプリングポンプは標準活性汚泥の場
合、通常曝気槽出口付近に設置する。曝気槽出口付近で
は廃液中のBODはすでに処理されているためStep3-1
工程が短時間ですむため測定時間の短縮ができるためで
ある。また硝化反応はBOD処理の終盤において活発に
進行するため曝気槽出口付近が適当である。また生物学
的脱窒素法においては、同様の理由により硝化槽の出口
付近が適当である。次に上記の測定法1を具体化する装
置例を示す。
Next, an example of an apparatus for implementing the above-mentioned measuring method 1 will be described. FIG. 3 shows a specific example when the apparatus according to the present invention is installed in an activated sludge treatment apparatus. 9 is an aeration tank and 10 is a sedimentation tank. 11 is a control unit of the device according to the present invention. The main device of the control unit is a personal computer. Reference numeral 12 denotes a measuring unit of the device according to the present invention. A sampling pump 13 is a part of the inspection device. The apparatus according to the present invention pumps the mixed solution from the aeration tank with a sampling pump according to a command from the control unit, performs the inspection from Step 1 to Step 3 of the embodiment in the measurement unit, and transmits the DO change data to the control unit for control. Analyzed by the part. In the case of standard activated sludge, a sampling pump is usually installed near the outlet of the aeration tank. Since the BOD in the waste liquid has already been treated near the outlet of the aeration tank, Step3-1
This is because the measurement process can be shortened because the process is short. Since the nitrification reaction proceeds actively at the end of the BOD treatment, the vicinity of the outlet of the aeration tank is appropriate. In the biological denitrification method, the vicinity of the outlet of the nitrification tank is appropriate for the same reason. Next, an example of an apparatus for realizing the above-described measurement method 1 will be described.

