JP3637819B2 - Waste water nitrification method - Google Patents

Waste water nitrification method Download PDF

Info

Publication number
JP3637819B2
JP3637819B2 JP27132599A JP27132599A JP3637819B2 JP 3637819 B2 JP3637819 B2 JP 3637819B2 JP 27132599 A JP27132599 A JP 27132599A JP 27132599 A JP27132599 A JP 27132599A JP 3637819 B2 JP3637819 B2 JP 3637819B2
Authority
JP
Japan
Prior art keywords
nitrification
wastewater
oxygen consumption
time
consumption rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27132599A
Other languages
Japanese (ja)
Other versions
JP2001087785A (en
Inventor
裕紀 中村
均 吉川
利通 門崎
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP27132599A priority Critical patent/JP3637819B2/en
Publication of JP2001087785A publication Critical patent/JP2001087785A/en
Application granted granted Critical
Publication of JP3637819B2 publication Critical patent/JP3637819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は廃水の硝化方法に係り、特に廃水を連続的に硝化槽の流入口から流入させ、流出口から流出させると共に、前記硝化槽内で前記廃水と微生物の混合液を好気条件となるように曝気することによって、前記廃水中のアンモニア性窒素を前記微生物の作用により硝化処理する廃水の硝化方法に関する。
【0002】
【従来の技術】
この種の廃水の硝化方法は、硝化槽において硝化細菌に代表される微生物の働きにより、廃水中のアンモニア性窒素を主に硝酸性窒素に酸化する硝化処理を行う。硝化処理では、廃水のアンモニア性窒素負荷や水温の日間変動、年間変動に対応して硝化槽での硝化反応をほぼ完全に終了させることが重要である。このため、下水など実際の廃水処理では、硝化に必要な曝気風量や硝化時間を処理効率が低下する低水温期の最大アンモニア性窒素負荷に合わせて設計されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のように曝気風量を最大アンモニア性窒素負荷に合わせて設定すると、負荷が低下した時や高水温期には硝化性能に必要以上の余裕が生じ、曝気のための動力に無駄が出る。さらに、曝気が過剰になると硝化槽内の微生物、すなわち活性汚泥の自己分解による解体が進んで沈降性が低下し、後段の沈殿池で処理水の透視度が悪化するという弊害が生じていた。
【0004】
本発明は、前記従来技術の課題を改善して、硝化槽での過剰曝気を防ぎ、必要最小限の曝気風量で硝化反応をほぼ完全に達成させることができる廃水の硝化方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、廃水を連続的に硝化槽の流入口から流入させ、流出口から流出させると共に、前記硝化槽内で廃水と微生物の混合液を好気条件となるように曝気することによって、前記廃水中のアンモニア性窒素を前記微生物の作用により硝化処理する廃水の硝化方法において、前記硝化槽から採取した前記混合液を好気条件下で回分処理し、該混合液の回分反応開始から数分後の時刻T における酸素消費速度と時刻T から所定時間経過後の時刻T における酸素消費速度との差を酸素消費速度の経時減少量と定義して測定し、この経時減少量が設定値より大きい場合には曝気風量を増加し、経時減少量が設定値より小さい場合には曝気風量を減少させることを特徴とする。
【0006】
また、本発明は前記設定値は1分間当たりに換算した値が1〜3mg-O/L・hとなるように設定されることを特徴とする。
【0007】
また、本発明は前記酸素消費速度の経時減少量の測定値と設定値の差に応じて、前記曝気風量の増減量を制御することを特徴とする。
【0008】
また、本発明は前記混合液の回分反応を行うための混合液の採取位置を前記硝化槽の廃水流出口近傍とすることを特徴とする。
【0009】
【発明の実施の形態】
以下、図面により本発明の実施の形態を説明する。
図1は本発明の一実施例を説明するための装置構成図である。流入管10から連続的に脱窒槽12に供給された廃水は、この脱窒槽12で所定時間滞留して脱窒処理された後、硝化槽14の流入口16から硝化槽14内に連続的に流入する。硝化槽14内では廃水と微生物の混合液が、ブロワ18からの曝気により酸素が供給され、好気条件下に維持されている。廃水中のアンモニア性窒素は微生物の作用により硝化されて主に硝酸性窒素となる。硝化された廃水(硝化液)の一部は循環路20を介して脱窒槽12に送られて脱窒処理され、窒素成分は窒素ガスとして大気に放出される。残りの硝化液は微生物と混合した状態で硝化槽14の流デ口22から沈殿池24に送られ、ここで汚泥が沈降分離された処理水は流出路26から排出される。沈殿池24で沈殿した汚泥は主に活性のある微生物の集合体であり、一部は返送路28を介して前記脱窒槽12に返送され、残部は余剰汚泥として引抜管30から排出される。以上の装置構成は従来の技術においても同様である。
【0010】
本実施例では硝化槽14の流出口22の近傍位置に、槽内の廃水と微生物との混合液を採取するためのサンプリング管32が挿入されており、このサンプリング管32の途中に設けた採取ポンプ34によって混合液が小型の回分槽36に採取される。回分槽36には空気を供給するエアポンプ38と採取した混合液の酸素消費速度を検出可能なセンサ40とが接続されている。センサ40の検出結果は演算器42に送信され、この演算器42の演算結果に基づいて、制御器44が前記ブロワ18の回転数を制御するようにされている。
【0011】
図2は硝化反応における混合液の酸素消費速度の挙動を説明するモデル図である。すなわち、図2の曲線1は所定濃度のアンモニア性窒素を含む廃水に硝化機能を備えた微生物を混合し、好気条件下で回分処理した場合の酸素消費速度の径時変化を示すものであり、アンモニア性窒素の濃度が比較的高い最初の段階では、硝化反応が活発であるため、大きい酸素消費速度K1を示す。その後、回分処理を継続することによって、アンモニア性窒素の濃度が次第に低下し硝化反応も不活発になるので、酸素消費速度も次第に低下し、ついには下限値K2に達し、それ以降は曝気を継続してもK2の値をほぼ維持する。
【0012】
曲線1上のa点は廃水中にアンモニア性窒素がかなり残存しており硝化反応が進行する余地がある段階であり、b点は硝化反応がほぼ終了した段階であり、c点は硝化反応が終了後の過剰曝気の段階である。この過剰曝気の段階でも酸素消費速度が零にはならず下限値K2を維持する理由は、主として廃水に混合した微生物が栄養源(BOD成分やアンモニア性窒素)が枯渇した状態で酸素を消費しつつ自己分解するためであり、この自己分解によって前記したように微生物(汚泥)の沈降性が低下し、沈殿処理後の処理水が白濁して透視度が悪化するという弊害が生じる。
【0013】
なお、回分処理における曲線1の傾向は、廃水の性状、水温、混合した微生物の活性や濃度などによって大きく変化する。アンモニア性窒素の初期負荷がほぼ同一の場合でも、水温が高いなど硝化反応が活発な条件では曲線2のようになり、逆に硝化反応が不活発な条件では曲線3のようになる。
【0014】
一方、本発明に係る連続流入式の硝化槽においては、流入した廃水は硝化内で数時間滞留して硝化処理が進行した既存の廃水と直ちに混合することになり、この混合液は、ほぼ完全混合の状態で一定の酸素消費速度を示す。
【0015】
この混合液の酸素消費速度を図2の回分処理における曲線1に当てはめると、酸素消費速度がa点と同一である場合には混合液中にアンモニア性窒素がかなり残存しており硝化反応が進行する余地があること、b点と同一である場合には硝化反応がほぼ終了した状態であること、c点と同一である場合には硝化反応が終了後の過剰曝気の状態であることが想定される。
【0016】
また、この連続流入式の硝化槽における硝化反応に及ぼす種々の要因、例えば流入廃水の水量及びアンモニア性窒素の濃度、混合液の水温、混合液の微生物濃度(MLSS)、曝気風量などの内、最も制御が容易な曝気風量に着目すると、混合液の酸素消費速度がa点を含むような領域Aは曝気風量が不足している状態であり、b点を含むような領域Bは曝気風量が適正な状態であり、c点を含むような領域Cは曝気風量が過剰な状態であることが推定できる。
【0017】
上記の観点から、従来の技術においては混合液の酸素消費速度を検出し、この検出値に応じて曝気風量を制御することが提案されている。しかしながら、このような方法では、例えば図2に示したb点とc点のように酸素消費速度の値が近似しており、曝気風量が適正であるのか、過剰であるのか判別ができない欠点がある。本発明はこのような背景に基づき、酸素消費速度の変化率に着目してなされたものである。
【0018】
すなわち、混合液を回分処理した場合の酸素消費速度の変化率が前記領域Aでは比較的大きく、領域Bでは小さく、領域Cではほとんど零であることに着目して、上記変化率の大小によって曝気風量を調整するようにしたものである。
【0019】
具体的には、10分間〜2時間に一回、前記採取ポンプ34を作動させ硝化槽14内の混合液をサンプリング管32から回分槽36に採取する。次に、エアッポンプ38を作動して回分槽36に十分な量の空気を供給し、採取した混合液での硝化反応を進行させつつ、混合液の酸素消費速度をセンサ40によって検出する。検出結果は演算器42に送信され、演算器42では回分反応の開始から例えば5分後における酸素消費速度と、8分後の酸素消費速度との差を求める。図2に示したように回分反応における酸素消費速度は時間の経過とともに減少するのが通常であるから、上記酸素消費速度の差は経時減少量として求められる。
【0020】
演算器42には、酸素消費速度の経持減少量として好ましい範囲が予め設定されており、この設定範囲と前記測定結果に基づく経時減少量とを比較して、経時減少量が設定範囲よりも大きい場合には曝気風量を増加し、経時減少量が設定範囲にあるときは現在の曝気風量を維持し、経時減少量が設定範囲よりも小さい場合には曝気風量を減少させる信号を制御器44に送信する。制御器44では演算器42からの信号に基づき、ブロワ18の回転数を制御ことによって、曝気風量を調整する。
【0021】
図3は前記採取した混合液の回分処理における酸素消費速度の経時減少量を示す関係図であり、回分反応の開始から数分後の時刻T1における酸素消費速度K11と所定時間Δt経過後の時刻T2における酸素消費速度K12との差が酸素消費速度の経時減少量ΔKとして算出される。所定時間Δtとしては3分間以上であることがが好ましく、これよりも少ないと算出される酸素消費速度の経時減少量ΔKが小さくなり、前記センサ40の酸素消費速度の測定精度や外乱による影響が大きくなるので好ましくない。この時の酸素消費速度の経時減少量ΔKが、前記演算器42において設定された適正値としての設定範囲ΔKsと比較される。本発明者の実験結果によれば、設定範囲ΔKsとしては所定時間Δtを3〜5分間にした場合、設定範囲ΔKsは1分間当たりに換算した値が1〜3mg−O2/L・h程度とすることが好ましいことが判明している。なお、酸素消費速度の測定を回分反応の開始から数分後の時刻T1からスタートする理由は、回分反応の開始直後は反応が不安定であり、酸素消費速度の測定値にバラ付きが大きく、反応が安定するまでに4〜6分間程度かかるためである。
【0022】
図4は前記酸素消費速度の経時減少量ΔKと硝化槽14における曝気風量との関係を例示した図である。図4において設定範囲ΔKsはΔKs1を下限値、ΔKs2を上限値としており、経時減少量ΔKがこの範囲にある場合には硝化槽14での硝化反応がほぼ終了した好ましい状態であると想定され、曝気風量も適正であると判断できるので、現状の曝気風量Qsを維持する。経時減少量ΔKが前記下限値ΔKs1よりも小さい場合には硝化反応が終了後の過剰曝気の状態であると想定されるので、下限値ΔKs1との差に応じて曝気風量を減少させていく。一方、経時減少量ΔKが前記上限値ΔKs2よりも大きい場合には混合液中にアンモニア性窒素がかなり残存しており硝化反応が進行する余地があり、曝気風量が不足している状態であると判断できるので、上限値ΔKs2との差に応じて曝気風量を増加させていく。但し、経時減少量ΔKが所定値ΔKaよりも大きい場合には、その原因が曝気風量の不足以外の例えば低水温による微生物の活性の低下や微生物濃度の低下によるものと推定し、曝気風量は上限のQaを維持する。なお、曝気風量の上限は設置したブロワ18の能力によって自ずから限界がある。
【0023】
以上に述べた酸素消費速度の経時減少量に基づく制御を操作の一単位として
前記回分槽36に採取した混合液は硝化槽14に戻し、回分槽36を空にする。。以下、前記したように10分間〜2時間に一回、回分反応による制御を繰り返すことによって、硝化槽14における適正な運転を維持していく。この繰返し操作の頻度は流入する廃水のアンモニア窒素の負荷変動が大きい場合には間隔を短くし、負荷変動が小さい場合には間隔を長くする。
【0024】
図5は混合液の採取位置の好ましい例を示す図である。硝化槽14が横長に形成され、廃水の流入口16と流出口22が大きく離れているケースがある。このようなケースでは、硝化槽14内で廃水が一種の栓流を形成し、廃水の流入側と流出側との間に濃度差が生じる。すなわち、流入側では硝化反応が十分に進行していないため、アンモニア性窒素の濃度が比較的高く、硝酸性窒素の濃度が比較的低い。一方、流出側では硝化反応が十分に進行しているため、逆にアンモニア性窒素の濃度が比較的低く、硝酸性窒素の濃度が比較的高い。本発明は、硝化槽での硝化反応をほぼ完全に達成させることを目的としているので、前記混合液の採取位置は流出口22の近傍にすることが好ましい。この採取位置を硝化槽14からの廃水の流出路23にしてもよい。
【0025】
上記本発明の実施例によれば、硝化槽14における硝化反応の進行状況を混合液の回分反応における酸素消費速度の経時減少量を測定することによって、タイムリーに、かつ的確に把握することができる。そして、この測定結果に基づき硝化槽14内での曝気風量を制御するので、必要最小限の曝気風量で硝化反応をほぼ完全に達成させることができ、過剰曝気を防止することができる。
【0026】
前記実施例では、制御器44を用いて曝気風量を自動的に制御する場合を説明した。しかしながら、本発明はこれに限らず、例えば硝化槽内の混合液を人手でサンプリングして、分析室等においてサンプリング液の回分反応における酸素消費速度の経時減少量を速やかに測定し、この結果に基づいて硝化槽での曝気風量を人手で調整するようにしてもよい。
【0027】
前記実施例では、図5に示したように酸素消費速度の経時減少量の測定値と設定値の差に応じて曝気風量の増減量をリニアに制御する場合について説明したが、これに限らず曝気風量を段階的に増減させるようにしてもよい。また、前記設定値として下限値と上限値のある所定範囲のもので説明したが、これに限らず、設定値を一点に定めて制御することも可能である。
【0028】
【発明の効果】
上述のように、本発明によれば硝化槽での過剰曝気を防ぎ、必要最小限の曝気風量で硝化反応をほぼ完全に達成させることができる。
【図面の簡単な説明】
【図1】本発明の一実施例を説明するための装置構成図
【図2】硝化反応における混合液の酸素消費速度の挙動を説明するモデル図
【図3】混合液の回分処理における酸素消費速度の経時減少量を示す関係図
【図4】酸素消費速度の経時減少量と硝化槽における曝気風量との関係を例示した図
【図5】混合液の採取位置の好ましい例を示す図
【符号の説明】
10……流入管
12……脱窒槽
14……硝化槽
16……流入口
18……ブロワ
22……流出口
32……サンプリング管
36……回分槽
40……(酸素消費速度の)センサ
42……演算器
44……制御器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nitrification method for wastewater, and in particular, wastewater is continuously introduced from the inlet of the nitrification tank and out of the outlet, and the mixed solution of the wastewater and microorganisms is aerobic in the nitrification tank. The present invention relates to a nitrification method for wastewater in which ammonia nitrogen in the wastewater is nitrified by the action of microorganisms by aeration.
[0002]
[Prior art]
In this type of wastewater nitrification method, nitrification is performed in a nitrification tank to oxidize ammonia nitrogen in waste water mainly to nitrate nitrogen by the action of microorganisms represented by nitrifying bacteria. In nitrification treatment, it is important to complete the nitrification reaction in the nitrification tank almost completely in response to the ammonia nitrogen load of the wastewater and the daily and annual fluctuations of the water temperature. For this reason, in actual wastewater treatment such as sewage, the amount of aeration air necessary for nitrification and the nitrification time are designed according to the maximum ammoniacal nitrogen load in the low water temperature period when the treatment efficiency decreases.
[0003]
[Problems to be solved by the invention]
However, if the aeration air volume is set according to the maximum ammonia nitrogen load as described above, the nitrification performance has more margin than necessary when the load decreases or during high water temperature periods, and the power for aeration is wasted. . Furthermore, if aeration is excessive, the microorganisms in the nitrification tank, that is, activated sludge is disassembled by self-decomposition, and the sedimentation property is lowered, resulting in an adverse effect that the transparency of treated water deteriorates in the subsequent sedimentation basin.
[0004]
The present invention provides a nitrification method for wastewater that improves the above-mentioned problems of the prior art, prevents excessive aeration in a nitrification tank, and allows a nitrification reaction to be almost completely achieved with a minimum amount of aeration air. Objective.
[0005]
[Means for Solving the Problems]
The present invention allows the waste water to continuously flow in from the inflow port of the nitrification tank, to flow out of the outflow port, and to aerate the mixed solution of waste water and microorganisms in the nitrification tank so as to be in an aerobic condition. In the nitrification method of wastewater in which ammonia nitrogen in wastewater is nitrified by the action of the microorganism, the mixed solution collected from the nitrification tank is batch-treated under aerobic conditions, and several minutes from the start of batch reaction of the mixed solution time the difference between the oxygen consumption rate was measured by defining the time reduction of the oxygen consumption rate of oxygen consumption rate and time T 1 in T 1 at time T 2, after a predetermined time, the time reduction is set after When the value is larger than the value, the aeration air volume is increased. When the amount of decrease over time is smaller than the set value, the aeration air volume is decreased.
[0006]
Further, the present invention is characterized in that the set value is set so that a value converted per minute is 1 to 3 mg-O 2 / L · h.
[0007]
In addition, the present invention is characterized in that the increase / decrease amount of the aeration air volume is controlled in accordance with a difference between a measured value of a decrease amount with time of the oxygen consumption rate and a set value.
[0008]
Further, the present invention is characterized in that the collection position of the mixed solution for performing the batch reaction of the mixed solution is in the vicinity of the waste water outlet of the nitrification tank.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an apparatus configuration diagram for explaining an embodiment of the present invention. The waste water continuously supplied from the inflow pipe 10 to the denitrification tank 12 stays in the denitrification tank 12 for a predetermined time and is denitrified, and then continuously into the nitrification tank 14 from the inlet 16 of the nitrification tank 14. Inflow. In the nitrification tank 14, the mixed solution of waste water and microorganisms is supplied with oxygen by aeration from the blower 18 and is maintained under aerobic conditions. Ammonia nitrogen in the wastewater is nitrified by the action of microorganisms to mainly become nitrate nitrogen. Part of the nitrified waste water (nitrification liquid) is sent to the denitrification tank 12 via the circulation path 20 and denitrified, and the nitrogen component is released to the atmosphere as nitrogen gas. The remaining nitrification liquid is mixed with microorganisms and sent from the flow outlet 22 of the nitrification tank 14 to the settling basin 24, where the treated water from which the sludge has been settled is discharged from the outflow passage 26. The sludge precipitated in the sedimentation basin 24 is mainly an aggregate of active microorganisms, a part thereof is returned to the denitrification tank 12 via the return path 28, and the remainder is discharged from the extraction pipe 30 as surplus sludge. The above apparatus configuration is the same in the prior art.
[0010]
In the present embodiment, a sampling tube 32 for sampling a mixed solution of waste water and microorganisms in the tank is inserted in the vicinity of the outlet 22 of the nitrification tank 14, and sampling provided in the middle of the sampling pipe 32. The liquid mixture is collected in a small batch tank 36 by the pump 34. An air pump 38 for supplying air and a sensor 40 capable of detecting the oxygen consumption rate of the collected mixed solution are connected to the batch tank 36. The detection result of the sensor 40 is transmitted to the calculator 42, and the controller 44 controls the rotational speed of the blower 18 based on the calculation result of the calculator 42.
[0011]
FIG. 2 is a model diagram for explaining the behavior of the oxygen consumption rate of the mixed liquid in the nitrification reaction. That is, curve 1 in FIG. 2 shows the time-dependent change in the oxygen consumption rate when a microorganism having a nitrification function is mixed with wastewater containing ammonia nitrogen at a predetermined concentration and batch-treated under aerobic conditions. In the first stage where the concentration of ammoniacal nitrogen is relatively high, since the nitrification reaction is active, the oxygen consumption rate K1 is high. Thereafter, by continuing batch processing, the concentration of ammonia nitrogen gradually decreases and the nitrification reaction becomes inactive, so the oxygen consumption rate also gradually decreases, finally reaches the lower limit K2, and thereafter aeration is continued. Even so, the value of K2 is almost maintained.
[0012]
Point a on curve 1 is a stage where a considerable amount of ammonia nitrogen remains in the wastewater and there is room for nitrification reaction to proceed, point b is the stage when nitrification reaction is almost complete, and point c is the stage where nitrification reaction is completed. This is the stage of excessive aeration after completion. The reason why the oxygen consumption rate does not become zero and maintains the lower limit K2 even in this excessive aeration stage is that the microorganisms mixed in the wastewater consume oxygen mainly in a state where nutrient sources (BOD components and ammonia nitrogen) are depleted. However, the self-decomposition causes a problem that the sedimentation property of the microorganism (sludge) is lowered as described above, and the treated water after the precipitation treatment becomes cloudy and the transparency is deteriorated.
[0013]
The tendency of curve 1 in batch processing varies greatly depending on the properties of the wastewater, the water temperature, the activity and concentration of the mixed microorganisms, and the like. Even when the initial load of ammonia nitrogen is almost the same, the curve 2 is obtained under conditions where the nitrification reaction is active such as a high water temperature, and conversely, the curve 3 is obtained under conditions where the nitrification reaction is inactive.
[0014]
On the other hand, in the continuous inflow type nitrification tank according to the present invention, the influent wastewater stays in the nitrification for several hours and immediately mixes with the existing wastewater that has undergone nitrification treatment. A constant oxygen consumption rate is exhibited in the mixed state.
[0015]
When the oxygen consumption rate of this mixed solution is applied to the curve 1 in the batch process of FIG. 2, when the oxygen consumption rate is the same as the point a, a considerable amount of ammonia nitrogen remains in the mixed solution and the nitrification reaction proceeds. It is assumed that the nitrification reaction is almost complete when it is the same as point b, and that it is in the state of excessive aeration after completion of the nitrification reaction when it is the same as point c. Is done.
[0016]
In addition, various factors affecting the nitrification reaction in this continuous inflow type nitrification tank, such as the amount of influent wastewater and the concentration of ammoniacal nitrogen, the temperature of the mixture, the microorganism concentration (MLSS) of the mixture, the amount of aeration air, Focusing on the aeration air volume that can be controlled most easily, the region A in which the oxygen consumption rate of the mixed solution includes the point a is a state in which the aeration air amount is insufficient, and the region B including the point b has an aeration air amount. It can be estimated that the region C which is in an appropriate state and includes the point c is in a state where the aeration air volume is excessive.
[0017]
From the above viewpoint, it has been proposed in the prior art to detect the oxygen consumption rate of the mixed liquid and to control the amount of aeration air according to the detected value. However, in such a method, for example, the oxygen consumption rate values are approximated at points b and c shown in FIG. 2, and it is not possible to determine whether the aeration air volume is appropriate or excessive. is there. Based on such a background, the present invention has been made paying attention to the rate of change of the oxygen consumption rate.
[0018]
That is, paying attention to the fact that the rate of change of the oxygen consumption rate when the mixed solution is processed in batches is relatively large in the region A, small in the region B, and almost zero in the region C, it is aerated by the magnitude of the rate of change. The air volume is adjusted.
[0019]
Specifically, the sampling pump 34 is operated once every 10 minutes to 2 hours, and the mixed solution in the nitrification tank 14 is collected from the sampling tube 32 into the batch tank 36. Next, the air pump 38 is operated to supply a sufficient amount of air to the batch tank 36, and the oxygen consumption rate of the mixed solution is detected by the sensor 40 while the nitrification reaction is progressed with the collected mixed solution. The detection result is transmitted to the computing unit 42, and the computing unit 42 obtains, for example, the difference between the oxygen consumption rate after 5 minutes from the start of the batch reaction and the oxygen consumption rate after 8 minutes. As shown in FIG. 2, since the oxygen consumption rate in the batch reaction usually decreases with time, the difference in the oxygen consumption rate is obtained as a decrease with time.
[0020]
The calculator 42 is preset with a preferable range as the amount of decrease in oxygen consumption rate, and the amount of decrease with time is smaller than the set range by comparing this set range with the amount of decrease with time based on the measurement result. The controller 44 sends a signal to increase the aeration air volume when it is large, maintain the current aeration air volume when the temporal decrease amount is within the set range, and decrease the aeration air volume when the temporal decrease amount is smaller than the set range. Send to. The controller 44 adjusts the aeration air volume by controlling the rotational speed of the blower 18 based on the signal from the computing unit 42.
[0021]
Figure 3 is a relationship diagram showing time reduction of oxygen consumption rate in the batch processing of the mixed solution mentioned above collected, batch oxygen consumption rate K 11 and after a predetermined time Δt has elapsed at time T 1 starts after a few minutes of the reaction The difference from the oxygen consumption rate K 12 at time T 2 is calculated as the decrease amount ΔK of the oxygen consumption rate with time. The predetermined time Δt is preferably 3 minutes or more, and if it is less than this, the amount of decrease ΔK of the oxygen consumption rate calculated with time becomes small, and the measurement accuracy of the oxygen consumption rate of the sensor 40 and the influence of disturbance are affected. Since it becomes large, it is not preferable. The oxygen consumption rate decrease ΔK at this time is compared with a set range ΔKs as an appropriate value set in the calculator 42. According to the experiment results of the present inventor, when the predetermined time Δt is 3 to 5 minutes as the setting range ΔKs, the setting range ΔKs is about 1 to 3 mg-O 2 / L · h converted per minute. It has been found to be preferable. The reason for starting the measurement of the oxygen consumption rate from time T 1 a few minutes after the start of the batch reaction is that the reaction is unstable immediately after the start of the batch reaction, and the measured value of the oxygen consumption rate varies greatly. This is because it takes about 4 to 6 minutes for the reaction to stabilize.
[0022]
FIG. 4 is a diagram illustrating the relationship between the time-dependent decrease amount ΔK of the oxygen consumption rate and the amount of aeration air in the nitrification tank 14. In FIG. 4, the setting range ΔKs has ΔKs1 as a lower limit value and ΔKs2 as an upper limit value. When the amount of decrease with time ΔK is in this range, it is assumed that the nitrification reaction in the nitrification tank 14 is almost completed, Since it can be determined that the aeration air volume is also appropriate, the current aeration air volume Qs is maintained. When the amount of decrease with time ΔK is smaller than the lower limit value ΔKs1, it is assumed that the nitrification reaction is in the state of excessive aeration, so the amount of aeration air is reduced according to the difference from the lower limit value ΔKs1. On the other hand, when the amount of decrease with time ΔK is larger than the upper limit value ΔKs2, there is a considerable amount of ammonia nitrogen remaining in the mixed solution, and there is room for the nitrification reaction to proceed, and the amount of aeration air is insufficient. Since the determination can be made, the aeration air volume is increased according to the difference from the upper limit value ΔKs2. However, if the time-dependent decrease amount ΔK is larger than the predetermined value ΔKa, it is estimated that the cause is other than a shortage of aeration air volume, for example, a decrease in microbial activity or a decrease in microbial concentration due to low water temperature, and the aeration air volume is the upper limit. Qa is maintained. The upper limit of the aeration air volume is naturally limited by the capacity of the installed blower 18.
[0023]
The liquid mixture collected in the batch tank 36 is returned to the nitrification tank 14 with the above-described control based on the amount of decrease in oxygen consumption with time as a unit of operation, and the batch tank 36 is emptied. . Hereinafter, the proper operation in the nitrification tank 14 is maintained by repeating the control by batch reaction once every 10 minutes to 2 hours as described above. As for the frequency of this repeated operation, the interval is shortened when the load variation of ammonia nitrogen in the influent wastewater is large, and the interval is lengthened when the load variation is small.
[0024]
FIG. 5 is a view showing a preferred example of the sampling position of the mixed solution. There is a case where the nitrification tank 14 is formed in a horizontally long shape and the inflow port 16 and the outflow port 22 of the waste water are largely separated. In such a case, the waste water forms a kind of plug flow in the nitrification tank 14, and a concentration difference occurs between the inflow side and the outflow side of the waste water. That is, since the nitrification reaction does not proceed sufficiently on the inflow side, the concentration of ammonia nitrogen is relatively high and the concentration of nitrate nitrogen is relatively low. On the other hand, since the nitrification reaction has sufficiently progressed on the outflow side, the ammonia nitrogen concentration is relatively low and the nitrate nitrogen concentration is relatively high. The object of the present invention is to achieve the nitrification reaction in the nitrification tank almost completely. Therefore, it is preferable that the sampling position of the mixed solution is in the vicinity of the outlet 22. This collection position may be the wastewater outflow passage 23 from the nitrification tank 14.
[0025]
According to the embodiment of the present invention, the progress of the nitrification reaction in the nitrification tank 14 can be grasped in a timely and accurate manner by measuring the amount of decrease in oxygen consumption rate over time in the batch reaction of the mixed solution. it can. And since the aeration air volume in the nitrification tank 14 is controlled based on this measurement result, the nitrification reaction can be achieved almost completely with the minimum necessary aeration air volume, and excessive aeration can be prevented.
[0026]
In the above embodiment, the case where the aeration air volume is automatically controlled using the controller 44 has been described. However, the present invention is not limited to this. For example, the liquid mixture in the nitrification tank is manually sampled, and the oxygen consumption rate in the batch reaction of the sampling liquid is quickly measured in the analysis chamber or the like. Based on this, the aeration air volume in the nitrification tank may be manually adjusted.
[0027]
In the above embodiment, as shown in FIG. 5, the case where the increase / decrease amount of the aeration air volume is controlled linearly according to the difference between the measured value of the decrease amount of oxygen consumption with time and the set value has been described. The aeration air volume may be increased or decreased in stages. Further, although the above description has been made with a predetermined range having a lower limit value and an upper limit value as the set value, the present invention is not limited to this, and the set value can be controlled at one point.
[0028]
【The invention's effect】
As described above, according to the present invention, excessive aeration in the nitrification tank can be prevented, and the nitrification reaction can be almost completely achieved with the minimum necessary amount of aeration air.
[Brief description of the drawings]
FIG. 1 is an apparatus configuration diagram for explaining an embodiment of the present invention. FIG. 2 is a model diagram illustrating the behavior of the oxygen consumption rate of a mixed solution in a nitrification reaction. FIG. 3 is an oxygen consumption in a batch treatment of the mixed solution. Fig. 4 is a graph illustrating the relationship between the amount of decrease in oxygen consumption rate with time and the amount of aeration air in the nitrification tank. Fig. 5 is a diagram illustrating a preferred example of the sampling position of the mixed solution. Explanation of]
DESCRIPTION OF SYMBOLS 10 ... Inflow pipe 12 ... Denitrification tank 14 ... Nitrification tank 16 ... Inlet 18 ... Blower 22 ... Outlet 32 ... Sampling pipe 36 ... Batch tank 40 ... (Oxygen consumption rate) sensor 42 …… Calculator 44 …… Controller

Claims (4)

廃水を連続的に硝化槽の流入口から流入させ、流出口から流出させると共に、前記硝化槽内で廃水と微生物の混合液を好気条件となるように曝気することによって、前記廃水中のアンモニア性窒素を前記微生物の作用により硝化処理する廃水の硝化方法において、前記硝化槽から採取した前記混合液を好気条件下で回分処理し、該混合液の回分反応開始から数分後の時刻T における酸素消費速度と時刻T から所定時間経過後の時刻T における酸素消費速度との差を酸素消費速度の経時減少量と定義して測定し、この経時減少量が設定値より大きい場合には曝気風量を増加し、経時減少量が設定値より小さい場合には曝気風量を減少させることを特徴とする廃水の硝化方法。Ammonia in the wastewater is introduced by continuously inflowing the wastewater from the inlet of the nitrification tank and outflowing from the outlet, and aerating the mixed solution of the wastewater and microorganisms in the nitrification tank so as to be in an aerobic condition. In the nitrification method of wastewater in which nitrous acid is nitrified by the action of the microorganism, the mixed solution collected from the nitrification tank is batch-treated under aerobic conditions, and a time T several minutes after the start of batch reaction of the mixed solution the difference between the oxygen consumption rate of oxygen consumption rate and time T 1 at time T 2, after a predetermined time in one measure is defined as time reduction of oxygen consumption rate, if the time reduction is larger than the set value A method for nitrification of wastewater, characterized in that the aeration air volume is increased and the aeration air volume is decreased when the decrease over time is smaller than a set value. 前記設定値は1分間当たりに換算した値が1〜3mg-O/L・hとなるように設定されることを特徴とする請求項1に記載の廃水の硝化方法。 2. The nitrification method for wastewater according to claim 1, wherein the set value is set so that a value converted per minute is 1 to 3 mg-O 2 / L · h. 前記酸素消費速度の経時減少量の測定値と設定値の差に応じて、前記曝気風量の増減量を制御することを特徴とする請求項1に記載の廃水の硝化方法。    The method for nitrification of wastewater according to claim 1, wherein an increase / decrease amount of the aeration air volume is controlled in accordance with a difference between a measurement value of the oxygen consumption rate decrease with time and a set value. 前記混合液の回分反応を行うための混合液の採取位置を前記硝化槽の廃水流出口の近傍とすることを特徴とする請求項1に記載の廃水の硝化方法。    The wastewater nitrification method according to claim 1, wherein a sampling position of the mixed solution for performing batch reaction of the mixed solution is set in the vicinity of the wastewater outlet of the nitrification tank.
JP27132599A 1999-09-24 1999-09-24 Waste water nitrification method Expired - Fee Related JP3637819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27132599A JP3637819B2 (en) 1999-09-24 1999-09-24 Waste water nitrification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27132599A JP3637819B2 (en) 1999-09-24 1999-09-24 Waste water nitrification method

Publications (2)

Publication Number Publication Date
JP2001087785A JP2001087785A (en) 2001-04-03
JP3637819B2 true JP3637819B2 (en) 2005-04-13

Family

ID=17498487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27132599A Expired - Fee Related JP3637819B2 (en) 1999-09-24 1999-09-24 Waste water nitrification method

Country Status (1)

Country Link
JP (1) JP3637819B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543649B2 (en) * 2003-09-29 2010-09-15 株式会社日立プラントテクノロジー Nitrification processing method and apparatus

Also Published As

Publication number Publication date
JP2001087785A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
US8916046B2 (en) Method for controlling oxygen supply for treating wastewater, and facility for implementing same
EP1931603B1 (en) Dynamic control of membrane bioreactor system
JPS6369595A (en) Method and device for controlling operation in intermittent-aeration activated sludge process
KR20150096407A (en) Optimized process and aeration performance with an advanced control algorithm
JP3525006B2 (en) Sewage treatment plant water quality control equipment
JP4008694B2 (en) Sewage treatment plant water quality controller
JP3637819B2 (en) Waste water nitrification method
JP3388293B2 (en) Biological nitrification and denitrification method for night soil
JP4543649B2 (en) Nitrification processing method and apparatus
JP4620391B2 (en) Sewage treatment equipment
JP2002001388A (en) Equipment and process for treating sewage
JP3303352B2 (en) Operation control method for batch activated sludge treatment
JP3397102B2 (en) Control method of intermittent aeration type activated sludge method
KR19980033489A (en) Method and apparatus for optimizing the process of intermittent batch reactor by automatically measuring non-oxygen ratio and nitrate nitrogen in biological wastewater treatment process in real time
JP3707526B2 (en) Waste water nitrification method and apparatus
JPS6339698A (en) Method for controlling biological nitrification process
JP4550547B2 (en) Wastewater treatment measurement method and apparatus
JPH0938683A (en) Biological water treating device
JP2952282B1 (en) Wastewater treatment control method
JP3837765B2 (en) Nitric acid concentration measuring device
JP3837758B2 (en) Nitrification denitrification equipment
JP3279008B2 (en) Control method of intermittent aeration type activated sludge method
JP3685975B2 (en) Wastewater treatment method and apparatus
JPS62262797A (en) Controlling method for biological nitrification process
JPH0475079B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050103

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees