JP2006084240A - Wastewater treatment measuring method - Google Patents

Wastewater treatment measuring method Download PDF

Info

Publication number
JP2006084240A
JP2006084240A JP2004267490A JP2004267490A JP2006084240A JP 2006084240 A JP2006084240 A JP 2006084240A JP 2004267490 A JP2004267490 A JP 2004267490A JP 2004267490 A JP2004267490 A JP 2004267490A JP 2006084240 A JP2006084240 A JP 2006084240A
Authority
JP
Japan
Prior art keywords
bod
raw water
dissolved oxygen
curve
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004267490A
Other languages
Japanese (ja)
Inventor
Takao Ogawa
尊夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OGAWA KANKYO KENKYUSHO KK
Ogawa Kankyo Kenkyusho KK
Original Assignee
OGAWA KANKYO KENKYUSHO KK
Ogawa Kankyo Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OGAWA KANKYO KENKYUSHO KK, Ogawa Kankyo Kenkyusho KK filed Critical OGAWA KANKYO KENKYUSHO KK
Priority to JP2004267490A priority Critical patent/JP2006084240A/en
Priority to PCT/JP2004/015172 priority patent/WO2006030538A1/en
Publication of JP2006084240A publication Critical patent/JP2006084240A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/006Regulation methods for biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/22O2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method or apparatus for precisely and quantitatively measuring the BOD of a mixed liquid containing activated sludge and a waste liquid, the BOD of raw water, the activity of activated sludge and the like automatically in a short time as an on-line as an instrument by analyzing the measuring data of the dissolved oxygen concentration (DO), which is obtained by a measuring instrument by sampling the mixture liquid from an aeration tank to aerate it. <P>SOLUTION: The value at the point of time becoming almost constant in the concentration of dissolved oxygen by aerating the mixture liquid sampled from the aeration tank for a sufficiently long period is set to highfinal DO and, after the generalized shift factor Kabs of a substance of an aerator is calculated from a dissolved oxygen concentration change curve again obtained from the low concentration of dissolved oxygen by aeration, a reference liquid is added to calculate the decomposition speed of the reference liquid from a DO change to evaluate the activity of activated sludge. Next, raw water is added to calculate the BOD of raw water from the DO change. The reference liquid is further added to evaluate the toxity of the raw water from a change in decomposition speed. Further, when the time from the start of measurement to the acquirement of highfinal DO is required long, a sampling form is changed to shorten a measuring time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は好気性微生物を利用する廃水処理での運転管理をおこなっていくために必要なデータを測定する測定装置の測定方法および装置に関する。   The present invention relates to a measurement method and apparatus for a measurement apparatus that measures data necessary for operation management in wastewater treatment using aerobic microorganisms.

活性汚泥処理は最も汎用的な有機物汚濁廃水の処理法である。
活性汚泥を代表とする好気性微生物を利用した廃水処理の基本プロセスは好気性微生物を高濃度に含む活性汚泥に廃水を入れた混合液を曝気することにより混合液中に溶解した溶存酸素を利用して微生物が廃水中の汚濁物を分解するプロセスである。一般に廃水中には種々の汚濁物があり、その汚濁物を分解するには多様な微生物が関与している。好気性微生物処理の最大の特徴は種々の汚濁物に対応した多様な微生物を馴化という自然界の生物活動を高度に濃縮することで、効率よく様々な廃水に対応できることであるが、反面複雑な生物活動のため原因→結果の因果関係の定量的把握は極めて難しい。このため、活性汚泥処理は、沈殿槽からの処理水は確かに浄化されるが、今現在曝気槽内でどのような状態で処理がおこなわれ、それが正常なものであるかどうか、定量的にはほとんどわからない状態で運転されているのが現状である。活性汚泥処理をブラックボックス状態にしている最大の原因は運転中の原水や曝気槽での処理途中や処理水のBODを迅速に測定できないこと、および活性汚泥が原水のBODを分解する能力(以降活性と称す)を定量的に把握する手段がないためである。
Activated sludge treatment is the most general method for treating organic polluted wastewater.
The basic process of wastewater treatment using aerobic microorganisms such as activated sludge is based on the use of dissolved oxygen dissolved in the mixture by aeration of a mixture of wastewater into activated sludge containing aerobic microorganisms in high concentration. This is the process by which microorganisms break down pollutants in wastewater. In general, there are various pollutants in wastewater, and various microorganisms are involved in decomposing the pollutants. The greatest feature of aerobic microbial treatment is that it can respond to various wastewater efficiently by highly concentrating the natural biological activity of acclimatizing various microorganisms corresponding to various pollutants. Because of the activity, it is extremely difficult to quantitatively understand the causal relationship between cause and result. For this reason, the activated sludge treatment will surely purify the treated water from the settling tank, but it is quantitatively determined whether the treatment is currently performed in the aeration tank and that it is normal. Is currently operating in a state that is almost unknown. The biggest reason why activated sludge treatment is in the black box state is that the raw water during operation and the aeration tank cannot be measured quickly during treatment, and the ability of activated sludge to decompose the BOD of raw water This is because there is no means for quantitatively grasping the activity).

現在一般的に行われている運転管理法は、原水や処理水のBODについてはTODやCODで代替し、活性汚泥の活性については直接的に評価する簡便な手段がないため、曝気槽の溶存酸素濃度や処理水の結果や微生物の顕微鏡観察などから間接的に判断している。しかしながらTODやCODは原水の基質が変動する場合にはBODとの相関関係が悪くなり、曝気槽の溶存酸素濃度や処理水の結果や微生物の観察から微生物の活性を判断するのは極めて専門的な知識をもってしても定性的なものにしかならない。
BODを迅速に測定する方法として微生物電極を使う方法が実用化されているが、電極に使用する微生物は特定の微生物であり、その微生物で分解できるBOD成分の廃水は測定できるが、それ以外の廃水では正確に測定できず、汎用的な方法とはなっていない。
Currently, the operation management method generally used is to replace the BOD of raw water and treated water with TOD and COD, and there is no simple means to directly evaluate the activity of activated sludge. Judgment is made indirectly based on the results of oxygen concentration, treated water, and microscopic observation of microorganisms. However, TOD and COD have a bad correlation with BOD when the raw water substrate changes, and it is very specialized to judge the activity of microorganisms from the dissolved oxygen concentration in the aeration tank, the results of treated water, and the observation of microorganisms. Even with knowledge, it can only be qualitative.
A method using a microbial electrode has been put to practical use as a method for rapidly measuring BOD, but the microorganism used for the electrode is a specific microorganism, and waste water of BOD components that can be decomposed by the microorganism can be measured. Wastewater cannot be measured accurately and is not a general-purpose method.

微生物の活性を評価する方法としては微生物の核酸を計測する方法や、ATP(アデノシン三リン酸)を計測する方法等が提唱されているが、活性汚泥のような種々雑多な微生物群の活性評価法としては汎用的な方法とはなっておらず、少なくとも運転管理に使用できる方法にはなっていない。 As methods for evaluating the activity of microorganisms, methods for measuring nucleic acids of microorganisms, methods for measuring ATP (adenosine triphosphate), etc. have been proposed, but the activity evaluation of various microbial groups such as activated sludge is proposed. As a method, it is not a general-purpose method, and at least it cannot be used for operation management.

もし、活性汚泥の運転管理中に処理中のBODや活性汚泥の活性を測定定量化でき、運転操作に反映できれば、活性汚泥の最適な運転が可能になり、処理水の向上や省エネなどの大きな効果が得られることになる。   If the activity of activated BOD and activated sludge can be measured and quantified during the operation management of activated sludge and reflected in the operation operation, the activated sludge can be optimally operated. An effect will be obtained.

このため本発明者は溶存酸素濃度計を使って、微生物の酸素消費速度の挙動を測定しコンピュータで解析することにより、短時間で活性汚泥処理に必要なBODを測定するとともに、原水中のBOD成分の分解速度を計算し、微生物の活性を定量化する方法を提唱し、具体的に溶存酸素濃度の測定データの取得方法および取得したデータからBODを計算する計算方法およびBODの分解速度を解析する方法を計算原理から詳細に記載している(特許文献1参照)。   For this reason, the present inventor measures the BOD required for activated sludge treatment in a short time by measuring the behavior of the oxygen consumption rate of the microorganism using a dissolved oxygen concentration meter and analyzing it with a computer, and also the BOD in the raw water. Proposed a method to calculate the decomposition rate of components and quantify the activity of microorganisms, specifically to acquire measurement data of dissolved oxygen concentration, to calculate BOD from the acquired data, and to analyze the decomposition rate of BOD This method is described in detail from the calculation principle (see Patent Document 1).

また同様の計算原理をベースにして、運転中の活性汚泥装置を曝気槽上に設置し、曝気槽中の混合液をサンプリングして、混合液のBODや汚泥の活性を測定し、測定終了→サンプリング→測定を繰り返すことにより、実用上連続測定に近い頻度で活性汚泥の運転管理に必要なデータを採取できる方法と装置を開示している(特許文献2参照)。 Based on the same calculation principle, the activated sludge device in operation is installed on the aeration tank, the mixed liquid in the aeration tank is sampled, the BOD of the mixed liquid and the sludge activity are measured, and the measurement ends. A method and apparatus that can collect data necessary for operation management of activated sludge with a frequency close to practical continuous measurement by repeating sampling → measurement is disclosed (see Patent Document 2).

特許文献1に記載している方法を使えば、ラボに設置する分析装置は容易に実現できるが、活性汚泥装置のオンライン計器とするには、具体的にどのタイミングでサンプリングし、なにをどの順番で測定するかなどを具体的に規定する必要があり、しかも短時間で測定結果をだす必要性がラボ機より強いことに加え、実機におけるいろいろな事態、たとえば処理が極端に悪い場合やダメージをうけた汚泥などに自動で対応できるような処置が必要である。 If the method described in Patent Document 1 is used, an analyzer installed in a laboratory can be easily realized. However, in order to make an online instrument of an activated sludge apparatus, what timing should be sampled and what should be It is necessary to specify in detail what to measure in order, and in addition to the need to obtain measurement results in a short time more strongly than lab machines, there are various situations in actual machines, such as extremely bad processing and damage It is necessary to take measures to automatically respond to sludge that has been subjected to the treatment.

また特許文献2に記載する装置は、30分程度という短時間で処理水のBODや汚泥の活性を測定でき、活性汚泥の自動運転管理制御計器として実用化されているが、もともとオンライン制御計器を念頭にしているため、短時間で測定完了→制御に反映させる機能を重視する測定手法をとっているため、例えば(1)処理が極端に悪い場合、サンプリングした混合液のBODの測定精度が低下すること、(2)MLSSや汚泥の粘性などが変動する場合には、BODや分解速度の測定精度が低下すること、(3)処理が極端に悪い場合、活性と混合液のBODの測定を同時におこなえない、などの不十分な点があり、制御を優先する場合には有効な方法であるが、測定精度を優先する場合には必ずしも最適な方法とはいえない。
特開2001-235462 特開平10-28992
The device described in Patent Document 2 can measure the BOD and sludge activity of treated water in a short time of about 30 minutes and has been put into practical use as an automatic operation management control instrument for activated sludge. Because we have in mind, measurement is completed in a short time → a measurement method that places emphasis on the function that is reflected in the control is taken. For example, (1) When the processing is extremely bad, the BOD measurement accuracy of the sampled mixed solution decreases. (2) If the MLSS or sludge viscosity fluctuates, the measurement accuracy of the BOD and decomposition rate will decrease. (3) If the treatment is extremely bad, measure the activity and the BOD of the mixed solution. There are inadequate points such as being unable to be performed at the same time, and it is an effective method when priority is given to control, but it is not necessarily an optimal method when priority is given to measurement accuracy.
JP2001-235462 JP 10-28992 A

好気性微生物を利用する廃水処理での運転管理する自動測定計器は、実用化されている技術はほとんどなく、特許文献2の方法でも測定精度を重視する場合には実機のいろいろなケースに対応しきれていない。本発明は活性汚泥を運転管理する上で本来絶対必要な、処理水のBODや原水のBODや汚泥の活性をオンライン計器として精度よく定量測定する方法や装置を提供するものである。   Automatic measurement instruments that manage operation in wastewater treatment using aerobic microorganisms have few technologies in practical use, and even when the method of Patent Document 2 places importance on measurement accuracy, it supports various cases of actual equipment. I'm not sure. The present invention provides a method and apparatus for accurately and quantitatively measuring the BOD of treated water, the BOD of raw water, and the activity of sludge, which are essential in operating and controlling activated sludge, as an on-line instrument.

曝気槽から混合液をサンプリングし、該混合液を測定装置にチャージし、曝気装置で曝気し、曝気により該混合液中のBODを分解し、分解し終わって曝気装置の酸素供給速度と該混合液の酸素消費速度がバランスする点の溶存酸素濃度(この濃度をhighfinalDOと称す)を取得したのち、曝気装置を停止し、該混合液の酸素消費で低下した溶存酸素濃度を低下させたのち、曝気装置を再稼動させ、上昇するDO変化から計算で曝気装置の物質移動係数(以後Kabsと称す)を取得したのち、基準液を添加し、混合液中の汚泥による成分の分解で変化するDO変化から基準液の分解速度を計算し、基準液の分解速度があらかじめコンピュータに記憶している設定値より大きい場合には、基準液の分解終了後、原水を添加し混合液中の汚泥による成分の分解で変化するDO変化から原水のBODを計算し、設定値より小さい場合は原水の添加をおこなうことなく、測定を終了する。このサンプリング−測定の操作を繰り返すことにより、活性汚泥の運転に必要な混合液のBOD、混合液の汚泥の活性、原水のBODのデータを実用上連続測定に近い頻度で測定する。   Sampling the mixed solution from the aeration tank, charging the mixed solution to the measuring device, aeration with the aeration device, decomposing the BOD in the mixed solution by aeration, the oxygen supply rate of the aeration device and the mixing after decomposition After obtaining the dissolved oxygen concentration (this concentration is referred to as highfinalDO) at the point where the oxygen consumption rate of the liquid balances, after stopping the aeration apparatus and lowering the dissolved oxygen concentration decreased by the oxygen consumption of the mixed solution, Reactivate the aeration device, obtain the mass transfer coefficient (hereinafter referred to as Kabs) of the aeration device by calculation from the rising DO change, add the reference solution, and change the DO by the decomposition of the components by the sludge in the mixture Calculate the decomposition rate of the reference solution from the change, and if the decomposition rate of the reference solution is larger than the preset value stored in the computer, add the raw water after the decomposition of the reference solution and add the component due to sludge in the mixture of The BOD of the raw water was calculated from the DO change varies solution without smaller than the set value to perform the addition of the raw water, the measurement is completed. By repeating this sampling-measurement operation, the BOD of the mixed liquid necessary for the operation of the activated sludge, the sludge activity of the mixed liquid, and the BOD data of the raw water are measured at a frequency practically close to continuous measurement.

また上記において原水を添加し、分解終了後、再度基準液を添加し分解速度を計測することにより、原水添加前の基準液の分解速度と、原水添加後の基準液の分解速度を比較することで、原水の活性汚泥に対する毒性を評価する。さらに上記において繰返し測定のために曝気槽から混合液をサンプリングする際、直前の測定のときの混合液を測定装置にチャージ・曝気開始してから、サンプリングした混合液に処理未了のBODが多く含まれている場合などで、分解し終わって曝気装置の酸素供給速度と該混合液の酸素消費速度がバランスする点の溶存酸素濃度を取得するまでの必要時間があらかじめコンピュータに記憶している設定値より大きい場合には、測定終了後に、測定済み混合液を全量排水し、新たな混合液に全量置換するのではなく、設定値を超える大きさに応じて、測定済みの混合液を一部残し、測定済み混合液と新しい混合液との混合した混合液を測定対象とすることで、測定時間を短縮する。 Also, compare the decomposition rate of the reference solution before the addition of the raw water and the decomposition rate of the reference solution after the addition of the raw water by adding the raw water and adding the reference solution again after the decomposition and measuring the decomposition rate. And evaluate the toxicity of raw water to activated sludge. Furthermore, when sampling the mixed solution from the aeration tank for repeated measurement in the above, the sampled mixed solution has a large number of unprocessed BODs after charging the mixed solution from the previous measurement to the measuring device and starting aeration. Settings that are stored in advance in the computer for the time required to obtain the dissolved oxygen concentration at the point where the oxygen supply rate of the aeration device and the oxygen consumption rate of the mixture are balanced, for example, If the value is greater than the value, after the measurement is completed, the entire measured mixture is not drained and replaced with a new mixture. The measurement time is shortened by using a mixed liquid of a measured mixed liquid and a new mixed liquid as a measurement target.

活性汚泥で運転管理の本来絶対必要な処理水BOD、原水BOD、汚泥の活性を測定できる自動で連続測定が可能な精度のある計器がなかった。本発明による計器を使えば、2時間程度の短時間でこれらBODや汚泥の活性が精度よく定量測定でき、測定−サンプリングを繰り返すことで、実用上連続測定に近い頻度で自動測定が可能となり、しかも実機のいろいろな事態にも対応して、自動測定機器として実用化できるようになる。これにより、従来定性的な取扱しかできなかった活性汚泥が定量的な取扱が可能になり、最適運転や安定運転が可能になるメリットは非常に大きい。   There was no precision instrument capable of automatic and continuous measurement that can measure the activity of treated water BOD, raw water BOD, and sludge, which are essential for operation management with activated sludge. By using the instrument according to the present invention, the activity of these BOD and sludge can be accurately measured in a short time of about 2 hours. By repeating measurement and sampling, automatic measurement can be performed at a frequency close to practical continuous measurement. Moreover, it can be put to practical use as an automatic measuring device in response to various situations of actual machines. As a result, the activated sludge, which could only be handled qualitatively in the past, can be handled quantitatively, and the merit of enabling optimum operation and stable operation is very great.

本発明の説明上必要なので、はじめに計算の基礎となる原理について簡単にのべる。
活性汚泥と廃液を含む混合液を曝気装置で曝気していくと廃水中の溶存酸素濃度は曝気時間とともに上昇していくが、その変化は(1)式で表される。
Since it is necessary for the explanation of the present invention, first, a basic principle of calculation will be briefly described.
When the mixed liquid containing activated sludge and waste liquid is aerated with an aeration device, the dissolved oxygen concentration in the waste water increases with the aeration time, and the change is expressed by equation (1).

Figure 2006084240
Figure 2006084240

ここにDOsatは飽和溶存酸素濃度[mg/l]、DOは曝気槽内溶存酸素濃度[mg/l]、Kabsは総括物質移動係数[1/min]、ASactは活性汚泥が呼吸で使う酸素消費速度[mg/l/min]、BODactは活性汚泥がBOD成分の分解で使う酸素消費速度[mg/l/min]である。   Here, DOsat is saturated dissolved oxygen concentration [mg / l], DO is dissolved oxygen concentration in the aeration tank [mg / l], Kabs is general mass transfer coefficient [1 / min], ASact is oxygen consumption consumed by activated sludge for respiration Rate [mg / l / min], BODact is the oxygen consumption rate [mg / l / min] used by activated sludge to decompose BOD components.

(1)式右辺第1項は曝気装置から酸素供給速度であり、第2項は活性汚泥が呼吸およびBODの分解で使う酸素消費速度である。
ASactは汚泥の基礎呼吸による酸素の消費速度である。基礎呼吸なのでBOD成分とは直接無関係で短時間内ではほとんど一定である。ASactは概ねDO値が0.5mg/l以上あれば、ASactはDO値に無関係に一定であることが知られており、またこのことはBOD成分がほとんど0mg/lの混合液を酸素の供給を断った状態で溶存酸素濃度が高い状態からDOの変化を測定すると直線状に減少していくことで容易に実証できる。
The first term on the right side of equation (1) is the oxygen supply rate from the aeration device, and the second term is the oxygen consumption rate used by activated sludge for respiration and decomposition of BOD.
ASact is the rate of oxygen consumption by basic sludge respiration. Since it is a basal respiration, it is not related directly to the BOD component and is almost constant within a short time. ASact is known to be constant regardless of the DO value if the DO value is approximately 0.5 mg / l or more, and this indicates that the BOD component is almost 0 mg / l of mixed liquid and oxygen is supplied. When the change in DO is measured from a state in which the dissolved oxygen concentration is high with the state turned off, it can be easily verified by a linear decrease.

BODactは汚泥がBOD成分を分解しているときに使う酸素の消費速度である。BODactは汚泥がその物質に馴化しているかどうか、汚泥の状態、水温、pH、塩濃度等の棲息環境などで変化する。微生物がBOD成分を分解する場合、反応はBOD成分に対応した酵素等によりおこなわれ、その成分ごとに固有の反応速度を示す。一般に有機物が微生物により最終的に水と炭酸ガスに分解される過程では、いくつかの中間生成物を経由し、それぞれの中間生成物の分解にはそれぞれの反応速度がある。このため廃水処理における原水のように多様なBOD成分を含む場合には反応過程が複雑に重複するため、BOD成分と1対1に特定できにくいが、廃液がメタノールや酢酸のような単純な1つのBOD成分の場合は、分解中は一定の分解速度を示し、容易にBOD成分と1対1に特定できる。   BODact is the consumption rate of oxygen used when sludge decomposes BOD components. BODact varies depending on whether the sludge is acclimatized to the substance, the state of sludge, water temperature, pH, habitat environment such as salt concentration. When microorganisms degrade the BOD component, the reaction is carried out by an enzyme or the like corresponding to the BOD component, and each component shows a specific reaction rate. In general, in a process in which an organic substance is finally decomposed into water and carbon dioxide by a microorganism, it passes through several intermediate products, and each intermediate product has its own reaction rate. For this reason, when various BOD components are included such as raw water in wastewater treatment, the reaction process is complicated and overlapped, so it is difficult to specify one-to-one with the BOD component, but the waste liquid is a simple 1 such as methanol or acetic acid. In the case of one BOD component, a constant decomposition rate is exhibited during decomposition, and it can be easily identified one-to-one with the BOD component.

曝気過程でBODactが変化する場合には(1)式は簡単には積分できないが、BOD成分が殆ど0mg/lの混合液の場合、(1)式のBODactは殆ど0となり(1)式は以下のようになる。   When BODact changes during the aeration process, equation (1) cannot be easily integrated. However, when the BOD component is a mixture of almost 0 mg / l, BODact in equation (1) is almost 0 and equation (1) is It becomes as follows.

Figure 2006084240
Figure 2006084240

ASactは前述のごとく概ねDO>0.5mg/lではDOに無関係に一定であるから概ねDO>
0.5mg/lの範囲で(2)式は容易に積分でき(3)式で表される。
DO=α−(α−DO0)exp(−Kabs・t) (3)式
但しα=DOsat−ASact/Kabs
DO0は曝気を開始したときの初期値である。また(3)式は曝気経過時間tが十分な大きさになれば右辺第2項は無視できるから
DO=α=DOsat−ASact/Kabs
の値で一定となり、この値をhighfinalDOで表せば、highfinalDOはBOD成分が殆ど0mg/lの混合液を曝気した場合、最終的に到達するDO値と定義でき、(3)式は
DO=highfinalDO-(highfinalDO-DO0)exp(-Kabs・t) (4)式
と書き直せる。(4)式によるDOの変化は図2の1の点線に示すような曲線となる。
一方混合液中にBOD成分が存在する場合、BODactは無視できない値をもち、さらにBODactの値は主として分解対象のBOD成分が変わるため、曝気経過時間tとともに大きい値から小さい値へ変化し、最終的に分解できるBOD成分がなくなればBODactは殆ど0になる変化をする。このため(1)式は単純に(3)式のように積分できないが、DOの変化は図2の2の実線の曲線で示すような曲線となる。この曲線はメタノールや酢酸のような単純なBOD成分の場合には、分解中はDOは酸素供給速度とASact+BODactの酸素消費速度でバランスする低いレベルで一定となり、分解が終了すると、速やかに上昇しhighfinalDOで一定となる図2の2の実線のような典型的な2段曲線となる。
As mentioned above, ASact is almost constant at DO> 0.5mg / l, regardless of DO, so it is generally DO>
In the range of 0.5 mg / l, equation (2) can be easily integrated and expressed by equation (3).
DO = α− (α−DO 0 ) exp (−Kabs · t) (3) where α = DOsat−ASact / Kabs
DO 0 is an initial value when aeration is started. In addition, since the expression (3) can neglect the second term on the right side if the aeration elapsed time t becomes sufficiently large.
DO = α = DOsat−ASact / Kabs
If this value is expressed as highfinalDO, highfinalDO can be defined as the DO value that is finally reached when a mixed liquid with a BOD component of almost 0 mg / l is aerated.
DO = highfinalDO− (highfinalDO−DO 0 ) exp (−Kabs · t) (4) can be rewritten. The change in DO according to equation (4) becomes a curve as shown by the dotted line 1 in FIG.
On the other hand, when a BOD component is present in the mixed solution, BODact has a value that cannot be ignored. Further, since the BODact value mainly changes in the BOD component to be decomposed, it changes from a large value to a small value with the aeration elapsed time t. BODact changes to almost 0 when there is no more BOD component that can be decomposed. Therefore, equation (1) cannot be simply integrated as equation (3), but the change in DO becomes a curve as shown by the solid line curve in FIG. This curve shows that in the case of simple BOD components such as methanol and acetic acid, DO is constant at a low level that balances the oxygen supply rate and the oxygen consumption rate of ASact + BODact during decomposition. It becomes a typical two-step curve as shown by the solid line in FIG. 2 that rises and becomes constant at highfinalDO.

今、曝気を開始したときのDOの初期値DO0を同じとし、混合液中のBOD成分が殆ど0mg/lの混合液を曝気したときの(4)式で表されるDO変化曲線を図2の1の点線で表し、混合液中のBOD成分が存在する場合の混合液を曝気した場合のDO変化曲線を図2の2の実線で表した場合、各曝気経過時間における、点線と実線の値の差にKabsを掛けた値はその時点における、BODを分解するに使用される酸素消費速度=反応速度を表し、この差を曝気経過時間tで積分した値は両曲線で囲まれた面積Sに相当し、この値にKabsを掛けた値は微生物がBOD成分を分解するために使用する酸素量に相当する。この値はJISで定められたBODの測定法とは異なるが、微生物がBOD成分を分解するに要する酸素量を測定するという測定原理そのものは同じである。JISのBOD測定法が5日間という長時間を要するが、本測定法はすでに十分馴養された汚泥を使用し、且つ数千ppmという高濃度の汚泥を使用するため数10分程度の短時間でJISのBODときわめて相関性の高い値が測定可能である。本測定原理そのものは特許文献1のなかで詳しく記述されている。特許文献1では、さらに(4)式のhighfinalDOおよび(1)式のKabsを測定装置のなかで具体的に取得する操作手順および計算手順を示している。 The DO change curve expressed by equation (4) when the initial value DO 0 at the start of aeration is the same and a mixture with almost 0 mg / l BOD component in the mixture is aerated. When the DO change curve when the mixed liquid is aerated when the BOD component is present in the mixed liquid is represented by the solid line of FIG. 2, the dotted line and the solid line at each aeration elapsed time The value obtained by multiplying the difference between the two values by Kabs represents the oxygen consumption rate used for decomposing BOD at that time = the reaction rate, and the value obtained by integrating this difference by the elapsed aeration time t is surrounded by both curves. The value corresponding to the area S, which is obtained by multiplying this value by Kabs, corresponds to the amount of oxygen used by the microorganism to decompose the BOD component. This value is different from the BOD measurement method defined by JIS, but the measurement principle itself is the same, in which the amount of oxygen required for microorganisms to decompose the BOD component is measured. JIS's BOD measurement method takes a long time of 5 days, but this measurement method uses sludge that has already been well acclimatized and also uses sludge with a high concentration of several thousand ppm, so it takes only a few tens of minutes. A value highly correlated with JIS BOD can be measured. This measurement principle itself is described in detail in Patent Document 1. Patent Document 1 further shows an operation procedure and a calculation procedure for specifically acquiring highfinalDO of the equation (4) and Kabs of the equation (1) in the measuring apparatus.

図3は、上記の測定原理で計測したBOD値(以後、測定BODと称す)とJISで定められた5日間のBOD値(以後JISBODと称す)をいろいろな廃液をそこの活性汚泥を使って、測定した結果を相関図に示したものである。図3で示すように大部分の測定値はほぼ測定BODとJISBODはよい一致を示している。図3のブロックaの範囲の測定値群の測定BODはJISBODより小さい値となっている。これはこのブロックの測定では、廃液が活性汚泥に対し毒性を示す廃液である場合と活性汚泥の活性が明らかに低下している汚泥を使って測定した結果である。またブロックbの範囲の測定値群は廃液の成分が一般には難分解性に属する特殊な成分を測定した結果である。JISBODでは微生物がその物質に対応できず分解がすすまないが、測定BODはその物質に馴養した活性汚泥を使用しているため、JISBODより大きな分解を示したものである。このように本測定法で30分からせいぜい100分程度という短時間で精度よくBODを測定できる。この方法は活性汚泥でその活性汚泥で処理している原水や処理水を測定する場合であって、どんなケースでも測定できる方法ではないことは言うまでもないが、活性汚泥を管理するという観点からすれば、汚泥の活性がよければ、原水や処理水のBODは本原理の方法で十分測定できることを実証している。   Figure 3 shows the BOD value measured by the above measurement principle (hereinafter referred to as “measured BOD”) and the 5-day BOD value determined by JIS (hereinafter referred to as “JISBOD”) by using various waste liquids using the activated sludge. The measurement results are shown in a correlation diagram. As shown in FIG. 3, the measured BOD and JISBOD are almost in good agreement with most measured values. The measurement BOD of the measurement value group in the range of block a in FIG. 3 is smaller than JISBOD. This is the result of measurement using this block in the case where the waste liquid is a waste liquid that is toxic to the activated sludge and the sludge in which the activity of the activated sludge is clearly reduced. The measurement value group in the range of the block b is a result of measuring a special component in which the component of the waste liquid generally belongs to indegradability. In JISBOD, microorganisms cannot cope with the substance and degradation is not successful. However, since the measured BOD uses activated sludge acclimatized to the substance, it shows a greater degradation than JISBOD. In this way, BOD can be measured with high accuracy in a short time of 30 minutes to 100 minutes at most by this measurement method. This method is for measuring raw water and treated water treated with activated sludge with activated sludge, and it goes without saying that it is not possible to measure in any case, but from the viewpoint of managing activated sludge. If the sludge activity is good, it has been demonstrated that the BOD of raw water and treated water can be measured sufficiently by the method of this principle.

次に本発明を具体化する装置について述べる。図4は装置例のフローシートである。
3は活性汚泥の混合液を入れ曝気する曝気容器である。4は測定容器である。3と4は底部の配管で連結している。5は循環ポンプ、6は曝気装置であり本装置例ではアスピレータ方式を採用しているが、コンプレッサーと散気管でもよい。7は空気流量計、8は空気電磁弁である。9は溶存酸素計の電極である。5の循環ポンプにより、装置内の混合液は測定容器→アスピレータ→曝気容器→測定容器の流れで循環し、アスピレータ部で空気を吸引し、曝気容器で曝気をおこない底部から測定容器に移液することで気泡を分離し、測定容器の溶存酸素計の電極面の流速を確保する。10はヒータ、11は冷却用の熱交換パイプであり冷却水を流しておく。12は基準液の添加ポンプ、13は原水の添加ポンプである。14は排水電磁弁である。15は溶存酸素計、16は制御盤、17はコンピュータである。コンピュータにはデジタル出力兼アナログ-デジタル変換PCカードをPCMCIAアダプターに装着し、制御盤と連結しており、コンピュータからの指令で測定装置のポンプや電磁弁等を制御する。溶存酸素計とコンピュータはシリアルポートで測定値をコンピュータに取り込む。また制御盤には温度コントローラを装備し、ヒータを制御することで混合液の温度を一定に保つ。またこのほかに曝気槽から混合液をサンプリングするためのサンプリング装置が必要であり、本装置例では後述するブロック3との関連で真空ポンプを使用したシステムを採用しているが、揚水ポンプと流量計などを使ったシステムでも構成可能である。18は計量容器、19は真空ポンプ、20は真空電磁弁、21は大気開放電磁弁、22はサンプリング電磁弁、23は計量容器排水電磁弁である。サンプリング装置と測定装置は24の連通電磁弁でつながっている。また計量容器には25の温度センサーと26の圧力計センサーを装備し、それぞれの測定値はPCカードを介してコンピュータに取り込まれる。
Next, an apparatus embodying the present invention will be described. FIG. 4 is a flow sheet of an example apparatus.
3 is an aeration container in which a mixed liquid of activated sludge is placed and aerated. 4 is a measurement container. 3 and 4 are connected by piping at the bottom. 5 is a circulation pump, and 6 is an aeration apparatus. In this apparatus example, an aspirator system is adopted, but a compressor and an air diffuser may be used. 7 is an air flow meter, and 8 is an air solenoid valve. 9 is an electrode of the dissolved oxygen meter. With the circulation pump of 5, the mixture in the apparatus is circulated in the flow of measurement container → aspirator → aeration container → measurement container, air is sucked in the aspirator, aerated in the aeration container, and transferred from the bottom to the measurement container In this way, air bubbles are separated, and the flow velocity of the electrode surface of the dissolved oxygen meter in the measurement container is ensured. 10 is a heater, and 11 is a heat exchange pipe for cooling, in which cooling water flows. 12 is a reference liquid addition pump, and 13 is a raw water addition pump. Reference numeral 14 denotes a drainage electromagnetic valve. 15 is a dissolved oxygen meter, 16 is a control panel, and 17 is a computer. A digital output / analog-to-digital conversion PC card is attached to a PCMCIA adapter and connected to a control panel, and the pump and solenoid valve of the measuring device are controlled by a command from the computer. The dissolved oxygen meter and the computer take the measured values into the computer through the serial port. The control panel is equipped with a temperature controller, and the temperature of the liquid mixture is kept constant by controlling the heater. In addition to this, a sampling device for sampling the mixed solution from the aeration tank is necessary. In this device example, a system using a vacuum pump is employed in connection with the block 3 described later. A system using a meter can also be configured. 18 is a measuring container, 19 is a vacuum pump, 20 is a vacuum solenoid valve, 21 is an air release solenoid valve, 22 is a sampling solenoid valve, and 23 is a metering container drain solenoid valve. The sampling device and the measuring device are connected by 24 communication solenoid valves. The measuring container is equipped with 25 temperature sensors and 26 pressure gauge sensors, and the measured values are taken into the computer via a PC card.

以下操作のしかたを説明する。特許文献2との違いを明確にするため、一部対比しながら説明する。図5は図4の装置を作動するフローチャートである。図1は本発明の測定操作による測定装置のDO変化の測定を示すパターン例である。   The operation method will be described below. In order to clarify the difference from Patent Document 2, a description will be given while partially comparing. FIG. 5 is a flowchart for operating the apparatus of FIG. FIG. 1 is a pattern example showing the measurement of the DO change of the measuring apparatus by the measuring operation of the present invention.

まず請求項1に対応する実施例(ブロック1)の操作の説明をする(フローチャートのブロック2とブロック3以外をブロック1の範囲とする)。
まず操作のはじめは曝気槽から混合液をサンプリングする工程(以後Step1と称す)で、フローチャート−1.から−2.の操作をおこなう。14の排水電磁弁を開き、測定装置内の測定済み混合液を排水する。次にフローチャート−2.の操作をおこなう。曝気槽からサンプリング装置を使って、測定装置に混合液をサンプリングする。サンプリングの具体的方法は装置例では、電磁弁をすべて閉じた状態から、20の真空電磁弁を開き19の真空ポンプを作動し18の計量容器をp1KPaまで減圧する。次に22のサンプリング電磁弁を開き、曝気槽の混合液を計量容器に吸引する。吸引し計量容器内の圧力がp2KPaになったら20のサンプリング電磁弁を閉じる。計量容器に吸引した混合液量は計量容器の全空間容積V0とp1とp2から計算できる。p1とp2を所定の吸引量になるようにコンピュータから電磁弁を操作すれば任意の混合液量をサンプリングできる。次に21の大気開放電磁弁を開き、24の連通電磁弁を開き、落差で計量容器内の混合液を測定装置に移液する。
First, the operation of the embodiment (block 1) corresponding to claim 1 will be described (except for block 2 and block 3 in the flowchart are the range of block 1).
First, at the beginning of the operation, in the step of sampling the mixed solution from the aeration tank (hereinafter referred to as Step 1), the operations of the flowcharts 1 to 2 are performed. 14 drainage electromagnetic valve is opened, and the measured mixed liquid in the measuring apparatus is drained. Next, the operation of flowchart-2 is performed. Using the sampling device from the aeration tank, sample the mixture into the measuring device. In a specific example of sampling, in the example of the apparatus, from the state that all the solenoid valves are closed, 20 vacuum solenoid valves are opened, 19 vacuum pumps are operated, and 18 measuring containers are decompressed to p1 KPa. Next, the sampling solenoid valve 22 is opened, and the mixed solution in the aeration tank is sucked into the measuring container. When the pressure inside the measuring container reaches p2KPa, the 20 sampling solenoid valves are closed. The amount of the liquid mixture sucked into the measuring container can be calculated from the total space volume V0, p1, and p2 of the measuring container. If the solenoid valve is operated from a computer so that p1 and p2 become a predetermined suction amount, an arbitrary amount of liquid mixture can be sampled. Next, 21 open-air solenoid valve is opened, 24 communication solenoid valve is opened, and the liquid mixture in the measuring container is transferred to the measuring device by a drop.

Step1は、本発明と特許文献2とは基本的には同じであるが、特許文献2の方法では制御を重視するために、処理状態が変化しやすいポイントである曝気槽出口の少し手前からサンプリングするのに対し、本発明では、処理水のBODを測定する観点から、曝気槽出口の混合液をサンプリングするのが実際的である。但し、曝気槽の形状は完全混合槽型のように入口出口が明確でないタイプや、また生物学的脱窒法のように硝化槽の次が沈殿槽とは限らない場合や回分式活性汚泥のように時間で処理状態がかわる場合があり、サンプリング位置は曝気槽の形態、測定の目的などで異なるため、上記位置に限定されるものではない。 In Step 1, the present invention and Patent Document 2 are basically the same, but since the method of Patent Document 2 places importance on control, sampling is performed slightly before the aeration tank outlet, which is a point where the processing state is likely to change. On the other hand, in the present invention, it is practical to sample the mixed solution at the outlet of the aeration tank from the viewpoint of measuring the BOD of the treated water. However, the shape of the aeration tank is such that the inlet / outlet is not clear, such as a complete mixing tank type, and the case where the next to the nitrification tank is not necessarily a sedimentation tank, as in the case of biological denitrification, or like batch activated sludge. However, the sampling position is not limited to the above position because the sampling position differs depending on the form of the aeration tank, the purpose of measurement, and the like.

次の工程(以後Step2と称す)はhighfinalDOとKabsの値を取得し、混合液のBODを測定する工程であり、フローチャート−3.から−10.の部分である。図1のStep2-1からStep2-3まではこの工程でのDO変化の測定パターン例である。この工程は特許文献2では外部からの酸素の供給を断って汚泥の酸素消費速度による溶存酸素の減少速度を測定し、この酸素の減少速度の大小を判断基準として次の工程(以後Step3aと称す)の測定方法を変える。すなわち減少速度が設定値より大きい場合は、汚泥は大きな酸素消費速度で活動している結果であるから活性は充分あるが、混合液のBODは処理未了が多いであろうとして、Step3aではもっぱら混合液のBODを測定する操作を選択する。逆に小さい場合は、汚泥の活動が鈍い結果であり、鈍い原因が処理未了がなく呼吸のみの小さな酸素消費速度のためなのかあるいは汚泥が阻害され活性が低下した結果なのかを判別するために基準液を添加する操作を選択する。そしてこれらの測定結果を計算するためのhighfinalDOやKabsの基礎数値は予め測定したコンピュータに保持している数値を使用して計算をおこなう。これは通常、活性汚泥はMLSSを一定で操作するため、短期間の操作では変化しないとした前提に基づいている。しかしながら、実機においては、MLSSは変化しており、また汚泥の粘性などの物性はpH条件や汚泥の毒物に対するストレス状態などで変化し、アスピレータなどの曝気装置の効率に影響を及ぼすため、highfinalDOやKabsの基礎数値は変化している。測定精度を向上させるためには、その都度測定することが望ましく、本発明ではStep2ではhighfinalDOとKabsを計測する操作をおこなう。この工程での測定・計算方法は特許文献1に記載する方法でおこなう。すなわちサンプリングした混合液の初期のDO値をDOとして5の循環ポンプを作動し、8の空気電磁弁を開き、アスピレータによる曝気を開始し、混合液のBODが処理され酸素消費速度がASactになりDO値が高い位置で平衡になる図1のDO曲線2−1のような変化を示す。DO曲線2−1の終わりで平衡になった点をhighfinalDOとする。ここまでの工程をStep2-1と称す。highfinalDOを取得したあと、8の空気電磁弁を閉じて曝気を止め、混合液のASactによる溶存酸素の消費でDOを低下させると図1のDO曲線2−2のような変化となる。この工程をStep2-2と称す。十分DOが低下したDOの時点から、8の空気電磁弁を開き曝気を再開し、DOが上昇していく変化を測定すると図1のDO曲線2−3のような変化となる。ここまでの工程をStep2-3と称す。DO曲線2−3の実測値の変化とhighfinalDO
と仮定したKabsを使って(4)式のDOをDOに変えて(4)式から計算した計算値が実測値と一致するようにKabsの値をかえて計算を繰返し、最終的に一致するKabsを曝気装置のKabsであるとしてKabsの値を求める。フローチャート−7.と−9.の設定値1と設定値2は、(4)式の計算する際、誤差が少なくなるように十分大きなDOの計算幅をとるためのものである。サンプリングした混合液を曝気し混合液のBODを処理する過程のStep2-1の段階では、初期値DOからhighfinalDOとKabsを使って(4)式で計算した計算値と実測値で囲まれる面積にKabsをかけた値は〔0017〕で記述したようにサンプリングした混合液のBODになる。サンプリング地点を曝気槽出口にすれば、ほぼ処理水BODと同等となる。すなわち、特許文献2ではサンプリング混合液のBODはStep3aで測定するのに対し、本発明では一番先頭のhighfinalDO、Kabs取得のための操作過程のなかでおこなうことで全体の測定時間の短縮を図る。
The next step (hereinafter referred to as Step 2) is a step of obtaining the values of highfinalDO and Kabs and measuring the BOD of the mixed solution, and is a part of flowcharts -3 to -10. Steps 2-1 to 2-3 in FIG. 1 are measurement pattern examples of DO change in this step. In this process, the supply of oxygen from the outside is refused in Patent Document 2, and the rate of decrease in dissolved oxygen due to the oxygen consumption rate of sludge is measured, and the next step (hereinafter referred to as Step 3a) is determined based on the magnitude of this oxygen decrease rate. ) Change the measurement method. In other words, if the rate of decrease is greater than the set value, the sludge is active at a high oxygen consumption rate, so the activity is sufficient, but the BOD of the mixed solution is likely to be unfinished. Select an operation to measure the BOD of the liquid. Conversely, if it is small, the sludge activity is a slow result, and it is to determine whether the sluggish cause is due to a small oxygen consumption rate with no retirement and only breathing, or a sludge is inhibited and the activity is reduced Select the operation to add the reference solution to. The basic values of highfinalDO and Kabs for calculating these measurement results are calculated using numerical values stored in a computer measured in advance. This is based on the premise that activated sludge normally operates MLSS at a constant rate and does not change during short-term operation. However, in actual machines, MLSS is changing, and physical properties such as sludge viscosity change depending on pH conditions and stress conditions on sludge toxicants, etc., and affect the efficiency of aeration devices such as aspirators. Kabs' basic figures are changing. In order to improve the measurement accuracy, it is desirable to measure each time. In the present invention, in Step 2, an operation of measuring highfinal DO and Kabs is performed. The measurement / calculation method in this step is performed by the method described in Patent Document 1. That is, the initial DO value of the sampled mixed liquid is set to DO 0 , the circulation pump of 5 is operated, the air solenoid valve of 8 is opened, aeration by the aspirator is started, the BOD of the mixed liquid is processed, and the oxygen consumption rate becomes ASact. FIG. 1 shows a change like the DO curve 2-1 in FIG. 1 that is balanced at a position where the DO value is high. A point at which equilibrium is reached at the end of the DO curve 2-1 is defined as highfinalDO. The process so far is referred to as Step 2-1. After obtaining highfinalDO, the air solenoid valve 8 is closed to stop aeration, and the DO is reduced by the consumption of dissolved oxygen by the ASact of the mixed solution, resulting in a change as shown by the DO curve 2-2 in FIG. This process is referred to as Step 2-2. From the point of DO 1 at which DO has sufficiently decreased, the air solenoid valve 8 is opened and aeration is resumed, and when the change in which DO increases is measured, a change as shown by DO curve 2-3 in FIG. The process so far is referred to as Step2-3. Changes in measured values of DO curve 2-3 and highfinalDO
Using the assumed Kabs, change DO 0 in equation (4) to DO 1 and change the value of Kabs so that the calculated value calculated from equation (4) matches the measured value. The Kabs value is obtained by regarding the matching Kabs as the Kabs of the aeration apparatus. Flow charts -7 and -9. The set value 1 and the set value 2 are for taking a sufficiently large DO calculation width so as to reduce an error when the equation (4) is calculated. In step 2-1 of the process of aeration of the sampled mixed liquid and processing of BOD of the mixed liquid, the area surrounded by the calculated value and the actual measured value calculated from equation (4) using highfinalDO and Kabs from the initial value DO 0 The value obtained by multiplying by Kabs is the BOD of the sampled mixed solution as described in [0017]. If the sampling point is the aeration tank outlet, it is almost equivalent to the treated water BOD. That is, in Patent Document 2, the BOD of the sampling mixed solution is measured in Step 3a, whereas in the present invention, the entire measurement time is shortened by performing it in the operation process for acquiring the first highfinal DO and Kabs. .

次の工程(以後Step3-1と称す)は基準液を添加して基準液の分解速度から活性を計測する工程であり、フローチャート-11.から-14.の部分である。図1のDO曲線3−1はこの工程でのDO変化の測定パターン例である。Step2-3でKabsを計算後、完全に平衡に達したのち、コンピュータからの指令で、12は基準液の添加ポンプを作動し、測定装置に基準液を添加する。混合液中の活性汚泥により基準液を分解していくDOの変化を測定し、測定データから基準液の分解速度を計測し、汚泥の活性を定量化する。この工程はすべてのサンプリング測定においておこなう。これにより特許文献2ではStep2の傾きにより基準液の添加と混合液のBODの測定を2者択一としているが、本実施例では常に基準液を添加するため、活性が低下しているが分解性のよい処理未了のBODが残存するために生じる活性測定の必要性のあいまいさを回避できる。   The next step (hereinafter referred to as Step 3-1) is a step of measuring the activity from the decomposition rate of the reference solution by adding the reference solution, and is a part of flowcharts 11 to 14. A DO curve 3-1 in FIG. 1 is an example of a measurement pattern of DO change in this step. After calculating the Kabs in Step 2-3, after reaching the complete equilibrium, 12 is operated by the command from the computer, and the reference solution addition pump is operated to add the reference solution to the measuring device. The change of DO which decomposes the reference solution by the activated sludge in the mixed solution is measured, the decomposition rate of the reference solution is measured from the measurement data, and the activity of the sludge is quantified. This process is performed for all sampling measurements. Accordingly, in Patent Document 2, the addition of the reference solution and the measurement of the BOD of the mixed solution are selected by the slope of Step 2, but in this embodiment, the reference solution is always added, so the activity is reduced but the decomposition is performed. It is possible to avoid the ambiguity of the necessity of activity measurement caused by the remaining unprocessed BOD.

次の工程(以後Step3-2と称す)は原水を添加して原水のBODや分解速度を計測する工程であり、フローチャート−15.から−18.の部分である。図1のDO曲線3−2はこの工程でのDO変化の測定パターン例である。   The next step (hereinafter referred to as Step 3-2) is a step of adding raw water and measuring the BOD and decomposition rate of the raw water, and is a part of flowcharts -15. To -18. A DO curve 3-2 in FIG. 1 is an example of a measurement pattern of DO change in this step.

Step2-1で基準液の添加・測定の結果、汚泥の活性が評価できたら、その活性の値によりStep3-2の測定法を判断する。Step3-2は本来は原水を添加し、原水のBODと分解速度を測定する工程であるが、BODを正確に測定するためには最低限汚泥の活性が正常であることが必要である。もし活性が正常範囲であれば13は原水の添加ポンプを作動し原水を添加し、DO変化測定から原水のBODと分解速度が計測でき、原水のBODとともに原水が分解しやすい成分から構成されているかそうでないかなどの原水の性状も判断可能となる。もし汚泥の活性が悪い場合は図3のブロックa群のデータに示すように、測定BODはJISBODより小さくなる。また図6は汚泥の活性と測定BOD/JISBODの関係を示す図である。汚泥の活性が本来の値である場合を1とした場合、汚泥の活性の低下程度が小さいあいだは、分解速度は低下し分解完了までの時間は長くなるが、全体のBODの測定値は保たれ、測定BOD/JISBODの値は1から少し低下した程度に収まる。活性の低下程度が大きくなると、分解が途中で停止したり分解速度が極端に遅くなったりして測定BODの値も低下してくる。どの程度の活性でBOD測定値が低下するかは個々の活性汚泥や原水の性状で異なるが傾向は図6の通りである。このため、活性が設定値3より低下したら原水のBODの測定を省略する。判断する設定値3は予めコンピュータに入力しておくが、具体的な数値は原水BODの測定精度をどこまで求めるかのニーズによる。このような処置を組み込むことで全体の測定時間を短縮できる。   As a result of adding and measuring the reference solution in Step 2-1, if the activity of the sludge can be evaluated, determine the measurement method of Step 3-2 based on the activity value. Step 3-2 is originally a process of adding raw water and measuring the BOD and decomposition rate of the raw water. In order to accurately measure BOD, the sludge activity must be normal at a minimum. If the activity is in the normal range, the raw water addition pump is operated to add the raw water, and the raw water BOD and decomposition rate can be measured from the DO change measurement, and the raw water BOD and the raw water are easily decomposed. The nature of raw water, such as whether or not, can also be judged. If the sludge activity is poor, the measured BOD is smaller than JIS BOD as shown in the data of block a group in FIG. FIG. 6 is a graph showing the relationship between sludge activity and measured BOD / JISBOD. Assuming that the sludge activity is the original value, the degradation rate decreases and the time until the completion of the degradation increases while the sludge activity decrease is small, but the overall measured BOD value is maintained. The measured BOD / JISBOD value falls within the range of a little lower than 1. When the degree of decrease in activity increases, the value of the measured BOD also decreases because the decomposition stops in the middle or the decomposition rate becomes extremely slow. The degree of activity at which the BOD measurement value decreases depends on the properties of each activated sludge and raw water, but the tendency is as shown in FIG. For this reason, if the activity falls below the set value 3, measurement of the raw water BOD is omitted. The set value 3 to be determined is input to the computer in advance, but the specific numerical value depends on the need for the measurement accuracy of the raw water BOD. By incorporating such treatment, the overall measurement time can be shortened.

Step3-2の測定終了後は自動測定モードに設定されていれば、フローチャート−1.に戻り、測定済みの混合液を排水し、新たに曝気槽から混合液をサンプリングして、上記の測定を繰り返す。通常の活性汚泥の場合、処理が良好な場合、上記操作に要する時間はStep1が約50分、Step2が35分、Step3-1が約35分、Step3-2が約60分、合計約3時間程度であるから、約3時間ごとに活性汚泥にきわめて重要な運転指標である原水のBOD、処理水のBOD、汚泥の活性の情報がえられる。原水の測定データから特許文献1の請求項2の手法を使えば原水の分解速度の解析ができ原水成分の分解性までも判断可能である。これらは現在実用化されている連続測定TOD計やCOD計などでは得られない情報である。以上がブロック1の説明である。 If the automatic measurement mode is set after completing the measurement in Step 3-2, return to Flowchart-1, drain the measured mixed solution, sample the mixed solution from the aeration tank, and perform the above measurement. repeat. In the case of normal activated sludge, if the treatment is good, the time required for the above operation is about 50 minutes for Step1, 35 minutes for Step2, 35 minutes for Step3-1, and about 60 minutes for Step3-2, totaling about 3 hours Therefore, information about the BOD of raw water, the BOD of treated water, and the activity of sludge, which are extremely important operation indexes for activated sludge, can be obtained about every 3 hours. If the method of claim 2 of Patent Document 1 is used from the raw water measurement data, the decomposition rate of the raw water can be analyzed, and even the decomposability of the raw water components can be determined. These are pieces of information that cannot be obtained with a continuous measurement TOD meter or COD meter that is currently in practical use. The above is the description of block 1.

次に請求項2に対応する実施例の説明をおこなう。
この工程をStep3-3と称し、フローチャートのブロック2の−20.から−23.の部分である。図1のDO曲線3−3はこの工程でのDO変化の測定パターン例である。
Step3-1の基準液の添加測定の結果、活性が正常範囲であり、Step3-2で原水添加がおこなわれる測定パターンの場合、原水の測定が終了後、Step3-3でさらに再び基準液を添加する。
Next, an embodiment corresponding to claim 2 will be described.
This process is referred to as Step 3-3, and is a part from -20. To -23. DO curve 3-3 in FIG. 1 is an example of a measurement pattern of DO change in this step.
In the case of the measurement pattern in which the activity is within the normal range as a result of the addition measurement of the reference solution in Step3-1 and the raw water is added in Step3-2, after the measurement of the raw water is completed, the reference solution is added again in Step3-3. To do.

もし、原水が活性汚泥に対し毒性をもっていれば、原水添加の前の基準液の添加測定の分解速度と比べ、原水添加後の基準液の添加測定の分解速度は必ず低下し、毒性の程度がつよければ強いほど分解速度は低下する。図1のDO曲線3−1とDO曲線3−3の測定パターンは原水が強い毒性を示す場合のパターン例であり、DO曲線3−3のDO変化はDO曲線3−1のDO変化と較べ、DO低下幅は小さく測定終了時間が長い図のような扁平な形状となる。   If the raw water is toxic to activated sludge, the decomposition rate of the addition measurement of the reference solution after the addition of the raw water always decreases compared to the decomposition rate of the addition measurement of the reference solution before the addition of the raw water, and the degree of toxicity The stronger the strength, the lower the degradation rate. The measurement pattern of DO curve 3-1 and DO curve 3-3 in FIG. 1 is a pattern example when raw water shows strong toxicity. The DO change of DO curve 3-3 is compared with the DO change of DO curve 3-1. The DO reduction width is small, and the flat shape as shown in the figure is long.

毒性とは活性を阻害することであるから、原水添加の前後の基準液の分解速度を比較することで、原水の毒性の強度を評価できる。これは化学プラント廃水のようにいろいろ種類の廃水から構成され、なかには難分解性の廃水や単独では毒性のある廃水から構成される原水に対しては非常に有意義な情報となる。もちろん例えば食品廃水のように無害な廃水ばかりで構成される原水の場合には測定時間短縮のため省略してもよい。しかし、その様な原水の場合でもトラブルなどで消毒液などが混入する可能性がある場合には原水の毒性をチェックできることは有意義である。 Toxicity is to inhibit the activity, so the toxicity intensity of the raw water can be evaluated by comparing the decomposition rate of the reference solution before and after the addition of the raw water. This is composed of various types of waste water such as chemical plant waste water, and it is very useful information for raw water composed of hardly decomposable waste water or toxic waste water alone. Of course, in the case of raw water composed only of harmless waste water such as food waste water, it may be omitted for shortening the measurement time. However, even in the case of such raw water, it is meaningful that the toxicity of the raw water can be checked if there is a possibility that a disinfectant solution may be mixed due to troubles.

次に請求項3に対応する実施例の説明をおこなう。本実施例は混合液をサンプリングするStep1の工程の関する事項であり、フローチャートのブロック3の−24.から−31.の部分である。   Next, an embodiment corresponding to claim 3 will be described. The present embodiment relates to the Step 1 step of sampling the mixed solution, and is a portion from -24. To -31.

Step1でサンプリングした混合液のBODを処理し、highfinalDOを取得するStep2-1で、もし、サンプリングした混合液に処理未了のBODが多量に含まれる場合には、Step2-1に要する時間が大変長くなってしまう。曝気槽での処理未了は原水のBOD負荷オーバーなどで実機では往々にしておきる可能性のあるものである。そのような場合にはStep2-1に要する時間が著しく長くなる場合があり、それにつれ1サイクルに要する全体の時間も著しく長くなり、活性汚泥を実質連続的に測定するという要件を満足できなくなる。ブロック3はこの事態を回避する方法に関する。   Process the BOD sampled in Step 1 and obtain highfinalDO. In Step 2-1, if the sampled mixture contains a large amount of unprocessed BOD, the time required for Step 2-1 is very long. It will be long. The incomplete treatment in the aeration tank may often occur in the actual machine due to the BOD overload of the raw water. In such a case, the time required for Step 2-1 may be significantly increased, and accordingly, the total time required for one cycle is also significantly increased, and the requirement for measuring activated sludge substantially continuously cannot be satisfied. Block 3 relates to a method to avoid this situation.

Step2-1で曝気開始からフローチャート−5のhighfinalDOを取得するまでの時間tsをフローチャート−31.で計測しておく。1サイクルの測定が終わり、新たな混合液をサンプリングを始めるときに、コンピュータに記憶してある最大測定許容時間tcよりtsが小さい場合はブロック1のフローで全量新たな混合液をチャージするが、tcよりtsが大きい場合、測定済みの混合液の一部を残し、残りの分を新たな混合液で置換して測定装置にチャージする。フローチャート−24.から−30.には置換・混合チャージの方法例を示す。置換率(=新たな混合液量/全体の混合液量)はtsとtcで計算し、例えば最も簡単な計算例としては、測定済み混合液量:新たな混合液量=(ts−tc):tcの比例関係から求められる。tsがtcの2倍であれば、測定済み混合液を50%、新たな混合液を50%とする。測定済み混合液のBODはほぼ0mg/lであるから全体としてはチャージした混合液のBODは新たな混合液の1/2になり、BODの分解時間もほぼ1/2になり、tc程度の時間でStep2-1の測定が終了する。測定済み混合液量が計算されれば、計量容器を減圧にして、連通電磁弁を開いて、測定装置から計量容器で測定済み混合液を移送する。移送量は計量容器の圧力を操作することで任意の量を移送できる。移送後残りの測定済み混合液を排水し、計量容器から測定済み混合液を測定装置に戻す。その後、連通電磁弁を閉じ、計量容器を減圧にして、サンプリング電磁弁を開き曝気槽から新たな混合液を計量容器に吸引する。吸引量は計算された新たな混合液量にしたがって、真空ポンプやサンプリング電磁弁の作動をコンピュータで制御して計量容器の吸引前後の圧力を操作することにより任意の量をサンプリングできる。計量した新たな混合液は大気開放電磁弁と連通電磁弁を開いて測定装置に移送する。こうすることでStep2-1の測定を短縮することができる。新たな混合液のBODは置換率にしたがって逆算すれば求めることができる。Step3-1の基準液添加による活性測定においては新たな混合液は全量ではないため、もし活性が変化していれば、その変化量は全量置換の場合より小さな変化となる。ニーズにしたがって、この変化をそのまま測定値としてもよいし、変化量を置換率で逆算して新たな混合液単独の活性として求めることもできる。Step3-2の原水の測定では、混合汚泥でも活性が正常であれば測定値に影響はなく、正常に測定できる。Step3-3の基準液添加においての原水の毒性評価では、Step3-1とStep3-3の相対値の比較なので、混合汚泥でも測定値にはほとんど影響しない。   In Step 2-1, the time ts from the start of aeration until obtaining highfinalDO in Flowchart-5 is measured in Flowchart-31. When one cycle of measurement is completed and sampling of a new mixed solution is started, if ts is smaller than the maximum measurement allowable time tc stored in the computer, the entire amount of the new mixed solution is charged in the flow of block 1, When ts is larger than tc, a part of the measured liquid mixture is left, the remaining part is replaced with a new liquid mixture, and the measuring device is charged. Flow charts -24. To -30. Show examples of replacement and mixed charge methods. The substitution rate (= new mixed liquid volume / total mixed liquid volume) is calculated by ts and tc. For example, as the simplest calculation example, measured mixed liquid volume: new mixed liquid volume = (ts−tc) : Calculated from the proportional relationship of tc. If ts is twice tc, the measured mixture is 50% and the new mixture is 50%. Since the BOD of the measured mixed liquid is almost 0 mg / l, the BOD of the charged mixed liquid is ½ of the new mixed liquid as a whole, and the decomposition time of the BOD is also halved, which is about tc. The measurement of Step2-1 is completed in time. When the measured mixed liquid amount is calculated, the measuring container is depressurized, the communication solenoid valve is opened, and the measured mixed liquid is transferred from the measuring device to the measuring container. An arbitrary amount can be transferred by manipulating the pressure of the measuring container. After the transfer, the remaining measured liquid mixture is drained, and the measured liquid mixture is returned from the measuring container to the measuring device. Thereafter, the communication solenoid valve is closed, the measuring container is depressurized, the sampling solenoid valve is opened, and a new mixed liquid is sucked into the measuring container from the aeration tank. The suction amount can be sampled in accordance with the calculated new liquid mixture amount by controlling the operation of the vacuum pump and sampling solenoid valve with a computer and operating the pressure before and after the suction of the measuring container. The measured new mixed liquid is transferred to the measuring device by opening the open-air solenoid valve and the communication solenoid valve. By doing so, the measurement in Step 2-1 can be shortened. The BOD of the new mixed solution can be obtained by calculating backward according to the substitution rate. In the activity measurement by adding the reference solution in Step 3-1, the new mixed solution is not the total amount, so if the activity has changed, the amount of change will be smaller than in the case of the total amount replacement. According to needs, this change may be used as a measured value as it is, or the amount of change can be calculated back by the substitution rate and obtained as the activity of a new mixed solution alone. In the measurement of raw water in Step 3-2, even if mixed sludge is normal, the measured value is not affected and can be measured normally. In the toxicity evaluation of raw water with the addition of the standard solution in Step 3-3, since the relative values of Step 3-1 and Step 3-3 are compared, mixed sludge has little effect on the measured value.

Step3-1やStep3-3で添加する基準液とは、活性汚泥の原水のBODを分解する能力を評価するための基準となる成分組成が一定の添加液である。一般に活性汚泥は培養環境により性質が異なるため、基準液は該当の活性汚泥にあった液を選定する必要がある。基準液が基準液として使用できる必要条件は、
(1)原水の分解速度の変化と基準液の分解速度の変化に相関があること。
(2)変化を精度よく計算できる十分大きな分解速度があること。
であり、原水の成分に変動がない場合には、原水そのものが基準液として使用できる。ま
た原水の成分に変動がある場合は、原水中の主要成分を人工的に合成した液が使用できる
可能性があり、また活性汚泥の微生物代謝活動に共通に資する物質、例えば酢酸などの基
礎的物質を合成した液も使用できる可能性がある。これらの液のどれが最も(1)(2)の条件に適合するかは、条件を変えて基準液候補と原水の分解性の実測から選定し、以後はいつも同じ基準液を使用する。
The reference solution added in Step 3-1 or Step 3-3 is an additive solution having a constant component composition as a reference for evaluating the ability to decompose the BOD of raw water of activated sludge. Since activated sludge generally has different properties depending on the culture environment, it is necessary to select a liquid that matches the corresponding activated sludge. The requirement that the reference solution can be used as a reference solution is
(1) There is a correlation between the change in the decomposition rate of the raw water and the change in the decomposition rate of the reference solution.
(2) There is a sufficiently large decomposition rate that can calculate the change accurately.
If the components of the raw water are not changed, the raw water itself can be used as the reference solution. If there are fluctuations in the components of the raw water, it may be possible to use a solution obtained by artificially synthesizing the main components in the raw water, and basic substances such as acetic acid that contribute to the microbial metabolic activity of activated sludge. There is a possibility that a liquid synthesized with the substance can also be used. Which of these liquids best meets the conditions (1) and (2) is selected based on actual measurement of decomposability of the reference liquid candidate and raw water by changing the conditions, and the same reference liquid is always used thereafter.

一般に原水や基準液は複数の成分から構成されているため、活性汚泥での分解速度BODactは前述のように分解対象の成分が変わるため経時的に変化する。したがって比較するにはどの時点の分解速度を比較対象にするかを規定する必要がある。DOの変化測定データから分解速度を計算するとき、多くの場合、いくつかの主要成分を分解していくとき分解速度に応じて曝気による酸素供給速度とバランスするDOが一定の部分をいくつか経由し、残りの少ない成分や主成分の中間生成物などが分解する過程は明確な階段状の変化ではなだらかな変化で上昇し、最終的に活性汚泥のASactによる酸素消費速度と曝気による酸素供給速度とバランスするhighfinalDOの値に収束する。   Generally, since raw water and a reference solution are composed of a plurality of components, the decomposition rate BODact in activated sludge changes with time because the components to be decomposed change as described above. Therefore, for comparison, it is necessary to define at what time the decomposition rate is to be compared. When calculating the decomposition rate from DO change measurement data, in many cases, when decomposing some main components, depending on the decomposition rate, the oxygen supply rate by aeration is balanced through several parts where DO is constant However, the process of decomposition of the remaining components and the intermediate product of the main component rises with a gentle change with a clear step-like change, and finally the oxygen consumption rate by activated sludge by ASact and the oxygen supply rate by aeration And converge to a highfinalDO value that balances.

図7はこの過程のDO変化のパターン例を示す。図7のDO測定曲線は図2の2の実線の曲線とは初期値DOが高いhighfinalDO値からスタートする場合の形状の違いである。活性汚泥は種々の微生物の集合体であるため、活性が変化した場合、すべての成分の分解速度が均等に変化するとは限らない。一方で原水の成分組成も変化するため成分ごとに比較するのは極めて大変な作業となる。このため、マクロ的な把握の仕方が実用的で、例えば全体のBODの50%を分解するまでの平均分解速度を指標にする。BODの分解率を大きくすればするほど、分解力を評価する指標としては理に適っているが、測定上の誤差も大きくなり、また少量の分解性の遅い成分量のわずかな変動で測定終了時間が大きく左右されるので、成分変動によるバラツキが不必要に大きくなり、測定上の誤差も大きくなる。一方添加直後の最大分解速度は、変化を敏感に捉えることができるが、原水成分中の最も分解性の早い成分による寄与が非常に大きいので、その成分を選択的に分解する微生物のみの活性を評価する危険性がある。それに対し50%程度を分解するまでには原水中のいろいろな成分を分解する微生物の平均的な活性が寄与することになるので、一般的には50%程度の分解までの平均分解速度を指標にするのが適当である。もちろん原水の性質によっては最大分解速度を指標にしたり、分解性の悪い成分の分解性を重視する場合は分解率の大きい平均分解速度を指標にする場合もある。 FIG. 7 shows a pattern example of DO change in this process. The DO measurement curve in FIG. 7 is different from the solid curve in FIG. 2 in the case where the initial value DO 0 starts from a high highfinal DO value. Since activated sludge is an aggregate of various microorganisms, when the activity changes, the decomposition rate of all components does not always change evenly. On the other hand, since the component composition of raw water also changes, it is extremely difficult to compare each component. For this reason, a macro way of grasping is practical. For example, an average decomposition rate until 50% of the entire BOD is decomposed is used as an index. The larger the BOD decomposition rate, the more reasonable it is as an index for evaluating the decomposition power, but the measurement error also increases, and the measurement ends with a small amount of a small amount of slowly decomposable components. Since time is greatly affected, variation due to component fluctuations becomes unnecessarily large, and measurement errors also increase. On the other hand, the maximum degradation rate immediately after addition can be sensitive to changes, but the contribution of the fastest degradable component in the raw water component is very large, so the activity of only microorganisms that selectively degrade the component is limited. There is a risk of evaluation. On the other hand, the average activity of microorganisms that decompose various components in the raw water contributes until about 50% decomposition, so generally the average decomposition rate up to about 50% decomposition is an index. Is appropriate. Of course, depending on the nature of the raw water, the maximum decomposition rate may be used as an index, and when importance is attached to the decomposability of components having poor degradability, the average decomposition rate having a large decomposition rate may be used as an index.

DO測定データから、ある値の分解率までの平均分解速度の計算方法は以下のようにして計算することができる。図7のDO変化曲線において添加開始から分解終了までのDO変化曲線とDO0を初期値とする(4)式で計算される曲線(以後、仮想DO曲線1と称す)で囲まれた面積にKabsをかけた値が全BOD値(以後BODtと称す)である。仮想DO曲線は初期値DO0がhighfinalDO値の場合は、highfinalDO値で一定の直線となる。これに対し、ある時間までに分解されたBODは、その時点でBODが0mg/lになったとすれば、そのDO変化曲線は、その時点のDO測定値を初期値DO2としてhighfinalDOとKabsを使って(4)式で計算される曲線(以後、仮想DO曲線2と称す)になる。したがって添加開始からその時点までのDO変化曲線と仮想DO曲線1と仮想DO曲線2で囲まれた面積にKabsを掛けた値がその時点までのBOD(以後BODpと称す)になる。100×BODp/BODtが該当の分解率になる時点をtpとすれば、BODp/tpが該当の分解率までの平均分解速度となる。また特許文献1の請求項2には微生物の分解速度を区間ごとに物質濃度によらず微生物の活性のみで決まるものとして分解対象物質濃度の0次反応として解析する手法を示しており、この手法を使えば、特定のポイントの分解速度を比較対象にすることも可能である。 The calculation method of the average decomposition rate from the DO measurement data to a certain decomposition rate can be calculated as follows. In the DO change curve in FIG. 7, the area surrounded by the DO change curve from the start of addition to the end of decomposition and the curve (hereinafter referred to as virtual DO curve 1) calculated by equation (4) with DO 0 as the initial value. The value multiplied by Kabs is the total BOD value (hereinafter referred to as BODt). When the initial value DO 0 is a highfinalDO value, the virtual DO curve becomes a straight line with the highfinalDO value. On the other hand, if the BOD decomposed by a certain time reaches 0 mg / l at that time, the DO change curve shows the highfinal DO and Kabs with the DO measurement value at that time as the initial value DO 2. It becomes a curve (hereinafter referred to as a virtual DO curve 2) calculated by the equation (4). Therefore, the value obtained by multiplying the area surrounded by the DO change curve, the virtual DO curve 1 and the virtual DO curve 2 from the start of addition to Kas by the Kabs is the BOD up to that point (hereinafter referred to as BODp). If the time when 100 × BODp / BODt reaches the relevant decomposition rate is tp, BODp / tp is the average decomposition rate up to the relevant decomposition rate. Further, claim 2 of Patent Document 1 shows a method for analyzing the decomposition rate of microorganisms as a zero-order reaction of the concentration of a substance to be decomposed, as determined only by the activity of the microorganisms for each section, regardless of the substance concentration. Can be used to compare the decomposition rate of a specific point.

活性の定義は汚泥が原水のBODを分解する能力の大きさであり、能力は分解速度の大きさで代表でき、基準液の分解速度は原水の分解速度と相関があることとしているので、基準液の分解速度から計算する。分解速度は絶対値であるが、活性汚泥が種々雑多な微生物群から構成され、装置の特性や運転条件等で微生物群そのものも変化する可能性があり、該当の活性汚泥の最大の分解速度は、ある条件下における最大値であり、基本的な条件変更があれば最高値は変化する可能性がある。したがって分解速度の絶対値で活性を定量化するよりも、現在の基本的条件下でのありうる最大の分解速度に対する比で表わすほうが管理しやすく、活性度=分解速度/最大の分解速度と定義すれば、活性度は通常0から1の範囲となり、管理しやすい。   The definition of activity is the size of the ability of sludge to decompose BOD of raw water, the ability can be represented by the size of the decomposition rate, and the decomposition rate of the reference solution is correlated with the decomposition rate of the raw water. Calculate from the decomposition rate of the liquid. Although the decomposition rate is an absolute value, the activated sludge is composed of various microbial groups, and the microbial group itself may change depending on the characteristics and operating conditions of the equipment. The maximum decomposition rate of the corresponding activated sludge is This is the maximum value under certain conditions, and the maximum value may change if there are basic condition changes. Therefore, rather than quantifying activity with the absolute value of the degradation rate, it is easier to manage it as a ratio to the maximum possible degradation rate under the current basic conditions, defined as activity = degradation rate / maximum degradation rate. In this case, the activity is usually in the range of 0 to 1 and is easy to manage.

次に分解反応が終了したかどうかの判定法について述べる。フローチャートでも−4,−13,−17,−21で分解反応が終了したかどうかの判定が必要である。この判定方法には活性汚泥の微生物反応の特徴を利用する。通常、廃液を添加すると分解反応により図7のDO測定曲線ように廃液中の主要成分の分解進行により、いくつかの階段状の変化を経て、反応終了近くになるとスロープ上に上昇し、最終的にhighfinalDO付近でほとんど一定になる変化をする。したがって、DO値がhighfinalDO付近でほとんど一定になれば反応が終了したと判断できる。これをコンピュータ上で実現するには測定時の数分前からの数点のDO測定値から回帰直線の傾きβを計算するとβはDOの上昇変化速度となるので、予めコンピュータに記憶しているDOの上昇変化速度の最小許容値である設定値5と比較し、
β<設定値5 and DO≒highfinalDO
の条件で判定できる。
Next, a method for determining whether or not the decomposition reaction has been completed will be described. Even in the flowchart, it is necessary to determine whether or not the decomposition reaction is completed at -4, -13, -17, and -21. This determination method uses the characteristics of the microbial reaction of activated sludge. Normally, when the waste liquid is added, the decomposition reaction progresses as shown in the DO measurement curve of FIG. 7 due to the decomposition of the main components in the waste liquid. It changes almost constant around highfinalDO. Therefore, it can be determined that the reaction is completed when the DO value becomes almost constant around highfinalDO. In order to realize this on a computer, if the slope β of the regression line is calculated from several DO measurement values from several minutes before the measurement, β becomes the DO change rate, and is stored in the computer in advance. Compared with the set value 5 which is the minimum allowable value of the DO change rate,
β <set value 5 and DO ≒ highfinalDO
It can be judged under the following conditions.

ここに、highfinalDO付近の付近の意味は、highfinalDOを取得した時点の活性汚泥の状態とは必ずしも同じでないための処置である。例えば、Step2-1でhighfinalDOを取得した時点では混合液のBODが0mg/lであるとしたが、厳密には測定精度以下の分解速度以下の遅いBOD成分の分解もある。また廃液の添加で汚泥の性質が変わる可能性のあることも考慮した処置である。実用上は、分解反応はKabs=0.3[1/min]、highfinalDO=6.0[mg/l]のとき、反応は、概ねhighfinalDO-0.5以上になるとDOの上昇はほとんどの場合スロープ状になるので、この点を図7のDOに示す値とすれば、<設定値5 and DO>DOのような設定で判定可能である。 Here, the meaning in the vicinity of highfinalDO is a measure for not necessarily being the same as the state of activated sludge at the time of obtaining highfinalDO. For example, although the BOD of the mixed solution is 0 mg / l at the time when highfinalDO is acquired in Step 2-1, strictly speaking, there is also the decomposition of a slow BOD component that is lower than the decomposition accuracy below the measurement accuracy. It is also a treatment that takes into account the possibility of changing the properties of sludge by adding waste liquid. In practical use, when the decomposition reaction is Kabs = 0.3 [1 / min] and highfinalDO = 6.0 [mg / l], the reaction is generally highfinDO-0.5 or higher, so the DO increase is almost sloped. if the value indicating the points DO L in FIG. 7, it can be determined by setting such as <setpoint 5 and DO> DO L.

本発明は活性汚泥のみならず、接触酸化法や生物ろ過法や担体の微生物を保持する流動層法などの他の好気性微生物を利用する廃水処理法でも浮遊微生物を部分的にでも利用する廃水処理であれば適用できる。   The present invention is not limited to activated sludge, but also wastewater treatment methods that utilize aerobic microorganisms such as catalytic oxidation method, biological filtration method, fluidized bed method that retains carrier microorganisms, and wastewater that partially uses suspended microorganisms. Any process can be applied.

本発明の測定における基本操作とDO変化を表すパターン例である。It is an example of a pattern showing basic operation and DO change in the measurement of the present invention. 本発明の基礎となる計算原理を説明する図である。It is a figure explaining the calculation principle used as the foundation of the present invention. 本発明の基礎となる計算原理による測定法によるBODの値とJIS法のBODの値を比較する図である。It is a figure which compares the value of BOD by the measuring method by the calculation principle used as the foundation of this invention, and the value of BOD of JIS method. 本発明の測定装置の具体例を示すフローシートである。It is a flow sheet which shows the example of the measuring device of the present invention. 本発明の測定装置の作動を説明するフローチャートである。It is a flowchart explaining the action | operation of the measuring apparatus of this invention. 本発明の測定法によるBODの値と活性汚泥の活性との関係を示す図である。It is a figure which shows the relationship between the value of BOD by the measuring method of this invention, and the activity of activated sludge. 本発明の測定装置によるDO測定パターン例である。It is an example of DO measurement pattern by the measuring apparatus of this invention.

符号の説明Explanation of symbols

3 曝気容器
4 測定容器
5、12、13 ポンプ
6 曝気装置
7 空気流量計
8、14、20〜24 電磁弁
9 溶存酸素計電極
10 ヒータ
11 冷却用熱交換パイプ
15 溶存酸素計
16 制御盤
17 コンピュータ
18 計量容器
19 真空ポンプ
25 温度センサー
26 圧力計センサー
3 Aeration vessel 4 Measurement vessel 5, 12, 13 Pump 6 Aeration device 7 Air flow meter 8, 14, 20-24 Solenoid valve
9 Dissolved oxygen meter electrode 10 Heater 11 Heat exchange pipe 15 for cooling 15 Dissolved oxygen meter 16 Control panel 17 Computer 18 Measuring container 19 Vacuum pump 25 Temperature sensor 26 Pressure gauge sensor

Claims (4)

好気性微生物を利用する廃水処理における運転評価方法であって、
曝気槽からサンプリングした廃水と活性汚泥を含む混合液を曝気して、混合液中の溶存酸素濃度の変化曲線(以下、DO曲線2−1という)及び混合液中のBOD分解後の酸素供給速度と混合液の酸素消費速度とのバランス点における溶存酸素濃度(以下、highfinalDOという)を測定し、
次に曝気を停止して溶存酸素濃度を低下させた後に、曝気を再開したときの溶存酸素濃度変化曲線(以下、DO曲線2−3という)を測定し、
DO曲線2−3およびhighfinalDOに基づいて酸素供給手段における物質移動係数(以下、Kabsという)を演算し、さらにDO曲線2−1及びhighfinalDOとKabsに基づいて混合液のBODを取得し、
次に成分組成一定の基準液を混合液に添加して、その後の溶存酸素濃度変化及びhighfinalDOとKabsに基づいて前記基準液の分解速度を求めることにより、混合液中の活性汚泥の活性を取得し、
活性が予め定めた設定値より大きい場合には、前記基準液の分解終了後に原水を添加して、その後の溶存酸素濃度変化及びhighfinalDOとKabsに基づいて原水のBODを演算し、
以上のサイクルを繰返し行うことにより、混合液のBOD、混合液中の活性汚泥の活性、原水のBODを実質的に連続的評価することを特徴とする廃水処理における運転評価方法。
An operation evaluation method in wastewater treatment using aerobic microorganisms,
The mixed solution containing the wastewater and activated sludge sampled from the aeration tank is aerated, the change curve of dissolved oxygen concentration in the mixed solution (hereinafter referred to as DO curve 2-1) and the oxygen supply rate after BOD decomposition in the mixed solution Measure the dissolved oxygen concentration (hereinafter referred to as highfinalDO) at the balance point between the oxygen consumption rate of the liquid mixture and
Next, after aeration was stopped to reduce the dissolved oxygen concentration, a dissolved oxygen concentration change curve (hereinafter referred to as DO curve 2-3) when aeration was resumed was measured.
Calculate the mass transfer coefficient (hereinafter referred to as Kabs) in the oxygen supply means based on the DO curve 2-3 and highfinalDO, and further obtain the BOD of the mixture based on the DO curve 2-1, highfinalDO and Kabs,
Next, add a reference solution with a constant component composition to the mixture, and then obtain the activity of the activated sludge in the mixture by determining the decomposition rate of the reference solution based on the changes in dissolved oxygen concentration and highfinalDO and Kabs. And
If the activity is greater than a preset value, add raw water after the decomposition of the reference solution, calculate the BOD of the raw water based on the subsequent dissolved oxygen concentration change and highfinalDO and Kabs,
An operation evaluation method in wastewater treatment characterized by substantially continuously evaluating the BOD of a mixed solution, the activity of activated sludge in the mixed solution, and the BOD of raw water by repeating the above cycle.
請求項1において、さらに、原水を添加して分解終了後に再度前記基準液を添加し、原水添加前後の基準液の分解速度を比較することにより、原水の活性汚泥に対する毒性を評価することを特徴とする廃水処理運転評価方法。 2. The toxicity of raw water to activated sludge is further evaluated by adding raw water and adding the reference solution again after completion of decomposition, and comparing the decomposition rate of the reference solution before and after the addition of raw water. Wastewater treatment operation evaluation method. 請求項1又は2において、直前のサイクルにおける曝気開始からhighfinalDO取得までの時間(ts)が、予め定めた最大測定許容時間(tc)より大きい場合には、測定対象液を全量新たな混合液にするのではなく、ts−tcの大きさに応じた量の測定済み混合液を残し、測定済み混合液と新たな混合液の混合物を以って、当該サイクルの測定対象とすることを特徴とする廃水処理運転評価方法。 In Claim 1 or 2, when the time (ts) from the start of aeration to acquisition of highfinalDO in the immediately preceding cycle is greater than a predetermined maximum allowable measurement time (tc), the entire amount of the liquid to be measured is changed to a new mixed liquid. Rather than leave the measured mixed liquid in an amount corresponding to the size of ts-tc, and use the mixture of the measured mixed liquid and the new mixed liquid as the measurement target of the cycle, Wastewater treatment operation evaluation method. 好気性微生物を利用する廃水処理における運転評価装置であって、
サンプリングした廃水と活性汚泥を含む混合液を曝気して、混合液中の溶存酸素濃度の変化曲線(以下、DO曲線2−1という)及び混合液中のBOD分解後の、酸素供給速度と混合液の酸素消費速度とのバランス点における溶存酸素濃度(以下、highfinalDOという)を測定する手段と、
曝気を停止して溶存酸素濃度を低下させた後に、曝気を再開したときの溶存酸素濃度変化曲線(以下、DO曲線2−3という)を測定する手段と、
DO曲線2−3およびhighfinalDOに基づいて酸素供給手段における物質移動係数(以下、Kabsという)を演算し、さらにDO曲線2−1及びhighfinalDOとKabsに基づいて混合液のBODを取得する手段と、
成分組成一定の基準液を混合液に添加して、その後の溶存酸素濃度変化及びhighfinalDOとKabsに基づいて前記基準液の分解速度を求めることにより、混合液中の活性汚泥の活性を取得する手段と、
活性が予め定めた設定値より大きい場合には、前記基準液の分解終了後に原水を添加して、その後の溶存酸素濃度変化及びhighfinalDOとKabsに基づいて原水のBODを演算する手段と、
を備えて成ることを特徴とする廃水処理における運転評価装置。
An operation evaluation apparatus for wastewater treatment using aerobic microorganisms,
Mixing the sampled wastewater and the activated sludge mixed solution, aeration curve of dissolved oxygen concentration in the mixed solution (hereinafter referred to as DO curve 2-1) and oxygen supply rate and mixing after decomposition of BOD in the mixed solution Means for measuring the dissolved oxygen concentration (hereinafter referred to as highfinalDO) at a balance point with the oxygen consumption rate of the liquid;
Means for measuring a dissolved oxygen concentration change curve (hereinafter referred to as DO curve 2-3) when aeration is resumed after stopping aeration and reducing the dissolved oxygen concentration;
Means for calculating a mass transfer coefficient (hereinafter referred to as Kabs) in the oxygen supply means based on the DO curve 2-3 and highfinalDO, and further obtaining a BOD of the mixed solution based on the DO curve 2-1, highfinalDO and Kabs;
Means for obtaining the activity of activated sludge in the mixed solution by adding a reference solution having a constant component composition to the mixed solution and then determining the decomposition rate of the reference solution based on the change in dissolved oxygen concentration and highfinal DO and Kabs. When,
When the activity is larger than a predetermined set value, after adding the raw water after the decomposition of the reference solution, a means for calculating the BOD of the raw water based on the subsequent dissolved oxygen concentration change and highfinalDO and Kabs;
A device for evaluating operation in wastewater treatment, comprising:
JP2004267490A 2004-09-14 2004-09-14 Wastewater treatment measuring method Pending JP2006084240A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004267490A JP2006084240A (en) 2004-09-14 2004-09-14 Wastewater treatment measuring method
PCT/JP2004/015172 WO2006030538A1 (en) 2004-09-14 2004-10-14 Method of wastewater treatment measurement and wastewater treatment measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004267490A JP2006084240A (en) 2004-09-14 2004-09-14 Wastewater treatment measuring method

Publications (1)

Publication Number Publication Date
JP2006084240A true JP2006084240A (en) 2006-03-30

Family

ID=36059805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004267490A Pending JP2006084240A (en) 2004-09-14 2004-09-14 Wastewater treatment measuring method

Country Status (2)

Country Link
JP (1) JP2006084240A (en)
WO (1) WO2006030538A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102494970A (en) * 2011-11-09 2012-06-13 中国矿业大学 Method and device for testing liquid surface forced evaporation mass transfer coefficients
JP2012157807A (en) * 2011-01-31 2012-08-23 Naoyuki Suzuki Method for treating processed liquid
JP2016022445A (en) * 2014-07-23 2016-02-08 株式会社アイザック Method for determining hindrance to organisms
JP7122486B1 (en) * 2022-04-22 2022-08-19 株式会社 小川環境研究所 Method for measuring BOD of treated water of activated sludge

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550547B2 (en) * 2004-10-25 2010-09-22 株式会社 小川環境研究所 Wastewater treatment measurement method and apparatus
JP4429315B2 (en) * 2006-06-16 2010-03-10 株式会社 小川環境研究所 Liquid mixture analysis method in wastewater treatment
CN102944658B (en) * 2012-11-28 2015-03-18 广州中国科学院沈阳自动化研究所分所 Method for analyzing biotoxicity of sewage based on system dissolved oxygen concentration
CN113588765B (en) * 2021-07-27 2022-07-08 南京大学 Method for evaluating biodegradability of soluble organic nitrogen in wastewater and application of method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157807A (en) * 2011-01-31 2012-08-23 Naoyuki Suzuki Method for treating processed liquid
CN102494970A (en) * 2011-11-09 2012-06-13 中国矿业大学 Method and device for testing liquid surface forced evaporation mass transfer coefficients
CN102494970B (en) * 2011-11-09 2013-08-21 中国矿业大学 Method and device for testing liquid surface forced evaporation mass transfer coefficients
JP2016022445A (en) * 2014-07-23 2016-02-08 株式会社アイザック Method for determining hindrance to organisms
JP7122486B1 (en) * 2022-04-22 2022-08-19 株式会社 小川環境研究所 Method for measuring BOD of treated water of activated sludge

Also Published As

Publication number Publication date
WO2006030538A1 (en) 2006-03-23

Similar Documents

Publication Publication Date Title
EP3222590B1 (en) Method for controlling aeration airflow in activated sludge
KR20150096407A (en) Optimized process and aeration performance with an advanced control algorithm
JP5833791B1 (en) Aeration control method for activated sludge
JP2006084240A (en) Wastewater treatment measuring method
KR101016394B1 (en) Real-time wastewater composition analyzer using a rapid microbial respiration detector, ss and ec combined sensing system and its measuring method
JP2005103338A (en) Operation controller of nitrogen removal system
JP2017127813A (en) Water treatment system
JP2001255319A (en) Test method for wastewater treatment
JP4208154B2 (en) BOD measuring method and apparatus
JP2010029771A (en) Method for estimating water quality and biological treatment method
JP2010155189A (en) Water treatment method and apparatus
JP2009214037A (en) Water treatment method and apparatus
JP4550547B2 (en) Wastewater treatment measurement method and apparatus
JP3058414B1 (en) Water treatment equipment
KR100247321B1 (en) Method and apparatus optimizing the process of sequencing batch reactor for analyzing specific oxygen uptake rate and nitrate nitrogen by real time on-line measurement at the biological wastewater treatment process
Orupold et al. Estimation of treatability of different industrial wastewaters by activated sludge oxygen uptake measurements
JP3301427B2 (en) Wastewater treatment test method
JP3585905B2 (en) Test method for activated sludge activity and wastewater degradability
JP7407634B2 (en) Water treatment equipment and water treatment method
JP5801506B1 (en) Operation method of biological denitrification equipment
JP2021151646A (en) Water treatment apparatus and water treatment method
JP2952282B1 (en) Wastewater treatment control method
JP4552393B2 (en) Biological water treatment facility operation support device
JP2016007577A (en) Sludge conversion rate-finding method, and measuring apparatus
JP3814936B2 (en) Method for evaluating nitrification inhibition of activated sludge

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061218