【0027】図4は本発明を具体化する装置例を示すフ
ローシートである。14は溶存酸素計である。15は測
定容器であり該容器の混合液に溶存酸素計のセンサーを
浸析する。該容器の形状は液面から酸素が溶解して測定
誤差が生じないよう液の入口出口の配置や空気溜まりが
生じないようにする。13はサンプリングポンプであ
る。16は攪拌ポンプ、17は曝気容器である。18は
曝気電磁弁、19はアスピレータ、20は空気流量調節
バルブ、21はオーバーフロー管である。Step1では1
3のサンプリングポンプが作動し、17、15を経由し
て21のオーバーフロー管から排出される。17から2
0はStep3で再曝気する際使用する系統で18の曝気電
磁弁が開くことによる水流で19のアスピレータから空
気を吸引撹拌し酸素を溶解し、曝気容器内で気泡分離を
する。22はBOD基準液タンク、23はBOD基準液
添加ポンプである。22から23はStep3で設定量のB
OD物質を添加する際使用する。16の攪拌ポンプは、
溶存酸素計のセンサー付近の流速を常時確保するため
と、Step3で曝気電磁弁が開のときアスピレータへの循
環水流を得るために使用する。24は温度計で測定値は
コントローラを介して11の制御部と結ばれ、測定時間
中はサンプリングしたときの混合液の温度で装置内が一
定になるよう25のヒーターと26の冷却管で制御され
る。本発明の検査操作の動作、測定データの解析、運転
条件の指令、警報等はすべて11の制御部のコンピュー
タが一元管理する。本発明で使用するコンピュータは通
常のパーソナルコンピュータが使用でき、本実施例にお
いてはIBM(株)製Aptivaを使用し、拡張I/
Oスロットにアナログ→デジタル、デジタル→アナログ
変換ボードとして(株)インターフェース製IBX-3133、
IBX-3325を使用し、ポンプ等の駆動指令用のデジタル出
力ボードとして(株)インターフェース製IBX-2727を使
用した。27と28は制御部および測定部端子盤であ
る。ポンプ、電磁弁の駆動はコンピュータからデジタル
出力ボードを経由しての信号でリレーを作動させ、Step
1からStep3まで必要なタイミングで機器類をON−OF
Fさせる。ちなみにStep1工程は3分程度、Step3-1工程
は混合液中のBOD量により可変であるが曝気槽出口付
近の混合液であるので通常10分から60分程度である。St
ep3-2工程は通常20分程度、Step3-3工程は嫌気状態が10
分から20分程度、曝気時間は15分で合計25分から35分程
度が適当である。29は溶存酸素計の変換器である。1
4の溶存酸素計の信号は28の変換器で4mA〜20mAのア
ナログ電流信号に変換され11のコンピュータのアナロ
グ→デジタル変換ボードで変換されてコンピュータに取
り込まれる。コンピュータは演算の結果、BOD1とB
OD2の比較結果を硝酸イオン濃度または脱窒素反応の
反応量としてコンピュータ画面に表示出力する。本発明
を実現するハードは特願平8-205359「廃水処理制御方法
及び装置」、特願平10-119919「廃水処理制御方法」で
示したものと基本的には同じである。本発明は該ハード
を制御する測定法と得られた溶存酸素濃度の変化データ
を前述した方法での計算解析表示をコンピュータソフト
で実現する。
FIG. 4 is a flow sheet showing an example of an apparatus embodying the present invention. 14 is a dissolved oxygen meter. Reference numeral 15 denotes a measuring vessel, in which a sensor of a dissolved oxygen meter is immersed in a mixed solution in the vessel. The shape of the container is such that the arrangement of the inlet and outlet of the liquid and the accumulation of air do not occur so that the measurement error does not occur due to the dissolution of oxygen from the liquid surface. 13 is a sampling pump. Reference numeral 16 denotes a stirring pump, and 17 denotes an aeration container. 18 is an aeration solenoid valve, 19 is an aspirator, 20 is an air flow control valve, and 21 is an overflow pipe. In Step1, 1
The sampling pump of No. 3 operates and is discharged from the overflow pipe of No. 21 via Nos. 17 and 15. 17-2
Numeral 0 denotes a system used when re-aeration in Step 3 is performed. The aeration solenoid valve 18 is opened to suck and agitate air from an aspirator 19 to dissolve oxygen and separate bubbles in an aeration container. Reference numeral 22 denotes a BOD reference liquid tank, and 23 denotes a BOD reference liquid addition pump. 22 to 23 are set amount B in Step 3
Used when adding OD material. The 16 stirring pumps
It is used to always maintain the flow velocity near the sensor of the dissolved oxygen meter and to obtain the circulating water flow to the aspirator when the aeration solenoid valve is open in Step 3. Numeral 24 is a thermometer and the measured value is connected to the control unit 11 via a controller. During the measurement time, the temperature of the mixed liquid at the time of sampling is controlled by the heater 25 and the cooling pipe 26 so that the inside of the apparatus becomes constant. Is done. The operation of the inspection operation, the analysis of the measurement data, the instruction of the operating condition, the alarm, and the like of the present invention are all centrally managed by the computer of the 11 control units. An ordinary personal computer can be used as the computer used in the present invention. In this embodiment, IBM Corporation's Optiva is used, and the extended I / O is used.
IBX-3133 manufactured by Interface Co., Ltd. as an analog-to-digital or digital-to-analog conversion board in the O slot.
IBX-3325 was used, and IBX-2727 manufactured by Interface Co., Ltd. was used as a digital output board for driving commands such as pumps. 27 and 28 are a control section and a measurement section terminal board. The drive of the pump and the solenoid valve operates the relay by the signal from the computer via the digital output board.
ON-OF the equipment at the required timing from 1 to Step 3
F. Incidentally, the Step 1 step is about 3 minutes, and the Step 3-1 step is variable depending on the BOD amount in the mixture, but is usually about 10 minutes to 60 minutes since the mixture is near the outlet of the aeration tank. St
The ep3-2 step is usually about 20 minutes, and the anaerobic state of the Step3-3 step is 10 minutes.
It is appropriate that the aeration time is about 15 minutes with a total of about 25 to 35 minutes. 29 is a converter of the dissolved oxygen meter. 1
The signal of the dissolved oxygen meter 4 is converted into an analog current signal of 4-20 mA by the converter 28, converted by the analog-to-digital conversion board of the computer 11 and taken into the computer. The computer calculates BOD 1 and B
The comparison results of OD 2 displays output on a computer screen as a reaction amount of nitrate ion concentration or denitrification. The hardware for realizing the present invention is basically the same as that shown in Japanese Patent Application No. 8-205359, "Wastewater treatment control method and apparatus" and Japanese Patent Application No. 10-119919, "Wastewater treatment control method". The present invention realizes, by computer software, a measurement method for controlling the hardware and calculation analysis display of the obtained dissolved oxygen concentration change data by the above-described method.

【0028】上記装置例で測定した結果の一例を以下に
示す。装置内の混合液の容量2300ccに対し4.5cc/lのメ
タノールを成分とするBOD基準液をStep3-2の先頭とS
tep3-3の先頭で各14cc添加して、Step3-2の曝気時間は2
2分間、Step3-3は嫌気時間15分、再曝気時間15分の条件
で、Kabs=0.6[1/min]、highfinalDO=6.0[mg/l]で計算
した結果、BOD1=20mg/lに対し、BOD2=5mg/lと
なり、脱窒素反応で分解されたBOD量は15mg/lとなっ
た。このBOD量はメタノールに換算すると16.4mg/lと
なり、この反応が全て(4)式の反応でおこなわれたとす
ると、15分間で38mg/lの硝酸イオンが脱窒素反応で窒素
ガスに還元されたことになる。この結果は活性汚泥処理
装置においては汚泥浮上の危険性大で要注意警報発令レ
ベルであり、生物学的脱窒素法においては正常と判断さ
れる。
An example of the result measured by the above-mentioned apparatus example is shown below. A BOD standard solution containing 4.5 cc / l methanol as a component with respect to the volume of the mixed solution in the device of 2300 cc
Add 14cc each at the beginning of tep3-3, and the aeration time of Step3-2 is 2
2 minutes, Step 3-3 was performed under the conditions of anaerobic time 15 minutes and re-aeration time 15 minutes, and Kabs = 0.6 [1 / min] and highfinalDO = 6.0 [mg / l]. As a result, BOD 1 = 20 mg / l. On the other hand, BOD 2 = 5 mg / l, and the amount of BOD decomposed by the denitrification reaction was 15 mg / l. This BOD amount was 16.4 mg / l in terms of methanol, and assuming that this reaction was all carried out by the reaction of formula (4), 38 mg / l of nitrate ion was reduced to nitrogen gas by denitrification in 15 minutes. Will be. This result indicates that the activated sludge treatment apparatus has a great risk of sludge floating and is at a warning alert level, and is judged to be normal in the biological denitrification method.

【0029】操作や計算に使用するhighfinalDOとASact
とKabsの値は予めコンピュータの記憶装置に格納してお
くが、これらの値は活性汚泥の性状や温度等の条件によ
り若干変化するものであり、時々測定しなおす必要があ
り、通常以下のようにして求める。図5はこの様子を示
す図である。Step1でサンプリングし、Step3で何も添加
せずに曝気をおこない曝気時間を十分長くとるとやがて
溶存酸素濃度が高位で一定となる。その時の値がhighfi
nalDOである。図5のStep3曝気期間はこの様子を示す。
その時点で曝気を停止し、外からの酸素の供給を断って
溶存酸素濃度の減少速度を測定すればその値はASactに
なる。図5のStep3曝気停止期間はこの様子を示す。さ
らに時間が経過し、減少速度が直線的に減少する範囲で
highfinalDOより十分溶存酸素濃度が低くなった時点か
ら曝気を再開し、溶存酸素濃度の上昇曲線を測定する。
図5の30がその結果である。曝気を再開したときの溶
存酸素濃度を初期値DO0として(9)式でKabsを変化させ
て、30の測定曲線と最も近似できた値がKabsとなる。
図5のStep3再曝気期間はこの様子を示す。
HighfinalDO and ASact used for operations and calculations
And Kabs values are stored in advance in a storage device of a computer, but these values slightly change depending on conditions such as the properties and temperature of the activated sludge. Ask for. FIG. 5 is a diagram showing this state. If sampling is performed in Step 1 and aeration is performed without adding anything in Step 3, and the aeration time is sufficiently long, the dissolved oxygen concentration becomes constant at a high level. The value at that time is highfi
nalDO. This state is shown in the Step 3 aeration period in FIG.
At that time, the aeration is stopped, the supply of oxygen from outside is stopped, and the rate of decrease of the dissolved oxygen concentration is measured. This state is shown in Step 3 of the aeration stop period in FIG. As time further elapses and the rate of decrease decreases linearly
Aeration is resumed when the dissolved oxygen concentration becomes sufficiently lower than that of highfinalDO, and the rise curve of the dissolved oxygen concentration is measured.
The result 30 in FIG. 5 is the result. The Kabs is changed by the equation (9) with the dissolved oxygen concentration at the time of restarting the aeration as the initial value DO 0 , and the value that can best approximate the 30 measurement curves is Kabs.
This is shown in the Step 3 re-aeration period in FIG.

【0030】上記装置例では運転中の活性汚泥装置また
は生物学的脱窒素装置に設置する運転管理装置として示
してきたが、Step1工程を単純にサンプリング容器に混
合液をいれる操作に置き換えることで実験室の分析解析
機器としても使えることはいうまでもない。
In the above example of the apparatus, the operation control apparatus has been shown to be installed in the activated activated sludge apparatus or the biological denitrification apparatus. However, the experiment can be carried out by simply replacing the Step 1 step with the operation of putting the mixture in the sampling vessel. Needless to say, it can also be used as a laboratory analysis instrument.

【0031】本発明の方法を上記装置例や実験室の分析
解析機器として脱窒素の反応量を評価する装置として十
分効果を発揮できるが、さらに本発明の方法を本発明を
特願平8-205359、特願平10-119919で示した3StepDO制御
法に本機能を組み込めば活性汚泥法や生物学的脱窒素法
の処理水のBOD、汚泥の活性度も短時間で同時にコン
ピュータ画面に表現でき強力な運転管理機器となる。3S
tepDO制御法はStep1で曝気槽から混合液をサンプリング
し、Step2でサンプリングを停止し外部からの酸素の供
給を断って溶存酸素濃度の減少速度βを測定し、βが予
め設定した値より大きい場合Step3で何も添加せずに曝
気をおこない上昇する溶存酸素濃度の変化曲線から本発
明と同様の原理で混合液のBODを計算する。またβが
予め設定した値より小さい場合には、本来容易に分解で
きるBOD成分を含むBOD基準液を設定量添加して曝
気をおこない上昇する溶存酸素濃度の変化曲線から汚泥
活性度を測定する。
The method of the present invention can be sufficiently effective as an apparatus for evaluating the reaction amount of denitrification as an example of the above-described apparatus or an analytical and analytical instrument in a laboratory. If this function is incorporated into the 3StepDO control method described in 205359 and Japanese Patent Application No. 10-119919, the BOD of the treated water of the activated sludge method and the biological denitrification method and the sludge activity can be simultaneously displayed on the computer screen in a short time. Become a powerful operation management device. 3S
In the tepDO control method, the mixed liquid is sampled from the aeration tank in Step 1, the sampling is stopped in Step 2, the supply of oxygen from the outside is stopped, and the decreasing rate β of the dissolved oxygen concentration is measured, and when β is larger than a preset value. In step 3, aeration is performed without any addition, and the BOD of the mixed solution is calculated from the rising curve of the dissolved oxygen concentration based on the same principle as in the present invention. If β is smaller than a preset value, a set amount of a BOD standard solution containing a BOD component that can be easily decomposed is added, and aeration is performed to measure the sludge activity from the rising curve of the dissolved oxygen concentration.

【0032】図6は3StepDO制御法の1パターンであるSt
ep3(BOD添加)工程となる場合に本発明を組み込ん
だときのDO変化を示す図である。3StepDO制御法のStep1
は本発明の測定法1のStep1と同様の操作である。また3
StepDO制御法で使用するBOD基準液は容易に分解でき
るBOD成分からできているので、本発明の測定法1の
BOD基準液にも使える。3StepDO制御法はStep2で図6
の31のDO変化曲線から傾きの大きさβを測定し、その
大小でStep3の測定法を選択している。すなわちβが設
定値より小さい場合はBOD基準液を添加して曝気をお
こなうStep3(BOD添加)工程となる。この操作は本発
明の測定法1のStep3-2工程と同じであり、図6の32
の測定曲線と33の仮想溶存酸素濃度曲線で囲まれた面
積S1からBOD1が計算できる。したがって3StepDO制
御法のStep3(BOD添加)工程で汚泥の活性度が正常と
判断された場合、引き続き本発明の測定法1のStep3-3
工程をおこなうと測定時間に無駄がなく汚泥活性度と硝
化脱窒素反応性が同時に測定でき好都合である。βは曝
気停止期間のDOの減少速度であるから(5)式からβ=A
Sact+BODactであり、BOD添加をおこなう設定値にはB
ODactが若干ある状態なので上記のBOD1には若干量の
廃液のBODが上乗せされるが、BODactは小さな値であ
るため測定時間内の変化量は小さいため引き続き本発明
の測定法1のStep3-3工程で測定されるBOD2にも同様
に上乗せされ、BOD1とBOD2の引き算においては相
殺されるので誤差は小さく実用上支障ないレベルとな
る。
FIG. 6 shows one pattern of the 3 Step DO control method, St.
It is a figure which shows the DO change when this invention is incorporated when it becomes an ep3 (BOD addition) process. Step1 of 3StepDO control method
Is the same operation as Step 1 of the measuring method 1 of the present invention. Also 3
Since the BOD standard solution used in the StepDO control method is made of a BOD component that can be easily decomposed, it can be used as the BOD standard solution of the measuring method 1 of the present invention. Fig. 6
The magnitude β of the slope is measured from the 31 DO change curve, and the measurement method of Step 3 is selected according to the magnitude. That is, when β is smaller than the set value, the process is the Step 3 (BOD addition) step of adding the BOD reference solution and performing aeration. This operation is the same as the Step 3-2 step of the measuring method 1 of the present invention.
BOD 1 can be calculated from the area S 1 surrounded by the measurement curve of No. 33 and the virtual dissolved oxygen concentration curve of 33. Therefore, if the sludge activity is determined to be normal in the Step 3 (BOD addition) step of the 3Step DO control method, the Step 3-3 of the measurement method 1 of the present invention is continued.
When the process is performed, the sludge activity and the nitrification denitrification reactivity can be simultaneously measured without wasting the measurement time, which is convenient. β is the rate of decrease of DO during the aeration stop period, so β = A from equation (5).
Sact + BODact, and the set value for BOD addition is B
ODact because a state that a slight but BOD of the waste liquid in a small amount in the BOD 1 described above is plus, BODact the measuring method 1 of continuing the present invention since the change amount in the measuring time for a small value smaller Step3- BOD 2 measured in three steps is similarly added, and is canceled in the subtraction of BOD 1 and BOD 2 , so that the error is small and is at a level that does not hinder practical use.

【0033】3StepDO制御法でβが大きい場合、混合液
中の未分解のBOD成分が多い証拠であるので、何も添
加せず曝気をおこない混合液中のBODを測定する。こ
の操作は本発明の測定法1のStep3-1工程に相当するの
で、溶存酸素濃度がhighfinalDOになったのち本発明の
測定法1のStep3-2工程、Step3-3工程をおこなえば、β
の大きい場合でも硝化脱窒素反応性を評価できる。ただ
し、βがおおきい場合、溶存酸素濃度がhighfinalDOに
なるまで長時間を要する場合があり、毎回この操作をお
こなうとBOD処理状態の変化の把握に支障をきたす恐
れがでる。βが小さい時の測定で脱窒素反応で汚泥が浮
上する危険性の高いときのみβが大きい場合でも本発明
の測定法1を実施するとか、コンピュータ上のオプショ
ンボタンで選択可能にするほうが実際的である。生物学
的脱窒素法においては、BODの処理と窒素の同時除去
を目的とし、窒素の除去率を左右する重要因子のひとつ
は廃液中の窒素分をアンモニア性窒素を経由して硝酸性
窒素にかえる硝化工程であり、この反応ではまず十分B
OD成分を分解する必要がある。したがってβが大きい
場合はBODの処理が不十分である証拠で当然窒素分の
除去率も低下するので、βが大きい場合は前述のように
BOD処理状態の変化の把握に重点をおき、βが小さい
場合に重点的に本発明の方法を実施するほうが、全体の
測定の効率化となる。
If β is large in the 3 Step DO control method, it is evidence that the undecomposed BOD component in the mixture is large, so that the BOD in the mixture is measured by aeration without adding anything. Since this operation corresponds to Step 3-1 of the measuring method 1 of the present invention, if the dissolved oxygen concentration becomes highfinal DO and the Step 3-2 and Step 3-3 steps of the measuring method 1 of the present invention are performed, β
The nitrification denitrification reactivity can be evaluated even in the case of a large value. However, when β is large, it may take a long time until the dissolved oxygen concentration becomes highfinal DO, and if this operation is performed every time, it may be difficult to grasp changes in the BOD processing state. It is more practical to carry out the measurement method 1 of the present invention even when β is large only when there is a high risk of sludge floating in the denitrification reaction in the measurement when β is small, or to make it selectable with the option button on the computer. It is. In the biological denitrification method, the purpose is to treat BOD and remove nitrogen simultaneously. One of the important factors affecting the nitrogen removal rate is to convert the nitrogen content in the waste liquid to nitrate nitrogen via ammonia nitrogen. This is a fogging nitrification process.
It is necessary to decompose the OD component. Therefore, when β is large, the removal rate of nitrogen is naturally reduced by the evidence that BOD treatment is insufficient. When β is large, emphasis is placed on grasping changes in the BOD treatment state as described above, and β is increased. When the method of the present invention is focused on a small case, the efficiency of the whole measurement is improved.

【0034】[0034]

【発明の効果】本発明は活性汚泥処理装置や生物学的脱
窒素法に適用でき、活性汚泥法にあっては沈殿槽での脱
窒素のよる汚泥浮上というトラブルの危険性の予知を定
量的に表現でき、生物学的脱窒素法にあっては正常に脱
窒素反応がおこなわれているか否かの判定が定量的に表
現でき、それぞれの運転管理に役にたつ。また本発明を
特願平8-205359、特願平10-119919で示した3StepDO制御
法に本機能を組み込めば、活性汚泥法や物学的脱窒素法
の処理水のBOD、汚泥の健康状態も短時間で同時にコ
ンピュータ画面に表現でき運転管理に一層の効果とな
る。
The present invention can be applied to an activated sludge treatment apparatus and a biological denitrification method, and in the activated sludge method, quantitatively predicts the risk of trouble of sludge floating due to denitrification in a sedimentation tank. In the biological denitrification method, the determination of whether or not the denitrification reaction is normally performed can be quantitatively expressed, which is useful for each operation management. In addition, if this function is incorporated in the 3StepDO control method shown in Japanese Patent Application Nos. 8-205359 and 10-119919, the BOD of the treated water of the activated sludge method and the physical denitrification method, and the health condition of the sludge Can be simultaneously displayed on a computer screen in a short time, which is more effective for operation management.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本方式の原理を説明する図である。FIG. 1 is a diagram illustrating the principle of the present method.

【図2】本発明の測定方法を説明する図である。FIG. 2 is a diagram illustrating a measurement method of the present invention.

【図3】本発明による装置と活性汚泥処理装置の関係を
示す図である。
FIG. 3 is a diagram showing the relationship between the apparatus according to the present invention and an activated sludge treatment apparatus.

【図4】本発明の装置例を説明するフローシートであ
る。
FIG. 4 is a flow sheet for explaining an example of the apparatus of the present invention.

【図5】KabsとhighfinalDOの測定法を説明する図であ
る。
FIG. 5 is a diagram illustrating a method for measuring Kabs and highfinalDO.

【図6】3StepDO制御法に本発明による方法を組み込ん
だ例を説明する図である。
FIG. 6 is a diagram illustrating an example in which the method according to the present invention is incorporated in a 3Step DO control method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 3/12 C02F 3/12 P // C12M 1/00 C12M 1/00 H 1/34 1/34 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 3/12 C02F 3/12 P // C12M 1/00 C12M 1/00 H 1/34 1/34 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】好気性微生物を利用する廃水処理での処理
試験方法において、活性汚泥と廃液を含む混合液を曝気
装置で曝気したときに、該混合液に酸素が溶解する速度
は該混合液の飽和溶存酸素濃度とその時点の該混合液の
溶存酸素濃度の差を推進力とするとしたときの総括物質
移動係数をKabsの記号で表したとき、該混合液を十分長
く曝気し、溶存酸素濃度がほぼ一定になった時点の値
(以下highfinalDOと称す)を取得し、該混合液中に分
解容易なBOD物質を設定量添加して該曝気装置で曝気
開始時点の溶存酸素濃度(以下DO1と略す)からhighfin
alDOになるまで曝気したときに得られる曝気経過時間
(以下tの記号で表す)による溶存酸素濃度(以下DOの
記号で表す)の変化曲線と曝気開始同時刻で同初期値DO
1から曝気をスタートしたとしたとき DO=highfinalDO-(highfinalDO-DO1)exp(-Kabs・t) の計算式で計算される仮想の溶存酸素濃度変化曲線で囲
まれる面積S1にKabsを掛けた値(以下BOD1と称す)
と、分解容易なBOD物質を設定量添加したあと一定時
間外部からの酸素の供給を断って混合液を嫌気状態にし
たあと曝気開始時点の溶存酸素濃度(以下DO2と略す)
から曝気を開始して得られる溶存酸素の変化曲線と曝気
開始同時刻で同初期値DO2から曝気をスタートしたとし
たとき DO=highfinalDO-(highfinalDO-DO2)exp(-Kabs・t) の計算式で計算される仮想の溶存酸素濃度変化曲線で囲
まれる面積S2にKabsを掛けた値(以下BOD2と称す)
を求め、BOD1とBOD2の差から混合液中の硝酸イオ
ンや亜硝酸イオン濃度を計量、または脱窒素反応の反応
量を計量する試験方法。
Claims: 1. Treatment in wastewater treatment using aerobic microorganisms
In the test method, a mixture containing activated sludge and waste liquid is aerated.
The rate at which oxygen dissolves in the mixture when aerated with the device
Is the saturated dissolved oxygen concentration of the mixture and the
Overall substance based on the difference in dissolved oxygen concentration as the driving force
When the transfer coefficient is represented by the symbol of Kabs, the mixture
Value when dissolved oxygen concentration becomes almost constant
(Hereinafter referred to as highfinalDO), and
Add a set amount of easy-to-dissolve BOD substance and aerate with the aerator
Dissolved oxygen concentration at the start (hereinafter DO1Abbreviated to) highfin
Elapsed aeration time obtained when aeration is performed to alDO
Dissolved oxygen concentration (hereinafter referred to as DO)
The same initial value DO at the same time as the change curve
1DO = highfinalDO- (highfinalDO-DO1) Exp (-Kabs ・ t)
Area S1Multiplied by Kabs (hereinafter BOD1Is called)
At a certain time after adding a set amount of easily decomposable BOD substance
The supply of oxygen from outside is cut off to make the mixture anaerobic.
Dissolved oxygen concentration at the start of aeration (hereinafter DOTwoAbbreviated)
Curve of dissolved oxygen and aeration obtained by starting aeration
Same initial value DO at the same start timeTwoStart aeration from
DO = highfinalDO- (highfinalDO-DOTwo) Exp (-Kabs ・ t)
Area STwoMultiplied by Kabs (hereinafter BODTwoIs called)
And BOD1And BODTwoFrom the difference in
Measurement of nitrogen and nitrite ion concentration or denitrification reaction
A test method for measuring quantities.
JP2000065799A 2000-03-09 2000-03-09 Wastewater treatment test method Expired - Fee Related JP3301428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000065799A JP3301428B2 (en) 2000-03-09 2000-03-09 Wastewater treatment test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000065799A JP3301428B2 (en) 2000-03-09 2000-03-09 Wastewater treatment test method

Publications (2)

Publication Number Publication Date
JP2001255319A true JP2001255319A (en) 2001-09-21
JP3301428B2 JP3301428B2 (en) 2002-07-15

Family

ID=18585267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000065799A Expired - Fee Related JP3301428B2 (en) 2000-03-09 2000-03-09 Wastewater treatment test method

Country Status (1)

Country Link
JP (1) JP3301428B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116480A (en) * 2004-10-25 2006-05-11 Ogawa Kankyo Kenkyusho:Kk Method and apparatus for treating and measuring waste water
WO2007020675A1 (en) * 2005-08-12 2007-02-22 Ogawa Environmental Research Institute, Inc. Method and apparatus for measuring bod
WO2012008226A1 (en) * 2010-07-14 2012-01-19 株式会社小川環境研究所 Method for evaluating denitrification strength of sludge
CN102980983A (en) * 2012-11-28 2013-03-20 广州中国科学院沈阳自动化研究所分所 Online monitoring analyzer and monitoring system for sewage biotoxicity
CN104914227A (en) * 2015-06-16 2015-09-16 华南理工大学 Multi-gaussian kernel self-optimization relevance vector machine based wastewater quality soft-measurement method
CN105116031A (en) * 2015-08-25 2015-12-02 中国科学院长春应用化学研究所 Online biochemical oxygen demand detection method and online biochemical oxygen demand detection device
JP5833791B1 (en) * 2015-06-17 2015-12-16 株式会社 小川環境研究所 Aeration control method for activated sludge
CN105740619A (en) * 2016-01-28 2016-07-06 华南理工大学 On-line fault diagnosis method of weighted extreme learning machine sewage treatment on the basis of kernel function
CN106021924A (en) * 2016-05-19 2016-10-12 华南理工大学 Sewage online soft-measurement method based on multi-attribute Gaussian kernel function fast relevance vector machine
CN113518764A (en) * 2019-03-11 2021-10-19 江田水处理技研株式会社 Test method for wastewater treatment facility

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110928187B (en) 2019-12-03 2021-02-26 北京工业大学 Sewage treatment process fault monitoring method based on fuzzy width self-adaptive learning model
CN111122811A (en) * 2019-12-14 2020-05-08 北京工业大学 Sewage treatment process fault monitoring method of OICA and RNN fusion model

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116480A (en) * 2004-10-25 2006-05-11 Ogawa Kankyo Kenkyusho:Kk Method and apparatus for treating and measuring waste water
JP4550547B2 (en) * 2004-10-25 2010-09-22 株式会社 小川環境研究所 Wastewater treatment measurement method and apparatus
WO2007020675A1 (en) * 2005-08-12 2007-02-22 Ogawa Environmental Research Institute, Inc. Method and apparatus for measuring bod
WO2012008226A1 (en) * 2010-07-14 2012-01-19 株式会社小川環境研究所 Method for evaluating denitrification strength of sludge
JP2012020225A (en) * 2010-07-14 2012-02-02 Ogawa Kankyo Kenkyusho:Kk Method for evaluating denitrification strength of sludge
CN102980983A (en) * 2012-11-28 2013-03-20 广州中国科学院沈阳自动化研究所分所 Online monitoring analyzer and monitoring system for sewage biotoxicity
CN104914227A (en) * 2015-06-16 2015-09-16 华南理工大学 Multi-gaussian kernel self-optimization relevance vector machine based wastewater quality soft-measurement method
JP5833791B1 (en) * 2015-06-17 2015-12-16 株式会社 小川環境研究所 Aeration control method for activated sludge
WO2016203675A1 (en) * 2015-06-17 2016-12-22 株式会社小川環境研究所 Method for controlling amount of aeration in activated sludge
CN105116031A (en) * 2015-08-25 2015-12-02 中国科学院长春应用化学研究所 Online biochemical oxygen demand detection method and online biochemical oxygen demand detection device
CN105740619A (en) * 2016-01-28 2016-07-06 华南理工大学 On-line fault diagnosis method of weighted extreme learning machine sewage treatment on the basis of kernel function
CN106021924A (en) * 2016-05-19 2016-10-12 华南理工大学 Sewage online soft-measurement method based on multi-attribute Gaussian kernel function fast relevance vector machine
CN106021924B (en) * 2016-05-19 2019-01-18 华南理工大学 Sewage online soft sensor method based on more attribute gaussian kernel function fast correlation vector machines
CN113518764A (en) * 2019-03-11 2021-10-19 江田水处理技研株式会社 Test method for wastewater treatment facility

Also Published As

Publication number Publication date
JP3301428B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
JP3301428B2 (en) Wastewater treatment test method
US10329181B2 (en) Method for controlling aeration volume in activated sludge
US6063617A (en) On-line respirometer using constant oxygen concentration in reaction vessel
KR960016715B1 (en) Fast biochemical bod measuring method and apparatus
JP2005103338A (en) Operation controller of nitrogen removal system
RU2192474C2 (en) Method of monitoring of microbiological process in flow of liquid (versions)
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JP3301427B2 (en) Wastewater treatment test method
JP3058414B1 (en) Water treatment equipment
US5698412A (en) Method for monitoring and controlling biological activity in fluids
WO2006030538A1 (en) Method of wastewater treatment measurement and wastewater treatment measuring apparatus
JP3585905B2 (en) Test method for activated sludge activity and wastewater degradability
JP2952282B1 (en) Wastewater treatment control method
JP4550547B2 (en) Wastewater treatment measurement method and apparatus
US5856119A (en) Method for monitoring and controlling biological activity in fluids
JP3837765B2 (en) Nitric acid concentration measuring device
JP3823357B2 (en) Nitrification activity measuring device and nitrification method
JP2909723B2 (en) Wastewater treatment control method and apparatus
JP2007090148A (en) Method and apparatus for measuring reaction ratio
KR100467173B1 (en) virulence sensing apparatus of waste water
JP2002136990A (en) Wastewater treatment apparatus and control method
JP2000046823A (en) Method and apparatus for measuring bod of water
JP2016155082A (en) Method for operating biological denitrification apparatus
JP2008296094A (en) Method and system for bioremediation
JP2016007577A (en) Sludge conversion rate-finding method, and measuring apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140426

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees