JP2003260484A - Wastewater treatment apparatus - Google Patents

Wastewater treatment apparatus

Info

Publication number
JP2003260484A
JP2003260484A JP2002114005A JP2002114005A JP2003260484A JP 2003260484 A JP2003260484 A JP 2003260484A JP 2002114005 A JP2002114005 A JP 2002114005A JP 2002114005 A JP2002114005 A JP 2002114005A JP 2003260484 A JP2003260484 A JP 2003260484A
Authority
JP
Japan
Prior art keywords
inflow
mlss
meter
bod
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002114005A
Other languages
Japanese (ja)
Other versions
JP3845778B2 (en
Inventor
Kisen Tan
記先 湛
Emi Terasawa
江美 寺澤
Shoichi Shinozaki
正一 篠崎
Naruhito Ishiyama
成仁 石山
Takaaki Otsuka
貴章 大塚
Akinori Ueno
昭典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon HELS Industry Corp
Original Assignee
Nihon HELS Industry Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon HELS Industry Corp filed Critical Nihon HELS Industry Corp
Priority to JP2002114005A priority Critical patent/JP3845778B2/en
Priority to KR20030015062A priority patent/KR100978706B1/en
Publication of JP2003260484A publication Critical patent/JP2003260484A/en
Application granted granted Critical
Publication of JP3845778B2 publication Critical patent/JP3845778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment apparatus wherein the SS, turbidity or see-through degree and pH of wastewater and the MLSS and pH of a mixed liquid in a reaction tank are measured using the same sampling device, and the control of a necessary air amount, the load control of BOD/SS and SRT control are more simply realized on the basis of the correlation of SS, BOD and Kjeldahl nitrogen. <P>SOLUTION: A flowmeter 3 is provided in a wastewater flow channel 2 while a sampling device 4 with an internal automatic washing function having an SS meter 6 and a pH meter 7 arranged therein is provided in a water tank 5. A sample extraction passage 11 communicating with the wastewater flow channel 2 and a sample extraction passage 12 communicating with the reaction tank 1 are provided to the sampling device 4 to enable the selective communication of either one of both sample extraction passages. The measuring data from the flowmeter 3 and the measuring data from the SS meter 6 and the pH meter 7 are sent to an operation control unit 32. The amount of aeration air, the draw-out amounts of the return sludge and the excess sludge or the draw-out times of them are calculated in the operation control unit 32 to issue output commands to respective drive devices. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は主に家庭排水や厨房
廃水、温泉廃水等の廃水処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for treating wastewater such as domestic wastewater, kitchen wastewater and hot spring wastewater.

【0002】[0002]

【従来の技術】曝気風量を算出して反応槽(曝気槽)に
空気を送り込み、反応槽に流入した廃水及び活性汚泥を
曝気して廃水中の汚濁物を活性汚泥により生物化学的に
除去すると共に、沈殿槽に沈殿した汚泥を、その一部は
反応槽に返送し、残りは余剰汚泥として排出するように
なした廃水処理装置にあっては、従来反応槽に流入する
廃水のSS、濁度又は透視度及びpHと、反応槽内の混
合液のMLSS及びpHとは別々に計測していた。
2. Description of the Related Art Air is sent to a reaction tank (aeration tank) by calculating the amount of air to be aerated, and wastewater and activated sludge flowing into the reaction tank are aerated to biochemically remove pollutants in the wastewater by activated sludge. At the same time, a part of the sludge settled in the settling tank is returned to the reaction tank, and the rest is discharged as surplus sludge. The degree or transparency and pH were measured separately from the MLSS and pH of the mixed solution in the reaction tank.

【0003】このため計測装置が複数必要となり、余分
な費用がかかると共に設置スペースも大きくとる必要が
あった。また、別々に計測する場合にはセンサー間にお
いて誤差が生じる虞もあった。
For this reason, a plurality of measuring devices are required, which requires extra cost and requires a large installation space. Further, when the measurement is performed separately, an error may occur between the sensors.

【0004】又、曝気風量を制御する技術に関しては、
流入水量に比例するように曝気風量を制御する方式と、
反応槽DOを一定になるように曝気強度を制御する方式
など、典型的な曝気制御方法は既に存在するが、前者は
微生物の内生呼吸と流入汚濁物質の濃度変化を考慮して
いないので、正確的に酸素の供給ができない。また後者
は流入負荷の急激な変化への対応に遅れが生じる。
[0004] Regarding the technology for controlling the aeration air volume,
A method of controlling the amount of aerated air in proportion to the amount of inflow water,
Although a typical aeration control method such as a method of controlling the aeration intensity so as to keep the reaction tank DO constant already exists, the former does not consider the endogenous respiration of microorganisms and the change in concentration of inflowing pollutants. Oxygen cannot be supplied accurately. The latter has a delay in responding to a sudden change in the inflow load.

【0005】一定の放流水質を達成するために、BOD
・SS負荷制御は重要である。従来のBOD・SS負荷
制御方法では、流入BODを測定する手段は、煩雑かつ
時間がかかる手分析であるか、メンテナンスに手間がか
かる高価的なセンサーであるため、実用性が欠けてい
る。
[0005] In order to achieve a certain effluent quality, BOD
・ SS load control is important. In the conventional BOD / SS load control method, the means for measuring the inflow BOD is a complicated and time-consuming manual analysis, or an expensive sensor that requires a lot of maintenance, and thus lacks practicality.

【0006】SRT制御は反応槽における硝化菌の増殖
を確保するための微生物の滞留時間を制御する重要な概
念である。しかしながら、従来の方法では、反応槽のM
LSS、余剰汚泥濃度及び余剰汚泥引き抜き量の三つの
パラメータを計測しなければならないため、実用性が欠
けている。
[0006] SRT control is an important concept for controlling the residence time of microorganisms for ensuring the growth of nitrifying bacteria in a reaction tank. However, in the conventional method, M
Practicality is lacking because three parameters of LSS, excess sludge concentration, and excess sludge withdrawal amount must be measured.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記複数の計
測装置を必要とする場合の問題に鑑みなされたものであ
って、反応槽に流入する廃水のSS、濁度又は透視度及
びpHと、反応槽内の混合液のMLSS及びpHとを同
一の装置を用いて測定することができるようになし、も
って上記従来装置の問題点を悉く解消することができる
ようになした廃水処理装置を提供せんとするものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems when a plurality of measuring devices are required, and has been developed in consideration of SS, turbidity or transparency and pH of wastewater flowing into a reaction tank. A wastewater treatment apparatus capable of measuring the MLSS and pH of a mixed solution in a reaction tank by using the same apparatus, thereby eliminating all the problems of the conventional apparatus. It will not be provided.

【0008】また、上記曝気制御方法の問題点に対し
て、本発明は流入汚水中のSSとBOD及びケルダール
窒素の相関関係を利用して、簡易に測定できるSSを計
測することにより上記BOD及びケルダール窒素を把握
し、これに流入水量を併せて流入負荷の量となし、流入
負荷用の曝気量を算出し、更にMLSSを計測し、内生
呼吸用曝気量を算出し、合計曝気量を制御する装置をも
提供するものである。これにより、正確かつ遅れのない
曝気方法が実現できる。
[0008] In order to solve the above problems of the aeration control method, the present invention measures the above-mentioned BOD and BOD by measuring the SS which can be easily measured by utilizing the correlation between SS and BOD and Kjeldahl nitrogen in the inflowing sewage. Determine the Kjeldahl nitrogen, add the amount of inflow water to the amount of inflow load, calculate the amount of aeration for the inflow load, measure the MLSS, calculate the amount of aeration for endogenous respiration, and calculate the total amount of aeration. An apparatus for controlling is also provided. Thereby, an accurate and timely aeration method can be realized.

【0009】また、上記BOD・SS負荷制御方法の問
題点に対して、本発明は流入汚水中のSSとBODの相
関関係を利用して、簡易に測定できるSSを計測するこ
とにより上記BODを把握し、これに流入水量を併せて
流入BOD負荷の量となし、それに基き、簡易的にBO
D・SS負荷制御を行う装置をも提供するものである。
更に、SS計を内部自動洗浄機能付のサンプリング装置
に設置するため、汚れにくく、メンテナンス性は優れて
いる。
In addition, in order to solve the problem of the above-mentioned BOD / SS load control method, the present invention measures the above-mentioned BOD by measuring the SS which can be easily measured by using the correlation between the SS and the BOD in the inflowed sewage. The amount of influent water is combined with the amount of inflow BOD load, and based on this, the BO
An apparatus for performing D / SS load control is also provided.
Furthermore, since the SS meter is installed in a sampling device with an internal automatic cleaning function, it is hardly contaminated and has excellent maintainability.

【0010】更にまた、上記SRT制御の問題点に対し
て、本発明は反応槽MLSSの一定期間中の増加量を測
定し、それに基き、簡易的なSRT制御を行う装置をも
提供するものである。
Furthermore, in order to solve the above-mentioned problem of the SRT control, the present invention also provides an apparatus for measuring an increase amount of a reaction tank MLSS during a predetermined period and performing a simple SRT control based on the measured amount. is there.

【0011】[0011]

【課題を解決するための手段】而して、本発明の要旨と
するところは、以下の構成にある。 (1)曝気風量を算出して反応槽に空気を送り込み、反
応槽に流入した廃水及び活性汚泥を曝気して廃水中の汚
濁物を活性汚泥により生物化学的に除去すると共に、沈
殿槽に沈殿した汚泥を、その一部は反応槽に返送し、残
りは余剰汚泥として排出するようになした廃水処理装置
において、流入する廃水の流通路又は放流する処理水の
流通路に流入水量を計測する流量計を設け、また一方、
水槽内に浮遊物濃度を測定するSS計、濁度計又は透視
度計とpH計とを設置してなる内部自動洗浄機能付のサ
ンプリング装置を設け、更に、該サンプリング装置に、
前記廃水の流通路に通ずるサンプル抽出路と反応槽に通
ずるサンプル抽出路とを設けて、これら両サンプル抽出
路のいずれかを選択的に連通可能となし、前記流量計か
らの計測データの信号と、前記SS計、濁度計又は透視
度計とpH計からの計測データの信号とを、データの入
力・演算及び運転制御指令を出力する演算制御装置に送
り、該演算制御装置において曝気風量と返送汚泥及び余
剰汚泥の引き抜き量又は引き抜き時間を算出すると共に
各運転装置に出力指令を出すようになしたことを特徴と
する廃水処理装置。
Means for Solving the Problems The gist of the present invention is as follows. (1) Calculate the amount of air to be aerated and send air to the reaction tank to aerate the wastewater and activated sludge flowing into the reaction tank to biochemically remove pollutants in the wastewater with activated sludge and settle the wastewater in the sedimentation tank. A part of the sludge is returned to the reaction tank, and the rest is discharged as surplus sludge. In a wastewater treatment device, the amount of inflow water is measured in a flow passage of inflow wastewater or a flow passage of treated water to be discharged. Provide a flow meter, while
An SS meter for measuring the concentration of suspended solids in the water tank, a sampling device with an internal automatic washing function provided with a turbidity meter or a fluorometer and a pH meter are provided, and the sampling device is further provided with:
Providing a sample extraction path leading to the wastewater flow path and a sample extraction path leading to the reaction tank, making it possible to selectively communicate either of these sample extraction paths, and a signal of measurement data from the flow meter. The signal of the measurement data from the SS meter, the turbidity meter or the fluorometer and the pH meter is sent to an arithmetic and control unit that outputs data input / calculation and operation control commands. A wastewater treatment apparatus characterized in that the amount or time of withdrawal of returned sludge and excess sludge is calculated and an output command is issued to each operating device.

【0012】(2)水の流量F 流入と流入SS及び反
応槽MLSSを測定する測定手段と、下の(1)、
(2)式により必要な曝気風量Qair total
算出する演算手段と、曝気風量を制御する運転制御手段
とを備えたことを特徴とする廃水処理装置。 Qair total=k 流入×F 流入+k 内生×MLSS (1) k 流入=f(SS) (2) ここで、k 流入は流入負荷による曝気係数であり、流
入SSの関数である。k 内生は微生物の内生呼吸によ
る曝気係数である。
(2) Water flow rate F Measuring means for measuring the inflow and the inflow SS and the reaction vessel MLSS;
Necessary aeration air volume Qair by equation (2) A wastewater treatment apparatus comprising: a calculating means for calculating total; and an operation control means for controlling an aeration air volume. Qair total = k Inflow x F Inflow + k Endogenous × MLSS (1) k Inflow = f (SS) (2) where k Inflow is the aeration coefficient due to the inflow load and is a function of the inflow SS. k Endogenous is the aeration coefficient due to endogenous respiration of microorganisms.

【0013】(3)水の流量F 流入と流入SSを測定
する測定手段と、下の(3)、(4)式により、BOD
・SS負荷設定値に基いたMLSSの目標値を算出する
演算手段と、MLSSを制御する運転制御手段とを備え
たことを特徴とする廃水処理装置。 MLSS=F 流入×BOD/(LBOD/X×V) (3) BOD=g(SS) (4) ここで、LBOD/XはBOD・SS負荷、Vは反応槽
の容積である。流入BODは流入SSの関数である。
(3) Flow rate of water F The measuring means for measuring the inflow and the inflow SS, and the BOD by the following equations (3) and (4)
-A wastewater treatment apparatus comprising: a calculation unit that calculates a target value of the MLSS based on the SS load set value; and an operation control unit that controls the MLSS. MLSS = F Inflow × BOD / ( LBOD / X × V) (3) BOD = g (SS) (4) Here, LBOD / X is the BOD · SS load, and V is the volume of the reaction tank. Inflow BOD is a function of inflow SS.

【0014】(4)一定期間△tにおいてMLSSの増
加量△MLSSを測定する測定手段と、下記(5)式か
ら目標MLSSを算出する演算手段と、MLSSを制御
する運転制御手段とを備えたことを特徴とするSRT
(Solids Retention Time)制御
方式の廃水処理装置。 MLSS=SRT×(△MLSS/△t) (5)
(4) Measuring means for measuring the increase amount MLSS of the MLSS during a predetermined period Δt, calculating means for calculating the target MLSS from the following equation (5), and operation control means for controlling the MLSS. SRT characterized by the following:
(Solids Retention Time) Control type wastewater treatment equipment. MLSS = SRT × (△ MLSS / △ t) (5)

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しつつ説明する。図1は本発明の第1実施
形態の構成説明図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram of the configuration of the first embodiment of the present invention.

【0016】図中、1は反応槽、2は該反応槽1への廃
水の流通路である。3は前記廃水の流通路2に設けた流
入水量を計測する流量計である。尚、本実施形態では流
量計を廃水の流通路に設けたが、放流する処理水の流通
路に設けるようにしてもよい。
In FIG. 1, reference numeral 1 denotes a reaction tank, and 2 denotes a flow passage of wastewater to the reaction tank 1. Reference numeral 3 denotes a flow meter provided in the waste water flow passage 2 for measuring the amount of inflow water. In this embodiment, the flow meter is provided in the flow path of the waste water, but may be provided in the flow path of the treated water to be discharged.

【0017】4は内部自動洗浄機能付のサンプリング装
置であり、水槽5と、これの内部に設置したSS計6及
びpH計7からなるものである。また、該サンプリング
装置4は、後記演算制御装置からの指令に基いて適時内
部のサンプルを排出し、その都度洗浄水を噴出して洗浄
を行うものである。尚、8は洗浄水の配管、9はバル
ブ、10は洗浄水である。そしてまた、該SS計6及び
pH計7は後記演算制御装置に計測データの信号を送る
ものである。
Reference numeral 4 denotes a sampling device having an internal automatic washing function, which comprises a water tank 5, an SS meter 6 and a pH meter 7 installed inside the water tank. In addition, the sampling device 4 discharges the internal sample at appropriate times based on a command from the arithmetic and control unit described later, and performs cleaning by squirting cleaning water each time. In addition, 8 is a pipe for washing water, 9 is a valve, and 10 is washing water. Further, the SS meter 6 and the pH meter 7 send signals of measurement data to the arithmetic and control unit described later.

【0018】また、該サンプリング装置4には、前記廃
水の流通路2に通ずるサンプル抽出路11と前記反応槽
1に通ずるサンプル抽出路12とを設けて、これら両サ
ンプル抽出路11、12のいずれかを選択的に連通可能
となしている。尚、13は該サンプル抽出路11と12
をサンプリング装置4の水槽5に接続する通路であり、
途中部にポンプ14を設けいている。また、該サンプル
抽出路11と12にも途中部にバルブ15、16を夫々
設けている。そしてこれらポンプ14、バルブ15、1
6は後記演算制御装置からの指令に基いて作動するもの
である。
Further, the sampling device 4 is provided with a sample extraction path 11 leading to the waste water flow path 2 and a sample extraction path 12 leading to the reaction tank 1. Communication is selectively possible. Reference numeral 13 denotes the sample extraction paths 11 and 12
Is connected to the water tank 5 of the sampling device 4,
A pump 14 is provided on the way. The sample extraction paths 11 and 12 are also provided with valves 15 and 16 in the middle thereof, respectively. And these pumps 14, valves 15, 1
Numeral 6 operates based on a command from the arithmetic and control unit described later.

【0019】17は前記通路13における前記ポンプ1
4とサンプリング装置4の間の途中部と前記反応槽1を
結ぶサンプル排出通路であり、途中部にバルブ18を設
けている。また、該バルブ18は後記演算制御装置から
の指令に基いて作動するものである。また、19は前記
サンプリング装置4の水槽5と前記反応槽1を結ぶサン
プル排出通路である。20は前記反応槽1に設置したD
O計であり、計測したデータを後記演算制御装置に送る
ものである。
Reference numeral 17 denotes the pump 1 in the passage 13.
This is a sample discharge passage connecting the reaction tank 1 with a middle part between the sampler 4 and the sampling device 4, and a valve 18 is provided in the middle part. Further, the valve 18 operates based on a command from the arithmetic and control unit described later. Reference numeral 19 denotes a sample discharge passage connecting the water tank 5 of the sampling device 4 and the reaction tank 1. Reference numeral 20 denotes the D installed in the reaction tank 1.
This is an O meter, which sends the measured data to the arithmetic and control unit described later.

【0020】21は沈殿槽、22は前記反応槽1と沈殿
槽21を結ぶ通路、23は前記沈殿槽21の上澄水を放
流する通路である。24は前記沈殿槽21の底部と前記
反応槽1を結ぶ汚泥返送路、25は汚泥返送路24の途
中部に接続された汚泥排出路である。そして、該汚泥返
送路24における汚泥排出路25の接続部と沈殿槽21
との間の途中部にはポンプ26が設けられている。更に
また汚泥排出路25と、汚泥返送路24における汚泥排
出路25の接続部より反応槽1寄りの途中部にはバルブ
27、28が夫々設けられている。そしてこれらポンプ
26、バルブ27、28は後記演算制御装置からの指令
に基いて作動するものである。
Reference numeral 21 denotes a sedimentation tank, 22 denotes a passage connecting the reaction tank 1 and the sedimentation tank 21, and 23 denotes a passage for discharging the supernatant water of the sedimentation tank 21. Reference numeral 24 denotes a sludge return path connecting the bottom of the settling tank 21 and the reaction tank 1, and reference numeral 25 denotes a sludge discharge path connected to an intermediate part of the sludge return path 24. Then, the connection portion of the sludge discharge passage 25 in the sludge return passage 24 and the settling tank 21
A pump 26 is provided in the middle between the two. Furthermore, valves 27 and 28 are respectively provided in the middle of the sludge discharge path 25 and the sludge discharge path 25 in the sludge return path 24, closer to the reaction tank 1 than the connection part. The pump 26 and the valves 27 and 28 operate based on a command from the arithmetic and control unit described later.

【0021】29はブロワ30から送り出された空気を
前記反応槽1内に放出して曝気する送風路であり、空気
は反応槽1の底部の散気板31より放出されるものであ
る。また、該ブロワ30は後記演算制御装置からの指令
に基いて作動するものである。
Numeral 29 denotes an air passage for discharging the air sent from the blower 30 into the reaction tank 1 for aeration, and the air is discharged from a diffuser plate 31 at the bottom of the reaction tank 1. The blower 30 operates based on a command from the arithmetic and control unit described later.

【0022】32はデータの入力・演算及び運転制御指
令を出力する演算制御装置である。また該演算制御装置
32は、前記流量計3からの計測データの信号と、前記
SS計6及びpH計7の計測データの信号とを受信し、
曝気風量と返送汚泥及び余剰汚泥の引き抜き量又は引き
抜き時間を算出すると共にサンプリング装置4やブロワ
30、ポンプ、バルブ等の各運転装置に対して作動指令
を出すものである。
Numeral 32 denotes an arithmetic and control unit for outputting data input / calculation and operation control commands. The arithmetic and control unit 32 also receives a signal of measurement data from the flow meter 3 and a signal of measurement data of the SS meter 6 and the pH meter 7,
It calculates the amount of aeration air and the amount or time of withdrawal of returned sludge and excess sludge, and issues an operation command to each of the operating devices such as the sampling device 4, the blower 30, the pump, and the valve.

【0023】次に、本発明装置における曝気風量及び余
剰汚泥の引き抜き量の算出方法について説明する。原理
は次の通りである。 曝気風量Qair 溶存酸素濃度の維持に必要な曝気量を無視すれば、流入
負荷の除去及び微生物の内生呼吸に必要な曝気風量は次
の通りになる。 Qair total=Qair 流入負荷+Qair 内生呼吸 (6) ここで、Qairは曝気風量である。
Next, a method of calculating the amount of aerated air and the amount of excess sludge withdrawn in the apparatus of the present invention will be described. The principle is as follows. Aeration air volume Qair If the aeration volume required to maintain the dissolved oxygen concentration is ignored, the aeration air volume required for removal of inflow load and endogenous respiration of microorganisms is as follows. Qair total = Qair Inflow load + Qair Endogenous respiration (6) Here, Qair is the aeration air volume.

【0024】 SS計による流入負荷の間接測定及び
それに対応した曝気風量の計算 Qair 流入負荷=Qair BOD+Qair Kje−N =F 流入×(k1×BOD+k2×Kje−N) (7) ここで、Fは水の流量、k1、k2は曝気係数である。
BODとKje−Nは反応槽への流入BODとケルダー
ル窒素濃度である。図3、図4に示したように、多くの
廃水処理場においては、流入BOD、Kje−Nと流入
SSの間に相関があるので、SSを測定すれば、流入負
荷を把握できるため、(7)式を(8)式のように簡素
化できる。 Qair 流入負荷=k 流入×F 流入 (8) k 流入=f(SS) (9) ここで、k 流入は流入負荷による曝気係数であり、流
入SSの関数である。
Indirect measurement of inflow load by SS meter and calculation of aeration air volume corresponding thereto Inflow load = Qair BOD + Qair Kje-N = F Inflow × (k1 × BOD + k2 × Kje-N) (7) Here, F is a flow rate of water, and k1 and k2 are aeration coefficients.
BOD and Kje-N are the BOD flowing into the reactor and the Kjeldahl nitrogen concentration. As shown in FIGS. 3 and 4, in many wastewater treatment plants, there is a correlation between the inflow BOD, Kje-N and the inflow SS. Therefore, if the SS is measured, the inflow load can be grasped. Equation (7) can be simplified as equation (8). Qair Inflow load = k Inflow x F Inflow (8) k Inflow = f (SS) (9) where k Inflow is the aeration coefficient due to the inflow load and is a function of the inflow SS.

【0025】 SS計によるMLSSの測定及びそれ
に対応した曝気風量の計算 Qair 内生呼吸=k 内生×MLSS (10) ここで、k 内生は曝気係数である。MLSSは反応槽
の活性汚泥濃度である。サンプリング装置4に設置され
たSS計6又は濁度計、透視度計を用いて、反応槽の活
性汚泥濃度MLSSを測定し、内生呼吸に必要な空気量
が計算できる。従って、(11)式のように流入負荷及
び微生物量両方に対応した全曝気風量を計算できる。 Qair total=k 流入×F 流入+k 内生×MLSS (11)
Measurement of MLSS by SS meter and calculation of aeration air volume corresponding thereto Endogenous respiration = k Endogenous × MLSS (10) where k Endogenous is the aeration coefficient. MLSS is the activated sludge concentration in the reactor. The activated sludge concentration MLSS of the reaction tank is measured using the SS meter 6 or the turbidity meter or the translucence meter installed in the sampling device 4, and the air amount required for endogenous respiration can be calculated. Therefore, it is possible to calculate the total aeration air volume corresponding to both the inflow load and the microbial volume as in equation (11). Qair total = k Inflow x F Inflow + k Endogenous × MLSS (11)

【0026】 余剰汚泥発生量 余剰汚泥の単位時間あたりの発生量は次式で表される。 △W ds=Y×F 流入×SS (12) 余剰汚泥を間欠的に引き抜く場合、MLSSの増加量に直す。 △MLSS/△t=△W ds/V =Y×F 流入×SS/V (13) ここで、△MLSSはMLSSの増加量、△tは△ML
SSに対応した時間、△W dsは余剰汚泥の単位時間
あたりの発生量、Yは流入SSに対する活性汚泥の転換
率、SSは流入SS、Vは反応槽の容積である。流入S
Sの測定により余剰汚泥の引き抜き量を計算できる。余
剰汚泥濃度を測定すれば、引き抜き量を簡単に計算で
き、余剰汚泥の引き抜き制御ができる。
Amount of surplus sludge generated The amount of surplus sludge generated per unit time is expressed by the following equation. △ W ds = Y × F Inflow x SS (12) When surplus sludge is intermittently withdrawn, the amount of MLSS should be increased. ΔMLSS / Δt = ΔW ds / V = Y × F Inflow × SS / V (13) Here, SSMLSS is an increase amount of MLSS, and △ t is △ ML.
Time corresponding to SS, $ W ds is the amount of excess sludge generated per unit time, Y is the conversion ratio of activated sludge to the inflow SS, SS is the inflow SS, and V is the volume of the reaction tank. Inflow S
By measuring S, the amount of surplus sludge withdrawn can be calculated. If the excess sludge concentration is measured, the amount to be extracted can be easily calculated, and the extraction of the excess sludge can be controlled.

【0027】 余剰汚泥の引き抜きの制御方法 MLSSが設定した濃度になるように、余剰汚泥の引き
抜き量を制御する方法は以下のものがある。 −1 MLSSをオンラインで連続測定しながら制御
する。 −2 MLSSのオンライン連続測定ができない場
合、流入SSの測定値及び流入水量を用いて、流入SS
に対する活性汚泥の転換率に基いて余剰汚泥の引き抜き
量を計算し、制御する。 場合によって、この二つの制御方法のいずれかを選べ
る。
Excessive Sludge Withdrawal Control Method There are the following methods for controlling the amount of excess sludge withdrawal so that the MLSS has a set concentration. -1 Control while continuously measuring MLSS online. -2 If continuous online measurement of MLSS is not possible, use the measured value
The amount of excess sludge withdrawn is calculated and controlled based on the conversion ratio of activated sludge to the sludge. Depending on the case, one of these two control methods can be selected.

【0028】 BOD・SS負荷 LBOD/X=F 流入×BOD/(MLSS×V) (14) ここで、LBOD/XはBOD・SS負荷である。放流
水質はBOD・SS負荷により変わるので、一定の放流
水質を達成するためにBOD・SS負荷を制御する必要
がある。ここで、測定した流入SSによりBODを算出
する。BODの値は一定期間中の平均値を使う。上記の
(14)式によりMLSSを算出して、BOD・SS負
荷を制御できる。(14)式を変形すると、 MLSS=F 流入×BOD/(LBOD/X×V) (15) となる。更に流入BODは流入SSの関数であるから、 BOD=g(SS) (16) MLSS=F 流入×g(SS)/(LBOD/X×V) (17) となる。流入SSを測定することにより、(17)式に
基いてBOD・SS負荷制御はMLSS制御となる。
BOD / SS load L BOD / X = F Inflow × BOD / (MLSS × V) (14) Here, LBOD / X is a BOD · SS load. Since the discharge water quality changes depending on the BOD / SS load, it is necessary to control the BOD / SS load to achieve a constant discharge water quality. Here, the BOD is calculated based on the measured inflow SS. The BOD value uses an average value during a certain period. By calculating the MLSS according to the above equation (14), the BOD / SS load can be controlled. By transforming equation (14), MLSS = F Inflow × BOD / ( LBOD / X × V) (15) Further, since the inflow BOD is a function of the inflow SS, BOD = g (SS) (16) MLSS = F Inflow × g (SS) / ( LBOD / X × V) (17) By measuring the inflow SS, the BOD / SS load control becomes the MLSS control based on the equation (17).

【0029】 SRT 一般的にSRTは次式で定義されている。 SRT=MLSS×V/W ex =MLSS×V/(Q ex×SS ex) (18) ここで、W exは余剰汚泥の引き抜き量、Q ex
余剰汚泥引き抜き流量、SS exは余剰汚泥濃度であ
る。流入した有機性窒素及びアンモニア性窒素を除去す
るためには、一定値以上の汚泥滞留時間SRTを確保す
る必要がある。しかし(18)式ではSRTを制御する
ためにMLSSやQ ex及びSS exを測定する必
要があり実用化しにくい。一方、余剰汚泥を間欠的に引
き抜く場合、 W ex=△MLSS×V/△t (19) となる。即ち、 SRT=MLSS×V/(△MLSS×V/△t) =MLSS/(△MLSS/△t) (20) となる。従って、MLSSとその一定期間(△t)の増
加量を測定すれば、SRTを計算できる。更に(20)
式を変形すると、 MLSS=SRT×(△MLSS/△t) (21) となる。よってSRT制御はMLSS制御になる。
SRT Generally, SRT is defined by the following equation. SRT = MLSS × V / W ex = MLSS × V / (Q ex x SS ex ) (18) where W ex is the amount of excess sludge withdrawn, Q ex is excess sludge withdrawal flow rate, SS ex is the excess sludge concentration. In order to remove the inflowing organic nitrogen and ammonia nitrogen, it is necessary to secure a sludge residence time SRT of a certain value or more. However, in equation (18), MLSS or Q ex and SS It is necessary to measure ex and it is difficult to put it to practical use. On the other hand, when surplus sludge is intermittently extracted, W ex = △ MLSS × V / △ t (19) That is, SRT = MLSS × V / (△ MLSS × V / △ t) = MLSS / (△ MLSS / △ t) (20) Therefore, the SRT can be calculated by measuring the MLSS and the increase amount of the MLSS for a certain period (Δt). Further (20)
By transforming the equation, MLSS = SRT × (△ MLSS / △ t) (21) Therefore, the SRT control becomes the MLSS control.

【0030】 処理水中のNO―N濃度とpHの関
係 第5図に示すように、処理水の硝酸性窒素濃度は反応槽
pHとの間に相関性があるので、pH計を用いて、曝気
風量とMLSSを調整して、硝化反応を制御可能であ
る。具体的な制御方法は、図6に示すようにDO制御
や、比例制御などの制御パラメータの設定値(溶存酸素
濃度の目標値DO、曝気係数k_流入、k 内生等)
を自動調整する。
Relationship Between NO 3 —N Concentration in Treated Water and pH As shown in FIG. 5, the nitrate nitrogen concentration of treated water has a correlation with the pH of the reaction tank. The nitrification reaction can be controlled by adjusting the aeration air volume and the MLSS. Specific control method, DO control, as shown in FIG. 6, the set value of the control parameters such as proportional control (target value of the dissolved oxygen concentration DO *, aeration factor k_ influx, k Endogenous, etc.)
Adjust automatically.

【0031】次に、図2に示した本発明の第2実施形態
について説明する。本実施形態と前記第1実施形態との
相違点は、前記第1実施形態にあってはブロワーと散気
板による散気式エアレーション方式であるのに対して、
本実施形態は中心部に仕切壁33aを設けた無終端水路
の反応槽33と曝気ローター34とを用い、該曝気ロー
ター34により水流を起こし、空気を含んだ廃水及び活
性汚泥を循環させ撹拌する機械攪拌式エアレーション方
式とした点である。また、該曝気ローター34は演算制
御装置32からの指令に基いて作動するものであり、回
転数制御により空気(酸素)の供給量を制御する。尚、
その他の構成並びに作用は前記第1実施形態と同様であ
るから、同一の部材には同一の符号を付して詳細な説明
は省略する。
Next, a second embodiment of the present invention shown in FIG. 2 will be described. The difference between the present embodiment and the first embodiment is that, in the first embodiment, a diffused aeration system using a blower and a diffuser plate is used.
This embodiment uses a reaction tank 33 of an endless water channel provided with a partition wall 33a at the center and an aeration rotor 34, generates a water flow by the aeration rotor 34, and circulates and stirs wastewater and activated sludge containing air. It is a mechanical stirring type aeration system. The aeration rotor 34 operates based on a command from the arithmetic and control unit 32, and controls the supply amount of air (oxygen) by controlling the number of revolutions. still,
Other configurations and operations are the same as those of the first embodiment, and therefore, the same members are denoted by the same reference numerals and detailed description thereof will be omitted.

【0032】[0032]

【発明の効果】本発明は上記の如き構成、作用であり、
反応槽に流入する廃水のSS、濁度又は透視度及びpH
と、反応槽内の混合液のMLSS及びpHとを同一のサ
ンプリング装置を用いて測定するものである。したがっ
て、一台の計測装置で済むからコストを下げることがで
きると共に設置スペースも少なくて済むものである。ま
た、従来の如く別々に計測する場合にはセンサー間にお
いて誤差が生じる虞があるが、本発明による場合にはこ
のような問題が起こらないものである。更に、すべての
センサーを内部自動洗浄機能付のサンプリング装置に設
置するため、汚れにくく、メンテナンス性も優れてい
る。
The present invention has the above-described structure and operation, and
SS, turbidity or transparency and pH of wastewater flowing into the reactor
And the MLSS and pH of the mixed solution in the reaction tank are measured by using the same sampling device. Therefore, the cost can be reduced and the installation space can be reduced because only one measuring device is required. In addition, there is a possibility that an error may occur between sensors when measurement is performed separately as in the related art, but such a problem does not occur in the case of the present invention. Furthermore, since all the sensors are installed in the sampling device with the internal automatic cleaning function, they are hardly soiled and have excellent maintainability.

【0033】また、本発明によれば流入SSを測定し
て、SSとBOD及びケルダール窒素の相関に基き、活
性汚泥処理場において極めて重要な空気(酸素)必要量
制御、BOD・SS負荷制御SRT制御をより簡易的に
実現することができる。
In addition, according to the present invention, the inflow SS is measured, and based on the correlation between SS and BOD and Kjeldahl nitrogen, air (oxygen) required amount control, BOD / SS load control SRT which is extremely important in the activated sludge treatment plant Control can be realized more easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の構成説明図である。FIG. 1 is a configuration explanatory diagram of a first embodiment of the present invention.

【図2】本発明の第2実施形態の構成説明図である。FIG. 2 is a configuration explanatory diagram of a second embodiment of the present invention.

【図3】流入BODとSSの相関を示すグラフである。FIG. 3 is a graph showing a correlation between inflow BOD and SS.

【図4】流入ケルダール窒素とSSの相関を示すグラフ
である。
FIG. 4 is a graph showing the correlation between inflow Kjeldahl nitrogen and SS.

【図5】処理水NO―NとpHの相関を示すグラフで
ある。
FIG. 5 is a graph showing a correlation between treated water NO 3 —N and pH.

【図6】目標値DOを自動調整するDO制御構成図であ
る。
FIG. 6 is a DO control configuration diagram for automatically adjusting a target value DO.

【符号の説明】[Explanation of symbols]

1 反応槽 2 廃水の流通路 3 流量計 4 サンプリング装置 5 水槽 6 SS計 7 pH計 11、12 サンプル抽水路 13 通路 14 ポンプ 15、16 バルブ 17 サンプル排出通路 18 バルブ 19 サンプル排出通路 21 沈殿槽 24 汚泥返送路 25 汚泥排出路 26 ポンプ 27、28 バルブ 29 送風路 30 ブロワ 32 演算制御装置 1 Reaction tank 2 Wastewater passage 3 Flow meter 4 Sampling device 5 aquarium 6 SS total 7 pH meter 11, 12 Sample drainage channel 13 passage 14 pump 15, 16 valve 17 Sample discharge passage 18 Valve 19 Sample discharge passage 21 Settling tank 24 Sludge return route 25 Sludge discharge channel 26 pump 27, 28 valve 29 Ventilation path 30 Blower 32 arithmetic and control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 篠崎 正一 栃木県真岡市八木岡363 (72)発明者 石山 成仁 栃木県真岡市荒町148 (72)発明者 大塚 貴章 栃木県真岡市八木岡359−1 (72)発明者 上野 昭典 神奈川県横浜市戸塚区矢部町1006−1 ラ イフプラザ戸塚306 Fターム(参考) 4D028 BB03 BC18 BC24 BD11 BD16 CA09 CA11 CA12 CB03 CC05 CC11 CD00 CD01 CE03    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Shoichi Shinozaki             363 Yagioka, Moka City, Tochigi Prefecture (72) Inventor Shigehito Ishiyama             148 Aramachi, Moka City, Tochigi Prefecture (72) Inventor Takaaki Otsuka             359-1 Yagioka, Moka City, Tochigi Prefecture (72) Inventor Akinori Ueno             1006-1 Yabe-cho, Totsuka-ku, Yokohama-shi, Kanagawa             IF PLAZA Totsuka 306 F term (reference) 4D028 BB03 BC18 BC24 BD11 BD16                       CA09 CA11 CA12 CB03 CC05                       CC11 CD00 CD01 CE03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 曝気風量を算出して反応槽に空気を送り
込み、反応槽に流入した廃水及び活性汚泥を曝気して廃
水中の汚濁物を活性汚泥により生物化学的に除去すると
共に、沈殿槽に沈殿した汚泥を、その一部は反応槽に返
送し、残りは余剰汚泥として排出するようになした廃水
処理装置において、流入する廃水の流通路又は放流する
処理水の流通路に流入水量を計測する流量計を設け、ま
た一方、水槽内に浮遊物濃度を測定するSS計、濁度計
又は透視度計とpH計とを設置してなる内部自動洗浄機
能付のサンプリング装置を設け、更に、該サンプリング
装置に、前記廃水の流通路に通ずるサンプル抽出路と反
応槽に通ずるサンプル抽出路とを設けて、これら両サン
プル抽出路のいずれかを選択的に連通可能となし、前記
流量計からの計測データの信号と、前記SS計、濁度計
又は透視度計とpH計からの計測データの信号とを、デ
ータの入力・演算及び運転制御指令を出力する演算制御
装置に送り、該演算制御装置において曝気風量と返送汚
泥及び余剰汚泥の引き抜き量又は引き抜き時間を算出す
ると共に各運転装置に出力指令を出すようになしたこと
を特徴とする廃水処理装置。
1. A method for calculating the amount of air to be aerated, sending air into a reaction tank, aerating wastewater and activated sludge flowing into the reaction tank, and removing contaminants in the wastewater biochemically with activated sludge. A part of the sludge settled in the wastewater is returned to the reaction tank, and the rest is discharged as surplus sludge. Provide a flow meter to measure, and on the other hand, provided a sampling device with an internal automatic washing function equipped with an SS meter to measure the concentration of suspended solids in the water tank, a turbidity meter or a fluorometer and a pH meter, The sampling device is provided with a sample extraction path leading to the wastewater flow path and a sample extraction path leading to the reaction tank, so that either of these two sample extraction paths can be selectively communicated with each other. Measurement data Data signals and signals of measurement data from the SS meter, the turbidimeter or the fluorometer and the pH meter are sent to an arithmetic and control unit for inputting and calculating data and outputting operation control commands. A wastewater treatment apparatus characterized in that the apparatus calculates an aeration air flow rate and a withdrawal amount or a withdrawal time of returned sludge and excess sludge, and outputs an output command to each operating device.
【請求項2】 水の流量F 流入と流入SS及び反応槽
MLSSを測定する測定手段と、下の(1)、(2)式
により必要な曝気風量Qair total を算出する
演算手段と、曝気風量を制御する運転制御手段とを備え
たことを特徴とする廃水処理装置。 Qair total =k 流入 ×F 流入 +k 内生 ×MLSS (1) k 流入 =f(SS) (2) ここでk 流入 は流入負荷による曝気係数であり、流入
SSの関数である。k 内生 は微生物の内生呼吸による
曝気係数である。
2. Flow rate F of water Measuring means for measuring the inflow and inflow SS and the reaction tank MLSS, calculating means for calculating the required aeration air flow Qair total by the following equations (1) and (2), and operation control means for controlling the aeration air flow Wastewater treatment device characterized by the above-mentioned. Qair total = k inflow × F inflow + k endogenous × MLSS (1) k inflow = f (SS) (2) where k inflow is the aeration coefficient due to inflow load and is a function of inflow SS. k Endogenous is the aeration coefficient due to endogenous respiration of microorganisms.
【請求項3】 水の流量F 流入 と流入SSを測定する
測定手段と、下の(3)、(4)式により、BOD・S
S負荷設定値に基いたMLSS目標値を算出する演算手
段と、MLSSを制御する運転制御手段とを備えたこと
を特徴とする廃水処理装置。 MLSS=F 流入×BOD/(LBOD/X×V) (3) BOD=g(SS) (4) ここで、LBOD/XはBOD・SS負荷、Vは反応槽
の容積である。流入BODは流入SSの関数である。
3. A measuring means for measuring a flow rate F inflow and an inflow SS of water, and BOD · S by the following equations (3) and (4).
A wastewater treatment apparatus comprising: a calculation unit that calculates an MLSS target value based on an S load set value; and an operation control unit that controls the MLSS. MLSS = F Inflow × BOD / ( LBOD / X × V) (3) BOD = g (SS) (4) Here, LBOD / X is the BOD · SS load, and V is the volume of the reaction tank. Inflow BOD is a function of inflow SS.
【請求項4】 一定期間△tにおいてMLSSの増加量
△MLSSを測定する測定手段と、下記(5)式から目
標MLSSを算出する演算手段と、MLSSを制御する
運転制御手段とを備えたことを特徴をするSRT(So
lids Retention Time)制御方式の
廃水処理装置。 MLSS=SRT×(△MLSS/△t) (5)
4. A measuring means for measuring an increase amount MLSS of the MLSS during a predetermined period Δt, a calculating means for calculating a target MLSS from the following equation (5), and an operation control means for controlling the MLSS. SRT (So
(Lids Retention Time) control type wastewater treatment equipment. MLSS = SRT × (△ MLSS / △ t) (5)
JP2002114005A 2002-03-12 2002-03-12 Waste water treatment equipment Expired - Lifetime JP3845778B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002114005A JP3845778B2 (en) 2002-03-12 2002-03-12 Waste water treatment equipment
KR20030015062A KR100978706B1 (en) 2002-03-12 2003-03-11 Apparatus for treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002114005A JP3845778B2 (en) 2002-03-12 2002-03-12 Waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2003260484A true JP2003260484A (en) 2003-09-16
JP3845778B2 JP3845778B2 (en) 2006-11-15

Family

ID=28672627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002114005A Expired - Lifetime JP3845778B2 (en) 2002-03-12 2002-03-12 Waste water treatment equipment

Country Status (2)

Country Link
JP (1) JP3845778B2 (en)
KR (1) KR100978706B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007132A (en) * 2004-06-28 2006-01-12 Nihon Hels Industry Corp Apparatus for treating sewage
KR100715820B1 (en) 2006-10-11 2007-05-07 녹스 코리아(주) Flow-rate regulating tank
JP2010247127A (en) * 2009-04-20 2010-11-04 Kobelco Eco-Maintenance Co Ltd Method of operating organic waste water treatment facility
JP2012135717A (en) * 2010-12-27 2012-07-19 Water Agency Inc Operation assisting apparatus and operation assisting method of sewage treatment plant
JP2012157807A (en) * 2011-01-31 2012-08-23 Naoyuki Suzuki Method for treating processed liquid

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777957B1 (en) * 2005-09-16 2007-11-29 샤프 가부시키가이샤 Water treatment method and water treatment apparatus
KR100796456B1 (en) * 2007-06-22 2008-01-21 태화강재산업 주식회사 Waste water treatment process control apparatus and method
KR102147054B1 (en) * 2020-01-13 2020-08-25 주식회사 모리트 Multi item Water Quality Measuring Unit for Intelligent sewage and wastewater treatment control and Multi sampling Operation System

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106590A (en) 1983-11-15 1985-06-12 Yaskawa Electric Mfg Co Ltd Controller of sewage treatment
JPS6182896A (en) 1984-09-28 1986-04-26 Yaskawa Electric Mfg Co Ltd Control device for sewage treatment
JP4229999B2 (en) 1998-02-27 2009-02-25 三菱電機株式会社 Biological nitrogen removal equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006007132A (en) * 2004-06-28 2006-01-12 Nihon Hels Industry Corp Apparatus for treating sewage
JP4620391B2 (en) * 2004-06-28 2011-01-26 日本ヘルス工業株式会社 Sewage treatment equipment
KR100715820B1 (en) 2006-10-11 2007-05-07 녹스 코리아(주) Flow-rate regulating tank
JP2010247127A (en) * 2009-04-20 2010-11-04 Kobelco Eco-Maintenance Co Ltd Method of operating organic waste water treatment facility
JP2012135717A (en) * 2010-12-27 2012-07-19 Water Agency Inc Operation assisting apparatus and operation assisting method of sewage treatment plant
JP2012157807A (en) * 2011-01-31 2012-08-23 Naoyuki Suzuki Method for treating processed liquid

Also Published As

Publication number Publication date
JP3845778B2 (en) 2006-11-15
KR100978706B1 (en) 2010-08-30
KR20030074359A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
WO1996029290A1 (en) Apparatus and treatment for wastewater
CN109293128A (en) A kind of Sewage from Ships processing system
JP2003200190A (en) Device for controlling quality of water at sewage treatment plant
JP2003260484A (en) Wastewater treatment apparatus
JP2003136086A (en) Water quality control unit for sewage disposal plant
JP2002126779A (en) Sludge treatment method and apparatus used therefor
CN113896326B (en) Sewage treatment reactor and treatment method thereof
JP4620391B2 (en) Sewage treatment equipment
JPH07115025B2 (en) Bulking control method using SVI
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JP3213657B2 (en) Wastewater treatment method and apparatus
JP3467905B2 (en) How to measure respiration rate
JP2001219183A (en) Water quality control apparatus of sewerage equipment
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
CN117819702B (en) Module combined type nutrient supply control method in sewage treatment process
CN109179869A (en) The sewage treatment process and autocontrol operation method of no additional carbon removal total nitrogen
KR102047486B1 (en) Biological Nitrogen Removal System in a Single Reactor Using Microbubble, and it&#39;s Treatment Method
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP2010269276A (en) Method and apparatus for controlling water treatment
JP3202982B1 (en) Sewage denitrification and dephosphorization biological reaction tank equipment
JP6805024B2 (en) Water treatment equipment and treatment methods for water treatment processes
Nuhoglu et al. Wastewater characterisation and performance upgrading of a domestic wastewater treatment plant: the Erzincan case
JP3349311B2 (en) Biological treatment tank circulation equipment and biological treatment tank
JPH04317796A (en) Purifying vessel for sewage and its driving method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Ref document number: 3845778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term