JP4620391B2 - Sewage treatment equipment - Google Patents

Sewage treatment equipment Download PDF

Info

Publication number
JP4620391B2
JP4620391B2 JP2004189778A JP2004189778A JP4620391B2 JP 4620391 B2 JP4620391 B2 JP 4620391B2 JP 2004189778 A JP2004189778 A JP 2004189778A JP 2004189778 A JP2004189778 A JP 2004189778A JP 4620391 B2 JP4620391 B2 JP 4620391B2
Authority
JP
Japan
Prior art keywords
aeration
sludge
oxygen
inflow
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004189778A
Other languages
Japanese (ja)
Other versions
JP2006007132A (en
Inventor
記先 湛
将樹 池畑
雅文 松本
江美 寺澤
忠 青木
茂 伊藤
Original Assignee
日本ヘルス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ヘルス工業株式会社 filed Critical 日本ヘルス工業株式会社
Priority to JP2004189778A priority Critical patent/JP4620391B2/en
Publication of JP2006007132A publication Critical patent/JP2006007132A/en
Application granted granted Critical
Publication of JP4620391B2 publication Critical patent/JP4620391B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は間欠曝気を行う浮遊式微生物処理方法を用いた汚水処理装置に関するものである。   The present invention relates to a sewage treatment apparatus using a floating microorganism treatment method that performs intermittent aeration.

間欠曝気を行う浮遊式微生物処理方法を用いた汚水処理装置には、オキシデーションディッチ(OD)法による汚水処理装置やJARUS−XIV型(連続流入−間欠曝気)・JARUS−XV型(間欠流入−間欠曝気)の農業集落排水処理装置がある。   The sewage treatment equipment using the floating microbial treatment method that performs intermittent aeration includes the sewage treatment equipment by the oxidation ditch (OD) method, JARUS-XIV type (continuous inflow-intermittent aeration), JARUS-XV type (intermittent inflow- There is an agricultural village drainage treatment device of intermittent aeration.

斯かる汚水処理装置において、オキシデーションディッチ(OD)法による汚水処理装置は、無終端循環水路の反応槽を用い、曝気ローターにより水流を起こし、空気を含んだ汚水と活性汚泥を循環させて攪拌するようになしている。   In such a sewage treatment apparatus, the sewage treatment apparatus using the oxidation ditch (OD) method uses a reaction tank of an endless circulation channel, generates a water flow by an aeration rotor, and circulates sewage containing air and activated sludge to agitate. I'm going to do it.

そして、循環水路の反応槽内では、曝気により酸素を供給した状態(好気)で、アンモニア性窒素から硝酸性窒素へ酸化する硝化反応と硝化反応で生成された硝酸性窒素が、溶存酸素が無くなった状態(無酸素)で窒素ガスへと還元される脱窒反応とによって浄化が行われている。   Then, in the reaction tank of the circulation channel, in a state where oxygen is supplied by aeration (aerobic), the nitrification reaction that oxidizes ammonia nitrogen to nitrate nitrogen and the nitrate nitrogen generated by the nitrification reaction are dissolved oxygen. Purification is performed by a denitrification reaction that is reduced to nitrogen gas in the absence (oxygen-free) state.

本来、低負荷運転を前提として設計されているOD法による汚水処理装置において、多くの場合は設計した処理能力よりもはるかに少ない汚水しか流入しておらず、連続曝気では流入負荷に対して酸素供給過多のため反応槽全体が好気となりやすい。特に反応槽の水路が短い場合は脱窒を行うために必要な無酸素状態を作りにくい。このため曝気機器の運転と停止を繰り返し、好気と無酸素状態を作る間欠曝気が行われる。   In sewage treatment equipment based on the OD method, which is originally designed on the assumption of low-load operation, in many cases, much less sewage flows than the designed treatment capacity. Due to excessive supply, the entire reaction tank tends to be aerobic. In particular, when the water channel of the reaction tank is short, it is difficult to create an oxygen-free state necessary for denitrification. For this reason, the aeration apparatus is repeatedly operated and stopped, and intermittent aeration is performed to create an aerobic and anoxic state.

ところで、従来における間欠曝気の運転パターンは、処理場管理者の経験や勘に基づいて作成されたON/OFF運転であり、運転パターンは一度作成すると一定の期間(例えば数日間)変更しないことやアンモニア性窒素の除去を優先的に考慮すること等から、平均的な流入負荷に対してやや過曝気の設定を行っている。   By the way, the conventional intermittent aeration operation pattern is an ON / OFF operation created based on the experience and intuition of the treatment plant manager, and once the operation pattern is created, it does not change for a certain period (for example, several days) Since the removal of ammonia nitrogen is preferentially considered, over-aeration is set for the average inflow load.

また一方、余剰汚泥の引抜きは、汚泥濃縮槽の容量、濃縮汚泥の引抜き時間、汚泥運搬時間などを考慮してタイマーを作成する。また、返送汚泥は反応槽に返されるので、曝気停止時には未処理水が沈澱槽へ流入する可能性がある。これを防止するために通常は曝気している時に合わせて返送を返すようにタイマーを組んでいる。そしてまた、これら余剰汚泥・返送汚泥の引抜きも管理者の経験によりパターン設定を行っている。   On the other hand, for the removal of excess sludge, a timer is created in consideration of the capacity of the sludge concentration tank, the extraction time of the concentrated sludge, the sludge transport time, and the like. Moreover, since the return sludge is returned to the reaction tank, untreated water may flow into the sedimentation tank when aeration is stopped. In order to prevent this, a timer is usually set so that a return is returned when aeration is performed. In addition, the surplus sludge / returned sludge is also extracted based on the experience of the manager.

以上は、OD法を例にあげて従来の技術を説明したが、曝気運転パターンを管理者の経験や勘で決定していることは、従来の汚水処理装置全般に共通していることである。   Although the conventional technology has been described above by taking the OD method as an example, the fact that the aeration operation pattern is determined based on the experience and intuition of the manager is common to all conventional sewage treatment apparatuses. .

しかし、このように管理者の経験や勘に基づいて設定されたタイマー等によって曝気を行う場合には、流入負荷の変動に適切に対応できず、常に良好な放流水質を得ることができない。   However, when aeration is performed by a timer or the like set based on the experience and intuition of the manager as described above, it is not possible to appropriately cope with fluctuations in the inflow load, and it is not always possible to obtain good discharged water quality.

本発明は上記の点に鑑みなされたものであって、適切な間欠曝気を自動的に行い、常に有機物と窒素の除去効率の向上と、得られた処理水質を安定化させながら電気消費量を削減することができるようになすと共に、自動的な間欠曝気によって不確定になる曝気時間及び曝気時刻に対応して沈澱槽からの汚泥引抜きを安定して行うことができるようになした汚水処理装置を提供せんとするものである。   The present invention has been made in view of the above points, and automatically performs appropriate intermittent aeration, constantly improving the removal efficiency of organic matter and nitrogen, and reducing the amount of electricity consumed while stabilizing the quality of the treated water obtained. Sewage treatment equipment that can reduce the amount of sludge from the settling tank stably in response to the aeration time and the aeration time that are uncertain due to automatic intermittent aeration. Is intended to provide.

而して、本発明の要旨とするところは、次の構成からなる汚水処理装置にある。
(1)酸素必要量演算部と曝気制御部とを備え、酸素必要量の積算値に基づいて反応槽に空気を送り込み、反応槽に流入した汚水及び活性汚泥を曝気して汚水中の汚濁物を活性汚泥により生物化学的に除去すると共に、沈澱槽に沈澱した汚泥を、その一部は反応槽に返送し、残りは余剰汚泥として排出するようになした汚水処理装置において、前記酸素必要量演算部は、流入酸素必要量(or−流入)演算部と、内生酸素必要量(or−内生)演算部と、供給酸素量(os)演算部と全酸素必要量(or)演算部とで構成し、該流入酸素必要量(or−流入)演算部は、流入水のSS(または濁度あるいは透視度)をセンサーで測定し、予め測定した流入SS(または濁度あるいは透視度)測定値と流入BOD及びケルダール窒素との相関関係を利用して流入BOD濃度及びケルダール窒素濃度を算出すると共に、算出された流入BOD濃度及びケルダール窒素濃度と流入水量計または放流水量計により測定された処理水量(または流入ポンプの運転時間等により算出される流入量)との積から流入酸素必要量を算出するものであり、また内生酸素必要量(or−内生)演算部では、MLSSをセンサーにより測定し、内生呼吸に係る酸素必要量を算出するものであり、また供給酸素量(os)演算部は、曝気により供給された酸素量を算出するものであり、また全酸素必要量(or)演算部は、上記流入酸素必要量と内生酸素必要量の合計から供給酸素量を引いた数値を算出し、一定時間間隔で積算するものであり、また、前記曝気制御部は、前記全酸素必要量演算部による積算値ORをもとに曝気機器の運転を制御するものであり、積算値ORが曝気開始設定値を超えた時に曝気を開始し、曝気停止設定値を下回った時に曝気を停止するようにして自動的に間欠曝気を行うように制御するものである汚水処理装置であって、更に後続の汚泥濃縮槽からの汚泥引抜き後に流入汚水を反応槽に供給し、曝気機器が運転を開始した際に予め任意に設定された沈降タイマーをONにし、沈降タイマーがタイムアップした段階で設定した引抜き時間で余剰汚泥を引き抜くようになす一方、余剰汚泥引抜きの沈降タイマーがONしてから、引抜き完了までを除き、曝気機器が運転している時及び曝気停止後の一定時間に返送汚泥を引き抜くようになした汚水処理装置。
Thus, the gist of the present invention resides in a sewage treatment apparatus having the following configuration.
(1) Provided with an oxygen requirement calculation unit and an aeration control unit, air is sent to the reaction tank based on the integrated value of the oxygen requirement, and the sewage and activated sludge flowing into the reaction tank are aerated to contaminate the sewage while biochemically removed by activated sludge, the precipitated sludge in the settling tank, a portion is returned to the reaction vessel, the rest Te sewage treatment apparatus odor when taken to discharge the excess sludge, the oxygen required The amount calculation unit includes an inflowing oxygen requirement (or -inflow ) calculation unit, an endogenous oxygen requirement (or- endogenous ) calculation unit, a supply oxygen amount (os) calculation unit, and a total oxygen requirement (or) calculation. The inflowing oxygen requirement (or -inflow ) calculating unit measures the inflow water SS (or turbidity or transparency) with a sensor, and measures the inflow SS (or turbidity or transparency) measured in advance. ) Correlation of measured values with inflow BOD and Kjeldahl nitrogen The inflow BOD concentration and the Kjeldahl nitrogen concentration are calculated using the unit, and the calculated inflow BOD concentration and the Kjeldahl nitrogen concentration and the treated water amount measured by the inflow water meter or the discharge water meter (or the operation time of the inflow pump, etc.) The inflowing oxygen required amount is calculated from the product of the calculated inflowing amount), and the endogenous oxygen requirement (or- endogenous ) calculation unit measures MLSS with a sensor to detect oxygen related to endogenous respiration. The required amount is calculated, the supplied oxygen amount (os) calculation unit calculates the amount of oxygen supplied by aeration, and the total oxygen required amount (or) calculation unit requires the above inflowing oxygen. The numerical value obtained by subtracting the supply oxygen amount from the total amount of oxygen and the amount of endogenous oxygen is calculated and integrated at regular time intervals, and the aeration control unit is the product of the total oxygen requirement calculation unit. It controls the operation of the aeration equipment based on the value OR, and starts aeration when the integrated value OR exceeds the aeration start set value, and automatically stops aeration when it falls below the aeration stop set value. The sewage treatment device is designed to control intermittent aeration, and after the sludge is extracted from the subsequent sludge concentration tank, the inflow sewage is supplied to the reaction tank, and when the aeration equipment starts operation, The settling timer is set to ON, and the excess sludge is drawn out with the draw time set when the settling timer is up, but the settling timer for turning off the excess sludge is turned on until the drawout is completed. A sewage treatment device that pulls out the returned sludge when the aeration equipment is in operation and at a certain time after the aeration is stopped.

(2)曝気風量又は曝気機器の回転数の制御が可能な処理装置となし、1日の曝気時間が曝気時間上限を超えた場合及び曝気時間下限を下回った場合に、曝気風量又は回転数を調整することで曝気時間が適切な範囲内で制御されるように曝気風量又は回転数の自動調整ができる曝気制御部を備えた上記(1)の汚水処理装置。 (2) A processing device capable of controlling the amount of aeration air or the number of rotations of the aeration equipment is used. When the aeration time of the day exceeds the upper limit of the aeration time and when the aeration time lower limit is exceeded, the amount of aeration air or the number of rotations is set. The sewage treatment apparatus according to (1), further including an aeration control unit capable of automatically adjusting an aeration air volume or a rotation speed so that an aeration time is controlled within an appropriate range by adjusting.

図1は本発明の基本構成の説明図である。而して上記(1)〜(2)において、流入酸素必要量(or−流入)の算出は、次式(1)(2)により行う。 FIG. 1 is an explanatory diagram of the basic configuration of the present invention. Thus, in the above (1) to (2), the required amount of inflowing oxygen (or -inflow ) is calculated by the following equations (1) and (2).

Figure 0004620391
ここで、or− 流入は流入負荷であり、流入BODの酸化及びケルダール窒素の硝化と脱窒に必要な酸素量である。Fは反応槽に流入する汚水の流量〔m/Hr〕で、cは流入汚濁物質濃度〔Kg−O/m〕である。流入汚水のSSとBOD及びケルダール窒素の相関を利用すると、次の式となる。
Figure 0004620391
Here, or − inflow is an inflow load, which is the amount of oxygen required for oxidation of the inflow BOD and nitrification and denitrification of Kjeldahl nitrogen. F is the flow rate [m 3 / Hr] of sewage flowing into the reaction tank, and c is the influent pollutant concentration [Kg-O 2 / m 3 ]. When the correlation between SS, BOD and Kjeldahl nitrogen is used, the following equation is obtained.

Figure 0004620391
ここで、KSSとKは係数であり、SSinは反応槽に流入する前の浮遊物濃度である。また、流入酸素必要量(or−流入)の経時変化例は、図3において線aで示す通りである。
Figure 0004620391
Here, K SS and K c are coefficients, and SS in is the suspended matter concentration before flowing into the reaction vessel. Further, an example of the change over time of the inflowing oxygen required amount (or -inflow ) is as shown by a line a in FIG.

また、上記(1)〜(2)において、内生酸素必要量(or−内生)の算出は、次式(3)により行う。尚、これは反応槽の水温を測定した上で校正する。 Moreover, in said (1)-(2), calculation of endogenous oxygen required amount (or- endogenous ) is performed by following Formula (3). This is calibrated after measuring the water temperature in the reaction vessel.

Figure 0004620391
ここで、KMLは微生物の内生呼吸速度係数であり、水温によって変化する。Vは反応槽の好気ゾーン容積である。
Figure 0004620391
Here, KML is an endogenous respiration rate coefficient of microorganisms, and changes depending on the water temperature. V A is the aerobic zone volume of the reactor.

また、上記(1)〜(2)において、供給酸素量(os)演算部は、上記の通り曝気により供給された酸素量を算出するものであるが、供給された酸素量は、図2に示した曝気機器の性能曲線等により求めるものである。   In (1) and (2) above, the supply oxygen amount (os) calculation unit calculates the amount of oxygen supplied by aeration as described above. The supplied oxygen amount is shown in FIG. It is obtained from the performance curve of the aeration apparatus shown.

また、上記(1)〜(2)において、全酸素必要量(or)は、上記の通り流入酸素必要量と内生酸素必要量の合計から供給酸素量を引いた数値を算出し、一定時間間隔で積算するものであり、これは次式(4)(5)(6)の通りである。尚、(orの積算値=OR)である。   In (1) to (2) above, the total oxygen requirement (or) is calculated by subtracting the supplied oxygen amount from the sum of the inflowing oxygen requirement and the endogenous oxygen requirement as described above, and for a certain period of time. Integration is performed at intervals, which is expressed by the following equations (4), (5), and (6). Note that (or integrated value = OR).

Figure 0004620391
Figure 0004620391

次はorを積分する。   Next, or is integrated.

Figure 0004620391
積分式を離散化すると、次のようになる。
Figure 0004620391
When the integral formula is discretized, it becomes as follows.

Figure 0004620391
Figure 0004620391

ここで、Δtは一定の時間間隔である。
この積分値の経時変化は、図3において線bで示す通りである。
Here, Δt is a constant time interval.
The change with time of the integral value is as shown by a line b in FIG.

そして、図3において線bとcで示すように、曝気制御部では積算値ORをもとに曝気機器の運転を制御するものである。即ち、曝気停止時は供給酸素量はゼロであるため、汚水の流入に伴いORは蓄積される。積算値ORが曝気開始OR設定値を超えた時に曝気機器に運転指令を出す。曝気中の供給酸素量osが流入酸素必要量(or−流入)と内生酸素必要量(or−内生)の合計量を上回ると、積算値ORは減少する。曝気停止の設定値(例えば、ゼロ)を下回った時に曝気を停止する。これを繰り返すことで自動的に間欠曝気を行うものである。 Then, as indicated by lines b and c in FIG. 3, the aeration control unit controls the operation of the aeration equipment based on the integrated value OR. That is, since the supply oxygen amount is zero when aeration is stopped, OR is accumulated with the inflow of sewage. When the integrated value OR exceeds the aeration start OR set value, an operation command is issued to the aeration equipment. When the supplied oxygen amount os during aeration exceeds the total amount of the inflowing oxygen requirement (or -inflow ) and the endogenous oxygen requirement (or -endogenous ), the integrated value OR decreases. Aeration is stopped when it falls below a set value (for example, zero) of aeration stop. By repeating this, intermittent aeration is automatically performed.

但し、流入負荷によっては長期的な連続曝気・連続停止が起こり得る。長期的な連続曝気は、脱窒効率を悪化させ、長期的な連続停止は生物処理を行う微生物にとって悪影響を与える可能性があるため、連続運転時間と連続停止時間には上限値を設定し、その上限を超えた際は強制的に曝気を停止または運転するようにする。   However, long-term continuous aeration and continuous stoppage may occur depending on the inflow load. Long-term continuous aeration deteriorates denitrification efficiency, and long-term continuous stoppage may adversely affect microorganisms that perform biological treatment. When the upper limit is exceeded, the aeration is forcibly stopped or operated.

また、酸素の供給量が一定の場合、曝気量が大きければ曝気時間は短くなる。逆に曝気量が小さければ曝気時間は長くなる。一般的に間欠曝気の場合は曝気時間と曝気停止時間のバランスをとる必要がある。このことから、上記の如く曝気風量または曝気機器の回転数の制御が可能な処理装置において、1日の曝気時間が曝気時間上限を超えた場合及び曝気時間下限を下回った場合に、曝気風量または回転数を調整することで曝気時間が適切な範囲内で制御されるように曝気風量または回転数の自動調整ができるようになしている。   Further, when the supply amount of oxygen is constant, the aeration time is shortened if the aeration amount is large. Conversely, if the amount of aeration is small, the aeration time becomes longer. In general, in the case of intermittent aeration, it is necessary to balance aeration time and aeration stop time. Therefore, in the processing apparatus capable of controlling the aeration air volume or the rotation speed of the aeration equipment as described above, when the aeration time of the day exceeds the aeration time upper limit or when the aeration time lower limit is exceeded, By adjusting the rotation speed, the aeration air volume or the rotation speed can be automatically adjusted so that the aeration time is controlled within an appropriate range.

一方、間欠曝気を行う多くの汚水等処理装置では、返送汚泥及び余剰汚泥の引抜きは、曝気のタイミングに合わせてタイマーによって制御している。この際、通常は同様にタイマー等により予め設定された曝気に合わせて引抜きスケジュールを決める。このスケジュールについて、図4に示した汚泥濃縮設備を有するオキシデーションディッチ(OD)法の汚水等処理装置を例に説明する。   On the other hand, in many sewage treatment apparatuses that perform intermittent aeration, extraction of return sludge and excess sludge is controlled by a timer in accordance with the timing of aeration. At this time, normally, similarly, a drawing schedule is determined in accordance with preset aeration by a timer or the like. This schedule will be described with reference to an oxidation ditch (OD) sewage treatment apparatus having the sludge concentration facility shown in FIG. 4 as an example.

図4において、100は無終端循環水路の反応槽であり、曝気ローター101により水流を起こし、空気を含んだ汚水と活性汚泥を循環させて攪拌するものである。102は該反応槽100への汚水の流通路である。103は沈澱槽、104は前記反応槽100と沈澱槽103を結ぶ通路、105は前記沈澱槽103の上澄水を放流する通路である。106は前記沈澱槽103の底部と前記反応槽100を結ぶ汚泥返送路、107は汚泥返送路106の途中部に接続された余剰汚泥引抜き路、108は余剰汚泥引抜き路107に接続された汚泥濃縮槽、109は汚泥濃縮槽108の底部に接続された濃縮汚泥引抜き路である。また、110、111、112、113はポンプである。   In FIG. 4, 100 is a reaction tank of an endless circulation channel, which causes a water flow by the aeration rotor 101, and circulates and stirs the sewage containing air and activated sludge. Reference numeral 102 denotes a flow path of sewage to the reaction tank 100. 103 is a precipitation tank, 104 is a passage connecting the reaction tank 100 and the precipitation tank 103, and 105 is a passage for discharging the supernatant water of the precipitation tank 103. 106 is a sludge return path connecting the bottom of the sedimentation tank 103 and the reaction tank 100, 107 is an excess sludge extraction path connected to the middle part of the sludge return path 106, and 108 is sludge concentration connected to the excess sludge extraction path 107. A tank 109 is a concentrated sludge extraction path connected to the bottom of the sludge concentration tank 108. Reference numerals 110, 111, 112, and 113 denote pumps.

通常、反応槽100に汚水もしくは返送汚泥が流入する際においては、反応槽100の水溶液が押し出される形で沈澱槽103に流入する。この際に曝気機器である曝気ローター101が運転していると、OD内の汚泥が攪拌された状態になり、沈澱槽103に汚泥が流入する。沈澱槽103では一定の汚泥沈降時間を経て、沈降した汚泥を返送汚泥または余剰汚泥として引き抜く。このため、汚泥の引抜きスケジュールは曝気機器の運転スケジュールを考慮した形決定する。したがって、曝気機器の運転及び汚泥引抜き機器の運転の双方を予め決められたタイマー等により設定することが多い。 Normally, when sewage or return sludge flows into the reaction tank 100, the aqueous solution in the reaction tank 100 flows into the precipitation tank 103 in an extruded form. At this time, when the aeration rotor 101 which is an aeration device is in operation, the sludge in the OD is agitated, and the sludge flows into the settling tank 103. In the sedimentation tank 103, after a certain sludge settling time, the settled sludge is extracted as return sludge or excess sludge. For this reason, sludge withdrawal schedule is determined in a manner that takes into account the operating schedule of the aeration equipment. Therefore, both the operation of the aeration device and the operation of the sludge extraction device are often set by a predetermined timer or the like.

しかしながら、こうした設定スケジュールに基づく運転には、以下の欠点が存在する。
1.曝気機器の運転は、流入負荷との連動が保証できないので、処理水質は不安定になりやすい。
2.余剰汚泥の引抜きは、汚水の流入と連動しないため、余剰汚泥濃度が不安定になりやすく、運転管理上好ましくない。
However, the operation based on such a setting schedule has the following drawbacks.
1. Since the operation of the aeration equipment cannot guarantee the linkage with the inflow load, the treated water quality tends to be unstable.
2. Since the extraction of excess sludge does not interlock with the inflow of sewage, the excess sludge concentration tends to become unstable, which is undesirable in terms of operation management.

また、上記本発明に係る汚水処理装置による間欠曝気では、曝気時間の長短が流入負荷によって自動的に調節されることで負荷変動に対応した曝気を行うため、曝気開始時刻・曝気停止時刻は不確定である。そのためOD後段の沈澱槽への汚泥の流入時刻は不規則であり、従来のタイマーによる汚泥引抜きでは汚泥界面が不安定となり、引抜き汚泥濃度に大きなばらつきが出るなど、維持管理上不具合が生じる。   Further, in the intermittent aeration by the sewage treatment apparatus according to the present invention, since the aeration time is automatically adjusted by the inflow load to perform aeration corresponding to the load fluctuation, the aeration start time and the aeration stop time are not set. It is definite. Therefore, the inflow time of sludge into the sedimentation tank after the OD is irregular, and sludge extraction with a conventional timer makes the sludge interface unstable and causes problems in maintenance such as a large variation in the drawn sludge concentration.

これに対応するため、本発明では沈澱槽からの汚泥引抜き(返送汚泥・余剰汚泥)について、流入水を供給するポンプ等のON/OFF信号・曝気機器のON/OFF信号をどを受け、制御部から自動的に汚泥の引抜き機器に運転指令を出すように構成している。斯かる構成における余剰引抜きプロセスのフローチャートを図5に、また返送汚泥引抜きプロセスのフローチャートを図6に示し、以下夫々について説明する。   In order to cope with this, in the present invention, the sludge extraction (return sludge / surplus sludge) from the sedimentation tank is controlled by receiving ON / OFF signals such as pumps for supplying inflow water and ON / OFF signals for aeration equipment. The operation command is automatically issued from the section to the sludge extraction device. FIG. 5 shows a flowchart of the surplus extraction process in such a configuration, and FIG. 6 shows a flowchart of the return sludge extraction process. Each will be described below.

余剰汚泥の引抜きは、次のように行う。
1.一定の時刻に余剰汚泥引抜き準備を開始する。この段階では余剰汚泥の引抜きを行わず、沈澱槽への汚泥流入及び沈降を待つ状態となる。一定の時刻とは、一般的には後続の汚泥濃縮槽から汚泥が引抜かれた時点を指すため、濃縮汚泥引抜きポンプの運転完了の信号等を利用するが、管理者によって自由に設定できる。
2.反応槽に汚水が供給される(汚水ポンプON信号や流量計による信号)と同時に曝気機器の運転(ON信号)がなされるという状態になる。この段階では反応槽から汚泥が押し出され、沈澱槽に汚泥が供給される。
3.沈澱槽からの汚泥引抜き量を確保するため、引抜きまで反応槽での攪拌(曝気)時間を確保する必要がある。その判断は、NOであればそのまま待機する。YESになれば沈降タイマーをONにする。沈降タイマーとは、沈澱槽に流入した汚泥が沈澱槽内で沈降するのを待つ時間で、管理者により自由に設定できる。
4.沈降タイマーがタイムアップになると、余剰汚泥引抜きポンプ等の運転指令を出し、余剰汚泥を引抜く。同時に余剰汚泥の引抜タイマーをONにセットする。引抜かれた汚泥は必ず沈澱槽において沈降する過程を経ているため、任意のタイミングで曝気が行われても、ON/OFFタイマー設定による定期的な引抜きと異なり、安定した終沈汚泥界面と沈降汚泥濃度で汚泥引抜きを行うことができる。
5.引抜き量は設定された引抜き時間によって決まる。引抜きタイマーがタイムアップした段階で余剰汚泥ポンプ等の停止指令を出す。
Pull out excess sludge as follows.
1. Preparation for extracting excess sludge starts at a certain time. At this stage, the excess sludge is not drawn out, and the state of waiting for sludge inflow and settling into the settling tank is awaited. The fixed time generally refers to a point in time when the sludge is extracted from the subsequent sludge concentrating tank, and thus a signal indicating completion of operation of the concentrated sludge extraction pump is used, but can be freely set by the administrator.
2. At the same time as the sewage is supplied to the reaction tank (sewage pump ON signal or flow meter signal), the aeration apparatus is operated (ON signal). At this stage, sludge is pushed out of the reaction tank, and the sludge is supplied to the precipitation tank.
3. In order to ensure the amount of sludge withdrawn from the settling tank, it is necessary to ensure the stirring (aeration) time in the reaction tank until withdrawal. If the determination is NO, the process waits as it is. If YES, turn the sedimentation timer on. The settling timer is a time for waiting for the sludge flowing into the settling tank to settle in the settling tank, and can be freely set by the administrator.
4). When the settling timer expires, an operation command such as an excess sludge extraction pump is issued, and excess sludge is extracted. At the same time, set the excess sludge extraction timer to ON. Since the extracted sludge always passes through the process of settling in the settling tank, even if aeration is performed at any timing, unlike the regular extraction by the ON / OFF timer setting, the stable final settling sludge interface and the settling sludge Sludge extraction can be performed at a concentration.
5. The drawing amount is determined by the set drawing time. When the withdrawal timer is up, issue a stop command for the excess sludge pump.

返送汚泥の引抜きは、次のように行う。
1.余剰汚泥の引抜き中もしくは沈澱槽において余剰汚泥引抜きのために汚泥を沈降中かをチェックする。もしそうであれば、汚泥の返送を停止する。
2.曝気機器が運転している時(ON信号)、及び曝気停止後の一定期間内であれば、汚泥返送機器を運転する(タイマーによって設定。)。曝気機器停止後も一定時間内、後続の沈澱槽に汚泥が供給される。汚泥界面の安定化などの目的で、それらの汚泥を反応槽へ返すためには曝気停止後の一定時間の継続返送が必要である。
The return sludge is extracted as follows.
1. Check whether excess sludge is being drawn or whether the sludge is sinking in the sedimentation tank to extract excess sludge. If so, stop returning sludge.
2. When the aeration equipment is operating (ON signal) and within a certain period after the aeration is stopped, the sludge return equipment is operated (set by a timer). Sludge is supplied to the subsequent sedimentation tank within a certain time after the aeration equipment is stopped. In order to return the sludge to the reaction tank for the purpose of stabilizing the sludge interface, it is necessary to continuously return the sludge for a certain period of time after stopping aeration.

曝気機器のパターン制御期間と間欠OR自動制御期間において、処理水の有機物(CODcr)濃度と全窒素(T−N)濃度、並びに単位処理水量あたりの電気消費率は図7に示す通りであり、この結果をまとめると、次のような結論が得られる。
1.水質の安定化。実験期間中に処理水有機物(CODcr)濃度と全窒素(T−N)濃度は安定している。
2.消費電力の削減。曝気機器のパターン運転と比べて、同じ良好な水質を得ながら、単位処理水量あたりの電気消費率は約15%の削減が実現した。
3.終沈汚泥界面及び余剰汚泥濃度の安定化。実験期間中の汚泥界面は変動が少なく、余剰汚泥濃度も安定しているため、汚泥の管理は非常にしやすい。
In the pattern control period and intermittent OR automatic control period of the aeration equipment, the organic matter (CODcr) concentration and total nitrogen (TN) concentration of treated water, and the electricity consumption rate per unit treated water amount are as shown in FIG. Summarizing the results, the following conclusions can be obtained.
1. Stabilization of water quality. During the experimental period, the treated water organic matter (CODcr) concentration and total nitrogen (TN) concentration are stable.
2. Reduction of power consumption. Compared with the pattern operation of aeration equipment, the electricity consumption rate per unit treated water volume was reduced by about 15% while obtaining the same good water quality.
3. Stabilization of final sludge interface and excess sludge concentration. Since the sludge interface during the experiment period has little fluctuation and the excess sludge concentration is stable, sludge management is very easy.

本発明を実施するための最良の形態は、酸素必要量演算部と曝気制御部とを備え、酸素必要量の積算値に基づいて反応槽に空気を送り込み、反応槽に流入した汚水及び活性汚泥を曝気して汚水中の汚濁物を活性汚泥により生物化学的に除去すると共に、沈澱槽に沈澱した汚泥を、その一部は反応槽に返送し、残りは余剰汚泥として排出するようになした汚水処理装置において、前記酸素必要量演算部は、流入酸素必要量(or−流入)演算部と、内生酸素必要量(or−内生)演算部と、供給酸素量(os)演算部と全酸素必要量(or)演算部とで構成し、該流入酸素必要量(or−流入)演算部は、流入水のSS(または濁度あるいは透視度)をセンサーで測定し、予め測定した流入SS(または濁度あるいは透視度)測定値と流入BOD及びケルダール窒素との相関関係を利用して流入BOD濃度及びケルダール窒素濃度を算出すると共に、算出された流入BOD濃度及びケルダール窒素濃度と流入水量計または放流水量計により測定された処理水量(または流入ポンプの運転時間等により算出される流入量)との積から流入酸素必要量を算出するものであり、また内生酸素必要量(or−内生)演算部では、MLSSをセンサーにより測定し、内生呼吸に係る酸素必要量を算出するものであり、また供給酸素量(os)演算部は、曝気により供給された酸素量を算出するものであり、また全酸素必要量(or)演算部は、上記流入酸素必要量と内生酸素必要量の合計から供給酸素量を引いた数値を算出し、一定時間間隔で積算するものであり、また、前記曝気制御部は、前記全酸素必要量演算部による積算値ORをもとに曝気機器の運転を制御するものであり、積算値ORが曝気開始設定値を超えた時に曝気を開始し、曝気停止設定値を下回った時に曝気を停止するようにして自動的に間欠曝気を行うように制御するものである汚水処理装置であって、更に後続の汚泥濃縮槽からの汚泥引抜き後に流入汚水を反応槽に供給し、曝気機器が運転を開始した際に予め任意に設定された沈降タイマーをONにし、沈降タイマーがタイムアップした段階で設定した引抜き時間で余剰汚泥を引き抜くようになす一方、余剰汚泥引抜きの沈降タイマーがONしてから、引抜き完了までを除き、曝気機器が運転している時及び曝気停止後の一定時間に返送汚泥を引き抜くようになした汚水処理装置にある。 The best mode for carrying out the present invention includes an oxygen requirement calculation unit and an aeration control unit, and sends air to the reaction tank based on the integrated value of the oxygen requirement, and the sewage and activated sludge flowing into the reaction tank As a result of aeration, the sludge in the sewage was removed biochemically using activated sludge, and part of the sludge that had settled in the sedimentation tank was returned to the reaction tank and the rest was discharged as excess sludge. sewage treatment apparatus odor Te, the oxygen demand calculation unit is flowing oxygen demand (or - inflow) a calculation unit, endogenous oxygen demand - and (or endogenous) computing unit, the supply amount of oxygen (os) computing unit And a total oxygen requirement (or) calculation unit, and the inflowing oxygen requirement (or -inflow ) calculation unit measures the SS (or turbidity or transparency) of the influent water with a sensor and measures it in advance. Inflow SS (or turbidity or transparency) measurements and inflow B The inflow BOD concentration and the Kjeldahl nitrogen concentration are calculated using the correlation between D and Kjeldahl nitrogen, and the calculated inflow BOD concentration and Kjeldahl nitrogen concentration and the treated water amount measured by the inflow water meter or the discharge water meter (or The required amount of inflowing oxygen is calculated from the product of the amount of inflow calculated based on the operating time of the inflow pump, etc., and the required amount of endogenous oxygen (or- endogenous ) is calculated by measuring the MLSS with a sensor. The oxygen requirement for endogenous breathing is calculated, and the oxygen supply (os) calculation unit calculates the amount of oxygen supplied by aeration, and calculates the total oxygen requirement (or) The unit calculates a numerical value obtained by subtracting the supplied oxygen amount from the sum of the inflowing oxygen required amount and the endogenous oxygen required amount, and integrates them at regular time intervals. The operation of the aeration equipment is controlled based on the integrated value OR by the total oxygen requirement calculation unit. When the integrated value OR exceeds the aeration start set value, aeration is started and falls below the aeration stop set value. It is a sewage treatment device that automatically controls intermittent aeration by stopping aeration at a time, and further supplies inflow sewage to the reaction tank after drawing sludge from the subsequent sludge concentration tank. When the equipment starts operation, the settling timer is set to ON in advance, and excess sludge is drawn at the extraction time set when the settling timer is up, while the settling timer for extracting excess sludge is turned on. Then, except for the completion of extraction, the sewage treatment apparatus is configured to extract the returned sludge when the aeration equipment is operating and at a fixed time after the aeration is stopped .

以下、本発明の具体的構成例である実施例について説明する。
図8は本発明の実施例1の構成説明図である。
Examples which are specific configuration examples of the present invention will be described below.
FIG. 8 is a diagram illustrating the configuration of the first embodiment of the present invention.

図中、1は無終端循環水路の反応槽であり、曝気ローター2により水流を起こし、空気を含んだ汚水と活性汚泥を循環させて攪拌するものである。また、曝気ローター2は後記自動制御装置の制御部からの指令に基づいて作動するものである。3は該反応槽1への汚水の流通路である。4は前記汚水の流通路3に設けた流入水量を計測する流量計であり、その計測データの信号は後記自動制御装置の演算部に送るものである。尚、本実施例では該流量計を汚水の流通路に設けたが、放流する処理水の流通路に設けるようにしてもよい。 In the figure, reference numeral 1 denotes a reaction tank of an endless circulation channel, which causes a water flow by the aeration rotor 2 and circulates and stirs air-containing sewage and activated sludge. Further, the aeration rotor 2 operates based on a command from a control unit of the automatic controller described later . Reference numeral 3 denotes a flow path of sewage to the reaction tank 1. Reference numeral 4 denotes a flow meter for measuring the amount of inflow water provided in the sewage flow passage 3, and a signal of the measurement data is sent to a calculation unit of an automatic control device described later. In the present embodiment, the flow meter is provided in the sewage flow path, but may be provided in the flow path of the treated water to be discharged.

5は内部自動洗浄機能付のサンプリング装置であり、水槽6と、これの内部に設置したSS計7及びpH計8からなるものである。また、該サンプリング装置5は、後記自動制御装置からの指令に基づいて適時内部のサンプルを排出し、その都度洗浄水を噴出して洗浄を行うものである。尚、9は洗浄水の配管、10はバルブ、11は洗浄水である。そしてまた、該SS計7及びpH計8は後記自動制御装置の演算部に計測データの信号を送るものである。   Reference numeral 5 denotes a sampling device with an internal automatic cleaning function, which comprises a water tank 6, an SS meter 7 and a pH meter 8 installed therein. The sampling device 5 discharges the internal sample in a timely manner based on a command from an automatic control device to be described later, and performs cleaning by ejecting cleaning water each time. In addition, 9 is a piping for washing water, 10 is a valve, and 11 is washing water. The SS meter 7 and the pH meter 8 send measurement data signals to the calculation unit of the automatic controller described later.

また、該サンプリング装置5には、前記汚水の流通路3に通ずるサンプル抽出路12と前記反応槽1に通ずるサンプル抽出路13を設けて、これら両サンプル抽出路12、13のいずれかを選択的に連通可能となしている。尚、14は該サンプル抽出路12と13をサンプリング装置5の水槽6に接続する通路であり、途中部にポンプ15を設けている。また、該サンプル抽出路12と13にも途中部にバルブ16、17を夫々設けている。そしてこれらポンプ15、バルブ16、17は後記自動制御装置の制御部からの指令に基づいて作動するものである。18は前記サンプリング装置5の水槽6と前記反応槽1を結ぶサンプリング排出通路である。19は前記反応槽1内の処理水の温度を計測する温度計であり、後記自動制御装置の演算部に計測データの信号を送るものである。   Further, the sampling device 5 is provided with a sample extraction path 12 that communicates with the sewage flow path 3 and a sample extraction path 13 that communicates with the reaction tank 1, and either of these sample extraction paths 12, 13 is selectively used. It is possible to communicate with. Reference numeral 14 denotes a passage for connecting the sample extraction passages 12 and 13 to the water tank 6 of the sampling device 5, and a pump 15 is provided in the middle. The sample extraction channels 12 and 13 are also provided with valves 16 and 17 in the middle. These pumps 15 and valves 16 and 17 operate based on commands from the control unit of the automatic control device described later. A sampling discharge passage 18 connects the water tank 6 of the sampling device 5 and the reaction tank 1. Reference numeral 19 denotes a thermometer that measures the temperature of the treated water in the reaction tank 1 and sends a signal of measurement data to a calculation unit of an automatic control device described later.

20は沈澱槽、21は前記反応槽1と沈澱槽20を結ぶ通路、22は前記沈澱槽20の上澄水を放流する通路である。23は前記沈澱槽20の底部と前記反応槽1を結ぶ汚泥返送路、24は汚泥返送路23の途中部に接続された余剰汚泥引抜き路である。そして、該汚泥返送路23における余剰汚泥引抜き路24の接続部と反応槽1との間の途中部にはポンプ25が設けられ、更に余剰汚泥引抜き路24の途中部にもポンプ26が設けられている。そしてこれらポンプ25、26は後記自動制御装置の制御部からの指令に基づいて作動するものである。また、図においては前記余剰汚泥引抜き路24に接続される汚泥濃縮槽と濃縮汚泥引抜き路等は省略している。   Reference numeral 20 is a precipitation tank, 21 is a passage connecting the reaction tank 1 and the precipitation tank 20, and 22 is a passage through which the supernatant water of the precipitation tank 20 is discharged. 23 is a sludge return path connecting the bottom of the sedimentation tank 20 and the reaction tank 1, and 24 is an excess sludge extraction path connected to a middle part of the sludge return path 23. A pump 25 is provided in the middle of the sludge return path 23 between the connecting portion of the excess sludge extraction path 24 and the reaction tank 1, and a pump 26 is also provided in the middle of the excess sludge extraction path 24. ing. And these pumps 25 and 26 operate | move based on the command from the control part of a postscript automatic control apparatus. Further, in the figure, the sludge concentration tank, the concentrated sludge extraction path and the like connected to the excess sludge extraction path 24 are omitted.

27はデータの入力・演算を行う演算部28と運転制御指令を出力する制御部29とからなる自動制御装置である。また、該演算部28は、流入酸素必要量(or−流入)演算部と内生酸素必要量(or−内生)演算部と供給酸素量(os)演算部と全酸素必要量(or)演算部とで構成される酸素必要量演算部(図示せず。)を含むものである。また、該制御部29は曝気機器の運転を制御する曝気制御部を含むものである。 An automatic control device 27 includes a calculation unit 28 that inputs and calculates data and a control unit 29 that outputs an operation control command. The calculation unit 28 includes an inflowing oxygen requirement (or -inflow ) calculation unit, an endogenous oxygen requirement (or- endogenous ) calculation unit, a supply oxygen amount (os) calculation unit, and a total oxygen requirement (or). It includes an oxygen required amount calculation unit (not shown) configured with a calculation unit. The control unit 29 includes an aeration control unit that controls the operation of the aeration equipment.

そしてまた、前記流入酸素必要量(or−流入)演算部は、流入水のSS(または濁度あるいは透視度)をセンサーで測定し、予め測定した流入SS(または濁度あるいは透視度)測定値と流入BOD及びケルダール窒素との相関関係を利用して流入BOD濃度及びケルダール窒素濃度を算出すると共に、算出された流入BOD濃度及びケルダール窒素濃度と流入水量計または放流水量計により測定された処理水量(または流入ポンプの運転時間等により算出される流入量)との積から流入酸素必要量を算出するものであり、また内生酸素必要量(or−内生)演算部は、MLSSをセンサーにより測定し、内生呼吸に係る酸素必要量を算出するものであり、また供給酸素量(os)演算部は、曝気により供給された酸素量を算出するものであり、また全酸素必要量(or)演算部は、上記流入酸素必要量と内生酸素必要量の合計から供給酸素量を引いた数値を算出し、一定時間間隔で積算するものであり、また、前記曝気制御部は、前記全酸素必要量演算部による積算値ORをもとに曝気機器の運転を制御するものであり、積算値ORが曝気開始設定値を超えた時に曝気を開始し、曝気停止設定値を下回った時に曝気を停止するようにして自動的に間欠曝気を行うように制御するものである。 In addition, the inflowing oxygen required amount (or -inflow ) calculation unit measures the SS (or turbidity or transparency) of the inflowing water with a sensor, and measures the inflow SS (or turbidity or transparency) measurement value measured in advance. The inflow BOD concentration and Kjeldahl nitrogen concentration are calculated using the correlation between the inflow BOD and Kjeldahl nitrogen, and the calculated inflow BOD concentration and Kjeldahl nitrogen concentration and the amount of treated water measured by the inflow water meter or the discharge water meter (Or the inflow amount calculated based on the operation time of the inflow pump, etc.) is used to calculate the inflowing oxygen requirement, and the endogenous oxygen requirement (or- endogenous ) calculation unit calculates MLSS by a sensor. Measures and calculates the oxygen requirement for endogenous breathing, and the oxygen supply (os) calculator calculates the amount of oxygen supplied by aeration In addition, the total oxygen requirement (or) calculation unit calculates a numerical value obtained by subtracting the supplied oxygen amount from the sum of the inflowing oxygen requirement and the endogenous oxygen requirement, and integrates it at regular time intervals. The aeration control unit controls the operation of the aeration equipment based on the integrated value OR by the total oxygen requirement calculating unit, and starts aeration when the integrated value OR exceeds the aeration start set value. Control is performed such that intermittent aeration is automatically performed by stopping aeration when the aeration stop setting value is exceeded.

而して、本実施例による処理作用は上記の通りであるから詳細な説明は省略し、簡単に説明すると次の通りである。   Thus, the processing operation according to the present embodiment is as described above, and thus detailed description thereof is omitted, and a brief description thereof is as follows.

酸素必要量の演算に用いる流入SS(または濁度あるいは透視度)及びMLSSの測定は、サンプリング装置5を用いて間欠測定を行う。図9に示すように、測定している時はリアルタイムの測定値若しくはそれにフィルターをかけた値を使用するが、測定していない時は前回測定完了時の値をホールドして使用する。自動制御装置27の演算部28における酸素必要量演算部では、サンプリング装置5で測定されたセンサー値または機器のON/OFF信号または流量計等からの入力信号から、酸素必要量を演算する。また、自動制御装置27の制御部29では、上記の通り酸素必要量の積算値に基づき曝気機器に運転・停止指令を出すほか、上記図5及び図6で示したプロセスチャートに従って汚泥制御用の各機器に運転・停止指令若しくは開・閉指令を出して制御するものである。   The inflow SS (or turbidity or transparency) and MLSS used for the calculation of the required oxygen amount are measured intermittently using the sampling device 5. As shown in FIG. 9, a real-time measurement value or a filtered value is used when measuring, but when a measurement is not performed, the value at the time of completion of the previous measurement is held and used. The required oxygen amount calculation unit in the calculation unit 28 of the automatic control device 27 calculates the required oxygen amount from the sensor value measured by the sampling device 5, the device ON / OFF signal, or the input signal from the flow meter or the like. In addition, the control unit 29 of the automatic control device 27 issues an operation / stop command to the aeration equipment based on the integrated value of the required oxygen amount as described above, and for sludge control according to the process charts shown in FIGS. Control is performed by issuing an operation / stop command or an open / close command to each device.

次に、図10に示した本発明の実施例2について説明する。
本実施例と前記実施例1との相違点は、本実施例において前記実施例1における内部自動洗浄機能付のサンプリング装置を用いていない点である。
Next, a second embodiment of the present invention shown in FIG. 10 will be described.
The difference between the present embodiment and the first embodiment is that the sampling device with the internal automatic cleaning function in the first embodiment is not used in the present embodiment.

而して、本実施例の場合には、流入SS(または濁度あるいは透視度)及びMLSSの値については、OD内に設置されたセンサーによる連続測定であり、そして図11に示すようにリアルタイムの測定値若しくはそれにフィルターをかけた値を使用するものである。また、その他の構成並びに作用は前記実施例1と同様であるから、同一の部材には同一符号を付して詳細な説明は省略する。   Thus, in the case of the present embodiment, the inflow SS (or turbidity or transparency) and MLSS values are continuously measured by a sensor installed in the OD, and real time as shown in FIG. Measured value or filtered value is used. In addition, since other configurations and operations are the same as those of the first embodiment, the same members are denoted by the same reference numerals, and detailed description thereof is omitted.

次に、図12に示した本発明の実施例3について説明する。
本実施例は農業集落排水処理装置に係り、JARUS−XIV型(連続流入−間欠曝気)とJARUS−XV型(間欠流入−間欠曝気)の例を示すものである。
Next, a third embodiment of the present invention shown in FIG. 12 will be described.
This embodiment relates to an agricultural settlement wastewater treatment apparatus, and shows examples of JARUS-XIV type (continuous inflow-intermittent aeration) and JARUS-XV type (intermittent inflow-intermittent aeration).

本実施例と前記実施例1との相違点は、反応槽及び曝気機器において、実施例1は無終端循環水路の反応槽を用い、曝気ローターにより水流を起こして曝気するものであるのに対して、本実施例は無終端循環水路の反応槽ではなく、且つまたブロワーと散気部材による散気式エアレーション方式を用いることと、本実施例において反応槽への汚水の流通路の途中部に、自動制御装置の演算部に計測データの信号を送るポンプと計量装置を設けた点である。   The difference between the present embodiment and the first embodiment is that, in the reaction tank and the aeration apparatus, the first embodiment uses a reaction tank of an endless circulation channel, and aeration is performed by generating a water flow with an aeration rotor. Thus, this embodiment is not a reaction tank of an endless circulation channel, and also uses a diffused aeration method with a blower and a diffuser member, and in this embodiment, in the middle of the flow path of sewage to the reaction tank. In addition, a pump and a metering device for sending measurement data signals to the arithmetic unit of the automatic control device are provided.

即ち、前記実施例1における無終端循環水路の反応槽1に代わる反応槽30を用いるものであり、本実施例では2基を並設している。そしてまた、ブロワー31から送り出された空気を、送風路32を経て前記反応槽30内に送り込み、反応槽30の底部の散気部材33から放出して曝気するものである。また、前記送風路32にはバルブ34、34が設けられており、これらのバルブ34、34と前記ブロワー31は自動制御装置27の制御部29からの指令に基づいて作動するものである。また、反応槽30への汚水の流通路3の途中部にはポンプ35と計量装置36が設けられ、これらポンプ35と計量装置36は自動制御装置27の演算部28に計測データの信号を送るものである。また、汚泥返送路23における余剰汚泥引抜き路24の接続部と沈澱槽20との間の途中部にポンプ25を設け、更に余剰汚泥引抜き路24と、汚泥返送路23における余剰汚泥引抜き路24の接続部より反応槽30寄りの途中部にはバルブ37、38が夫々設けられている。そしてこれらポンプ25、バルブ37、38は自動制御装置27の制御部29からの指令に基づいて作動するものである。   That is, the reaction tank 30 is used in place of the reaction tank 1 of the endless circulation channel in the first embodiment. In this embodiment, two reactors are arranged in parallel. In addition, the air sent out from the blower 31 is sent into the reaction tank 30 through the air blowing path 32 and discharged from the aeration member 33 at the bottom of the reaction tank 30 for aeration. Further, the air passage 32 is provided with valves 34, 34, and these valves 34, 34 and the blower 31 operate based on a command from the control unit 29 of the automatic control device 27. A pump 35 and a metering device 36 are provided in the middle of the sewage flow passage 3 to the reaction tank 30, and these pump 35 and metering device 36 send a signal of measurement data to the arithmetic unit 28 of the automatic control device 27. Is. In addition, a pump 25 is provided in the middle of the sludge return path 23 between the connecting portion of the excess sludge extraction path 24 and the settling tank 20, and the excess sludge extraction path 24 and the excess sludge extraction path 24 in the sludge return path 23 are provided. Valves 37 and 38 are provided in the middle of the connection portion closer to the reaction tank 30, respectively. The pump 25 and valves 37 and 38 are operated based on commands from the control unit 29 of the automatic control device 27.

而して、本実施例の場合には、流入SS(または濁度あるいは透視度)及びMLSSの測定方法については前記実施例1と同じであり、そしてまた流入量Fは、流入汚水ポンプ35のON/OFF信号と、計量装置三角堰36等の調整によって決められた時間あたりの流量から割り出すものである。また、その他の構成並びに作用は前記実施例1と同様であるから、同一の部材には同一符号を付して詳細な説明は省略する。   Thus, in the case of this embodiment, the method for measuring the inflow SS (or turbidity or transparency) and MLSS is the same as in the first embodiment, and the inflow amount F is the same as that of the inflow sewage pump 35. It is determined from the flow rate per time determined by adjusting the ON / OFF signal and the measuring device triangular weir 36 and the like. In addition, since other configurations and operations are the same as those of the first embodiment, the same members are denoted by the same reference numerals, and detailed description thereof is omitted.

本発明の基本構成の説明図である。It is explanatory drawing of the basic composition of this invention. 曝気機器の酸素供給能力の性能曲線を示すグラフである。It is a graph which shows the performance curve of the oxygen supply capability of an aeration apparatus. 流入酸素必要量の経時変化と負荷の積算値をもとに曝気機器の運転を制御する曝気制御の説明図である。It is explanatory drawing of the aeration control which controls the operation | movement of an aeration apparatus based on the time-dependent change of inflowing oxygen required amount, and the integrated value of load. 汚泥濃縮設備を有するオキシデーションディッチ法による汚水処理装置の構成説明図である。It is composition explanatory drawing of the sewage treatment apparatus by the oxidation ditch method which has sludge concentration equipment. 本発明による余剰汚泥引抜きプロセスのフローチャートである。It is a flowchart of the excess sludge extraction process by this invention. 本発明による返送汚泥引抜きプロセスのフローチャートである。It is a flowchart of the return sludge extraction process by this invention. 従来の曝気機器のパターン制御と本発明による間欠OR自動制御装置における処理水の有機物(CODcr)濃度と全窒素(T−N)濃度並びに単位処理水量あたりの電気消費率の比較測定を示すグラフである。It is a graph which shows the comparative measurement of the organic matter (CODcr) density | concentration and total nitrogen (TN) density | concentration of the treated water in the pattern control of the conventional aeration apparatus, and the intermittent OR automatic control apparatus by this invention, and the electric consumption rate per unit treated water quantity. is there. 本発明の実施例1の構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is structure explanatory drawing of Example 1 of this invention. サンプリング装置を用いた場合における流入SSの経時変化を示すグラフである。It is a graph which shows the time-dependent change of inflow SS at the time of using a sampling device. 本発明の実施例2の構成説明図である。It is composition explanatory drawing of Example 2 of this invention. サンプリング装置を用いない場合における流入SSの経時変化を示すグラフである。It is a graph which shows the time-dependent change of inflow SS when not using a sampling device. 本発明の実施例3の構成説明図である。It is composition explanatory drawing of Example 3 of this invention.

1 反応槽
2 曝気ローター
3 汚水の流通路
4 流量計
5 サンプリング装置
6 水槽
7 SS計
8 pH計
12、13 サンプル抽出路
14 通路
15 ポンプ
16、17 バルブ
18 サンプル抽出通路
19 温度計
20 沈澱槽
23 汚泥返送路
24 余剰汚泥引抜き路
25、26 ポンプ
27 自動制御装置
28 演算部
29 制御部
30 反応槽
31 ブロワー
32 送風路
33 散気部材
34 バルブ
35 ポンプ
36 計量装置

DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Aeration rotor 3 Flow path of sewage 4 Flowmeter 5 Sampling device 6 Water tank 7 SS meter 8 pH meter 12, 13 Sample extraction path 14 Path 15 Pump 16, 17 Valve 18 Sample extraction path 19 Thermometer 20 Precipitation tank 23 Sludge return path 24 Excess sludge extraction path 25, 26 Pump 27 Automatic control device 28 Arithmetic unit 29 Control unit 30 Reaction tank 31 Blower 32 Blower channel 33 Air diffuser member 34 Valve 35 Pump 36 Metering device

Claims (2)

酸素必要量演算部と曝気制御部とを備え、酸素必要量の積算値に基づいて反応槽に空気を送り込み、反応槽に流入した汚水及び活性汚泥を曝気して汚水中の汚濁物を活性汚泥により生物化学的に除去すると共に、沈澱槽に沈澱した汚泥を、その一部は反応槽に返送し、残りは余剰汚泥として排出するようになした汚水処理装置において、前記酸素必要量演算部は、流入酸素必要量(or−流入)演算部と、内生酸素必要量(or−内生)演算部と、供給酸素量(os)演算部と全酸素必要量(or)演算部とで構成し、該流入酸素必要量(or−流入)演算部は、流入水のSS(または濁度あるいは透視度)をセンサーで測定し、予め測定した流入SS(または濁度あるいは透視度)測定値と流入BOD及びケルダール窒素との相関関係を利用して流入BOD濃度及びケルダール窒素濃度を算出すると共に、算出された流入BOD濃度及びケルダール窒素濃度と流入水量計または放流水量計により測定された処理水量(または流入ポンプの運転時間等により算出される流入量)との積から流入酸素必要量を算出するものであり、また内生酸素必要量(or−内生)演算部では、MLSSをセンサーにより測定し、内生呼吸に係る酸素必要量を算出するものであり、また供給酸素量(os)演算部は、曝気により供給された酸素量を算出するものであり、また全酸素必要量(or)演算部は、上記流入酸素必要量と内生酸素必要量の合計から供給酸素量を引いた数値を算出し、一定時間間隔で積算するものであり、また、前記曝気制御部は、前記全酸素必要量演算部による積算値ORをもとに曝気機器の運転を制御するものであり、積算値ORが曝気開始設定値を超えた時に曝気を開始し、曝気停止設定値を下回った時に曝気を停止するようにして自動的に間欠曝気を行うように制御するものである汚水処理装置であって、更に後続の汚泥濃縮槽からの汚泥引抜き後に流入汚水を反応槽に供給し、曝気機器が運転を開始した際に予め任意に設定された沈降タイマーをONにし、沈降タイマーがタイムアップした段階で設定した引抜き時間で余剰汚泥を引き抜くようになす一方、余剰汚泥引抜きの沈降タイマーがONしてから、引抜き完了までを除き、曝気機器が運転している時及び曝気停止後の一定時間に返送汚泥を引き抜くようになした汚水処理装置。 It is equipped with an oxygen requirement calculation unit and an aeration control unit, sends air to the reaction tank based on the integrated value of the oxygen requirement, aerates the sewage and activated sludge flowing into the reaction tank, and activates sludge in the sewage while biochemically removed by the precipitated sludge in the settling tank, a portion is returned to the reaction vessel, the rest Te sewage treatment apparatus odor when taken to discharge the excess sludge, the oxygen required amount calculating section The inflowing oxygen requirement (or -inflow ) calculation unit, the endogenous oxygen requirement (or- endogenous ) calculation unit, the supply oxygen amount (os) calculation unit, and the total oxygen requirement (or) calculation unit The inflowing oxygen requirement (or -inflow ) calculating unit is configured to measure the SS (or turbidity or transparency) of the inflowing water with a sensor, and to measure the inflow SS (or turbidity or transparency) measured in advance. The correlation between inflow BOD and Kjeldahl nitrogen To calculate the inflow BOD concentration and Kjeldahl nitrogen concentration, and the calculated inflow BOD concentration and Kjeldahl nitrogen concentration and the amount of treated water measured by the inflow water meter or the discharge water meter (or the operation time of the inflow pump, etc.) The inflowing oxygen requirement is calculated from the product of the inflowing oxygen), and the endogenous oxygen requirement (or- endogenous ) calculation unit measures MLSS with a sensor, and the oxygen requirement for endogenous respiration. The supply oxygen amount (os) calculation unit calculates the amount of oxygen supplied by aeration, and the total oxygen requirement (or) calculation unit calculates the inflowing oxygen requirement amount. A numerical value obtained by subtracting the amount of supplied oxygen from the total amount of endogenous oxygen required is calculated and integrated at regular time intervals, and the aeration control unit is an integrated value O obtained by the total oxygen required amount calculating unit. Based on the above, the operation of the aeration equipment is controlled, and when the integrated value OR exceeds the aeration start set value, aeration is started, and when it falls below the aeration stop set value, aeration is automatically stopped. It is a sewage treatment device that is controlled to perform intermittent aeration, and after the sludge is extracted from the subsequent sludge concentration tank, the inflow sewage is supplied to the reaction tank, and optionally when the aeration equipment starts operation. The settling timer is set to ON, and the excess sludge is drawn with the extraction time set when the settling timer has timed up. A sewage treatment device that draws back the returned sludge when the equipment is in operation and after a certain period of time after stopping aeration. 曝気風量又は曝気機器の回転数の制御が可能な処理装置となし、1日の曝気時間が曝気時間上限を超えた場合及び曝気時間下限を下回った場合に、曝気風量又は回転数を調整することで曝気時間が適切な範囲内で制御されるように曝気風量又は回転数の自動調整ができる曝気制御部を備えた請求項1記載の汚水処理装置。A processing device that can control the amount of aeration air or the number of rotations of the aeration equipment, and adjusting the amount of aeration air or the number of rotations when the daily aeration time exceeds the aeration time upper limit and when the aeration time lower limit is exceeded. The sewage treatment apparatus according to claim 1, further comprising an aeration control unit capable of automatically adjusting the aeration air volume or the rotation speed so that the aeration time is controlled within an appropriate range.
JP2004189778A 2004-06-28 2004-06-28 Sewage treatment equipment Active JP4620391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004189778A JP4620391B2 (en) 2004-06-28 2004-06-28 Sewage treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004189778A JP4620391B2 (en) 2004-06-28 2004-06-28 Sewage treatment equipment

Publications (2)

Publication Number Publication Date
JP2006007132A JP2006007132A (en) 2006-01-12
JP4620391B2 true JP4620391B2 (en) 2011-01-26

Family

ID=35774950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189778A Active JP4620391B2 (en) 2004-06-28 2004-06-28 Sewage treatment equipment

Country Status (1)

Country Link
JP (1) JP4620391B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5775296B2 (en) * 2010-12-27 2015-09-09 株式会社ウォーターエージェンシー Operation support apparatus and operation support method for sewage treatment plant
JP2012228645A (en) * 2011-04-26 2012-11-22 Hitachi Ltd Water treatment apparatus, water treating method, and program for the method
JP5956372B2 (en) * 2013-03-22 2016-07-27 株式会社日立製作所 Water treatment apparatus and water treatment method
CN105347605B (en) * 2015-09-25 2017-12-19 深圳市新城市规划建筑设计股份有限公司 Method for the treatment of city waste water and control method
CN105399266B (en) * 2015-09-25 2017-12-12 南方创业(天津)科技发展有限公司 The automatic control system and method for a kind of municipal sewage treatment
CN105621803A (en) * 2016-01-21 2016-06-01 关澎 Low-cost community recycled water treatment system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192686A (en) * 1996-01-12 1997-07-29 Yanmar Diesel Engine Co Ltd Activated sludge concentration measuring and controlling device
JPH10165976A (en) * 1996-12-05 1998-06-23 Nissin Electric Co Ltd Sewage water treatment apparatus
JPH10216782A (en) * 1997-02-03 1998-08-18 Kubota Corp Oxidation ditch treatment in activated sludge method
JP2000084585A (en) * 1998-09-09 2000-03-28 Hitachi Kiden Kogyo Ltd Aerator and method for controlling operation of sludge removal pump
JP2000185296A (en) * 1998-12-24 2000-07-04 Hitachi Kiden Kogyo Ltd Control method of operation of sludge withdrawing pump
JP2000304741A (en) * 1999-04-23 2000-11-02 Nihon Hels Industry Corp Method and device for intermittent water quality measurement with automatic washing function
JP2000325980A (en) * 1999-05-21 2000-11-28 Nissin Electric Co Ltd Sewage treatment method and apparatus
JP2002126779A (en) * 2000-10-24 2002-05-08 Nihon Hels Industry Corp Sludge treatment method and apparatus used therefor
JP2003260484A (en) * 2002-03-12 2003-09-16 Nihon Hels Industry Corp Wastewater treatment apparatus
JP2003334593A (en) * 2002-05-20 2003-11-25 Taiyo Toyo Sanso Co Ltd Sewage treatment system by oxidation ditch method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192686A (en) * 1996-01-12 1997-07-29 Yanmar Diesel Engine Co Ltd Activated sludge concentration measuring and controlling device
JPH10165976A (en) * 1996-12-05 1998-06-23 Nissin Electric Co Ltd Sewage water treatment apparatus
JPH10216782A (en) * 1997-02-03 1998-08-18 Kubota Corp Oxidation ditch treatment in activated sludge method
JP2000084585A (en) * 1998-09-09 2000-03-28 Hitachi Kiden Kogyo Ltd Aerator and method for controlling operation of sludge removal pump
JP2000185296A (en) * 1998-12-24 2000-07-04 Hitachi Kiden Kogyo Ltd Control method of operation of sludge withdrawing pump
JP2000304741A (en) * 1999-04-23 2000-11-02 Nihon Hels Industry Corp Method and device for intermittent water quality measurement with automatic washing function
JP2000325980A (en) * 1999-05-21 2000-11-28 Nissin Electric Co Ltd Sewage treatment method and apparatus
JP2002126779A (en) * 2000-10-24 2002-05-08 Nihon Hels Industry Corp Sludge treatment method and apparatus used therefor
JP2003260484A (en) * 2002-03-12 2003-09-16 Nihon Hels Industry Corp Wastewater treatment apparatus
JP2003334593A (en) * 2002-05-20 2003-11-25 Taiyo Toyo Sanso Co Ltd Sewage treatment system by oxidation ditch method

Also Published As

Publication number Publication date
JP2006007132A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
CN104090488B (en) The method that sewage plant controls dissolved oxygen, sludge loading and sludge age in real time automatically
JP3961835B2 (en) Sewage treatment plant water quality controller
CN107207301B (en) Method for controlling aeration amount in activated sludge
KR20150096407A (en) Optimized process and aeration performance with an advanced control algorithm
KR100638158B1 (en) Sewage treatment system
JP2001252691A (en) Water quality controlling device for sewage treatment plant
JP2012200705A (en) Nitrogen-containing wastewater treatment method and apparatus
CN210855457U (en) Aeration control system
JP4620391B2 (en) Sewage treatment equipment
JP4008694B2 (en) Sewage treatment plant water quality controller
JP2008260002A (en) Operation control method for aeration apparatus
JP6619242B2 (en) Water treatment system
JP3845778B2 (en) Waste water treatment equipment
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JP4543649B2 (en) Nitrification processing method and apparatus
JP2009165959A (en) Treatment state judging method of aeration tank and wastewater treatment control system using it
JP6818951B1 (en) Water treatment equipment and water treatment method
JP3707526B2 (en) Waste water nitrification method and apparatus
JP3999869B2 (en) Biological water treatment equipment
JP5205760B2 (en) Aeration tank control method
JP2010269276A (en) Method and apparatus for controlling water treatment
JP6430324B2 (en) Waste water treatment method and waste water treatment apparatus
JPH11244889A (en) Biological phosphorous removing device
KR101229455B1 (en) System for managing water quality of discharging water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4620391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250