JP2952282B1 - Wastewater treatment control method - Google Patents

Wastewater treatment control method

Info

Publication number
JP2952282B1
JP2952282B1 JP11991998A JP11991998A JP2952282B1 JP 2952282 B1 JP2952282 B1 JP 2952282B1 JP 11991998 A JP11991998 A JP 11991998A JP 11991998 A JP11991998 A JP 11991998A JP 2952282 B1 JP2952282 B1 JP 2952282B1
Authority
JP
Japan
Prior art keywords
bod
wastewater
dissolved oxygen
curve
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11991998A
Other languages
Japanese (ja)
Other versions
JPH11290883A (en
Inventor
尊夫 小川
Original Assignee
株式会社 小川環境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 小川環境研究所 filed Critical 株式会社 小川環境研究所
Priority to JP11991998A priority Critical patent/JP2952282B1/en
Application granted granted Critical
Publication of JP2952282B1 publication Critical patent/JP2952282B1/en
Publication of JPH11290883A publication Critical patent/JPH11290883A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

【要約】 【課題】 好気性微生物を利用する廃水処理において、
曝気空気量の適性化による省エネ、異常廃水流入の早期
発見処置、運転管理業務の省力化等を得ることができる
廃水処理制御方法を提供する。 【解決手段】 曝気処理中の廃水をサンプリングし、該
廃水中の溶存酸素と、その後新たな廃水の流入を停止し
た状態で溶存酸素の減少する変化(曲線)と、その後該
廃水に空気を曝気して溶存酸素の増加する変化(曲線)
をそれぞれ測定し、その測定から得られる汚泥の活性
度、未処理のBOD濃度、曝気空気量の過不足の情報と
目標とするデ−タ・曲線パタ−ンとを比較して、曝気空
気量等の増減を指示または制御する信号を発する廃水処
理制御方法において、新たな廃水の流入を停止した状態
で測定する際、溶存酸素濃度が低い場合、測定時に短時
間曝気して溶存酸素濃度を直線的に減少する程度まで高
めて溶存酸素の減少速度を測定する。
Abstract: [PROBLEMS] In wastewater treatment using aerobic microorganisms,
Provided is a wastewater treatment control method capable of achieving energy saving by optimizing aeration air amount, early detection of abnormal wastewater inflow, labor saving of operation management work, and the like. SOLUTION: The wastewater during the aeration treatment is sampled, the dissolved oxygen in the wastewater and the change (curve) in which the dissolved oxygen decreases with the inflow of new wastewater stopped, and then air is aerated to the wastewater. Increase in dissolved oxygen (curve)
Is measured, and the sludge activity, untreated BOD concentration, and information on excess / deficiency of the aeration air obtained from the measurement are compared with the target data / curve patterns to obtain the aeration air amount. In the wastewater treatment control method that issues a signal that instructs or controls the increase or decrease of the concentration, etc., when measuring with the flow of new wastewater stopped, if the dissolved oxygen concentration is low, the dissolved oxygen concentration is linearized by aerating for a short time during the measurement. The rate of decrease in dissolved oxygen is measured by increasing the rate to a point at which the rate decreases.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は好気性微生物を利用した
廃水処理法を運転制御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the operation of a wastewater treatment method using aerobic microorganisms.

【0002】[0002]

【従来の技術】廃水処理の方法として、好気性微生物を
利用した生物処理法は広く一般的に用いられる廃水処理
法である。その代表的なプロセスとしては活性汚泥処理
法がある。また活性汚泥処理法にも曝気槽の形状、原廃
水の注入法や負荷のかけ方等により、標準活性汚泥法、
オキシデ−ションリッチ、ステップエアレ−ション法、
完全混合等はさまざまなバリエ−ションがある。その処
理原理は共通で、好気性微生物が廃水中の汚濁物を捕捉
し酸素の供給を得て分解することにより生物活動するた
めのエネルギ−を得たり、廃水中の汚濁物を分解、合成
して自己の生体を維持、増殖する自然界の生物活動を高
度に濃縮することにより廃水を浄化することである。し
たがって廃水を効率良く、また清浄に処理できるかは、
好気性微生物の活動をいかに活発な状態に維持していく
かによる。
2. Description of the Related Art As a wastewater treatment method, a biological treatment method using an aerobic microorganism is a widely used wastewater treatment method. A typical process is an activated sludge treatment method. In addition, the activated sludge treatment method depends on the shape of the aeration tank, the method of injecting raw wastewater and the method of applying load, etc.
Oxidation rich, step aeration method,
There are various variations such as complete mixing. The treatment principle is common, and aerobic microorganisms capture the pollutants in wastewater and obtain oxygen for the supply of oxygen to decompose, thereby obtaining energy for biological activities, and decompose and synthesize pollutants in wastewater. Purification of wastewater by highly concentrating the biological activities of the natural world that maintain and proliferate their own organisms. Therefore, whether wastewater can be treated efficiently and cleanly
It depends on how active the aerobic microorganisms are.

【0003】活性汚泥処理における活性汚泥のBOD分
解速度は次のように表現できる。汚泥の活性度を単位量
の活性汚泥が適正なBOD物質と酸素の供給を受けたと
きに単位時間でBODを分解する能力と定義すると BOD分解速度=f(BOD濃度、溶存酸素濃度、ML
SS×汚泥の活性度) の関数である。ここにBODとは生物化学的酸素要求
量、MLSSは曝気槽混合液の汚泥濃度である。また汚
泥の活性度とは単位当たりの汚泥が汚濁物を分解する力
を表す指標であり、後述のように種々の要因に影響を受
ける。
[0003] The BOD decomposition rate of activated sludge in the activated sludge treatment can be expressed as follows. When the activity of sludge is defined as the ability of a unit amount of activated sludge to decompose BOD in a unit time when supplied with an appropriate amount of BOD substance and oxygen, BOD decomposition rate = f (BOD concentration, dissolved oxygen concentration, ML
SS × sludge activity). Here, BOD is the biochemical oxygen demand, and MLSS is the sludge concentration of the aeration tank mixture. The sludge activity is an index indicating the power of sludge per unit to decompose pollutants, and is affected by various factors as described later.

【0004】このため活性汚泥処理装置を適正に運転す
るには、 1.適量の分解可能な汚濁物(=BOD負荷量)がある
こと 2.汚濁物を分解し、微生物の呼吸に必要な酸素が供給
されていること 3.汚濁物の量と基質にみあった微生物の種類、量を確
保し、それぞれの処理法に適した微生物が専ら繁殖しや
すい環境にすること が必要である。このための運転管理指標として、 1.原水のBODの代替指標としての化学的酸素要求量
(COD)、pH等2.曝気槽内の溶存酸素濃度(DO
値) 3.MLSS値、pH、温度、塩濃度、汚泥容積指標
(SVI)、返送汚泥濃度等 4.処理水の管理指標としてCOD、透視度、浮遊物濃
度(SS)、pH等 等がある。
[0004] Therefore, in order to operate the activated sludge treatment apparatus properly, it is necessary to: 1. There is an appropriate amount of decomposable pollutants (= BOD load). 2. Decompose pollutants and supply oxygen required for microbial respiration. It is necessary to ensure that the amount of contaminants and the type and amount of microorganisms in the substrate are appropriate, and that the environment suitable for each treatment method is dedicated to the growth of microorganisms. As the operation management index for this, 1. Chemical oxygen demand (COD), pH, etc. as an alternative index of BOD of raw water Dissolved oxygen concentration in the aeration tank (DO
Value) 3. 3. MLSS value, pH, temperature, salt concentration, sludge volume index (SVI), returned sludge concentration, etc. There are COD, visibility, suspended solids concentration (SS), pH, etc. as management indexes of treated water.

【0005】図1に標準活性汚泥処理装置の基本的なフ
ロ−シ−トを示す。1は原水ポンプ、2は原水流量調節
バルブ、3は曝気槽、4は曝気用ブロア−、5はブロア
−の出力を調整するインバ−タ−、6は散気管、7は最
終沈殿池、8は返送汚泥ポンプ、9は返送汚泥流量調節
バルブ、10は余剰汚泥引き抜きバルブである。通常の
活性汚泥処理装置の運転は上記管理指標を参考にして以
下の操作をおこなう。 1.原水のBODと処理すべき廃水量、処理水の水質の
状況から原水調節バルブを操作して処理水量とBOD負
荷量(濃度×水量)を調節する。 2.BOD負荷量とDO値からインバ−タ−により曝気
ブロア−の風量を調節して曝気空気量を調節する。 3.余剰汚泥の引き抜き量や返送汚泥流量を調節してM
LSSを一定に維持管理する。 管理指標を自動の分析計器や管理計器で管理し、その信
号をコンピュ−タで演算して上記操作量を制御すれば活
性汚泥処理装置の自動運転は理屈のうえでは可能である
が、実際の操業において実用化されている例はほとんど
ない。その原因は以下の2点に集約できる。 1.直接BODを運転操作に反映できるような短時間で
信頼に足る測定ができる自動計器がない。BODの代替
指標であるCOD等は迅速に測定可能な自動計器が実用
になっているが、実際の操業においては原水のBODは
多様な成分から成り且つ組成や濃度の変動が大きく、C
OD等の値から必ずしもBODの値を推定できない。 2.実際の操業においては汚泥の活性度は様々な因子か
ら影響を受けて変動しているが、その活性度を判断する
実操業に役立つ簡便な手段がない。 このため、上記のような自動運転法は、廃水の基質変動
がほとんどないごく特殊な廃水の場合に限られている。
FIG. 1 shows a basic flow chart of a standard activated sludge treatment apparatus. 1 is a raw water pump, 2 is a raw water flow control valve, 3 is an aeration tank, 4 is an aeration blower, 5 is an inverter for adjusting the output of the blower, 6 is a diffuser pipe, 7 is a final sedimentation tank, 8 Is a return sludge pump, 9 is a return sludge flow control valve, and 10 is an excess sludge extraction valve. The normal operation of the activated sludge treatment apparatus performs the following operations with reference to the above management index. 1. The raw water control valve is operated to adjust the treated water amount and the BOD load (concentration × water amount) based on the BOD of the raw water, the amount of wastewater to be treated, and the quality of the treated water. 2. The air volume of the aeration blower is adjusted by the inverter based on the BOD load and the DO value to adjust the aeration air volume. 3. Adjusting the amount of excess sludge withdrawn and returning sludge flow rate
Maintain LSS at a constant level. Automatic management of the activated sludge treatment device is theoretically possible if the management index is managed by an automatic analysis instrument or management instrument, and the signal is calculated by a computer to control the above operation amount. Few examples have been put to practical use in operations. The causes can be summarized in the following two points. 1. There is no automatic instrument that can perform reliable measurement in a short time so that the BOD can be directly reflected in driving operation. Automatic instruments that can quickly measure COD, which is an alternative index of BOD, are practically used. However, in actual operation, the BOD of raw water is composed of various components, and the composition and concentration vary greatly.
The value of BOD cannot always be estimated from the value of OD or the like. 2. In an actual operation, the activity of sludge fluctuates under the influence of various factors, but there is no simple means for judging the activity useful for the actual operation. For this reason, the automatic operation method as described above is limited to the case of a very special wastewater in which the substrate of the wastewater hardly changes.

【0006】このように自動運転のニ−ズは高いもの
の、変動の激しい実操業では管理指標から操作量への判
断はオペレ−タの技量に頼っているのが一般的である。
そして常時BOD等の処理水質を一定値以下に維持しよ
うとすれば、運転条件は廃水変動や汚泥の活性度の変動
を予測することが難しいため安全側に設定せざるを得な
い。このことは処理装置の本来の能力を十分生かしてい
ないことであり、また曝気ブロア−の動力を無駄に消費
していることになる。
As described above, although the need for automatic driving is high, in an actual operation in which fluctuations are severe, it is general that the judgment of the operation amount from the management index depends on the skill of the operator.
If the quality of the treated water such as BOD is constantly maintained at a certain value or less, it is difficult to predict the fluctuation of the wastewater and the fluctuation of the activity of the sludge. This means that the original capacity of the processing apparatus is not sufficiently utilized, and that the power of the aeration blower is wasted.

【0007】本発明者はこの点を解決する手段として特
願平8-205359「廃水処理制御方法及び装置」による方法
を提示した(以下3StepDO制御法と称す)。該方法の
概要を以下に示す。3StepDO制御法は、好気性微生物
を利用する廃水処理において、曝気処理中の廃水をサン
プリングし、該廃水中の溶存酸素(DO1)を測定し、
その後新たなサンプリング廃水の流入を停止した状態で
溶存酸素の減少する変化(DO2変化曲線)を測定し、
その後該廃水に空気を曝気して溶存酸素の増加する変化
(DO3変化曲線)を測定し、またはこのDO3変化曲
線に代るデ−タとして該廃水に既知量のBOD物質を含
む液を添加し空気を曝気して溶存酸素の増加する変化
(DO3′変化曲線)を測定し、DO1とDO2変化曲
線とDO3変化曲線またはDO3′変化曲線の形状から
少なくとも汚泥の活性度、未処理のBOD濃度、曝気空
気量の過不足の情報を特定し、目標とする汚泥の活性
度、未処理のBOD濃度及び目標とする検査DO曲線パ
タ−ンと比較して、曝気空気量や処理量等の運転条件の
制御信号や警報信号を出力するものである。
The present inventor has proposed a method according to Japanese Patent Application No. 8-205359 "Wastewater Treatment Control Method and Apparatus" as a means for solving this problem (hereinafter referred to as a 3-Step DO control method). The outline of the method is shown below. In the 3Step DO control method, in wastewater treatment using aerobic microorganisms, wastewater during aeration treatment is sampled, and dissolved oxygen (DO1) in the wastewater is measured.
After that, while the inflow of new sampling wastewater is stopped, the change (DO2 change curve) of decreasing dissolved oxygen is measured,
Thereafter, the wastewater is aerated with air to measure the increase in dissolved oxygen (DO3 change curve), or a liquid containing a known amount of BOD substance is added to the wastewater as data in place of the DO3 change curve. The air is aerated to measure the increasing change in dissolved oxygen (DO3 'change curve). From the shapes of the DO1 and DO2 change curves and the DO3 or DO3' change curves, at least the sludge activity, untreated BOD concentration, Identify information on excess or deficiency of the aeration air amount, compare it with the target sludge activity, untreated BOD concentration and the target inspection DO curve pattern, and compare the operating conditions such as the amount of aeration air and the processing amount. Output a control signal and an alarm signal.

【0008】[0008]

【発明が解決しようとする課題】3StepDO制御法にお
ける、基本的なデ−タはDO1、DO2変化曲線、DO
3変化曲線またはDO3′変化曲線であり、その採取方
法は特願平8-205359のなかで説明しているが、デ−タの
採取はできるだけ短時間でできるだけ多くの情報が得ら
れれば、それだけ正確な判断が可能であることはいうま
でもなく、本発明は特願平8-205359を改良する効率的な
デ−タの採取を可能にするものである。
Basic data in the 3-Step DO control method are DO1, DO2 change curves, DO
3 change curve or DO3 'change curve, and its collection method is described in Japanese Patent Application No. 8-205359, but data collection is as quick as possible and as much information as possible is obtained. Needless to say, an accurate judgment can be made, and the present invention makes it possible to efficiently collect data which is an improvement over Japanese Patent Application No. 8-205359.

【0009】[0009]

【課題を解決するための手段】3StepDO制御法におい
て、DO2変化曲線を測定する際、DO2変化曲線の測
定開始時点で廃液中の溶存酸素濃度が予め設定した予備
曝気限界値より低い場合、測定開始時点で短時間廃液を
曝気して予め開始時の溶存酸素濃度を直線的に減少する
程度まで高めておいたのちに、溶存酸素の減少を測定す
る。またDO2変化曲線の減少速度がBOD添加限界値
より大きく、予め設定した後半BOD添加限界値より小
さい範囲にある場合、スタ−トから前半部分は空気を曝
気して溶存酸素の上昇する変化を測定し、後半部分で該
廃水に既知量のBOD物質を含む液を添加しかつ空気を
曝気して溶存酸素のDO3″変化曲線を測定し、DO2
変化曲線の減少速度が後半BOD添加限界値より大きい
場合はDO3変化曲線を測定する。
In the three-step DO control method, when measuring the DO2 change curve, the dissolved oxygen concentration in the waste liquid at the start of the measurement of the DO2 change curve is set to a preset value.
When it is lower than the aeration limit value , the waste liquid is aerated for a short time at the start of the measurement, the dissolved oxygen concentration at the start is increased to a degree that decreases linearly in advance, and then the decrease of the dissolved oxygen is measured. The rate of decrease in the DO2 change curve is the BOD addition limit value.
Larger, smaller than preset second half BOD addition limit
If it is within the range, the first half from the start is aerated with air to measure the increasing change in dissolved oxygen, and in the second half the liquid containing a known amount of BOD substance is added to the wastewater and the air is aerated. The DO3 ″ change curve of dissolved oxygen is measured
The rate of decrease of the change curve is larger than the latter half BOD addition limit value
In this case, a DO3 change curve is measured.

【0010】[0010]

【実施例】はじめに3StepDO制御法の原理について簡
単に述べる。好気性微生物の活動状況は呼吸(酸素の消
費速度)を測定することにより推定できる。3StepDO
制御法では以下の3ステップの溶存酸素濃度(DO)の
変化を測定し、コンピュ−タでデ−タ処理することによ
り活性汚泥処理に必要な情報を得て、運転条件に反映さ
せる。第1ステップ(Step1と称す)は曝気槽の混合液
をサンプリングして曝気槽内のDOを測定する。第2ス
テップ(Step2と称す)はサンプリングを停止し、酸素
の供給を遮断してDOの減少していく曲線を測定する。
第3ステップ(Step3と称す)は該混合液を曝気してD
Oの増加していく変化を測定する。または第2ステップ
でDOの減少していく速度が小さい場合は、既知量の分
解容易なBOD物質を添加してから曝気してDOの変化
を測定する(Step3′と称す)。図2に典型的なDOの
変化を示す。サンプリングした混合液に分解容易なBO
D物質がある場合はStep3で図のような2段の曲線とな
り、後述で示すように点線と実線に囲まれた面積が混合
液のBODに相当する。Step1から曝気槽内の曝気空気
量とBOD分解に必要な酸素量とのバランスの情報、St
ep2から汚泥のBOD分解力の情報、Step3から処理状
態の情報(または汚泥の活性度の情報)が得られる。St
ep1からStep3(またはStep3′)を1サイクルとして
このサイクルを繰り返し行い、コンピュ−タがこれらの
情報を総合的に判断する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the principle of the 3Step DO control method will be briefly described. The activity of the aerobic microorganisms can be estimated by measuring respiration (oxygen consumption rate). 3Step DO
In the control method, the change in the dissolved oxygen concentration (DO) in the following three steps is measured, and information required for activated sludge treatment is obtained by data processing by a computer, and is reflected in operating conditions. In the first step (referred to as Step 1), DO in the aeration tank is measured by sampling the liquid mixture in the aeration tank. In the second step (referred to as Step 2), sampling is stopped, the supply of oxygen is cut off, and the curve of DO decreasing is measured.
In a third step (referred to as Step 3), the mixture is aerated and D
The increasing change in O is measured. Alternatively, if the rate at which DO decreases in the second step is small, a known amount of a readily decomposable BOD substance is added, followed by aeration, and the change in DO is measured (referred to as Step 3 '). FIG. 2 shows a typical DO change. BO that can be easily decomposed into sampled mixture
When the substance D is present, a two-step curve as shown in FIG. 3 is obtained in Step 3, and an area surrounded by a dotted line and a solid line corresponds to the BOD of the mixed solution as described later. From Step 1, information on the balance between the amount of aerated air in the aeration tank and the amount of oxygen required for BOD decomposition, St
Information on the BOD decomposition power of the sludge is obtained from ep2, and information on the processing state (or information on the activity of the sludge) is obtained from Step 3. St
This cycle is repeated by setting Step 3 (or Step 3 ') from ep1 as one cycle, and the computer comprehensively judges such information.

【0011】図1には3StepDO制御法を活性汚泥処理
装置に設置する場合の具体例を示す。11は3StepDO
制御法の制御部である。該制御部の主装置はパソコンで
ある。12は3StepDO制御法の測定部である。13は
測定部の一部であるサンプリングポンプである。3Step
DO制御法は制御部からの指令でサンプリングポンプで
曝気槽から混合液をくみ上げ、測定部で一連の工程の検
査を行い、そのDOの変化デ−タを制御部に伝送して制
御部で解析し、その結果得られる制御信号を活性汚泥処
理装置のブロア−、原水ポンプ、返送汚泥ポンプ等の運
転操作機器に出力する。サンプリングポンプは標準活性
汚泥の場合、通常曝気槽出口より少し手前に設置する。
FIG. 1 shows a specific example in the case where the 3-Step DO control method is installed in an activated sludge treatment apparatus. 11 is 3Step DO
It is a control part of the control method. The main device of the control unit is a personal computer. Reference numeral 12 denotes a measurement unit for the 3-Step DO control method. Reference numeral 13 denotes a sampling pump which is a part of the measuring unit. 3Step
In the DO control method, a mixed solution is pumped up from an aeration tank by a sampling pump according to a command from the control unit, a series of processes are inspected by a measurement unit, and the change data of the DO is transmitted to the control unit and analyzed by the control unit. Then, the control signal obtained as a result is output to operation equipment such as a blower of the activated sludge treatment apparatus, a raw water pump, and a return sludge pump. In the case of standard activated sludge, the sampling pump is usually installed slightly before the outlet of the aeration tank.

【0012】つぎに各ステップのもつ意味を詳しく説明
する。Step1は曝気槽内のDOを測定するステップであ
る。Step1ではまず測定容器内の前回のサンプル液を排
水すると同時に、サンプリングポンプで曝気槽内から測
定容器内にサンプル液を汲み上げDOを測定する。充分
サンプル液が置換されるStep1の最後の値が曝気槽内の
DO値(DO1)として有効な値となる。曝気槽内のD
O値は酸素の供給と消費がバランスする値である。式で
あらわすと G・η・(DOsat−DO) =V・(ASact+BODact) (2・1)式 曝気装置からの 活性汚泥が呼吸および 酸素供給量(左辺) BOD 分解で消費する酸素量(右辺) ここに DOsat:飽和溶存在酸素濃度 DO:曝気槽内溶存酸素
濃度 ASact:活性汚泥の呼吸による酸素の消費速度(酸素消
費量) BODact :活性汚泥がBOD成分を分解している酸素の
消費速度(酸素消費量) G:曝気空気量 V:曝気槽の容量 η:酸素の吸収効率(曝気の方式、ディフュ−ザ−の形
状等で決まる係数) 曝気槽内のDO値は0.5mg/l程度が最も効率がよいが、
曝気槽内のバラツキや汚濁物等の変動を考慮して通常は
1mg/l〜2mg/lが管理値として採用される。Step1でわ
かる事項は曝気槽内での曝気空気量の過不足である。し
かしながら過不足の原因が分解の早いBODが多くなっ
て (BODact大) 空気が不足したのか?、分解すべきBO
Dがなくなって(BODact小)空気が過剰になったのか
?、汚泥の活性が悪くなって呼吸による酸素の消費が減
少して(ASact小)空気が相対的に過剰になったのか?、
などStep1の情報だけでは原因が特定できない。
Next, the meaning of each step will be described in detail. Step 1 is a step of measuring DO in the aeration tank. In Step 1, first, the previous sample liquid in the measurement container is drained, and at the same time, the sample liquid is pumped from the aeration tank into the measurement container by the sampling pump to measure DO. The last value of Step 1 in which the sample liquid is sufficiently replaced is a valid value as the DO value (DO1) in the aeration tank. D in the aeration tank
The O value is a value that balances the supply and consumption of oxygen. In formula, G · η · (DOsat-DO) = V · (ASact + BODact) (2.1) Formula: Activated sludge from aeration device breathes and supplies oxygen (left) Oxygen consumed by BOD decomposition (right) Where DOsat: oxygen concentration of dissolved oxygen DO: oxygen concentration of dissolved oxygen in the aeration tank ASact: consumption rate of oxygen by respiration of activated sludge (oxygen consumption) BODact: consumption rate of oxygen that activated sludge decomposes BOD components ( G: Aeration air volume V: Aeration tank capacity η: Oxygen absorption efficiency (coefficient determined by aeration method, diffuser shape, etc.) The DO value in the aeration tank is about 0.5 mg / l. Is the most efficient,
Normally, 1 mg / l to 2 mg / l is adopted as a control value in consideration of variations in the aeration tank and contaminants. What is known in Step 1 is the excess or deficiency of the amount of aerated air in the aeration tank. However, the cause of excess or deficiency is that BOD with fast decomposition increases (BODact is large). BO to be disassembled
Did D disappear (BODact small) and air became excessive? Did the sludge become less active, reduce oxygen consumption by breathing (ASact small), and air become relatively excessive? ,
For example, the cause cannot be specified only by the information in Step 1.

【0013】Step2ではサンプリングポンプを停止し、
酸素の供給を遮断して、サンプル液のDOが減少してい
く速度を測定する。この曲線をDO2変化曲線と称す
る。図3の減少カ−ブの傾きがそれに相当する。式で表
すと、 DO2変化曲線は通常図2−2のように概ね (a) DO>0.5mg/lの範囲では直線的に減少 (b) DO<0.5mg/lでは指数曲線で0に向かって減少す
る。 (a) は(2・2)式の右辺(ASact+BODact) が一定であるこ
とを示している。(b) は(2・2)式の右辺(ASact+BODac
t) がDOの関数であることを示している。また(ASact
+BODact) =β とおくと、βは活性汚泥の酸素の消費
速度を表わし、βが大きいことは汚泥が活発に活動して
いることの証拠となる。逆にβが小さいことは汚泥の活
動が鈍いことになる。以下βを汚泥活性度と称す。
In Step 2, the sampling pump is stopped,
The supply of oxygen is cut off, and the rate at which the DO of the sample liquid decreases is measured. This curve is called a DO2 change curve. The inclination of the reduction curve in FIG. 3 corresponds to this. In terms of the formula, The DO2 change curve generally decreases as shown in Fig. 2-2. (A) It decreases linearly in the range of DO> 0.5 mg / l. (B) It decreases toward 0 in the exponential curve when DO <0.5 mg / l. . (a) shows that the right side (ASact + BODact) of the equation (2.2) is constant. (b) is the right-hand side of equation (2.2) (ASact + BODac
t) is a function of DO. Also (ASact
+ BODact) = β, β represents the oxygen consumption rate of the activated sludge, and a large β is evidence that the sludge is active. Conversely, when β is small, sludge activity is slow. Hereinafter, β is referred to as sludge activity.

【0014】ASact は汚泥の基礎呼吸による酸素の消費
速度である。基礎呼吸なのでBOD成分とは直接無関係
で測定時間内ではほとんど一定であるが、基礎呼吸とい
っても少し長いレンジでは汚泥の状態(対数増殖期、減
衰増殖期、内生呼吸期等)の変化で増減する。この汚泥
の状態は短期的には薬物流入、環境変化(水温変化、p
H、塩濃度等)、原水の組成、変動などで変化し、長期
的には栄養バランス(P、N)、BODの不足と過曝
気、汚泥日令の長期化などで変化減少する。また一般的
に余剰汚泥の引き抜きを活発に行うと若い活発な汚泥に
なる。
ASact is the rate of consumption of oxygen by the basic respiration of sludge. Because it is basal respiration, it is not directly related to the BOD component and is almost constant within the measurement time. However, even in the case of basic respiration, changes in sludge state (logarithmic growth phase, decay growth phase, endogenous respiration phase, etc.) in a slightly longer range To increase or decrease. In the short term, the state of this sludge is drug inflow, environmental change (water temperature change, p
H, salt concentration, etc.), the composition of raw water, fluctuations, etc., and in the long term, changes due to nutritional balance (P, N), shortage and overaeration of BOD, prolonged sludge age, etc. In general, active extraction of surplus sludge results in young active sludge.

【0015】BODactは汚泥がBOD成分を分解している
酸素の消費速度である。BODactはBOD成分が生物分解
されやすい物質であるかどうか、汚泥がその物質に馴化
しているかどうか、汚泥の状態(対数増殖期、減衰増殖
期、内生呼吸期)、水温、pH、塩濃度等の棲息環境な
どで変化する。通常ASact 対 BODact の曝気槽全体での
平均では1:1〜3である。
[0015] BODact is the rate of consumption of oxygen by which sludge decomposes BOD components. BODact is a substance whose BOD component is easily biodegradable, whether the sludge is adapted to the substance, the state of the sludge (logarithmic growth phase, decay growth phase, endogenous respiration phase), water temperature, pH, salt concentration It changes depending on the habitat environment. Normally, the average of ASact vs. BODact in the entire aeration tank is 1: 1-3.

【0016】毒物等の流入、急激な棲息環境の変化があ
ると、ASact も BODact もショックで急減する。またβ
(= ASact+BODact) は生物量(MLSS)に比例する。一
般にβは処理の進行度合により変化する。処理の初期に
おいて廃水中の分解しやすい物質を分解するため分解速
度が速くBODactが大きくなりβは大きな値をとる。処理
の中盤では中程度の分解性の物質を分解するため分解速
度がやや低下し、βは初期よりは小さくなる。処理の終
盤では、難分解性の物質が残るので分解速度は小さくな
り、βはASact より少し大きい程度の小さな値となる。
3StepDO装置は曝気槽の出口近くに設置することでβ
の大きさから処理の進行状態を概略推察できる。但し、
推定のためには汚泥の状態が正常であることが前提とな
るが、βが小さい場合Step2のデ−タだけでは汚泥の状
態が正常であるか否かの判断がつかない。Step2で判明
する事項は処理の状態が概略推定でき、特にβが大きい
場合には処理水自体は未処理の可能性が高いが汚泥の活
動状態は正常であると判断できる。一方βが小さい場合
には、処理が完了して分解可能BOD がなくなったため
か、毒物等の流入で生物活動が鈍って酸素の消費速度が
小さくなったのか、Step2のデ−タだけでは判断できな
い。
[0016] When there is an influx of toxic substances or a sudden change in habitat, both ASact and BODact are sharply reduced by a shock. And β
(= ASact + BODact) is proportional to biomass (MLSS). Generally, β changes according to the degree of progress of the processing. In the early stage of treatment, decomposable substances in wastewater are decomposed, so the decomposition rate is high, BODact is large, and β takes a large value. In the middle stage of the treatment, the decomposition rate of the substance having a moderate degree of decomposability is slightly reduced, and β becomes smaller than the initial stage. At the end of the treatment, the decomposition rate is reduced because the hardly decomposable substance remains, and β is a small value slightly larger than ASact.
The 3Step DO device is installed near the exit of the aeration tank,
The state of progress of the process can be roughly inferred from the size of. However,
For the estimation, it is assumed that the state of the sludge is normal. However, if β is small, it is not possible to judge whether the state of the sludge is normal only from the data in Step 2. Regarding the matters found in Step 2, the state of treatment can be roughly estimated. In particular, when β is large, there is a high possibility that the treated water itself has not been treated, but it can be determined that the activity state of the sludge is normal. On the other hand, if β is small, it is impossible to judge from the data in Step 2 alone, whether the processing is completed and the decomposable BOD has disappeared, or the inflow of toxic substances or the like has slowed down the biological activity and the consumption rate of oxygen has decreased. .

【0017】Step3では3StepDO制御法の曝気装置を
使ってStep2の混合液を曝気する。混合液は曝気により
DOが上昇していくが、その上昇曲線をDO3変化曲線
と称し、DO3変化曲線は汚泥や処理状態により以下の
ような特徴をもっている。この過程を式で表わすと、 ここにKabsは液相基準の総括物質移動係数であり、アス
ピレ−タの形状、水流の強さ等の曝気装置の特性及混合
液の温度、粘度等の性状で決まる定数である。右辺第2
項(ASact+BODact) は、DO>0.5mg/lではStep2で求め
た定数βで置き換えられ、 (2・4)式は以下の指数曲線になる。 DO=α+(α−DO0 )exp (− Kabs ・t) (2・5)式 但しα=DOsat −β/ Kabs 分解容易なBODがある場合、β=大となるので図4の
aの低い曲線となる。分解容易なBODが初めからほと
んどない場合、β=小となるので図4のbの高い曲線と
なる。分解容易なBODが少量あり、曝気の途中で分解
が終了する場合、図4のcの2段の曲線となる。また図
5で示すように、 DOsat :飽和溶存酸素濃度 highDO:2段曲線の上の段の最終DO値 lowDO :2段曲線の下の段の最終DO値 とすると、 DOsat = lowDO+β/ Kabs BODact= Kabs (highDO − lowDO) β=ASact + BODact の関係があり、さらに図5の点線をβが小(BODがな
い時)の場合の上昇曲線とすれば、実線の測定曲線と点
線で囲まれた範囲の面積をSとするとS× KabsがBO
D物質の分解に要した酸素消費量になり、この値はすな
わち混合液のBODに相当する。Step3では単にサンプ
リング液を曝気するので、Step3で判明する事項は上記
のように処理水のBODが推定できることである。但し
Step2でβが小さい場合にはDO3変化曲線はすぐにD
Oが上昇する図4のbの曲線になるが、この原因が餌と
なる分解可能BODがないためなのか、毒物等の流入で
汚泥の活性度が低下しているためかの判別がStep3では
できない。
In Step 3, the mixed solution of Step 2 is aerated using an aeration device of the 3 Step DO control method. DO rises in the mixed solution due to aeration, and the rising curve is called a DO3 change curve, and the DO3 change curve has the following characteristics depending on the sludge and the treatment state. When this process is expressed by an equation, Here, Kabs is the overall mass transfer coefficient based on the liquid phase, and is a constant determined by the characteristics of the aerator such as the shape of the aspirator and the strength of the water flow and the properties such as the temperature and viscosity of the mixed solution. Right side second
The term (ASact + BODact) is replaced by the constant β obtained in Step 2 when DO> 0.5 mg / l, Equation (2 · 4) becomes the following exponential curve. DO = α + (α−DO 0 ) exp (−Kabs · t) Equation (2,5) where α = DOsat−β / Kabs If there is a BOD that can be easily decomposed, β = large and β in FIG. It becomes a curve. When there is almost no easily decomposable BOD from the beginning, β = small, and the curve becomes a high curve in FIG. When there is a small amount of BOD that can be easily decomposed and the decomposition is completed in the middle of aeration, the curve becomes a two-stage curve in FIG. As shown in FIG. 5, DOsat: saturated dissolved oxygen concentration highDO: final DO value of the upper stage of the two-stage curve lowDO: final DO value of the lower stage of the two-stage curve, DOsat = lowDO + β / Kabs BODact = Kabs (highDO-lowDO) There is a relationship of β = ASact + BODact, and if the dotted line in FIG. 5 is a rising curve when β is small (when there is no BOD), it is surrounded by a solid measurement curve and a dotted line. If the area of the range is S, Sx Kabs is BO
This is the oxygen consumption required for the decomposition of the D substance, and this value corresponds to the BOD of the mixture. In Step 3, since the sampling liquid is simply aerated, the matter found out in Step 3 is that the BOD of the treated water can be estimated as described above. However
If β is small in Step 2, the DO3 change curve immediately becomes D
The curve of FIG. 4b in which O increases is shown in FIG. 4. In step 3, it is determined whether the cause is that there is no degradable BOD serving as bait or the sludge activity is decreasing due to inflow of toxic substances or the like. Can not.

【0018】βが小さい場合、分解可能BODがなくて
小さいのなら処理完了であるが、活性度が低下した結果
であれば運転管理上危険である。コンピュ−タがStep2
の結果がβが小さいと判断すると、通常のStep3でなく
Step3′に自動的に移行し、Step3の先頭で分解容易な
BOD物質を規定量添加してから曝気を行う。ここで得
られるDO変化曲線をDO3′曲線と称し、DO3′曲
線はもし単に分解可能なBODがなく、活性度が良好で
あれば、( 2・3 )式の添加BOD物質を分解し終わる
までは BODact が大きくなるため図6のcの2段の曲線
となり計算で得られるBOD値は添加したBOD値と一
致するはずである。逆に図6のaの low1段の曲線であ
れば分解力が弱いことになり、bのhigh1段であれば相
当活性度が低下しており、危険な状態であると判断でき
る。Step3′で判明する事項はβが小さい場合、この原
因が分解可能BODがないためなのか、毒物等の流入で
汚泥の活性度が低下しているためかの判断ができる。
When β is small, the process is completed if there is no decomposable BOD and the BOD is small, but if the activity is reduced, it is dangerous for operation management. Computer is Step 2
If it is determined that β is small, it is not the normal Step 3
The process automatically shifts to Step 3 ', and aeration is performed after a prescribed amount of easily decomposable BOD substance is added at the beginning of Step 3. The DO change curve obtained here is referred to as a DO3 'curve. If the DO3' curve simply has no decomposable BOD and the activity is good, the DO3 'curve is obtained until the decomposition of the added BOD substance of the formula (2.3) is completed. Since the BODact becomes large, the curve becomes a two-step curve in FIG. 6C, and the BOD value obtained by calculation should match the added BOD value. Conversely, if the curve is a low one stage in a of FIG. 6, the decomposition power is weak, and if the curve is a high one stage in b, the activity is considerably reduced, and it can be determined that the state is dangerous. If the value of β is small in Step 3 ′, it can be determined whether the cause is that there is no degradable BOD or that the sludge activity is reduced due to the inflow of toxic substances.

【0019】以上が3StepDO制御法における基本的な
デ−タ採取法である。本発明は上記に加え、以下の手段
を追加して、さらに効率的なデ−タの採取を可能にする
ものである。その第1はStep2の測定において、Step2
の開始時点の溶存酸素の濃度がすでに低い場合において
である。( 2・2 )式で説明のように、概ねDOが0.5
mg/l以上であればStep2の減少曲線はほぼ直線状に減少
するため解析は容易であるが0.5mg/l以下になると減少
曲線はDOの関数となり、事実上解析は不可能となる。
このためStep2の開始時点のDOが低い場合は、Step2
の初期の段階の直線部分のみで解析をおこなうが、誤差
が大きくなる危険性がある。このため本発明ではStep2
の開始時点のDOが小さい場合には、Step2の開始時点
で予め短時間該混合液を曝気してDOを直線的な減少が
得られる程度まで高くしてから測定をおこなう手法であ
る。予め曝気をするか否かはコンピュ−タが予備曝気限
界値として記憶している数値と比較して自動的に判断す
る。予備曝気限界値は概ね1mg/l〜2mg/l程度である。
また曝気時間は長すぎると処理が進んでβの値が変化し
たり、Step3での測定誤差となるため、必要最小限とす
べきで、通常は2分程度以内が好ましく、DOが測定で
きる値に高くなった時点でコンピュ−タが曝気を停止し
て、可能な限り短時間にすることが好ましい。図7は本
発明によるStep2で予め曝気した場合の3StepDO制御
法の典型的なDO変化を示す図である。
The above is the basic data sampling method in the 3-Step DO control method. The present invention, in addition to the above, adds the following means to enable more efficient data collection. The first is that in the measurement of Step 2, Step 2
In the case where the concentration of dissolved oxygen at the start of is already low. As explained by the equation (2.2), DO is approximately 0.5.
If the concentration is not less than mg / l, the analysis is easy because the decrease curve of Step 2 decreases substantially linearly. However, if the concentration is less than 0.5 mg / l, the decrease curve becomes a function of DO, and the analysis becomes practically impossible.
Therefore, if DO at the start of Step 2 is low, Step 2
The analysis is performed only on the straight line portion at the initial stage, but there is a risk that the error may increase. Therefore, in the present invention, Step 2
If the DO at the start of step 2 is small, the mixed solution is previously aerated for a short time at the start of Step 2 to increase DO to a degree at which a linear decrease can be obtained before measurement. Whether or not to perform aeration in advance is automatically determined by comparing with a numerical value stored as a preliminary aeration limit value by the computer. The pre-aeration limit is generally about 1 mg / l to 2 mg / l.
If the aeration time is too long, the process proceeds and the value of β changes, or the measurement error in Step 3 occurs. Therefore, the aeration time should be minimized. Usually, it is preferably about 2 minutes or less. It is preferable that the computer stop the aeration at the time when the temperature rises to as low as possible, so that the time is as short as possible. FIG. 7 is a view showing a typical DO change of the 3 Step DO control method when aeration is performed in advance in Step 2 according to the present invention.

【0020】本発明の第2は第3ステップのデ−タ採取
法に関するものである。従来はStep2のβの測定結果か
ら、βがBOD添加限界値より大きい場合は、通常のSt
ep3を実施して混合液のBODを測定する。またβがB
OD添加限界値より小さい場合はStep3′を実施して汚
泥の活性度をテストする。本発明はβがBOD添加限界
値からBOD添加限界値より少し大きい程度(以下後半
BOD添加限界値と称す)の範囲にある場合に適用でき
るデ−タ採取法であり、Step3の前半でサンプリング液
中のBODを測定し、Step3の後半で分解容易な既知量
のBODを添加することで、後半で汚泥の活性度を判別
することができるようにしたものである。この曲線をD
O3″変化曲線と称し、DO3″変化曲線は例えば第3
ステップの検査時間を22分とした場合、コンピュ−タ
がStep2の結果βがこの範囲と判断すると、前半の15
分を単純な曝気で行いDO上昇変化を測定し、15分目
で分解容易なBOD物質を既知量添加し後半7分のDO
変化を測定する。βはあまり大きな値ではないことから
DO3″変化曲線の上昇曲線は比較的短時間で高いレベ
ルに上昇することから、図8に示すようにサンプル液の
BODは前半の実線とそれを外挿した点線から計算して
も誤差は少ない。また汚泥の活性度はBOD量を完全な
測定が時間不足でできないが、汚泥が正常であれば分解
可能なBOD物質に対応する正常な大きさのBODactが発
生するはずであるから(2・5)式から導かれる h=highDO−lowDO =BODact/Kabs に相当する大きさのDO低下を示すことで判定できる。
DO3″変化曲線は混合液のBODと汚泥の活性度を同
時に判定可能であり、実際の活性汚泥処理装置の運転制
御においては、処理が正常な場合は後述のパタ−ン凡例
1のようにβはBOD添加限界値付近を前後するため、
本発明のDO3″変化曲線のデ−タ採取法が追加されれ
ば、従来のDO3変化曲線かDO3′変化曲線の2デ−
タ採取法に比べ、ずっと多くの情報が採取可能になり、
コンピュ−タの判断上意義は大きい。図8は本発明のD
O3″変化曲線の典型DO変化図を示すものである。な
おβがBOD添加限界値より小さい場合はDO3′変化
曲線を測定し、後半BOD添加限界値より大きい場合は
DO3変化曲線を測定するのは従来どおりである。
The second aspect of the present invention relates to a data collecting method in the third step. Conventionally, from the measurement result of β in Step 2, if β is larger than the BOD addition limit value,
Perform ep3 to measure the BOD of the mixture. Β is B
If it is smaller than the OD addition limit value, Step 3 'is performed to test the sludge activity. The present invention is a data collection method applicable when β is in a range from the BOD addition limit value to a little larger than the BOD addition limit value (hereinafter referred to as the latter half BOD addition limit value). By measuring the BOD in the medium and adding a known amount of BOD which can be easily decomposed in the latter half of Step 3, the activity of the sludge can be determined in the latter half. This curve is
The O3 "change curve is referred to as a" DO3 "change curve.
If the inspection time of the step is set to 22 minutes, the computer determines that the result β of Step 2 is within this range, and determines that
The amount of DO increase was measured by simple aeration, and a known amount of easily decomposable BOD substance was added at the 15th minute.
Measure the change. Since β is not a very large value, the rise curve of the DO3 ″ change curve rises to a high level in a relatively short time. Therefore, as shown in FIG. 8, the BOD of the sample solution was extrapolated to the solid line in the first half. Even if it is calculated from the dotted line, the error is small, and the sludge activity cannot be measured completely in a short time, but if the sludge is normal, the normal size BODact corresponding to the degradable BOD substance will not be obtained. Since it is supposed to occur, it can be determined by showing a DO decrease of a magnitude corresponding to h = highDO−lowDO = BODact / Kabs derived from the equation (2.5).
The DO3 ″ change curve makes it possible to simultaneously determine the BOD of the mixed solution and the activity of the sludge. In the actual operation control of the activated sludge treatment apparatus, if the treatment is normal, β as shown in a pattern legend 1 described later. Is around the BOD addition limit,
If the method of collecting the DO3 ″ change curve data according to the present invention is added, the conventional DO3 change curve or DO3 ′ change curve 2 data can be obtained.
Much more information can be collected compared to data collection methods,
It is significant in the judgment of the computer. FIG. 8 shows the D of the present invention.
This is a typical DO change diagram of the O3 ″ change curve. When β is smaller than the BOD addition limit value, the DO3 ′ change curve is measured, and when β is larger than the latter half BOD addition limit value, the DO3 change curve is measured. Is as before.

【0021】次に本発明のデ−タ採取法も追加して3St
epDO制御法の判断の具体事例を示す。
Next, the data collection method of the present invention is added to add
A specific example of the determination of the epDO control method will be described.

【0022】パタ−ン凡例1…適正な処理が行われてい
る場合の具体例である。標準活性汚泥処理装置の場合、
図9〜図11に示すようにパタ−ン凡例1−1から1−
3が交互に出現する状態は処理がきわめて適正に行われ
ているとコンピュ−タは判断する。パタ−ン凡例1−
2、1−3ではそれぞれDO3″変化曲線、DO3′変
化曲線から汚泥の活性は良好であると判断できるので、
βが小さいのは分解可能なBODが少ないため、即ち処
理良好であると判断できる。パタ−ン凡例1−1はDO
3変化曲線からわずかなBODが残っていることを示し
ている。3StepDO制御法のサンプリング位置は曝気槽
出口より少し手前であるから、曝気槽出口ではちょうど
処理完了となる程度で、過度な処理(過曝気につなが
る)でなく、エネルギ−上も無駄のない最適な状態であ
ることを示している。
Pattern legend 1 is a specific example in which proper processing is performed. In the case of a standard activated sludge treatment device,
As shown in FIGS. 9 to 11, pattern legends 1-1 to 1-
The computer determines that the state where 3 appears alternately indicates that the processing has been performed extremely properly. Pattern legend 1
In cases 2 and 1-3, the sludge activity can be judged to be good from the DO3 ″ change curve and the DO3 ′ change curve, respectively.
The fact that β is small means that the amount of degradable BOD is small, that is, it can be determined that the treatment is good. The pattern legend 1-1 is DO
The three change curves show that a slight BOD remains. Since the sampling position of the 3Step DO control method is slightly before the outlet of the aeration tank, the processing is just completed at the outlet of the aeration tank. It is in the state.

【0023】パタ−ン凡例2…オ−バ−ロ−ドで処理異
常の場合の具体例である。図12のパタ−ン凡例2−1
に示すように曝気槽内DO値(Step1の最終値)が→
→へと急激に減少し、Step2の減少曲線の傾きが大
きくなり、Step3の曲線が→→へと変化する場合
は、分解しやすいBOD成分が3StepDO制御法のサン
プリング位置まで未処理で残っていることを示し、汚泥
のBOD分解力はStep2のβの大きさから正常であるこ
とと判断されるため、曝気空気量が不足しているか原水
のBOD量が曝気槽での処理能力を超えていることを示
している。この時の曝気空気量がブロア−の能力上限で
あれば原因はオ−バ−ロ−ドであると特定できる。
Pattern legend 2... This is a specific example in the case where processing is abnormal in overload. Legend 2-1 of the pattern in FIG.
As shown in the figure, the DO value in the aeration tank (final value of Step 1) is
If the curve sharply decreases to → and the slope of the decrease curve in Step 2 increases, and the curve in Step 3 changes to → →, the BOD component that is easily decomposed remains unprocessed up to the sampling position of the 3 Step DO control method. Since the BOD decomposition power of sludge is judged to be normal from the magnitude of β in Step 2, the amount of aerated air is insufficient or the amount of BOD in raw water exceeds the treatment capacity in the aeration tank. It is shown that. If the amount of aerated air at this time is the upper limit of the blower capacity, it can be specified that the cause is overload.

【0024】パタ−ン凡例3…過曝気の場合の具体例で
ある。過曝気の場合、図13のパタ−ン凡例3−1で示
す正常なパタ−ン(は通常のDO3変化曲線、はD
O3″変化曲線)から、処理が過剰で餌となるBOD物
質がない状態が続くため、微生物の呼吸量が小さくなる
とともに微生物量も徐々に少なくなるため酸素の消費速
度が小さくなり、図14のパタ−ン凡例3−2で示すよ
うに曝気槽内DO値(Step1の最終値)が上昇し、βが
小さくなり、Step3の曲線はパタ−ン凡例3−2のよう
に変化していく。からはStep2での傾きが小さいた
めDO3′変化曲線となり、はBOD添加に対して正
常に応答しているが、は分解速度が低下し2段曲線が
浅くなり、はさらに分解速度が低下していき、汚泥の
活性が低下していく。過曝気の場合この変化は、数日か
けての徐々の変化となる。
Pattern legend 3 is a specific example in the case of over-aeration. In the case of over-aeration, the normal pattern shown in the pattern legend 3-1 in FIG.
From the O3 ″ change curve), since the state of excessive treatment and no BOD substance serving as feed continues, the rate of consumption of oxygen decreases because the respiratory rate of microorganisms decreases and the amount of microorganisms gradually decreases, as shown in FIG. As shown in the pattern legend 3-2, the DO value in the aeration tank (final value in Step 1) increases, β decreases, and the curve in Step 3 changes as in the pattern legend 3-2. Since the slope in Step 2 is small, a DO3 'change curve is obtained, and the sample responds normally to the addition of BOD. However, the decomposition rate decreases, the two-step curve becomes shallow, and the decomposition rate further decreases. The activity of the sludge decreases, and in the case of over-aeration, this change is a gradual change over several days.

【0025】パタ−ン凡例4…毒物流入で処理異常の場
合の具体例を示す。毒物の流入で汚泥がダメ−ジを受け
た場合は通常図15のパタ−ン凡例4−1で示すように
曝気槽前半の処理速度が低下するためサンプリング地点
での処理水が悪化し、Step3でのDO3変化曲線での測
定BODが悪化したあと、微生物の基礎呼吸まで阻害を
受けるため、図16のパタ−ン凡例4−2で示すように
曝気槽内DO値(Step1の最終値)が急速に上昇し、St
ep2の傾きが急激に小さくなり、Step3の曲線が図のよ
うに変化していく。Step3のはDO3″変化曲線にな
るが、BOD添加後の応答が鈍くなる。Step3のはD
O3′変化曲線であるが、曲線はBOD添加にほとんど
応答せず、かつ呼吸阻害のためBODがない場合の仮想
曲線より上になる。毒物流入の場合は過曝気の場合と異
なり数時間程度の急激な変化となる。
Pattern Legend 4—Specific example in the case of processing abnormality due to poisonous substance inflow. If the sludge is damaged by the influx of the poison, the processing speed in the first half of the aeration tank is reduced as shown by the pattern legend 4-1 in FIG. Since the BOD measured in the DO3 change curve in Example 2 deteriorates after the deterioration of the BOD, the DO value in the aeration tank (the final value in Step 1) is reduced as shown by the pattern legend 4-2 in FIG. Rising rapidly, St
The slope of ep2 sharply decreases, and the curve of Step 3 changes as shown in the figure. Step 3 shows a DO3 ″ change curve, but the response after the addition of BOD becomes slow.
Although it is an O3 'change curve, the curve responds little to the addition of BOD, and is above the hypothetical curve without BOD due to respiratory inhibition. Unlike the case of over-aeration, the toxic substance has a rapid change of about several hours.

【0026】図17は本発明を具体化する装置例を示す
フロ−シ−トである。14は溶存酸素計である。15は
測定容器であり該容器のサンプリング液に溶存酸素計の
センサ−を浸析する。該容器の形状は液面から酸素が溶
解して測定誤差が生じないよう液の入口出口の配置や空
気溜まりが生じないようにする。16はサンプリングポ
ンプである。17は気液分離槽で粗大な気泡を分離する
ためのものである。18は曝気循環ポンプ、19はアス
ピレ−タ、20は空気流量調節バルブ、21は空気流量
計である。18から21は第3ステップで再曝気する際
使用する系統で18の曝気循環ポンプによる水流で19
のアスピレ−タから空気を吸引攪拌して酸素を溶解す
る。22はBOD溶液タンク、23はBOD添加ポンプ
である。22から23は第3ステップで既知量のBOD
物質を添加する際使用する。24は攪拌ポンプであり、
溶存酸素計のセンサ−付近の流速を確保するために使用
する。25はコンピュ−タである。本発明の検査操作の
動作、測定デ−タの解析、運転条件の指令、警報等はす
べてこのコンピュ−タが一元管理する。本発明で使用す
るコンピュ−タは通常のパ−ソナルコンピュ−タが使用
でき、本実施例においてはIBM(株)製Aptiva
を使用し、拡張1/Oスロットにアナログ→デジタル、
デジタル→アナログ変換ボ−ドとして(株)インタ−フ
ェ−ス製IBX-3133、IBX-3325を使用し、ポンプ等の駆動
指令用のデジタル出力ボ−ドとして(株)インタ−フェ
−ス製IBX-2727を使用した。26はリレ−ボックスであ
る。16、18、23、24の駆動はコンピュ−タから
デジタル出力ボ−ドを経由しての信号でリレ−を作動さ
せ、第1ステップから第3(3′)ステップまで必要な
タイミングで機器類をON−OFFさせる。27は溶存
酸素計の変換器である。14の溶存酸素計の信号は27
の変換器で4mA〜20mAのアナログ電流信号に変換
され25のコンピュ−タのアナログ→デジタル変換ボ−
ドで変換されてコンピュ−タに取り込まれる。コンピュ
−タは演算の結果、曝気空気量や原水処理量や返送汚泥
量の制御操作信号、汚泥の活性度異常や処理異常や装置
異常等の警報信号をデジタル→アナログ変換ボ−ドやデ
ジタル出力ボ−ドを経由して28の制御部端子盤から出
力する。本発明を実現するハ−ドは特願平8-205359「廃
水処理制御方法及び装置」で示したものを用いることが
でき、該ハ−ドを制御するコンピュ−タソフトで実現す
る。
FIG. 17 is a flowchart showing an example of an apparatus embodying the present invention. 14 is a dissolved oxygen meter. Reference numeral 15 denotes a measuring vessel, in which a sensor of the dissolved oxygen meter is immersed in a sampling liquid in the vessel. The shape of the container is such that the arrangement of the inlet and outlet of the liquid and the accumulation of air do not occur so that the measurement error does not occur due to the dissolution of oxygen from the liquid surface. 16 is a sampling pump. Reference numeral 17 denotes a gas-liquid separation tank for separating coarse bubbles. 18 is an aeration circulation pump, 19 is an aspirator, 20 is an air flow control valve, and 21 is an air flow meter. Numerals 18 to 21 denote systems used for re-aeration in the third step.
The oxygen is dissolved by suction and stirring air from the aspirator. 22, a BOD solution tank; and 23, a BOD addition pump. 22 to 23 are the BOD of a known amount in the third step
Used when adding substances. 24 is a stirring pump,
It is used to secure the flow velocity near the sensor of the dissolved oxygen meter. 25 is a computer. The operation of the inspection operation, the analysis of the measurement data, the command of the operating condition, the alarm and the like of the present invention are all managed by this computer. As the computer used in the present invention, an ordinary personal computer can be used, and in this embodiment, IBM Corp.'s Optiva is used.
Using analog to digital in expansion 1 / O slot,
IBX-3133 and IBX-3325 manufactured by Interface Co., Ltd. are used as a digital-to-analog conversion board, and digital output boards for driving commands of pumps and the like are manufactured by Interface Co., Ltd. IBX-2727 was used. 26 is a relay box. For driving 16, 18, 23 and 24, the relay is operated by a signal from a computer via a digital output board, and the equipment is operated at a necessary timing from the first step to the third (3 ') step. Is turned ON-OFF. 27 is a converter of the dissolved oxygen meter. The signal of 14 dissolved oxygen meters is 27
Is converted to an analog current signal of 4 mA to 20 mA by the converter, and the analog to digital conversion board of 25 computers
And converted into a computer. As a result of the calculation, the computer outputs a digital-to-analog conversion board or digital output of a control signal for controlling the amount of aerated air, raw water treatment, and returned sludge, and an alarm signal for sludge activity abnormality, treatment abnormality, or equipment abnormality. It is output from the 28 control unit terminal board via the board. The hardware for realizing the present invention can use the one shown in Japanese Patent Application No. 8-205359 "Method and Apparatus for Controlling Wastewater Treatment" and is realized by computer software for controlling the hard.

【0027】図18は本発明のコンピュ−タソフトのフ
ロ−チャ−トである。図中の点線1で囲んだ部分と点線
2で囲んだ部分が本発明で追加した機能である。予備曝
気限界値及び予備曝気上昇値は本発明請求項1で使用す
る値で、予めコンピュ−タに入力し記憶している値であ
る。予備曝気限界値はStep2のスタ−ト時の値(図中の
DO1)がこの値以下であれば予備曝気を行い、予めD
O値をアップしてからDOの減少変化を測定し、その値
は1mg/lから2mg/lに設定される。予備曝気上昇値は予
備曝気時間を必要最小限にするためのもので、この値以
上にDOが上昇すれば予備曝気を停止し、DOの減少変
化を測定する。通常予備曝気上昇値は予備曝気限界値よ
り0.5mg/lから1mg/l程度高い値に設定される。BOD
添加限界値、後半BOD添加限界値、後半添加時間は本
発明請求項2で使用する値で、予めコンピュ−タに入力
し記憶している値である。BOD添加限界値は従来の3
StepDO制御法でも使用しているが、βがこの値以下で
あれば既知量の分解容易なBOD物質を含む液を添加し
て曝気を行い、そのDOの変化を測定する。またβが後
半BOD添加限界値より大きければ、単に曝気を行いそ
のDOの変化を測定する。βがBOD添加限界値より大
きく後半BOD添加限界値より小さい場合が本発明請求
項2の測定法であり、Step3のスタ−トから後半添加時
間までは単に曝気のみ行いDOの上昇変化を測定し、後
半添加時間になると既知量の分解容易なBOD物質を含
む液を添加して曝気を行い、そのDOの変化を測定す
る。BOD添加限界値、後半BOD添加限界値の具体的
な値は制御対象となる活性汚泥処理装置のBODactやASac
t により異なる。具体的には汚泥の活性度、MLSS、原水
中の汚濁物の生分解性、温度等の種々の条件で異なる。
このためBOD添加限界値、後半BOD添加限界値の決
定には対象となる活性汚泥処理における基準となる標準
的で正常な処理状態で運転中の3StepDO測定部のサン
プリング位置の混合液をサンプリングし、該混合液を外
部からの酸素の供給を断ってDOの減少する速度を測定
する。この値はサンプリング地点の活性汚泥のBODact+
ASact に相当する。また該混合液を十分曝気して該混合
液中の分解可能なBODを小さくしたのち、外部からの
酸素の供給を断ってDOの減少する速度を測定する。こ
の値はほぼASact に相当する。BOD添加限界値はASac
t より少し大きい程度に設定するのが好ましい。また後
半BOD添加限界値はBOD添加限界値とBODact+ASac
t の間の値に設定する。標準活性汚泥処理装置の場合、
BOD添加限界値は0.2から0.5mg/min程度、後半BO
D添加限界値は0.4〜0.9mg/min程度に設定することが
多い。
FIG. 18 is a flowchart of the computer software of the present invention. The portions enclosed by the dotted line 1 and the portions enclosed by the dotted line 2 in the figure are functions added in the present invention. The preliminary aeration limit value and the preliminary aeration increase value are values used in claim 1 of the present invention, and are values which are previously input and stored in a computer. If the pre-aeration limit value at the start of Step 2 (DO1 in the figure) is equal to or less than this value, pre-aeration is performed.
After increasing the O value, the decreasing change of DO is measured, and the value is set from 1 mg / l to 2 mg / l. The pre-aeration rise value is for minimizing the pre-aeration time, and if the DO rises above this value, the pre-aeration is stopped, and the decrease in DO is measured. Usually, the preliminary aeration increase value is set to a value that is about 0.5 mg / l to 1 mg / l higher than the preliminary aeration limit value. BOD
The addition limit value, the second half BOD addition limit value, and the second half addition time are the values used in claim 2 of the present invention, and are values which are previously input and stored in the computer. BOD addition limit value is 3
Although the step DO control method is used, if β is less than this value, a known amount of a solution containing a readily decomposable BOD substance is added to perform aeration, and the change in DO is measured. If β is larger than the latter half BOD addition limit value, aeration is simply performed and the change of DO is measured. The case where β is larger than the BOD addition limit value and smaller than the latter BOD addition limit value is the measurement method of the present invention. In the method from Step 3 to the latter half addition time, only aeration is performed and the change in DO is measured. In the latter half of the addition time, a known amount of a solution containing a readily decomposable BOD substance is added and aeration is performed, and the change in DO is measured. The specific values of the BOD addition limit value and the latter half BOD addition limit value are the BODact and ASac of the activated sludge treatment equipment to be controlled.
Depends on t. Specifically, it differs depending on various conditions such as sludge activity, MLSS, biodegradability of pollutants in raw water, and temperature.
For this reason, the BOD addition limit value and the latter half BOD addition limit value are determined by sampling the mixed liquid at the sampling position of the 3Step DO measurement unit operating in a standard and normal processing state as a reference in the activated sludge treatment to be performed, The supply of oxygen from the outside of the mixture is cut off, and the rate of DO reduction is measured. This value is the BODact + of the activated sludge at the sampling point.
Equivalent to ASact. Further, after the mixed solution is sufficiently aerated to reduce the decomposable BOD in the mixed solution, supply of oxygen from the outside is stopped, and the rate of decrease of DO is measured. This value roughly corresponds to ASact. Bac addition limit is ASac
Preferably, it is set to a value slightly larger than t. The BOD addition limit in the latter half is the BOD addition limit and BODact + ASac
Set to a value between t. In the case of a standard activated sludge treatment device,
BOD addition limit value is about 0.2 to 0.5mg / min.
The D addition limit is often set to about 0.4 to 0.9 mg / min.

【0028】[0028]

【発明の効果】本発明のもととなる3StepDO制御法は
活性汚泥処理装置を代表とする好気性微生物処理の適用
ができ、3StepDO制御法の測定、解析機能により従来
不明確であった曝気槽内の微生物の活動状態や処理水の
処理状態を30分程度の短時間でコンピュ−タ画面に出
力できることにより、従来大まかな設定しかできなかっ
た活性汚泥処理の運転条件を適切に設定でき処理水質の
良化安定が可能となる。このことにより曝気空気量の適
性化による省エネ、異常廃水流入の早期発見処置、運転
管理業務の省力化など、大きな効果が得られる。本発明
はこの3StepDO制御法のデ−タ採取法をより強力にす
るもので、本発明により3StepDO制御法はより正確で
正確なアウトプットが可能になり、上記の3StepDO制
御法の効果がアップする。
The 3Step DO control method which is the basis of the present invention can be applied to the treatment of aerobic microorganisms typified by an activated sludge treatment device, and the measurement and analysis functions of the 3Step DO control method have previously made the aeration tank unclear. The active state of activated sludge treatment, which previously could only be roughly set, can be set appropriately by being able to output the activity state of microorganisms in the inside and the treatment state of treated water on a computer screen in a short time of about 30 minutes. Can be improved and stabilized. As a result, great effects are obtained, such as energy saving by optimizing the amount of aerated air, early detection of abnormal wastewater inflow, and labor saving of operation management work. The present invention makes the data sampling method of the 3Step DO control method more powerful. According to the present invention, the 3Step DO control method enables more accurate and accurate output, and the effect of the above 3Step DO control method is improved. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】基本的な活性汚泥処理装置を示すフロ−シ−ト
である。
FIG. 1 is a flowchart showing a basic activated sludge treatment apparatus.

【図2】第1ステップ〜第3ステップにおける典型的な
DOの変化を示す変化曲線図である。
FIG. 2 is a change curve diagram showing a typical change of DO in first to third steps.

【図3】第2ステップにおけるDOの減少する変化を示
す変化曲線図である。
FIG. 3 is a change curve diagram showing a decreasing change of DO in a second step.

【図4】第3ステップにおける分解容易なBODの量に
応ずる変化を示すDO変化曲線図である。
FIG. 4 is a DO change curve diagram showing a change according to the amount of easily decomposable BOD in a third step.

【図5】BOD物質の分解に要する酸素消費量を表わす
DO変化曲線図である。
FIG. 5 is a DO change curve diagram showing an oxygen consumption amount required for decomposing a BOD substance.

【図6】ステップ3′におけるDOの変化を示す変化曲
線図である。
FIG. 6 is a change curve diagram showing a change of DO in step 3 ′.

【図7】ステップ2で予め曝気した場合のDOの変化を
示す変化曲線図である。
FIG. 7 is a change curve diagram showing a change in DO when aeration is performed in advance in step 2;

【図8】DO3″変化曲線を示す図である。FIG. 8 is a diagram showing a DO3 ″ change curve.

【図9】適切な処理が行われている場合のDO変化曲線
の推移の1状態を示す図で分解容易なBODが少し残っ
ていた状態を示すDO変化曲線図である。
FIG. 9 is a diagram illustrating one state of transition of the DO change curve when an appropriate process is performed, and a DO change curve diagram illustrating a state in which a small amount of easily decomposable BOD remains.

【図10】適切な処理が行われている場合のDO変化曲
線の推移の1状態を示す図でステップ3において後半に
BODを添加した場合のDOの変化を示す変化曲線図で
ある。
FIG. 10 is a diagram illustrating one state of transition of a DO change curve when an appropriate process is performed, and is a change curve diagram illustrating a change in DO when BOD is added in the latter half in step 3;

【図11】適切な処理が行われている場合のDO変化曲
線の推移の1状態を示す図でステップ3においてBOD
添加した場合のDOの変化を示す変化曲線図である。
FIG. 11 is a diagram showing one state of transition of a DO change curve when an appropriate process is performed;
It is a change curve figure which shows the change of DO at the time of adding.

【図12】オ−バ−ロ−ド状態の場合のDO変化曲線図
の推移を表わす図である。
FIG. 12 is a diagram showing transition of a DO change curve diagram in an overload state.

【図13】過曝気状態になる前の正常なDOの変化を示
す変化曲線図である。
FIG. 13 is a change curve diagram showing a normal change of DO before an over-aeration state.

【図14】過曝気状態の場合のDO変化曲線図の推移を
表わす図である。
FIG. 14 is a diagram showing transition of a DO change curve diagram in a case of over-aeration.

【図15】毒物流入の場合のDO変化曲線図の前半の推
移を示す図である。
FIG. 15 is a diagram showing the first half transition of a DO change curve diagram in the case of poisonous substance inflow.

【図16】毒物流入の場合のDO変化曲線図の後半の推
移を示す図である。
FIG. 16 is a diagram showing a transition in the latter half of a DO change curve diagram in the case of a poisonous substance inflow.

【図17】本発明の装置を示すフロ−シ−トである。FIG. 17 is a flowchart showing the apparatus of the present invention.

【図18】本発明のコンピュ−タソフトのフロ−チャ−
トである。
FIG. 18 is a flowchart of the computer software of the present invention.
It is.

【符号の説明】[Explanation of symbols]

14 溶存酸素計 15 測定容器 1
8 曝気循環ポンプ 19 アスピレ−タ 22 BOD溶液タンク 2
3 BOD添加ポンプ 25 コンピュ−タ 26 リレ−ボックス 2
8 制御部端子盤
14 Dissolved oxygen meter 15 Measurement vessel 1
8 Aeration circulation pump 19 Aspirator 22 BOD solution tank 2
3 BOD addition pump 25 Computer 26 Relay box 2
8 Control terminal board

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 好気性微生物を利用する廃水処理におい
て、曝気処理中の廃水をサンプリングし、該廃水中の溶
存酸素(以下DO1と称す)を測定し、その後新たなサ
ンプリング廃水の流入を停止し、酸素の供給を断った状
態で溶存酸素の減少する変化(以下DO2変化曲線と称
す)を測定し、DO2変化曲線の減少速度が予め設定し
た値(以下BOD添加限界値と称す)より大きい場合、
該廃水に空気を曝気し溶存酸素の増加する変化(以下D
O3変化曲線と称す)を測定し、BOD添加限界値より
小さい場合、該廃液に既知量のBOD物質を添加し曝気
して溶存酸素の増加する変化(以下DO3′変化曲線と
称す)を測定し、DO1とDO2変化曲線とDO3変化
曲線またはDO3′変化曲線の形状から少なくとも汚泥
の活性度、未処理のBOD濃度及び目標とする検査DO
曲線パタ−ンと比較して、少なくとも曝気空気量の増減
を指示または制御する信号を発する廃水処理制御方法
(以下3StepDO制御法と称す)において、DO2変化
曲線を測定する際、DO2変化曲線の測定開始時点で廃
水中の溶存酸素濃度が予め設定した予備曝気限界値より
低い場合、測定開始時点で短時間廃液を曝気して予め開
始時の溶存酸素濃度を直線的に減少する程度まで高めた
のちに、溶存酸素の減少速度を測定することを特徴とす
る廃水処理制御方法。
In wastewater treatment utilizing aerobic microorganisms, wastewater during aeration treatment is sampled, dissolved oxygen (hereinafter referred to as DO1) in the wastewater is measured, and then the inflow of new sampled wastewater is stopped. The change in the amount of dissolved oxygen (hereinafter referred to as the DO2 change curve ) is measured with the supply of oxygen cut off, and the rate of decrease of the DO2 change curve is set in advance.
Value (hereinafter referred to as BOD addition limit value)
The wastewater is aerated with air and the dissolved oxygen increases (hereinafter D).
O3 change curve) from the BOD addition limit
If it is small , a known amount of BOD substance is added to the waste liquid, aeration is performed, and the change in dissolved oxygen (hereinafter referred to as DO3 'change curve) is measured, and the DO1, DO2 change curve, DO3 change curve or DO3' change curve is measured. At least the sludge activity, untreated BOD concentration and target inspection DO
When measuring a DO2 change curve in a wastewater treatment control method (hereinafter, referred to as a 3 Step DO control method) that issues a signal for instructing or controlling at least an increase or decrease in the amount of aerated air as compared with the curve pattern, the DO2 change curve is measured. When the dissolved oxygen concentration in the wastewater at the start is lower than the preset preliminary aeration limit value , the waste oxygen is aerated for a short time at the start of the measurement to linearly decrease the dissolved oxygen concentration at the start in advance. A method for controlling wastewater treatment, wherein the rate of decrease in dissolved oxygen is measured after the temperature has been increased.
【請求項2】 3StepDO制御法において、BOD添加
限界値より大きい予め設定した値(以下後半BOD添加
限界値と称す)を設け、DO2変化曲線を測定後、DO
2変化曲線の減少速度がBOD添加限界値より大きく、
後半BOD添加限界値より小さい範囲にある場合、スタ
−トから前半部分は空気を曝気して溶存酸素の上昇する
変化を測定し、後半部分で該廃水に既知量のBOD物質
を含む液を添加しかつ空気を曝気して溶存酸素の変化
(以下DO3″変化曲線と称す)を測定し、DO2変化
曲線の減少速度が後半BOD添加限界値より大きい場合
はDO3変化曲線を測定することを特徴とする廃水処理
制御方法。
2. In the 3Step DO control method,BOD addition
Preset value larger than the limit value
Limit value).After measuring the DO2 change curve,DO
2. The rate of decrease of the change curve is greater than the BOD addition limit value,
If it is in the range smaller than the latter half BOD addition limit value,Star
-The first half of the air is aerated and the dissolved oxygen rises
Measure the change and add a known amount of BOD
Solution containing oxygen and aerating the air to remove dissolved oxygen.change
(Hereinafter referred to as DO3 ″ change curve)And DO2 change
When the decrease rate of the curve is larger than the latter half BOD addition limit value
Measures the DO3 change curveWastewater treatment characterized by the following:
Control method.
JP11991998A 1998-04-15 1998-04-15 Wastewater treatment control method Expired - Fee Related JP2952282B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11991998A JP2952282B1 (en) 1998-04-15 1998-04-15 Wastewater treatment control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11991998A JP2952282B1 (en) 1998-04-15 1998-04-15 Wastewater treatment control method

Publications (2)

Publication Number Publication Date
JP2952282B1 true JP2952282B1 (en) 1999-09-20
JPH11290883A JPH11290883A (en) 1999-10-26

Family

ID=14773434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11991998A Expired - Fee Related JP2952282B1 (en) 1998-04-15 1998-04-15 Wastewater treatment control method

Country Status (1)

Country Link
JP (1) JP2952282B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096612B2 (en) * 2002-05-09 2008-06-04 アステラス製薬株式会社 Activated sludge inhibitory substance monitoring apparatus, wastewater treatment method and wastewater treatment apparatus using activated sludge inhibitory substance measurement method
JP2004156912A (en) * 2002-11-01 2004-06-03 Jasco Corp Method and apparatus for measuring bod and method and apparatus for treating waste water
JP4695177B2 (en) * 2008-11-26 2011-06-08 株式会社 小川環境研究所 Control method of excess sludge volume reduction treatment

Also Published As

Publication number Publication date
JPH11290883A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
JP5996819B1 (en) Aeration control method for activated sludge
JP3301428B2 (en) Wastewater treatment test method
JP4304453B2 (en) Operation control device for nitrogen removal system
JP2952282B1 (en) Wastewater treatment control method
EP0414182B1 (en) Apparatus for determining the rate of the biochemical oxygen demand and its utilisation
US5702951A (en) Continuous RBCOD measurement
KR100247321B1 (en) Method and apparatus optimizing the process of sequencing batch reactor for analyzing specific oxygen uptake rate and nitrate nitrogen by real time on-line measurement at the biological wastewater treatment process
JP4543649B2 (en) Nitrification processing method and apparatus
JP4208154B2 (en) BOD measuring method and apparatus
JP4620391B2 (en) Sewage treatment equipment
JP2000504215A (en) Methods for monitoring biological activity in liquids
WO2006030538A1 (en) Method of wastewater treatment measurement and wastewater treatment measuring apparatus
JP3301427B2 (en) Wastewater treatment test method
JP4550547B2 (en) Wastewater treatment measurement method and apparatus
JP2005274170A (en) Respiration speed measuring method for calculating concentration of organic matter in organic wastewater and respiration speed measuring instrument therefor
JPH0938683A (en) Biological water treating device
JP3181911B2 (en) Continuous RBCOD measurement
JP2009165959A (en) Treatment state judging method of aeration tank and wastewater treatment control system using it
JP3837765B2 (en) Nitric acid concentration measuring device
JP3585905B2 (en) Test method for activated sludge activity and wastewater degradability
JP3637819B2 (en) Waste water nitrification method
JP2000084585A (en) Aerator and method for controlling operation of sludge removal pump
JP2002136990A (en) Wastewater treatment apparatus and control method
JPH05253597A (en) Nitrification reaction control device in activated sludge treatment
JPS5814997A (en) Control method for biological denitrification process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees