JP2006116480A - Method and apparatus for treating and measuring waste water - Google Patents

Method and apparatus for treating and measuring waste water Download PDF

Info

Publication number
JP2006116480A
JP2006116480A JP2004309063A JP2004309063A JP2006116480A JP 2006116480 A JP2006116480 A JP 2006116480A JP 2004309063 A JP2004309063 A JP 2004309063A JP 2004309063 A JP2004309063 A JP 2004309063A JP 2006116480 A JP2006116480 A JP 2006116480A
Authority
JP
Japan
Prior art keywords
dissolved oxygen
raw water
curve
oxygen concentration
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004309063A
Other languages
Japanese (ja)
Other versions
JP4550547B2 (en
Inventor
Takao Ogawa
尊夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OGAWA KANKYO KENKYUSHO KK
Ogawa Kankyo Kenkyusho KK
Original Assignee
OGAWA KANKYO KENKYUSHO KK
Ogawa Kankyo Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OGAWA KANKYO KENKYUSHO KK, Ogawa Kankyo Kenkyusho KK filed Critical OGAWA KANKYO KENKYUSHO KK
Priority to JP2004309063A priority Critical patent/JP4550547B2/en
Publication of JP2006116480A publication Critical patent/JP2006116480A/en
Application granted granted Critical
Publication of JP4550547B2 publication Critical patent/JP4550547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for carrying out the quantitative measurement of nitrification activity of a mixture liquid and a degree of inhibition of the nitrification activity of raw water in a short time, automatically and precisely as an on-line instrument by sampling the mixture liquid containing a microbe and a waste liquid from an aeration tank to analyze the measured data of DO (dissolved oxygen) acquired by aerating with a measurement device by a computer, and its apparatus. <P>SOLUTION: After a value when a concentration of dissolved oxygen is roughly fixed by aerating the mixture liquid sampled from the aeration tank for a sufficiently long time is set as high finalDO and an overall mass transfer coefficient Kabs of an aerator is determined from a variation curve of the dissolved oxygen concentration determined by repeatedly aerating from a low dissolved oxygen concentration, a standard liquid is loaded and a decomposition rate of the standard liquid is calculated from a DO variation to evaluate the nitrification activity. If the nitrification activity is not less than a set value, next, the raw water is loaded to treat BOD (biological oxygen demand) of the raw water, then the standard liquid is further loaded to calculate the decomposition rate of the standard liquid, and a degree of inhibition of the nitrification activity of the raw water is evaluated from a decomposition rate variation of the standard liquid before and after the raw water is loaded. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微生物を利用する活性汚泥や生物学的硝化脱窒法などの廃水処理の運転管理のための測定方法および装置に関する。   The present invention relates to a measurement method and apparatus for operation management of wastewater treatment such as activated sludge using microorganisms and biological nitrification denitrification.

廃水中の窒素は富栄養化防止のために処理する必要がある。処理方法として、いくつかの方法があるが、微生物を利用した活性汚泥法や生物学的硝化脱窒法は最も汎用的な処理法である。
活性汚泥法においては排水中の窒素化合物は菌体の増殖により固定され余剰汚泥として除去され、一部は活性汚泥中の硝化菌のはたらきで亜硝酸イオンや硝酸イオンに酸化され、脱窒菌の働きで部分的に嫌気状態にある曝気槽や沈殿槽から窒素ガスとして除去される。活性汚泥では除去率が不十分な場合には、活性汚泥法を発展させた生物学的硝化脱窒法が適用される。
生物学的硝化脱窒法はそのユニットの構成法にいろいろなバリエーションがあるが、基本は、好気性条件下において、廃水中のBOD成分を酸化分解するとともに硝化菌の働きにより窒素化合物を(5)式、(6)式で示すように、アンモニアイオン経由亜硝酸イオンや硝酸イオンに酸化するBOD酸化・硝化工程と、嫌気性条件下において、脱窒菌の働きにより、(7)式、(8)式で示すように、亜硝酸イオンや硝酸イオンを水素供与体の存在下で、窒素ガスに還元する脱窒工程を組み合わせたものである。ここに水素供与体はメタノールや酢酸や原水などを添加する。
2NH +3O→2NO +HO+4H (5)式
2NO +O→2NO (6)式
2NO +CHOH→N↑+CO ↑+HO+2OH (7)式
6NO +5CHOH→3N↑+5CO ↑+7HO+6OH (8)式
Nitrogen in wastewater needs to be treated to prevent eutrophication. There are several treatment methods, but the activated sludge method and biological nitrification denitrification method using microorganisms are the most general treatment methods.
In the activated sludge method, nitrogen compounds in the wastewater are fixed and removed as excess sludge by the growth of the cells, and some of them are oxidized to nitrite ions and nitrate ions by the action of nitrifying bacteria in the activated sludge, and the action of denitrifying bacteria It is removed as nitrogen gas from an aeration tank or a precipitation tank that is partially anaerobic. When the removal rate is insufficient with activated sludge, a biological nitrification denitrification method, which is an extension of the activated sludge method, is applied.
The biological nitrification denitrification method has various variations in the construction method of its unit. Basically, under the aerobic condition, the BOD component in wastewater is oxidatively decomposed, and the nitrogen compound is produced by the action of nitrifying bacteria (5) As shown by the formula (6), the BOD oxidation / nitrification step for oxidizing to nitrite ions and nitrate ions via ammonia ions and the action of denitrifying bacteria under anaerobic conditions, the formula (7), (8) As shown by the formula, this is a combination of a denitrification step of reducing nitrite ions and nitrate ions to nitrogen gas in the presence of a hydrogen donor. The hydrogen donor is added with methanol, acetic acid or raw water.
2NH 4 + 3O 2 → 2NO 2 + H 2 O + 4H + (5) Formula 2NO 2 + O 2 → 2NO 3 (6) Formula 2NO 2 + CH 3 OH → N 2 ↑ + CO 2 ↑ + H 2 O + 2OH (7 ) formula 6NO 3 - + 5CH 3 OH → 3N 2 ↑ + 5CO 2 - ↑ + 7H 2 O + 6OH - (8) formula

図3は生物学的硝化脱窒法の装置例を示すフロシートである。
このプロセスの中心はBOD酸化・硝化工程であり、BOD酸化・硝化工程は基本的に活性汚泥と同じプロセスである。BOD酸化菌と硝化菌を高濃度に含む活性汚泥と廃水との混合液を曝気して、混合液中の溶存酸素により微生物が廃水中のBODを酸化分解し、アンモニアイオンを硝酸イオンに酸化するものである。その硝化混合液を先頭の脱窒槽に戻し、脱窒槽で嫌気条件下、原水中のBOD成分を水素供与体として硝化菌により亜硝酸イオンや硝酸イオンを窒素ガスに還元する。BOD酸化・硝化工程から流出する処理液中に含まれる亜硝酸イオンや硝酸イオンは後段の脱窒槽で嫌気条件下、メタノールなどの水素供与体を添加して硝化菌により亜硝酸イオンや硝酸イオンを窒素ガスに還元する。最後に嫌気状態の混合液を再曝気して残りのBODを処理して、沈殿槽で固液分離して上澄水を処理水とする。
FIG. 3 is a flow sheet showing an example of an apparatus for biological nitrification denitrification.
The center of this process is the BOD oxidation / nitrification step, which is basically the same process as activated sludge. A mixture of activated sludge and wastewater containing BOD-oxidizing bacteria and nitrifying bacteria at high concentrations is aerated, and microorganisms oxidize and decompose BOD in the wastewater by dissolved oxygen in the mixture, and oxidize ammonia ions to nitrate ions. Is. The nitrification liquid mixture is returned to the first denitrification tank, and nitrite ions and nitrate ions are reduced to nitrogen gas by nitrifying bacteria using the BOD component in the raw water as a hydrogen donor under anaerobic conditions in the denitrification tank. Nitrite ions and nitrate ions contained in the treatment liquid flowing out of the BOD oxidation / nitrification process are added to a hydrogen donor such as methanol in an anaerobic condition in the subsequent denitrification tank. Reduce to nitrogen gas. Finally, the anaerobic mixed liquid is re-aerated to treat the remaining BOD, and solid-liquid separation is performed in a sedimentation tank to obtain supernatant water as treated water.

生物学的硝化脱窒プロセスを適切に運転管理するためには、上記BOD酸化・硝化工程と脱窒工程を適切に運転管理することが必要であるが、なかでも硝化工程の管理が重要である。それは硝化工程の担い手である硝化菌はBOD酸化菌や脱窒菌と比べ、増殖速度が遅いうえに対薬品性が弱いため、硝化菌の活性が容易に大きく変動して廃水中の窒素化合物を亜硝酸イオンまたは硝酸イオンにする作用が変動するためである。したがって生物学的硝化脱窒プロセスの運転管理は通常の活性汚泥の管理に加え、硝化菌のはたらきを管理する必要が重要である。   In order to properly manage the biological nitrification / denitrification process, it is necessary to properly manage the BOD oxidation / nitrification process and the denitrification process, and management of the nitrification process is particularly important. . The nitrifying bacteria that are responsible for the nitrification process have a slower growth rate and weak chemical resistance than BOD oxidizing bacteria and denitrifying bacteria. This is because the action of converting to nitrate ions or nitrate ions varies. Therefore, it is important for the operation management of the biological nitrification denitrification process to manage the function of nitrifying bacteria in addition to the usual management of activated sludge.

しかしながら、現時点において、直接的に硝化菌のはたらきをオンラインで簡便に測定できる計器はないため、例えば、全窒素や硝酸イオンを自動測定する計器を、それぞれの工程の前後に設備し、その測定濃度データから運転管理をおこなうことができる。しかしながら、これら計器は高価なうえ、全窒素から亜硝酸イオンや硝酸イオンへの酸化は窒素含有物質の分解性やBOD酸化・硝化槽の運転条件やBOD酸化菌の活性や硝化菌の活性などの総合的な結果であって、水質変動がある場合には、適切な運転操作に反映させるためには不十分である。 However, at present, there is no instrument that can easily measure the function of nitrifying bacteria directly on-line. For example, an instrument that automatically measures total nitrogen and nitrate ions is installed before and after each process, and its concentration is measured. Operation management can be performed from the data. However, these instruments are expensive, and oxidation from total nitrogen to nitrite ions and nitrate ions involves the degradability of nitrogen-containing substances, the operating conditions of BOD oxidation / nitrification tanks, the activity of BOD oxidation bacteria, the activity of nitrification bacteria, etc. It is a comprehensive result, and when there is a change in water quality, it is not sufficient to reflect it in an appropriate operation.

もし、生物学的硝化脱窒プロセスの運転管理中に硝化菌の活性や硝化菌の阻害性が定量量化でき、運転操作に反映できれば、生物学的硝化脱窒プロセスの最適な運転が可能になり、窒素除去率の向上や処理のなどの大きな効果が得られることになる。   If the activity of nitrifying bacteria and the inhibition of nitrifying bacteria can be quantified during operation management of the biological nitrification denitrification process and reflected in the operation, the optimal operation of the biological nitrification denitrification process becomes possible. Thus, great effects such as improvement of nitrogen removal rate and treatment can be obtained.

本発明者は、溶存酸素濃度計を使って微生物の酸素消費速度の挙動を測定し、これをコンピュータで解析することにより、短時間で活性汚泥処理に必要なBODを測定するとともに、原水中のBOD成分の分解速度を計算し、微生物の活性を定量化する方法を開示した。具体的には、溶存酸素濃度の測定データの取得方法および取得したデータからBODを計算する計算方法およびBODの分解速度を解析する方法を計算原理から詳細に記載している(特許文献1参照)。   The inventor measures the behavior of oxygen consumption rate of microorganisms using a dissolved oxygen concentration meter, and analyzes this with a computer, thereby measuring the BOD required for activated sludge treatment in a short time and in the raw water. A method for calculating the degradation rate of BOD components and quantifying the activity of microorganisms has been disclosed. Specifically, a method for acquiring measurement data of dissolved oxygen concentration, a calculation method for calculating BOD from the acquired data, and a method for analyzing the decomposition rate of BOD are described in detail from the calculation principle (see Patent Document 1). .

また、同様の計算原理をベースにして、運転中の活性汚泥装置を曝気槽上に設置し、曝気槽中の混合液のサンプリングと、混合液中のBODや汚泥の活性測定を繰り返すことにより、実用上連続測定に近い頻度で活性汚泥の運転管理に必要なデータを採取可能な方法と装置を開示している(特許文献2参照)。   In addition, based on the same calculation principle, by installing the activated sludge device in operation on the aeration tank, by repeating the sampling of the mixed liquid in the aeration tank and the activity measurement of BOD and sludge in the mixed liquid, A method and apparatus capable of collecting data necessary for operation management of activated sludge with a frequency close to continuous measurement in practice is disclosed (see Patent Document 2).

しかしながら、特許文献1、2に記載している方法を使えば、活性汚泥の運転管理に必要なデータは採取できるものの、これだけでは生物学的硝化脱窒プロセスの運転管理に必要な硝化活性や硝化阻害性を評価することはできない。
特開2001-235462 特開平10-28992
However, if the methods described in Patent Documents 1 and 2 are used, the data necessary for the operation management of activated sludge can be collected, but this alone will enable the nitrification activity and nitrification necessary for the operation management of the biological nitrification denitrification process. Inhibitory properties cannot be assessed.
JP2001-235462 JP 10-28992 A

上述のように、生物学的硝化脱窒プロセスの運転管理に用いることができる硝化菌の硝化活性や硝化阻害性を自動測定する装置は実用化されていない。本発明は、[特許文献2]に記載されている活性汚泥の自動測定方法及び装置の機能を変更・拡張し、生物学的硝化脱窒プロセスを運転管理する上で本来絶対必要な、硝化菌の硝化活性や硝化阻害性をオンラインで精度よく定量測定可能な方法及び装置を提供するものである。   As described above, an apparatus for automatically measuring the nitrification activity and nitrification inhibitory activity of nitrifying bacteria that can be used for operation management of a biological nitrification denitrification process has not been put into practical use. The present invention modifies and expands the function of the automatic measurement method and apparatus for activated sludge described in [Patent Document 2], and is a nitrifying bacterium inherently essential for operation management of a biological nitrification denitrification process. It is intended to provide a method and apparatus capable of accurately and quantitatively measuring nitrification activity and nitrification inhibitory activity on-line.

上記課題を解決するため、本発明は以下の内容を要旨とする。すなわち、
曝気槽から混合液をサンプリングし、該混合液を測定装置にチャージし、曝気装置で曝気し、曝気により該混合液中のBODを分解し、分解し終わって曝気装置の酸素供給速度と該混合液の酸素消費速度がバランスする点の溶存酸素濃度(この濃度をhighfinalDOと称す)を取得したのち、曝気装置を停止し、該混合液の酸素消費で低下した溶存酸素濃度を低下させたのち、曝気装置を再稼動させ、上昇するDO変化から計算で曝気装置の物質移動係数(以後Kabsと称す)を取得したのち、基準液を添加し、混合液中の汚泥による成分の分解で変化するDO変化から基準液の分解速度を計算し分解速度の大きさから硝化活性を評価し、基準液の分解速度があらかじめコンピュータに記憶している設定値より大きい場合には、基準液の分解終了後、原水を添加し、原水のBODを分解後、再度基準液を添加し、分解で変化するDO変化から基準液の分解速度を計算し、原水添加前後の基準液の分解速度の変化から原水の硝化活性の阻害性を評価する。設定値より小さい場合は原水の添加をおこなうことなく、測定を終了する。このサンプリング−測定の操作を繰り返すことにより、混合液の硝化活性、原水の混合液の硝化活性阻害を実用上連続測定に近い頻度で測定する。
In order to solve the above problems, the present invention is summarized as follows. That is,
Sampling the mixed solution from the aeration tank, charging the mixed solution to the measuring device, aeration with the aeration device, decomposing the BOD in the mixed solution by aeration, the oxygen supply rate of the aeration device and the mixing after decomposition After obtaining the dissolved oxygen concentration (this concentration is referred to as highfinalDO) at the point where the oxygen consumption rate of the liquid balances, after stopping the aeration apparatus and lowering the dissolved oxygen concentration decreased by the oxygen consumption of the mixed solution, Reactivate the aeration device, obtain the mass transfer coefficient (hereinafter referred to as Kabs) of the aeration device by calculation from the rising DO change, add the reference solution, and change the DO by the decomposition of the components by the sludge in the mixture Calculate the decomposition rate of the reference solution from the change, evaluate the nitrification activity from the magnitude of the decomposition rate, and if the decomposition rate of the reference solution is larger than the preset value stored in the computer, after the decomposition of the reference solution, original After decomposing the raw water BOD, add the reference solution again, calculate the decomposition rate of the reference solution from the DO change that changes with decomposition, and nitrification activity of the raw water from the change in the decomposition rate of the reference solution before and after the addition of the raw water To evaluate the inhibitory properties. If it is smaller than the set value, the measurement is terminated without adding raw water. By repeating this sampling-measurement operation, the nitrification activity of the mixed solution and the nitrification activity inhibition of the mixed solution of raw water are measured with a frequency close to that of continuous measurement in practice.

本発明の測定法によれば、2〜3時間程度の短時間で汚泥の硝化活性及び原水の硝化阻害性を精度よく定量測定できる。そして、測定−サンプリングを繰り返すことにより、実用上連続測定に近い頻度で自動測定が可能となる。これにより、従来、定性的な取扱しかできなかった活性汚泥での窒素除去率の挙動や生物学的硝化脱窒プロセスの定量的な取扱いが可能になり、最適運転や安定運転に資する。   According to the measurement method of the present invention, the nitrification activity of sludge and the nitrification inhibition of raw water can be quantitatively measured with high accuracy in a short time of about 2-3 hours. And by repeating measurement-sampling, automatic measurement can be performed with a frequency close to practical continuous measurement. As a result, it becomes possible to quantitatively handle the behavior of nitrogen removal rate and biological nitrification denitrification process in activated sludge, which could only be handled qualitatively in the past, and contribute to optimum operation and stable operation.

本発明の説明上必要なので、はじめに計算の基礎となる原理について簡単に述べる。
活性汚泥と廃液を含む混合液を曝気装置で曝気していくと廃水中の溶存酸素濃度は曝気時間とともに上昇していくが、その変化は(1)式で表される。
Since it is necessary for the description of the present invention, first, the basic principle of calculation will be briefly described.
When the mixed liquid containing activated sludge and waste liquid is aerated with an aeration device, the dissolved oxygen concentration in the waste water increases with the aeration time, and the change is expressed by equation (1).

Figure 2006116480
Figure 2006116480

ここに、DOsatは飽和溶存酸素濃度[mg/l]、DOは曝気槽内溶存酸素濃度[mg/l]、Kabsは総括物質移動係数[1/min]、ASactは活性汚泥が呼吸で使う酸素消費速度[mg/l/min]、BODactは活性汚泥がBOD成分の分解で使う酸素消費速度[mg/l/min]である。   Where DOsat is the saturated dissolved oxygen concentration [mg / l], DO is the dissolved oxygen concentration in the aeration tank [mg / l], Kabs is the overall mass transfer coefficient [1 / min], ASact is the oxygen used by activated sludge for respiration Consumption rate [mg / l / min], BODact is the oxygen consumption rate [mg / l / min] used by activated sludge to decompose BOD components.

(1)式の右辺第1項は、曝気装置から酸素供給速度であり、第2項は活性汚泥が呼吸およびBODの分解で使う酸素消費速度である。 ASactは汚泥の基礎呼吸による酸素の消費速度である。基礎呼吸なのでBOD成分とは直接無関係であり、短時間内ではほとんど一定である。ASactは概ねDO値が0.5mg/l以上あれば、ASactはDO値に無関係に一定であることが知られている。このことは、BOD成分がほとんど0mg/lの混合液を、酸素の供給を断った状態で溶存酸素濃度が高い状態からDOが直線状に減少していくことから容易に実証できる。 The first term on the right side of equation (1) is the oxygen supply rate from the aeration apparatus, and the second term is the oxygen consumption rate used by activated sludge for respiration and decomposition of BOD. ASact is the rate of oxygen consumption by basic sludge respiration. Since it is a basal respiration, it is not directly related to the BOD component and is almost constant within a short time. ASact is known to be constant regardless of the DO value if the DO value is approximately 0.5 mg / l or more. This can be easily verified from the fact that DO decreases linearly from a state in which the dissolved oxygen concentration is high in a state where the supply of oxygen is cut off in a mixed solution in which the BOD component is almost 0 mg / l.

BODactは、汚泥がBOD成分やアンモニアイオンを硝酸イオンに酸化しているときに使う酸素の消費速度である。BODactは、汚泥がその物質に馴化しているかどうか、汚泥の状態、水温、pH、塩濃度等の棲息環境などで変化する。微生物がBOD成分やアンモニアイオンを硝酸イオンに酸化する場合、反応はBOD成分に対応した微生物や硝化菌等によりおこなわれ、その成分ごとに固有の反応速度を示す。   BODact is the consumption rate of oxygen used when sludge is oxidizing BOD components and ammonia ions to nitrate ions. BODact changes depending on whether the sludge is acclimatized to the substance, the state of the sludge, water temperature, pH, habitat environment such as salt concentration. When microorganisms oxidize BOD components or ammonia ions to nitrate ions, the reaction is carried out by microorganisms corresponding to the BOD component, nitrifying bacteria, etc., and each component shows a specific reaction rate.

曝気過程でBODactが変化する場合には、(1)式は簡単には積分できないが、BOD成分やアンモニアイオンが殆ど0mg/lの混合液の場合、(1)式のBODactは殆ど0となり、(2)式で示される。   When BODact changes during the aeration process, equation (1) cannot be easily integrated. However, in the case of a mixed solution with almost 0 mg / l of BOD components and ammonia ions, BODact of equation (1) is almost zero. It is shown by the formula (2).

Figure 2006116480
Figure 2006116480

ASactは、前述のごとくDO>0.5mg/lでは、概ねDOに無関係に一定であるから、この範囲で(2)式は容易に積分でき(3)式で表される。
DO=α−(α−DO0)exp(−Kabs・t) (3)式
但しα=DOsat−ASact/Kabs
DO0は、曝気を開始したときの初期値である。また、(3)式において、曝気経過時間tが十分大きければ右辺第2項は無視できるから
DO=α=DOsat−ASact/Kabs
の値で一定となる。この値をhighfinalDOと表せば、highfinalDOはBOD成分が殆ど0mg/lの混合液を曝気した場合、最終的に到達するDO値と定義できる。
従って、(3)式は
DO=highfinalDO-(highfinalDO-DO0)exp(-Kabs・t) (4)式
と書き直せる。(4)式において、DOの変化は図2の点線1に示す曲線となる。
一方、混合液中にBOD成分やアンモニアイオンが存在する場合、BODactは無視できない値を持つ。さらに、BODactの値は、主として分解対象のBOD成分が変わることにより、曝気経過時間tとともに大きい値から小さい値へ変化する。最終的に分解できるBOD成分がなくなれば、BODactは殆ど0になる。このため、(1)式は(3)式のように単純に積分できないが、DOの変化は図2の実線2の曲線で示すような2段曲線となる。すなわち、メタノールや酢酸のような単純なBOD成分の場合には、分解中は、DOは酸素供給速度とASact+BODactの酸素消費速度でバランスする低いレベルで一定となり、分解が終了すると、速やかに上昇しhighfinalDOで一定となる。
As described above, ASact is constant regardless of DO when DO> 0.5 mg / l. Therefore, equation (2) can be easily integrated in this range and expressed by equation (3).
DO = α− (α−DO 0 ) exp (−Kabs · t) (3) where α = DOsat−ASact / Kabs
DO 0 is an initial value when aeration is started. Also, in equation (3), if the aeration elapsed time t is sufficiently large, the second term on the right side can be ignored.
DO = α = DOsat−ASact / Kabs
The value is constant. If this value is expressed as highfinalDO, highfinalDO can be defined as the DO value that is finally reached when a mixed liquid having a BOD component of almost 0 mg / l is aerated.
Therefore, Equation (3) is
DO = highfinalDO− (highfinalDO−DO 0 ) exp (−Kabs · t) (4) can be rewritten. In the equation (4), the change in DO becomes a curve indicated by a dotted line 1 in FIG.
On the other hand, when a BOD component and ammonia ions are present in the mixed solution, BODact has a value that cannot be ignored. Furthermore, the value of BODact changes from a large value to a small value with the aeration elapsed time t mainly due to a change in the BOD component to be decomposed. If there is no BOD component that can be finally decomposed, BODact becomes almost zero. Therefore, equation (1) cannot be simply integrated like equation (3), but the change in DO becomes a two-stage curve as shown by the curve of solid line 2 in FIG. That is, in the case of a simple BOD component such as methanol or acetic acid, during decomposition, DO becomes constant at a low level that balances the oxygen supply rate and the oxygen consumption rate of ASact + BODact. It rises and becomes constant at highfinalDO.

今、曝気を開始したときのDOの初期値DO0を同じとし、BOD成分やアンモニアイオンが殆ど0mg/lの混合液を曝気したときのDO変化曲線((4)式で表される)を図2の点線1で表し、BOD成分やアンモニアイオンが存在する混合液を曝気したときのDO変化曲線を図2の実線2で表すものとする。この場合、各曝気経過時間における点線と実線の値の差にKabsを掛けた値は、その時点におけるBOD成分やアンモニアイオンを酸化に使用される酸素消費速度=反応速度を表す。この差を曝気経過時間tで積分した値は、両曲線で囲まれた面積Sに相当する。さらに、この値にKabsを掛けた値は、微生物がBOD成分やアンモニアイオンを酸化するために使用する酸素量に相当する。本測定の原理そのものは、特許文献1に詳しく記述されている。特許文献1では、さらに(4)式のhighfinalDOおよび(1)式のKabsを測定装置のなかで具体的に取得する操作手順および計算手順を示している。 Now, the initial DO value DO 0 when aeration is started is assumed to be the same, and the DO change curve (expressed by equation (4)) when a mixture of BOD components and ammonia ions is almost 0 mg / l is aerated. It is represented by a dotted line 1 in FIG. 2, and a DO change curve when a mixed liquid containing a BOD component and ammonia ions is aerated is represented by a solid line 2 in FIG. 2. In this case, the value obtained by multiplying the difference between the dotted line and the solid line at each aeration elapsed time by Kabs represents the oxygen consumption rate at which the BOD component or ammonia ion is used for oxidation at that time = the reaction rate. A value obtained by integrating this difference by the aeration elapsed time t corresponds to an area S surrounded by both curves. Further, the value obtained by multiplying this value by Kabs corresponds to the amount of oxygen used by microorganisms to oxidize BOD components and ammonia ions. The principle of this measurement itself is described in detail in Patent Document 1. Patent Document 1 further shows an operation procedure and a calculation procedure for specifically acquiring highfinalDO of the equation (4) and Kabs of the equation (1) in the measuring apparatus.

次に、本発明を具体化する装置について説明する。図4は、本発明の一実施例に係る処理装置1を示す。
処理装置1は、サンプリング装置部2aと測定装置部2bからなり、測定装置部2bは活性汚泥の混合液を入れ曝気する曝気容器3と、曝気容器3と底部の配管で連結する測定容器4と、循環ポンプ5と、アスピレータ方式の曝気装置6と、空気流量計7と、空気電磁弁8と、溶存酸素計電極9と、循環ポンプ5と、ヒータ10と、冷却水が内部に流れる冷却用熱交換パイプ11と、基準液の添加ポンプ12と、原水の添加ポンプ13と、排水電磁弁14と、溶存酸素計15と、制御盤16と、コンピュータ17と、を備えている。また、サンプリング装置部2aは、計量容器18と、真空ポンプ19と、真空電磁弁20と、大気開放電磁弁21と、サンプリング電磁弁22と、計量容器18と、排水電磁弁23と、を備えている。
なお、装置例では曝気装置6としてアスピレータ方式を採用しているが、コンプレッサーと散気管を用いてもよい。
循環ポンプ5により、装置内の混合液は測定容器4→曝気装置6のアスピレータ→曝気容器3→測定容器4の流れで循環し、曝気装置6のアスピレータで空気を吸引し、曝気容器3で曝気をおこない底部から測定容器4に移液することで気泡を分離し、測定容器4内の入口ノズル近傍に設置した溶存酸素計電極9のセンサー面の流速を確保する。
コンピュータ17には、デジタル出力兼アナログ-デジタル変換PCカードをPCMCIAアダプターに装着し、制御盤と連結しており、コンピュータ17からの指令で測定装置のポンプや電磁弁等を制御する。コンピュータ17は、シリアルポートを介して溶存酸素計電極9の測定値を取り込む。また制御盤16には温度コントローラを装備し、ヒータ10を制御することで混合液の温度を一定に保つ。またこのほかに曝気槽から混合液をサンプリングするためのサンプリング装置が必要であり、本装置例では後述するブロック3との関連で真空ポンプを使用したシステムを採用しているが、揚水ポンプと流量計などを使ったシステムでも構成可能である。
サンプリング装置部2aの計量容器18には、温度センサー25、圧力計センサー26を装備し、それぞれの測定値はPCカードを介してコンピュータ17に取り込まれる。
サンプリング装置部2aと測定装置部2bは連通電磁弁24を介して接続されている。
Next, an apparatus embodying the present invention will be described. FIG. 4 shows a processing apparatus 1 according to an embodiment of the present invention.
The processing device 1 includes a sampling device unit 2a and a measuring device unit 2b. The measuring device unit 2b is provided with an aeration container 3 for aeration with a mixed liquid of activated sludge, and a measurement container 4 connected to the aeration container 3 by piping at the bottom. The cooling pump 5, the aspirator type aeration device 6, the air flow meter 7, the air solenoid valve 8, the dissolved oxygen meter electrode 9, the circulation pump 5, the heater 10, and the cooling water flow inside. A heat exchange pipe 11, a reference liquid addition pump 12, a raw water addition pump 13, a drain electromagnetic valve 14, a dissolved oxygen meter 15, a control panel 16, and a computer 17 are provided. The sampling device unit 2a includes a measuring container 18, a vacuum pump 19, a vacuum electromagnetic valve 20, an atmosphere opening electromagnetic valve 21, a sampling electromagnetic valve 22, a measuring container 18, and a drain electromagnetic valve 23. ing.
In addition, although the aspirator system is employ | adopted as the aeration apparatus 6 in the example of a device, you may use a compressor and a diffuser tube.
By the circulation pump 5, the mixed liquid in the apparatus is circulated in the flow of the measurement container 4 → the aspirator of the aeration apparatus 6 → the aeration container 3 → the measurement container 4, the air is sucked by the aspirator of the aeration apparatus 6 and aeration is performed in the aeration container 3. The bubbles are separated by transferring the liquid from the bottom to the measurement container 4, and the flow velocity of the sensor surface of the dissolved oxygen meter electrode 9 installed in the vicinity of the inlet nozzle in the measurement container 4 is ensured.
The computer 17 has a digital output / analog-digital conversion PC card attached to a PCMCIA adapter and is connected to a control panel, and controls a pump, a solenoid valve, and the like of the measuring device according to a command from the computer 17. The computer 17 takes in the measured value of the dissolved oxygen meter electrode 9 through the serial port. The control panel 16 is equipped with a temperature controller, and the temperature of the mixed liquid is kept constant by controlling the heater 10. In addition to this, a sampling device for sampling the mixed solution from the aeration tank is necessary. In this device example, a system using a vacuum pump is employed in connection with the block 3 described later. A system using a meter can also be configured.
The measuring container 18 of the sampling device unit 2a is equipped with a temperature sensor 25 and a pressure gauge sensor 26, and each measured value is taken into the computer 17 via a PC card.
The sampling device unit 2 a and the measuring device unit 2 b are connected via a communication electromagnetic valve 24.

以下、操作方法について説明する。図5は、本実施形態に係る装置1の操作フローチャートである。なお、同図において、以下の説明においてブロック1とはブロック2を除く範囲をいう。また、図1は、本実施形態の測定方法によるDO変化を概念的に示す図である。   The operation method will be described below. FIG. 5 is an operation flowchart of the apparatus 1 according to the present embodiment. In the figure, block 1 refers to a range excluding block 2 in the following description. FIG. 1 is a diagram conceptually showing a DO change by the measurement method of the present embodiment.

最初に、まずブロック1部分について説明する。第一のステップ(以後Step1と称す)は、曝気槽から混合液をサンプリングする工程であり、排水電磁弁14を開き、測定装置内の測定済み混合液を排水する。フローチャートS1.とS2.がこれに該当する。次にステップS2.の操作をおこなう。サンプリング装置部2aを使って、曝気槽から測定装置に混合液をサンプリングする。具体的方法には、電磁弁20、21、22,23,24を閉じた状態から、真空電磁弁20を開き、真空ポンプ19を作動して計量容器18をp1KPaまで減圧する。次に、サンプリング電磁弁22を開き、曝気槽の混合液を計量容器18に吸引する。計量容器18内の圧力がp2KPaになったら、サンプリング電磁弁20を閉じる。計量容器18に吸引した混合液量は、計量容器18の全空間容積V0とp1とp2から計算できる。p1とp2を所定の吸引量になるようにコンピュータ17から電磁弁を操作することにより、任意の混合液量をサンプリングできる。次に大気開放電磁弁21、連通電磁弁24を開き、計量容器18と測定容器4との落差で計量容器18内の混合液を測定装置に移液する。   First, the block 1 portion will be described first. The first step (hereinafter referred to as Step 1) is a step of sampling the mixed solution from the aeration tank, and opens the drain electromagnetic valve 14 to drain the measured mixed solution in the measuring device. Flow charts S1. And S2. Correspond to this. Next, the operation of step S2. Is performed. The mixed solution is sampled from the aeration tank to the measuring device using the sampling device unit 2a. Specifically, from the state where the electromagnetic valves 20, 21, 22, 23, 24 are closed, the vacuum electromagnetic valve 20 is opened and the vacuum pump 19 is operated to depressurize the measuring container 18 to p1 KPa. Next, the sampling electromagnetic valve 22 is opened, and the mixed solution in the aeration tank is sucked into the measuring container 18. When the pressure in the measuring container 18 reaches p2 KPa, the sampling solenoid valve 20 is closed. The amount of the liquid mixture sucked into the measuring container 18 can be calculated from the total space volume V0, p1, and p2 of the measuring container 18. By operating the electromagnetic valve from the computer 17 so that p1 and p2 become a predetermined suction amount, an arbitrary mixed liquid amount can be sampled. Next, the air release solenoid valve 21 and the communication solenoid valve 24 are opened, and the liquid mixture in the measuring container 18 is transferred to the measuring device by the drop between the measuring container 18 and the measuring container 4.

Step1に関して、本実施形態では、測定時間の短縮の観点から主として曝気槽出口の混合液をサンプリングする。但し、曝気槽の形状は完全混合槽型のように入口出口が明確でないタイプや、また生物学的脱窒法のように硝化槽の次が沈殿槽とは限らない場合や回分式活性汚泥のように時間で処理状態がかわる場合があり、サンプリング位置は曝気槽の形態、測定の目的などで異なるため、上記位置に限定されるものではない。   Regarding Step 1, in the present embodiment, the mixed liquid at the outlet of the aeration tank is mainly sampled from the viewpoint of shortening the measurement time. However, the shape of the aeration tank is such that the inlet / outlet is not clear, such as a complete mixing tank type, and the case where the next to the nitrification tank is not necessarily a sedimentation tank, as in the case of biological denitrification, or like batch activated sludge. However, the sampling position is not limited to the above position because the sampling position differs depending on the form of the aeration tank, the purpose of measurement, and the like.

次の工程(以後Step2と称す)はhighfinalDOとKabsの値を取得する工程(フローチャートS3.からS10.の部分)である。図1のStep2-1からStep2-3は、この工程におけるDO変化の測定パターンを示すものである。この工程での測定・計算方法は特許文献1に示した方法でおこなう。すなわち、サンプリングした混合液の初期のDO値をDOとして循環ポンプ5を作動し、空気電磁弁8を開き、アスピレータによる曝気を開始すると、やがて混合液のBODが処理される。酸素消費速度がASactのみになり、DO値が曝気による酸素供給速度とバランスする高い位置で平衡する。この間の溶存酸素濃度は、図1のDO曲線2−1のような変化を示す。DO曲線2−1の終わりで平衡になった点をhighfinalDOとする。ここまでの工程をStep2-1と称す。
highfinalDOを取得したあと、空気電磁弁8を閉じて曝気を止め、混合液のASactによる溶存酸素の消費でDOを低下させると、溶存酸素濃度は図1のDO曲線2−2のような変化を示す。この工程をStep2-2と称す。
十分DOが低下したDOの時点から、空気電磁弁8を開き曝気を再開し、DOの変化を測定すると、図1のDO曲線2−3のような変化を示す。ここまでの工程をStep2-3と称す。
このDO曲線2−3の実測値からKabsの値を計算する。計算方法は(4)式のDOをDOに変え、DO曲線2−1で取得したhighfinalDO
と仮定したKabsを使って、(4)式から計算した計算値がDO曲線2−3の実測値と一致するまでKabsの値を変えて計算を繰返し、最終的に一致するKabsを曝気装置のKabsと定める。フローチャートS7.とS9.における設定値1と設定値2は、(4)式を計算する際に十分大きなDOの計算幅をとって誤差を少なくするために設けたものである。
The next step (hereinafter referred to as Step 2) is a step of obtaining the values of highfinalDO and Kabs (parts of flowcharts S3. To S10.). Steps 2-1 to 2-3 in FIG. 1 show the DO change measurement pattern in this step. The measurement / calculation method in this step is performed by the method shown in Patent Document 1. That is, when the circulating DO 5 is operated by setting the initial DO value of the sampled mixed liquid to DO 0 , the air electromagnetic valve 8 is opened, and aeration by the aspirator is started, the BOD of the mixed liquid is eventually processed. The oxygen consumption rate is only ASact, and the DO value is balanced at a high position that balances the oxygen supply rate by aeration. The dissolved oxygen concentration during this period shows a change like the DO curve 2-1 in FIG. A point at which equilibrium is reached at the end of the DO curve 2-1 is defined as highfinalDO. The process so far is referred to as Step 2-1.
After obtaining highfinalDO, the air solenoid valve 8 is closed to stop aeration, and when DO is reduced by the consumption of dissolved oxygen by the ASact of the mixed solution, the dissolved oxygen concentration changes as shown in the DO curve 2-2 in FIG. Show. This process is referred to as Step 2-2.
When the air solenoid valve 8 is opened and aeration is restarted from the point of DO 1 at which the DO is sufficiently lowered, and a change in DO is measured, a change as shown by the DO curve 2-3 in FIG. 1 is shown. The process so far is referred to as Step2-3.
The Kabs value is calculated from the measured value of the DO curve 2-3. The calculation method is to change DO 0 in equation (4) to DO 1 and obtain highfinalDO obtained from DO curve 2-1.
Using the Kabs assumed to be, the calculation is repeated while changing the Kabs value until the calculated value calculated from the equation (4) matches the measured value of the DO curve 2-3. Determined as Kabs. Flow charts S7 and S9. The set value 1 and the set value 2 are provided to reduce the error by taking a sufficiently large DO calculation width when calculating the equation (4).

次の工程(以後、Step3-1と称す)は、基準液を添加して基準液の分解速度から硝化活性を計測する工程であり、フローチャートS11.からS14.の部分がこれに該当する。図1のDO曲線3−1は、この工程におけるDO変化の測定パターン例である。Step2-3においてKabsを計算後、完全に平衡に達した後に、コンピュータ17からの指令により基準液の添加ポンプ12を作動させ、測定装置1に基準液を添加する。
混合液中の活性汚泥が基準液を分解していく際のDOの変化を測定する。測定データに基づいて基準液の分解速度を計測し、分解速度の大きさから硝化菌の硝化活性を定量化する。以上が請求項1に対応する部分の説明である。
The next step (hereinafter referred to as Step 3-1) is a step of adding the reference solution and measuring the nitrification activity from the decomposition rate of the reference solution, and this corresponds to the portions of the flowcharts S11. To S14. A DO curve 3-1 in FIG. 1 is an example of a measurement pattern of DO change in this step. After calculating Kabs in Step 2-3, after the equilibrium is completely reached, the reference solution addition pump 12 is operated in accordance with a command from the computer 17 to add the reference solution to the measuring apparatus 1.
The change in DO when the activated sludge in the mixed solution decomposes the reference solution is measured. The decomposition rate of the reference solution is measured based on the measurement data, and the nitrification activity of the nitrifying bacteria is quantified from the magnitude of the decomposition rate. The above is the description of the portion corresponding to the first aspect.

次に請求項2に対応する部分の説明をおこなう。図5のフローチャートにおいて、ブロック2のS16.からS21.の部分について説明する。この工程をStep3-2、Step3-3と称する。図1のDO曲線3−2、DO曲線3−3は、この工程におけるDO変化の測定パターン例である。   Next, the part corresponding to claim 2 will be described. In the flowchart of FIG. 5, the S16. To S21. Portions of the block 2 will be described. This process is referred to as Step 3-2 and Step 3-3. A DO curve 3-2 and a DO curve 3-3 in FIG. 1 are measurement pattern examples of DO change in this step.

Step3-1で基準液の添加・測定を行い、汚泥の硝化活性が評価できたら、次に、その活性の値に基づいてStep3-2をおこなうか否かを判定する。Step3-2は、本来は原水を添加して原水のBODを分解する工程で、原水の硝化阻害性を評価するためのものであるが、Step3-1で硝化活性が既に阻害され分解速度が小さい場合、原水の硝化阻害性を評価するまでもなく、異常であるので、測定を省略したほうが全体の測定時間短縮となり効率的である。このため硝化活性が設定値3より低下したら原水のBODの測定を省略する。判断基準となる設定値3は、予めコンピュータ17に入力しておくが、具体的な数値は硝化活性阻害性の情報を求めるニーズに基づいて任意に選択できる。このような処置を組み込むことで、全体の測定時間を短縮することができる。   After adding and measuring the reference solution in Step3-1 and evaluating the nitrification activity of the sludge, it is next determined whether or not Step3-2 is performed based on the activity value. Step 3-2 is originally a process for adding raw water to decompose the BOD of raw water, and is for evaluating the nitrification inhibitory activity of raw water. However, in Step 3-1, the nitrification activity is already inhibited and the decomposition rate is low. In this case, it is not necessary to evaluate the nitrification inhibitory property of the raw water. For this reason, if the nitrification activity falls below the set value 3, measurement of the raw water BOD is omitted. The set value 3 as a determination criterion is input to the computer 17 in advance, but a specific numerical value can be arbitrarily selected based on the need for information on nitrification activity inhibition. By incorporating such a treatment, the overall measurement time can be shortened.

Step3-1における基準液の添加・測定の結果、硝化活性が設定値3以上であれば、Step3-2でコンピュータ17からの指令により原水の添加ポンプ13を作動させ、測定装置1に原水を添加する。
混合液中の活性汚泥が原水のBOD成分を分解していく際のDOの変化を測定し、分解終了となったら、コンピュータ17からの指令により基準液の添加ポンプ12を作動させ、再度基準液を添加し、測定データに基づいて基準液の分解速度を計測し、原水添加前後の基準液の分解速度の変化から原水による硝化活性阻害の程度を定量化する。
As a result of addition and measurement of the reference solution in Step 3-1, if the nitrification activity is 3 or more, the raw water addition pump 13 is actuated by a command from the computer 17 in Step 3-2, and the raw water is added to the measuring device 1. To do.
The change in DO when the activated sludge in the mixed liquid decomposes the BOD component of the raw water is measured, and when the decomposition is completed, the reference liquid addition pump 12 is actuated by a command from the computer 17 and again the reference liquid Is added, and the decomposition rate of the reference solution is measured based on the measurement data, and the degree of nitrification activity inhibition by the raw water is quantified from the change in the decomposition rate of the reference solution before and after the addition of the raw water.

もし、原水が硝化菌に対し毒性をもっていれば、原水添加後の基準液の添加・測定の分解速度は、原水添加前のそれと比較して必ず低下する。低下の度合いは、毒性の程度が強ければ強いほど大きくなる。図1のDO曲線3−1とDO曲線3−3の測定パターンは、原水が強い毒性を示す場合の例であり、DO曲線3−3のDO変化は、DO曲線3−1のDO変化と較べてDO低下幅は小さく、測定終了時間が長い同図のような扁平な形状となる。   If the raw water is toxic to nitrifying bacteria, the degradation rate of the addition and measurement of the reference solution after the addition of the raw water is necessarily reduced compared to that before the addition of the raw water. The degree of reduction increases with the degree of toxicity. The measurement pattern of DO curve 3-1 and DO curve 3-3 in FIG. 1 is an example in the case where raw water shows strong toxicity. The DO change of DO curve 3-3 is the same as the DO change of DO curve 3-1. Compared to this, the DO reduction width is small, and the flat shape as shown in FIG.

Step3-3の測定終了後は、自動測定モードに設定されていれば、フローチャートS1.に戻る。すなわち、測定済みの混合液を排水して新たに曝気槽から混合液をサンプリングし、上記の測定を繰り返す。通常の活性汚泥の場合、処理が良好であれば、上記操作に要する時間はStep1が約50分、Step2が35分、Step3-1が約20分、Step3-2が約55分、Step3-3が約20分、合計約3時間程度である。つまり、約3時間ごとに生物学的硝化脱窒プロセスにきわめて重要な運転指標である硝化菌の活性および原水の硝化菌に対する硝化阻害の程度の定量的な情報を得ることができる。   After the measurement in Step 3-3, if the automatic measurement mode is set, the process returns to the flowchart S1. That is, the measured mixed solution is drained, the mixed solution is newly sampled from the aeration tank, and the above measurement is repeated. In the case of normal activated sludge, if the treatment is good, the time required for the above operation is about 50 minutes for Step1, 35 minutes for Step2, about 20 minutes for Step3-1, about 55 minutes for Step3-2, Step3-3 Is about 20 minutes, about 3 hours in total. That is, it is possible to obtain quantitative information about the activity of nitrifying bacteria and the degree of nitrification inhibition of raw water nitrifying bacteria, which are extremely important operation indices for the biological nitrification and denitrification process about every 3 hours.

次に、基準液の成分に関する事項について説明する。
Step3-1やStep3-3で添加する基準液は、硝化菌の活性を評価するための基準となる添加液であって、成分組成が一定の添加液である。基準液として使用できる必要条件は、
(1)基準液の成分が、適正な硝化菌の濃度および活動状態において、変化を識別できるだけの充分大きな分解速度の大きさがあること。
(2) 基準液の成分が、BOD酸化菌による酸素消費量と硝化菌による硝酸イオンへの酸化による酸素消費量に充分大きな差があること。
(3) 基準液の成分が、BOD酸化菌による酸素消費速度と硝化菌による硝酸イオンへの酸化による酸素消費速度に充分大きな差があること。
上記(1)から(3)の条件を満たす物質としては、硫酸アンモニウム、塩化アンモニウム、などの水に溶けてアンモニウムイオンを生じる物質および尿素、ニトリルアミド、ヒドロキシルアミン、ホルムアミドがある。基準液はこれらの物質のうち少なくとも1種類以上を含有する。
選定後は、常に同じ基準液を使用する。
Next, matters relating to the components of the reference solution will be described.
The reference solution added in Step 3-1 or Step 3-3 is an additive solution that serves as a reference for evaluating the activity of nitrifying bacteria, and is an additive solution having a constant component composition. Requirements that can be used as a reference solution are:
(1) The component of the reference solution has a sufficiently high decomposition rate enough to discriminate changes in the appropriate concentration and activity state of nitrifying bacteria.
(2) The components of the reference solution have a sufficiently large difference in oxygen consumption by BOD oxidizing bacteria and oxygen consumption by oxidation to nitrate ions by nitrifying bacteria.
(3) The components of the reference solution have a sufficiently large difference between the oxygen consumption rate by BOD oxidizing bacteria and the oxygen consumption rate by oxidation to nitrate ions by nitrifying bacteria.
Substances satisfying the above conditions (1) to (3) include substances that dissolve in water such as ammonium sulfate and ammonium chloride to generate ammonium ions, and urea, nitrile amide, hydroxylamine, and formamide. The reference solution contains at least one of these substances.
Always use the same reference solution after selection.

硝化菌による基準液の成分の酸化反応速度は、必ずしも一定ではない。従って、活性の変化を比較するには、どの時点の分解速度を比較対象にするかを規定する必要がある。多くの場合、基準液添加によるDOの変化パターンは、硝化菌の活性のみによる一定の酸化速度で進行する過程では、階段状に変化し、成分が少なくなると酸化速度が濃度依存となりスロープ状に上昇する。そして、最終的に、硝化が終了すると活性汚泥のASactによる酸素消費速度と、曝気による酸素供給速度がバランスするhighfinalDOの値に収束する。   The oxidation reaction rate of the components of the reference solution by nitrifying bacteria is not always constant. Therefore, in order to compare changes in activity, it is necessary to define at what time the decomposition rate is to be compared. In many cases, the DO change pattern due to the addition of the reference solution changes stepwise in the process of progressing at a constant oxidation rate due only to the activity of the nitrifying bacteria. To do. Finally, when nitrification is complete, the oxygen consumption rate by ASact of activated sludge and the oxygen supply rate by aeration converge to the highfinalDO value.

図6に、この過程におけるDO変化のパターン例を示す。図6のDO測定曲線は、図2の実線2の曲線と異なっているが、これは初期値DOが高いhighfinalDO値からスタートしているためである。硝化菌の活性が変化した場合、基準液のすべての成分の分解速度が均等に変化するとは限らない。このため、マクロ的な把握の仕方が実用的で、例えば全体のBODの50%を分解するまでの平均分解速度を指標にする。この値を大きくとればとるほど、分解力を評価する指標としては理に適っているが、測定上の誤差も大きくなる。また、少量の分解性の遅い成分のわずかな変動により測定終了時間が大きく左右されるので、成分変動によるバラツキが不必要に大きくなり、測定上の誤差も大きくなる。一方、添加直後の最大分解速度は変化を敏感に捉えることができるが、基準液成分中の最も分解性の早い成分による寄与が非常に大きい。このため、その成分を選択的に硝化する微生物のみの活性を評価する危険性がある。これに対し、50%程度を硝化するまでには、基準液中のいろいろな成分を硝化する微生物の平均的な活性が寄与することになる。従って、一般的には50%程度の分解までの平均酸化速度を指標にするのが適当である。もちろん、基準液が単独成分の場合などで単純な分解速度の場合などでは最大分解速度を指標にしたり、また、硝化槽内での硝化率を重視する場合は、硝化率の大きい平均酸化速度を指標にすることもある。 FIG. 6 shows an example of a DO change pattern in this process. DO measurement curve of FIG. 6, but differs from the solid curve 2 in FIG. 2, this is because the initial value DO 0 is started from a high highfinalDO value. When the activity of nitrifying bacteria changes, the decomposition rate of all components of the reference solution does not always change evenly. For this reason, a macro way of grasping is practical. For example, an average decomposition rate until 50% of the entire BOD is decomposed is used as an index. The larger this value is, the more reasonable it is as an index for evaluating the resolution, but the larger the measurement error. In addition, since the measurement end time is greatly influenced by a small fluctuation of a small amount of a component having a slow decomposability, the variation due to the fluctuation of the component becomes unnecessarily large, and the measurement error also increases. On the other hand, the maximum decomposition rate immediately after the addition can be sensitive to changes, but the contribution of the fastest decomposable component in the reference liquid component is very large. For this reason, there is a risk of evaluating the activity of only microorganisms that selectively nitrify the component. On the other hand, the average activity of microorganisms that nitrify various components in the reference solution contributes to nitrification of about 50%. Therefore, it is generally appropriate to use the average oxidation rate until decomposition of about 50% as an index. Of course, when the reference solution is a single component, the maximum decomposition rate is used as an index when the decomposition rate is simple, and when the nitrification rate in the nitrification tank is important, an average oxidation rate with a large nitrification rate is used. Sometimes used as an indicator.

ある硝化率までの平均酸化速度は、DO測定データを用いて以下のように求めることができる。
硝化による全酸素消費量(以後BODtと称す)は、図6において、添加開始から分解終了までのDO変化曲線と、DO0を初期値とし、(4)式で計算される曲線(以後、仮想DO曲線1と称す)により囲まれる面積にKabsを乗じた値で示される。初期値DO0がhighfinalDO値である場合は、仮想DO曲線は一定(highfinalDO値)の直線となる。
次に、ある時間までに硝化されたされた酸素消費量(以後BODと称す)は、以下のようにして求めることができる。すなわち、その時点でBODが0mg/lになったとすれば、DO変化曲線は、その時点のDO測定値を初期値DO2とし、highfinalDOとKabsを使って(4)式で計算される曲線(以後、仮想DO曲線2と称す)になる。したがって、添加開始からその時点までのDO変化曲線と、仮想DO曲線1と仮想DO曲線2により囲まれた面積にKabsを掛けた値が、その時点までのBOD(以後BODpと称す)になる。
さらに、BODp/BODt×100(%)が目的の分解率になる時点をtpとすれば、BODp/tpが求める平均分解速度となる。
The average oxidation rate up to a certain nitrification rate can be determined as follows using DO measurement data.
Total oxygen consumption by nitrification (hereinafter referred to as BODt), in FIG. 6, the DO change curve from the start of addition up to the decomposition was finished, the DO 0 as the initial value, (4) curve which is calculated by the formula (hereinafter, virtual It is indicated by a value obtained by multiplying the area surrounded by the DO curve 1) by Kabs. When the initial value DO 0 is a highfinalDO value, the virtual DO curve is a constant (highfinalDO value) straight line.
Next, the amount of oxygen consumed that has been nitrified by a certain time (hereinafter referred to as BOD) can be determined as follows. That is, if the BOD becomes 0 mg / l at that time, the DO change curve is a curve calculated by the equation (4) using the high DO value and Kabs, with the DO measurement value at that time as the initial value DO 2. Hereinafter, it is referred to as a virtual DO curve 2). Therefore, the value obtained by multiplying the area surrounded by the DO change curve from the start of addition to the time point and the virtual DO curve 1 and the virtual DO curve 2 by Kabs becomes the BOD up to that point (hereinafter referred to as BODp).
Furthermore, if the time point at which BODp / BODt × 100 (%) reaches the target decomposition rate is tp, the average decomposition rate obtained by BODp / tp is obtained.

次に、分解反応が終了したかどうかの判定法について述べる。図5のフローチャートにおいても、S4,S13,S17,S21で分解反応が終了したかどうかの判定が必要である。この判定には、活性汚泥の微生物反応の特徴を利用する。通常、廃液を添加すると、図6に示すように、DO測定曲線は廃液中の主要成分の分解進行によって、階段状の変化を経る。そして、反応終了近くになるとスロープ上に上昇し、最終的にhighfinalDO付近で殆ど一定になる変化をする。したがって、DO値がhighfinalDO付近でほとんど一定になれば、反応終了と判断できる。これをコンピュータ17上で実現する方法は、例えば以下の通りである。測定時の数分前からの数点のDO測定値から回帰直線の傾きβを計算する。βはDOの上昇変化速度となるので、βとDOの上昇変化速度の最小許容値である設定値5(予めコンピュータ17に格納)と比較し、
β<設定値5 and DO≒highfinalDO
の条件を以って反応終了と判定する。
Next, a method for determining whether or not the decomposition reaction has ended will be described. In the flowchart of FIG. 5 as well, it is necessary to determine whether or not the decomposition reaction has been completed in S4, S13, S17, and S21. This determination uses the characteristics of the microbial reaction of activated sludge. Normally, when waste liquid is added, as shown in FIG. 6, the DO measurement curve undergoes a step-like change as the main components in the waste liquid decompose. And when it is near the end of the reaction, it rises on the slope and finally changes almost constant near highfinalDO. Therefore, if the DO value becomes almost constant around highfinalDO, it can be determined that the reaction has ended. A method for realizing this on the computer 17 is, for example, as follows. The slope β of the regression line is calculated from several DO measurement values from several minutes before the measurement. Since β is the DO change rate, it is compared with the set value 5 (previously stored in the computer 17), which is the minimum allowable value of β and DO increase rate,
β <set value 5 and DO ≒ highfinalDO
It is determined that the reaction is completed under the conditions of

ここに、DO≒highfinalDOとしたのは、反応終了時の活性汚泥の状態がhighfinalDOを取得した時点とは必ずしも同じでないことを考慮したためである。例えば、Step2-1においてhighfinalDOを取得した時点では混合液のBODが0mg/lであるとしたが、厳密には測定精度以下の遅い分解速度を持ったBOD成分もある。また、廃液の添加により汚泥の性質が変わる可能性もある。Kabs=0.3[1/min]、highfinalDO=6.0[mg/l]のとき、分解反応は概ねhighfinalDO-0.5以上になるとDOの上昇はほとんどの場合スロープ状になる。この点を図6のDOに示す値とすれば、実用上、β<設定値5 and DO>DOのような設定で判定可能である。 Here, DO≈highfinalDO is taken into consideration that the state of activated sludge at the end of the reaction is not necessarily the same as when highfinalDO was acquired. For example, the BOD of the mixed solution is 0 mg / l at the time when highfinalDO is acquired in Step 2-1, but strictly speaking, there is also a BOD component having a slow decomposition rate below the measurement accuracy. Moreover, the property of sludge may change with the addition of waste liquid. When Kabs = 0.3 [1 / min] and highfinalDO = 6.0 [mg / l], the decomposition reaction is generally higher than highfinalDO-0.5, the increase of DO becomes a slope in most cases. If the value indicating the points DO L in FIG. 6, practically, it can be determined by setting such as beta <setpoint 5 and DO> DO L.

本発明は、生物学的硝化脱窒法や活性汚泥に限らず、浮遊微生物を部分的にでも利用するものであれば、接触酸化法、生物ろ過法、担体の微生物を保持する流動層法など、他の好気性微生物を利用する廃水処理法においても、硝化活性を評価する必要がある場合には適用可能である。   The present invention is not limited to biological nitrification and denitrification methods and activated sludge, as long as it uses floating microorganisms partially, contact oxidation method, biological filtration method, fluidized bed method for holding carrier microorganisms, etc. The wastewater treatment method using other aerobic microorganisms can also be applied when nitrification activity needs to be evaluated.

本発明による測定の基本操作とDO変化を表すパターン例である。It is an example of a pattern showing basic operation of measurement and DO change by the present invention. 本発明の基礎となる計算原理を説明する図である。It is a figure explaining the calculation principle used as the foundation of the present invention. 生物学的硝化脱窒法の装置例を示すフロシートである。It is a flow sheet which shows the example of an apparatus of biological nitrification denitrification method. 測定装置の具体例を示すフローシートである。It is a flow sheet which shows the example of a measuring device. 測定装置の作動を説明するフローチャートである。It is a flowchart explaining the action | operation of a measuring apparatus. 本実施例の測定装置によるDO測定パターン例である。It is an example of DO measurement pattern by the measuring apparatus of a present Example.

符号の説明Explanation of symbols

3 曝気容器
4 測定容器
5、12、13 ポンプ
6 曝気装置
7 空気流量計
8、14、20〜24 電磁弁
9 溶存酸素計電極
10 ヒータ
11 冷却用熱交換パイプ
15 溶存酸素計
16 制御盤
17 コンピュータ
18 計量容器
19 真空ポンプ
25 温度センサー
26 圧力計センサー
3 Aeration vessel 4 Measurement vessel 5, 12, 13 Pump 6 Aeration device 7 Air flow meter 8, 14, 20-24 Solenoid valve
9 Dissolved oxygen meter electrode 10 Heater 11 Heat exchange pipe 15 for cooling 15 Dissolved oxygen meter 16 Control panel 17 Computer 18 Measuring container 19 Vacuum pump 25 Temperature sensor 26 Pressure gauge sensor

Claims (3)

微生物を利用する活性汚泥や生物学的硝化脱窒法などの廃水処理における運転評価方法であって、
曝気槽からサンプリングした廃水と活性汚泥を含む混合液を曝気して、混合液中の溶存酸素濃度の変化曲線(以下、DO曲線2−1という)及び混合液中のBOD分解後の酸素供給速度と混合液の酸素消費速度とのバランス点における溶存酸素濃度(以下、highfinalDOという)を測定し、
次に、曝気を停止して溶存酸素濃度を低下させた後に、曝気を再開したときの溶存酸素濃度変化曲線(以下、DO曲線2−3という)を測定し、
DO曲線2−3およびhighfinalDOに基づいて酸素供給手段における物質移動係数(以下、Kabsという)を演算し、
次に、硫酸アンモニウム、塩化アンモニウムなどの水に溶けてアンモニウムイオンを生成する塩および尿素、ニトリルアミド、ヒドロキシルアミン、ホルムアミドの少なくとも一種類以上含有し、かつ、成分組成一定の基準液を混合液に添加して、その後の溶存酸素濃度変化及びhighfinalDOとKabsに基づいて前記基準液の分解速度を求めることにより、混合液中の活性汚泥の硝化活性を評価する、
ことを特徴とする廃水処理運転評価方法。
It is an operation evaluation method in wastewater treatment such as activated sludge using microorganisms or biological nitrification denitrification method,
The mixed solution containing the wastewater and activated sludge sampled from the aeration tank is aerated, the change curve of dissolved oxygen concentration in the mixed solution (hereinafter referred to as DO curve 2-1) and the oxygen supply rate after BOD decomposition in the mixed solution Measure the dissolved oxygen concentration (hereinafter referred to as highfinalDO) at the balance point between the oxygen consumption rate of the liquid mixture and
Next, after aeration is stopped and the dissolved oxygen concentration is lowered, a dissolved oxygen concentration change curve (hereinafter referred to as DO curve 2-3) when aeration is resumed is measured.
Based on the DO curve 2-3 and highfinalDO, the mass transfer coefficient (hereinafter referred to as Kabs) in the oxygen supply means is calculated,
Next, a standard solution containing at least one of urea, nitrile amide, hydroxylamine, formamide and a constant component composition is added to the mixture. Then, the nitrification activity of the activated sludge in the mixed solution is evaluated by determining the decomposition rate of the reference solution based on the subsequent dissolved oxygen concentration change and highfinalDO and Kabs.
A wastewater treatment operation evaluation method characterized by that.
請求項1において、さらに、硝化活性が予め定めた設定値より大きい場合には、前記基準液の分解終了後に原水を添加して、原水のBOD成分の分解終了後、再度前記基準液を添加して、その後の溶存酸素濃度変化及びhighfinalDOとKabsに基づいて前記基準液の分解速度を求め、原水添加前後の基準液の分解速度を比較することにより、原水の活性汚泥に対する硝化活性の阻害程度を評価する、
ことを特徴とする廃水処理運転評価方法。
In claim 1, when the nitrification activity is larger than a predetermined set value, raw water is added after the decomposition of the reference liquid, and the reference liquid is added again after the decomposition of the BOD component of the raw water. Then, by determining the decomposition rate of the reference solution based on the change in dissolved oxygen concentration and highfinal DO and Kabs, and comparing the decomposition rate of the reference solution before and after the addition of raw water, the degree of inhibition of nitrification activity on the activated sludge of the raw water can be reduced. evaluate,
A wastewater treatment operation evaluation method characterized by that.
微生物を利用する活性汚泥や生物学的硝化脱窒法などの廃水処理における運転評価装置であって、
サンプリングした廃水と活性汚泥を含む混合液を曝気して、混合液中の溶存酸素濃度の変化曲線(以下、DO曲線2−1という)及び混合液中のBOD分解後の、酸素供給速度と混合液の酸素消費速度とのバランス点における溶存酸素濃度(以下、highfinalDOという)を測定する手段と、
曝気を停止して溶存酸素濃度を低下させた後に、曝気を再開したときの溶存酸素濃度変化曲線(以下、DO曲線2−3という)を測定する手段と、
DO曲線2−3およびhighfinalDOに基づいて酸素供給手段における物質移動係数(以下、Kabsという)を演算する手段と、
成分組成一定の基準液を混合液に添加して、その後の溶存酸素濃度変化及びhighfinalDOとKabsに基づいて前記基準液の分解速度を求めることにより、混合液中の活性汚泥の硝化活性を評価取得する手段と、
硝化活性が予め定めた設定値より大きい場合には、前記基準液の分解終了後に原水を添加し、原水のBOD成分が分解終了後、再度基準液を添加して、その後の溶存酸素濃度変化及びhighfinalDOとKabsに基づいて基準液の分解速度を演算する手段と、
原水添加前後の基準液の分解速度を比較することにより、原水の活性汚泥に対する硝化活性の阻害程度を評価する手段と、
を備えて成ることを特徴とする廃水処理における運転評価装置。
It is an operation evaluation device in wastewater treatment such as activated sludge using microorganisms and biological nitrification denitrification method,
Mixing the sampled wastewater and the activated sludge mixed solution, aeration curve of dissolved oxygen concentration in the mixed solution (hereinafter referred to as DO curve 2-1) and oxygen supply rate and mixing after decomposition of BOD in the mixed solution Means for measuring the dissolved oxygen concentration (hereinafter referred to as highfinalDO) at a balance point with the oxygen consumption rate of the liquid;
Means for measuring a dissolved oxygen concentration change curve (hereinafter referred to as DO curve 2-3) when aeration is resumed after stopping aeration and reducing the dissolved oxygen concentration;
Means for calculating a mass transfer coefficient (hereinafter referred to as Kabs) in the oxygen supply means based on the DO curve 2-3 and highfinalDO;
Evaluate the nitrification activity of activated sludge in the mixed solution by adding a reference solution with a constant component composition to the mixed solution and then determining the decomposition rate of the reference solution based on the change in dissolved oxygen concentration and highfinalDO and Kabs. Means to
When the nitrification activity is larger than a preset value, the raw water is added after the decomposition of the reference solution, and the BOD component of the raw water is added after the decomposition, and then the dissolved oxygen concentration change and means for calculating the decomposition rate of the reference solution based on highfinalDO and Kabs;
Means for evaluating the degree of inhibition of nitrification activity against activated sludge of raw water by comparing the decomposition rate of the reference solution before and after addition of raw water;
A device for evaluating operation in wastewater treatment, comprising:
JP2004309063A 2004-10-25 2004-10-25 Wastewater treatment measurement method and apparatus Active JP4550547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309063A JP4550547B2 (en) 2004-10-25 2004-10-25 Wastewater treatment measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309063A JP4550547B2 (en) 2004-10-25 2004-10-25 Wastewater treatment measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2006116480A true JP2006116480A (en) 2006-05-11
JP4550547B2 JP4550547B2 (en) 2010-09-22

Family

ID=36534863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309063A Active JP4550547B2 (en) 2004-10-25 2004-10-25 Wastewater treatment measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP4550547B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148368A1 (en) * 2006-06-16 2007-12-27 Ogawa Environmental Research Institute, Inc. Method of analyzing liquid mixture in waste water treatment
JP2010125370A (en) * 2008-11-26 2010-06-10 Ogawa Kankyo Kenkyusho:Kk Control method for reducing volume of surplus sludge
CN105548039A (en) * 2015-12-07 2016-05-04 清华大学 On-line detection device and detection method for activated sludge denitrification rate
JP5996819B1 (en) * 2016-04-23 2016-09-21 株式会社 小川環境研究所 Aeration control method for activated sludge
CN113588765A (en) * 2021-07-27 2021-11-02 南京大学 Method for evaluating biodegradability of soluble organic nitrogen in wastewater and application of method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196900A (en) * 1989-12-26 1991-08-28 Meidensha Corp Method for measuring nitrification activity
JPH1028992A (en) * 1996-07-16 1998-02-03 Ogawa Kankyo Kenkyusho:Kk Method for controlling waste water treatment and device therefor
JPH10151481A (en) * 1996-11-22 1998-06-09 Kurita Water Ind Ltd Method for evaluating toxicity of activated sludge
JPH10296289A (en) * 1997-04-30 1998-11-10 Kurita Water Ind Ltd Method of evaluating nitrification blocking performance against active sludge
JP2001235462A (en) * 2000-02-25 2001-08-31 Ogawa Kankyo Kenkyusho:Kk Method for testing processing wastewater
JP2001255319A (en) * 2000-03-09 2001-09-21 Ogawa Kankyo Kenkyusho:Kk Test method for wastewater treatment
WO2006030538A1 (en) * 2004-09-14 2006-03-23 Ogawa Environment Research Institute, Inc. Method of wastewater treatment measurement and wastewater treatment measuring apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196900A (en) * 1989-12-26 1991-08-28 Meidensha Corp Method for measuring nitrification activity
JPH1028992A (en) * 1996-07-16 1998-02-03 Ogawa Kankyo Kenkyusho:Kk Method for controlling waste water treatment and device therefor
JPH10151481A (en) * 1996-11-22 1998-06-09 Kurita Water Ind Ltd Method for evaluating toxicity of activated sludge
JPH10296289A (en) * 1997-04-30 1998-11-10 Kurita Water Ind Ltd Method of evaluating nitrification blocking performance against active sludge
JP2001235462A (en) * 2000-02-25 2001-08-31 Ogawa Kankyo Kenkyusho:Kk Method for testing processing wastewater
JP2001255319A (en) * 2000-03-09 2001-09-21 Ogawa Kankyo Kenkyusho:Kk Test method for wastewater treatment
WO2006030538A1 (en) * 2004-09-14 2006-03-23 Ogawa Environment Research Institute, Inc. Method of wastewater treatment measurement and wastewater treatment measuring apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148368A1 (en) * 2006-06-16 2007-12-27 Ogawa Environmental Research Institute, Inc. Method of analyzing liquid mixture in waste water treatment
JP2010125370A (en) * 2008-11-26 2010-06-10 Ogawa Kankyo Kenkyusho:Kk Control method for reducing volume of surplus sludge
JP4695177B2 (en) * 2008-11-26 2011-06-08 株式会社 小川環境研究所 Control method of excess sludge volume reduction treatment
CN105548039A (en) * 2015-12-07 2016-05-04 清华大学 On-line detection device and detection method for activated sludge denitrification rate
WO2017104182A1 (en) * 2015-12-17 2017-06-22 株式会社小川環境研究所 Method for controlling amount of aeration in activated sludge
CN107207301A (en) * 2015-12-17 2017-09-26 株式会社小川环境研究所 Aeration control method in activated sludge
US10329181B2 (en) 2015-12-17 2019-06-25 Ogawa Environmental Research Institute Inc. Method for controlling aeration volume in activated sludge
CN107207301B (en) * 2015-12-17 2020-12-04 株式会社小川环境研究所 Method for controlling aeration amount in activated sludge
JP5996819B1 (en) * 2016-04-23 2016-09-21 株式会社 小川環境研究所 Aeration control method for activated sludge
JP2017192927A (en) * 2016-04-23 2017-10-26 株式会社 小川環境研究所 Aeration tank controlling method by active sludge
CN113588765A (en) * 2021-07-27 2021-11-02 南京大学 Method for evaluating biodegradability of soluble organic nitrogen in wastewater and application of method
CN113588765B (en) * 2021-07-27 2022-07-08 南京大学 Method for evaluating biodegradability of soluble organic nitrogen in wastewater and application of method

Also Published As

Publication number Publication date
JP4550547B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
US8916046B2 (en) Method for controlling oxygen supply for treating wastewater, and facility for implementing same
JP4334317B2 (en) Sewage treatment system
EP3222590B1 (en) Method for controlling aeration airflow in activated sludge
JP5833791B1 (en) Aeration control method for activated sludge
JP4304453B2 (en) Operation control device for nitrogen removal system
JP3301428B2 (en) Wastewater treatment test method
JP2012030232A (en) Phosphorous removal device in sewage disposal plant
JP4550547B2 (en) Wastewater treatment measurement method and apparatus
KR101016394B1 (en) Real-time wastewater composition analyzer using a rapid microbial respiration detector, ss and ec combined sensing system and its measuring method
JP4208154B2 (en) BOD measuring method and apparatus
JP2006084240A (en) Wastewater treatment measuring method
JP4321798B2 (en) Method and apparatus for controlling hydrogen donor amount in denitrification reactor
JP2023160397A (en) Activated sludge treated water BOD measurement method
JP5801506B1 (en) Operation method of biological denitrification equipment
JP3301427B2 (en) Wastewater treatment test method
JP2005274170A (en) Respiration speed measuring method for calculating concentration of organic matter in organic wastewater and respiration speed measuring instrument therefor
JP3585905B2 (en) Test method for activated sludge activity and wastewater degradability
JPH0691294A (en) Operation control method of batch type active sludge treatment
JP3837765B2 (en) Nitric acid concentration measuring device
JP2007000859A (en) Phosphorous removal device in sewage disposal plant
JP7407634B2 (en) Water treatment equipment and water treatment method
JP2952282B1 (en) Wastewater treatment control method
JP5934083B2 (en) Waste water treatment apparatus and treatment method containing nitric acid and nitrous acid
JP2021151646A (en) Water treatment apparatus and water treatment method
JP3814936B2 (en) Method for evaluating nitrification inhibition of activated sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R150 Certificate of patent or registration of utility model

Ref document number: 4550547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140716

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250