JP2010029771A - Method for estimating water quality and biological treatment method - Google Patents
Method for estimating water quality and biological treatment method Download PDFInfo
- Publication number
- JP2010029771A JP2010029771A JP2008193722A JP2008193722A JP2010029771A JP 2010029771 A JP2010029771 A JP 2010029771A JP 2008193722 A JP2008193722 A JP 2008193722A JP 2008193722 A JP2008193722 A JP 2008193722A JP 2010029771 A JP2010029771 A JP 2010029771A
- Authority
- JP
- Japan
- Prior art keywords
- treated water
- biological treatment
- water
- value
- nitrogen concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
本発明は、水質予測方法と生物処理方法とに関し、より詳しくは、有機成分及び窒素成分を含有する被処理水が生物処理された後の処理水の水質を予測する水質予測方法と、有機成分及び窒素成分を含有する被処理水が生物処理された後の処理水の水質を予測しつつ前記生物処理を実施する生物処理方法とに関する。 The present invention relates to a water quality prediction method and a biological treatment method, and more specifically, a water quality prediction method for predicting the water quality of treated water after biological treatment of water to be treated containing an organic component and a nitrogen component, and an organic component And a biological treatment method for carrying out the biological treatment while predicting the quality of the treated water after the treated water containing a nitrogen component has been biologically treated.
従来、工場廃水など処理対象となる水(被処理水)に含まれている有機成分、窒素成分、及びリン成分などの処理対象物質を細菌の作用によって除去する生物学的な水処理が実施されており、この生物処理は、通常、処理後に系外に排出する処理水に含まれる窒素やリンが所定濃度以下となるように制御されて実施されている。また、有機成分については、生物化学的酸素要求量(BOD)の値などによって管理されており、処理水のBODが所定の値以下となるように制御がなされている。 Conventionally, biological water treatment has been performed to remove substances to be treated such as organic components, nitrogen components and phosphorus components contained in water to be treated (treated water) such as factory wastewater by the action of bacteria. In general, this biological treatment is carried out under control so that nitrogen and phosphorus contained in the treated water discharged out of the system after the treatment have a predetermined concentration or less. Moreover, about an organic component, it manages by the value of a biochemical oxygen demand (BOD) etc., and is controlled so that BOD of treated water will become below a predetermined value.
近年、このような生物処理において細菌による処理対象物質の分解挙動などをシミュレーションして処理水の水質を予測することが行われており、このシミュレーションによって生物処理の諸条件を調整して処理効率を向上させる試みがなされている。
このシミュレーションにおいては、生物処理が実施される水槽内の細菌や処理対象物質の濃度の値などを変数とした演算によって実施されており、このような演算においては、IWA(国際水協会)から提唱されているASM1、ASM2、ASM2d、及びASM3などの活性汚泥モデルが広く用いられている。
例えば、下記特許文献1には、この活性汚泥モデルに基づいたシミュレーションを実施することが記載されている。
In recent years, in such biological treatment, it has been carried out to predict the quality of treated water by simulating the decomposition behavior of substances to be treated by bacteria, and this simulation adjusts various conditions of biological treatment to improve treatment efficiency. Attempts have been made to improve.
This simulation is performed by calculation using variables such as the concentration of bacteria in the aquarium where biological treatment is performed and the substance to be processed, and such calculation is proposed by IWA (International Water Association). Active sludge models such as ASM1, ASM2, ASM2d, and ASM3 are widely used.
For example, the following
このIWAから提唱されている活性汚泥モデルは、上記変数に加えて反応速度論定数などのパラメータが用いられた演算を実施するように設定されており、処理水質の予測を行う実際の処理状況に合わせてこのパラメータの値を調整したり、モデルを改良したりすることが容易で汎用性に優れているとともに高い予測精度を期待しうるものである。
しかし、このIWAの活性汚泥モデルは、処理水のBODを直接予測することができるように構築されておらず、有機成分の取り扱いとして、CODCrを単位とする易分解性有機物質(SS)や遅分解性有機物質(XS)が設定されているのみである。
しかも、この内の易分解性有機物質(SS)は、各種の設定値を変更して演算を行っても、いずれの場合も処理水中に殆ど残留しない結果になることが多く、遅分解性有機物質(XS)は、固形成分として取り扱われることから、処理水中の残留量をASMによって厳密に予測することが難しい沈殿槽による固液分離特性によって略一義的に決定されてしまうこととなる。
このことからIWAの活性汚泥モデルでは、従来、処理水のBODを直接、又は間接的に予測することが実質上困難となっている。
The activated sludge model proposed by IWA is set to perform calculations using parameters such as reaction kinetic constants in addition to the above variables. In addition, it is easy to adjust the value of this parameter or improve the model, and it is excellent in versatility and can be expected to have high prediction accuracy.
However, this activated sludge model of IWA is not constructed so as to be able to directly predict the BOD of treated water, and as an organic component handling, it is an easily decomposable organic substance (S S ) with COD Cr as a unit. Or slow-decomposable organic substances (X S ) are only set.
Moreover, the easily decomposable organic substance (S S ) in these cases often results in hardly remaining in the treated water in any case, even when various setting values are changed for calculation. organic material (X S), since handled as a solid component, so that the result is uniquely determined substantially by the solid-liquid separation characteristic by the hard sedimentation tank to strictly predict the residual amount of treated water by the ASM .
For this reason, in the IWA activated sludge model, it has been practically difficult to predict the BOD of treated water directly or indirectly.
したがって、IWAの活性汚泥モデルを用いた従来の水質予測方法においては、処理水のBODの値を精度良く予測することが困難であり、IWAの活性汚泥モデルを用いて水質予測しつつ被処理水を生物処理する従来の生物処理方法においては、その処理効率を十分向上させることが困難であるという問題を有している。 Therefore, in the conventional water quality prediction method using the activated sludge model of IWA, it is difficult to accurately predict the BOD value of the treated water, and the treated water is predicted while predicting the water quality using the activated sludge model of IWA. However, the conventional biological treatment method for biologically treating the material has a problem that it is difficult to sufficiently improve the treatment efficiency.
本発明は、上記問題点に鑑みてなされたものであり、処理水のBODの値を精度良く予測しうる水質予測方法を提供し、生物処理方法における処理効率の向上を図ることを課題としている。 This invention is made | formed in view of the said problem, and provides the water quality prediction method which can estimate the value of BOD of treated water with high precision, and makes it a subject to aim at the improvement of the treatment efficiency in a biological treatment method. .
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、生物処理後の処理水においては、処理水中のアンモニア性窒素の量とBODの値とが比較的良好なる直線的関係を有していることを見出し本発明の完成にいたった。 As a result of intensive studies to solve the above problems, the present inventors have found that in the treated water after biological treatment, the amount of ammonia nitrogen in the treated water and the BOD value have a relatively good linear relationship. As a result, the present invention was completed.
すなわち、水質予測方法に係る本発明は、有機成分及び窒素成分を含有する被処理水が生物処理された後の処理水の水質をIWAの活性汚泥モデルであるASM1、ASM2、ASM2d、及びASM3のいずれかに基づく演算を実施して予測する水質予測方法であって、前記演算によって処理水のアンモニア性窒素濃度を予測して、該アンモニア性窒素濃度の値に基づいて処理水の生物化学的酸素要求量の値を予測することを特徴としている。 That is, according to the present invention relating to the water quality prediction method, the quality of the treated water after the treated water containing the organic component and the nitrogen component is biologically treated is determined according to ASM1, ASM2, ASM2d, and ASM3, which are IWA activated sludge models. A water quality prediction method for predicting by performing an operation based on any of the above, predicting the ammonia nitrogen concentration of the treated water by the operation, and biochemical oxygen of the treated water based on the value of the ammonia nitrogen concentration It is characterized by predicting the required amount.
また、生物処理方法に係る本発明は、有機成分及び窒素成分を含有する被処理水が生物処理された後の処理水の水質をIWAの活性汚泥モデルであるASM1、ASM2、ASM2d、及びASM3のいずれかに基づく演算を実施して予測しつつ前記生物処理を実施する生物処理方法であって、前記演算によって処理水のアンモニア性窒素濃度を予測する工程と、該アンモニア性窒素濃度の値に基づいて処理水の生物化学的酸素要求量の値を算出する工程とを実施することを特徴としている。 In addition, the present invention relating to the biological treatment method is characterized in that the quality of treated water after the treated water containing organic components and nitrogen components is biologically treated is the activated water sludge model ASM1, ASM2, ASM2d, and ASM3. A biological treatment method that performs the biological treatment while performing and predicting a calculation based on any one of the steps, and predicting the ammoniacal nitrogen concentration of the treated water by the calculation and the value of the ammoniacal nitrogen concentration And the step of calculating the value of the biochemical oxygen demand of the treated water.
処理水中のBODの値が、アンモニア性窒素の量との間に比較的良好なる相関関係を有していることからIWAの活性汚泥モデルに基づく演算を実施して処理水のアンモニア性窒素濃度の予測値を求めることで処理水中のBODの値も予測することができる。
したがって、本発明によれば、処理水のBODの値を精度良く予測することができ、予測結果に基づき運転条件をコントロールすることで生物処理方法における処理効率の向上を図り得る。
Since the BOD value in the treated water has a relatively good correlation with the amount of ammonia nitrogen, the calculation based on the activated sludge model of IWA is performed to determine the ammonia nitrogen concentration of the treated water. By obtaining the predicted value, the value of BOD in the treated water can also be predicted.
Therefore, according to the present invention, the BOD value of the treated water can be accurately predicted, and the treatment efficiency in the biological treatment method can be improved by controlling the operating conditions based on the prediction result.
まず、処理対象物質として有機物質とともにアンモニア性窒素などの窒素成分が含有されている被処理水に生物処理の工程を実施して、この生物処理後に排出される処理水の水質を予測する場合を例に本実施形態の水質予測方法及び生物処理方法を説明する。
図1は、本実施形態の水質予測方法によって処理水の水質が予測される生物処理設備を示す概略ブロック図であり、図にも示されているようにこの生物処理設備1には、被処理水が流入されて好気条件下による生物処理が実施される好気槽2と該好気槽2の槽内水が流入されて沈殿分離される沈殿槽3とを有している。
前記好気槽2には、有機物分解細菌、硝化細菌などを含有する汚泥が収容されており、有機物分解細菌による有機成分の除去を実施させるべく槽内に酸素を含有する気体を散気して槽内水を所定の溶存酸素濃度にさせるための散気装置(図示せず)が備えられている。
なお、この好気槽2に収容されている汚泥には、上記のように硝化細菌も含有されていることから被処理水に含有されていたアンモニア性窒素などは亜硝酸性窒素や硝酸性窒素に酸化処理される。
First, a case where a biological treatment process is performed on water to be treated that contains an organic substance and a nitrogen component such as ammoniacal nitrogen as a treatment target substance, and the quality of the treated water discharged after the biological treatment is predicted. The water quality prediction method and biological treatment method of this embodiment will be described as an example.
FIG. 1 is a schematic block diagram showing a biological treatment facility in which the quality of treated water is predicted by the water quality prediction method of the present embodiment. As shown in FIG. It has an
The
The sludge contained in the
なお、前記汚泥に含有される有機物分解細菌としては、例えば、バチルスサブチルスなどが挙げられ、硝化細菌としては、ニトロソモナス、ニトロソコッカス、ニトロソスピラ、ニトロソロバスなどのアンモニア酸化細菌や、ニトロバクター、ニトロコッカス、ニトロスピラなどの亜硝酸酸化細菌が挙げられる。 Examples of organic matter-degrading bacteria contained in the sludge include Bacillus subtilis, and nitrifying bacteria include ammonia-oxidizing bacteria such as nitrosomonas, nitrosococcus, nitrosospira, and nitrosolobas, nitrobacter, nitro Nitrite-oxidizing bacteria such as Coccus and Nitrospira can be mentioned.
また、この生物処理設備1には、前記好気槽2に被処理水を流入させるための被処理水流入経路10と、好気槽2の槽内水が好気槽2から排出されて沈殿槽3に流入される生物処理液流通経路20と、沈殿槽3から上澄み液が排出される上澄み液排出経路30とが備えられている。
さらに、生物処理設備1には、前記沈殿槽3において沈殿された汚泥を槽底から引き抜いて、その一部を好気槽2に返送するための返送汚泥流通経路50と、残りの汚泥を余剰汚泥として系外に排出させるための余剰汚泥排出経路60とが備えられている。
Further, in the
Furthermore, in the
本実施形態の生物処理方法においては、次のようにして生物処理(有機成分の分解除去)が実施される。
まず、好気槽2に被処理水流入経路10を通じて被処理水を流入させるとともに、この好気槽2の槽内水に対して前記散気装置によって散気を実施し、有機物分解細菌によって被処理水に含有されている有機成分を酸化処理するとともにアンモニア酸化細菌や亜硝酸酸化細菌によって被処理水に含有されている窒素成分の内、アンモニア性窒素や有機性窒素などを亜硝酸性窒素や硝酸性窒素に酸化させる。
In the biological treatment method of the present embodiment, biological treatment (decomposition and removal of organic components) is performed as follows.
First, treated water is caused to flow into the
前記好気槽2への被処理水の流入を継続的に実施することで、好気槽2の槽内水(生物処理液)を溢流させて前記生物処理液流通経路20を通じて沈殿槽3に流入させ、この生物処理液中の汚泥を沈殿分離させる。
沈殿分離させた汚泥の一部を引き抜き汚泥として沈殿槽3の槽底から排出し、その一部を返送汚泥として返送汚泥流通経路50を通じて好気槽2に返送し、残部を余剰汚泥として余剰汚泥排出経路60から系外に排出させる。
それとともに上澄み液を、上澄み液排出経路30を通じて系外に排出させる。
By continuously inflowing the water to be treated into the
Part of the sludge that has been separated by settling is withdrawn from the bottom of the
At the same time, the supernatant liquid is discharged out of the system through the supernatant
本実施形態においては、この沈殿槽3から排出される上澄み液をBOD値の管理が必要な処理水としてその水質予測を実施する。
この水質予測においては、生物処理の状況をIWA(国際水協会)からこれまでに公表されているモデル、例えば、ASM1、ASM2、ASM2d、ASM3などによってモデル化し、このシミュレーションモデルに基づいて演算を実施し、処理水(上澄み液)に含まれるアンモニア性窒素濃度を予測する工程を実施し、このアンモニア性窒素濃度に基づいて処理水のBODの値を予測する工程を実施する。
ここでアンモニア性窒素濃度に基づいて処理水のBODの値を予測するのは、処理水中のBODの値が、アンモニア性窒素の量との間に比較的良好なる相関関係を有しているためであり、このことは、本発明者がBODの酸化処理、およびアンモニア性窒素の酸化処理もそれぞれ好気的な条件下で反応が進むため、これらの処理されずに残留する濃度に相関性がとれるのではないかと考えて見出した事柄である。
In the present embodiment, the water quality prediction is performed using the supernatant liquid discharged from the
In this water quality prediction, the status of biological treatment is modeled by a model published so far by IWA (International Water Association), for example, ASM1, ASM2, ASM2d, ASM3, etc., and calculation is performed based on this simulation model Then, the step of predicting the ammoniacal nitrogen concentration contained in the treated water (supernatant liquid) is performed, and the step of predicting the BOD value of the treated water based on the ammoniacal nitrogen concentration is performed.
Here, the BOD value of the treated water is predicted based on the ammonia nitrogen concentration because the BOD value in the treated water has a relatively good correlation with the amount of ammonia nitrogen. This is because there is a correlation between the BOD oxidation treatment and the ammoniacal nitrogen oxidation treatment under aerobic conditions, and the concentration remaining without these treatments. It was a matter that I found out that I could get it.
このとき、アンモニア性窒素濃度の予測値に対してBODの値をどのように予測するかについては、予め、処理水の水質について、少なくとも数点以上、例えば、10点以上20点以下程度のデータを採取して当該データに基づいた関数を設定しておく方法が挙げられる。
すなわち、処理水のBODとアンモニア性窒素濃度の値についての数点以上のデータを予め採取して得られたデータから関数を設定し、それ以降の水質予測においては、BODの値を、アンモニア性窒素濃度の予測値とその関数とに基づいて計算して求めることができる。
例えば、この処理水のBODとアンモニア性窒素濃度の値を実測し、X軸をアンモニア性窒素濃度の値、Y軸をBODの値とした直交座標を設定し、実測データをプロットすると直線的に右上がりとなる点群が形成される。
したがって、これらのデータから最小二乗法等によって、近似直線、あるいは近似曲線を描く関数を予め設定しておくことによって、例えば、アンモニア性窒素濃度の値を「SNH4」とし、BODの値を「XBOD」とした際に、XBOD=f(SNH4)となる関数を予め設定しておくことによって、その後は、アンモニア性窒素濃度の値を予測する工程をIWAの活性汚泥モデルに基づく演算によって実施し、該アンモニア性窒素濃度の予測値を先の関数に代入してXBODの値を計算することでBODの値を算出する工程が実施可能となる。
At this time, as to how to predict the BOD value with respect to the predicted value of the ammoniacal nitrogen concentration, at least several points, for example, about 10 points or more and 20 points or less about the water quality of the treated water in advance. And a function based on the data is set.
That is, a function is set from data obtained by collecting several points or more about the BOD and ammonia nitrogen concentration values of the treated water in advance. It can be obtained by calculation based on the predicted value of nitrogen concentration and its function.
For example, the BOD and ammonia nitrogen concentration values of this treated water are measured, the orthogonal coordinates are set with the X axis as the ammonia nitrogen concentration value and the Y axis as the BOD value, and the measured data is plotted linearly. A point cloud that rises to the right is formed.
Therefore, by setting an approximate straight line or a function for drawing an approximate curve from these data by the least square method or the like, for example, the ammonia nitrogen concentration value is set to “S NH4 ” and the BOD value is set to “ X BOD ”is set in advance as a function that satisfies X BOD = f (S NH4 ). Thereafter, the process of predicting the ammonia nitrogen concentration is calculated based on the IWA activated sludge model. The step of calculating the BOD value by substituting the predicted value of the ammoniacal nitrogen concentration into the previous function and calculating the value of X BOD can be performed.
なお、沈殿槽3から排出される上澄み液を予測対象とせずに、好気槽2から沈殿槽3に流下される生物処理液を処理水として設定し、当該処理水のBODの値を予測する場合も同様の方法を採用することができる。
すなわち、生物処理液に含有されるアンモニア性窒素濃度とBODの値についてのデータを予め採取しておき、当該データに基づく関数を設定して、IWAの活性汚泥モデルに基づく演算によってアンモニア性窒素濃度の値を予測し、この予測値を前記関数に代入することによって上澄み液の場合と同様に精度の高いBODの予測値を算出することができる。
Note that the biological treatment liquid flowing down from the
That is, data on the ammonia nitrogen concentration and BOD value contained in the biological treatment liquid are collected in advance, a function based on the data is set, and the ammonia nitrogen concentration is calculated by calculation based on the activated sludge model of IWA. By predicting this value and substituting this predicted value into the function, a highly accurate predicted value of BOD can be calculated as in the case of the supernatant.
従来の生物処理方法においては、BODの値を精度良く予測することが困難であったために、処理水のBODの値が所定の値を超えることがないように、好気槽における処理時間(平均滞留時間=槽容積÷単位時間当たりの被処理水平均流入量)等に必要以上の余裕が与えられていた。
本実施形態の生物処理方法においては、このようにしてBODの値を従来に比べて精度良く予測しつつ生物処理することが可能となることによって、例えば、単位時間当たりの水処理量を従来の生物処理方法に比べて増大させることができ、処理効率の向上を図ることができる。
また、処理水のBODを精度良く予測しながら運転を行えるため、散気風量を適切にコントロールして、散気に要する電力量の最小化を図ることが出来る。
In the conventional biological treatment method, since it was difficult to accurately predict the BOD value, the treatment time (average) in the aerobic tank was set so that the BOD value of the treated water did not exceed a predetermined value. (Residence time = tank volume ÷ average inflow of water to be treated per unit time)) was given more than necessary.
In the biological treatment method of the present embodiment, the biological treatment can be performed while predicting the BOD value with higher accuracy than in the past, and thus, for example, the water treatment amount per unit time can be reduced to the conventional amount. Compared with the biological treatment method, it can be increased and the treatment efficiency can be improved.
In addition, since the operation can be performed while accurately predicting the BOD of the treated water, the amount of power required for air diffusion can be minimized by appropriately controlling the amount of air diffused.
なお、本実施形態においては、本発明の水質予測方法ならびに生物処理方法を上記のような例示に基づいて説明しているが、本発明は、上記例示のようなものに限定されるものではなく、本発明の効果を著しく損ねない範囲においては、水質予測方法ならびに生物処理方法において従来公知の構成を上記例示に置き換えたり、付加したりすることも可能である。 In the present embodiment, the water quality prediction method and the biological treatment method of the present invention are described based on the above examples, but the present invention is not limited to the above examples. As long as the effects of the present invention are not significantly impaired, it is possible to replace or add conventionally known configurations to the above examples in the water quality prediction method and the biological treatment method.
例えば、上記実施形態においては、主として有機成分を処理対象物質として生物処理が実施される態様を例示しているが、例えば、図2に示すような、窒素成分を主とした処理対象物質とするような場合も本発明の意図する範囲である。 For example, in the above-described embodiment, a mode in which biological treatment is performed mainly using an organic component as a processing target substance is illustrated, but for example, a processing target substance mainly including a nitrogen component as illustrated in FIG. 2 is used. Such cases are also within the intended scope of the present invention.
この図2に示す、生物処理設備1xには、シェードモナス、ミクロコッカス、パラコッカス、アルカリゲネス、アクロモバクターなどの脱窒細菌を含む汚泥が収容されている脱窒槽4xと前記硝化細菌を含む汚泥が収容されている硝化槽5xとを有しており、これらは、処理の上流側から脱窒槽4x、硝化槽5x、脱窒槽4x、硝化槽5xの順となるように生物処理設備1xに各二台ずつ備えられている。
この生物学的な硝化・脱窒処理が実施される槽の後段側に沈殿槽3xが設けられており、この沈殿槽3xから、沈殿分離された汚泥の一部が返送汚泥流通経路50xを通じて一段目の脱窒槽に返送される点、残部が余剰汚泥として余剰汚泥排出経路60xから系外に排出される点、上澄み液が、上澄み液排出経路30xを通じて系外に排出される点については、先に説明した生物処理設備1と同様である。
このような生物処理設備1xにおいても、上澄み液排出経路30xを通じて系外に排出される上澄み液のBODの値をASMによるアンモニア性窒素濃度の予測値に基づいて予測することができ、予め、処理水の水質について、10〜20点程度のデータを採取して当該データに基づいた関数を設定しておく方法によって精度良く予測できる点についても先に説明した生物処理設備1の場合と同様である。
The biological treatment facility 1x shown in FIG. 2 includes a
A settling
Also in such a biological treatment facility 1x, the BOD value of the supernatant liquid discharged out of the system through the supernatant
次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these.
(アンモニア性窒素濃度とBODとの相関関係調査)
生物学的に有機物除去処理が実施されている下水処理施設からの放流水の水質について測定を実施した。
採取時期を変更して合計14回の処理水のサンプリングを実施し、それぞれ、アンモニア性窒素濃度とBODとを測定した。
それぞれの測定方法は、以下の通りである。
(Investigation of correlation between ammoniacal nitrogen concentration and BOD)
Measurements were made on the quality of the discharged water from sewage treatment plants where biological removal of organic matter has been carried out.
The sampling time was changed and sampling of treated water was performed 14 times in total, and ammonia nitrogen concentration and BOD were measured, respectively.
Each measuring method is as follows.
(アンモニア性窒素濃度測定方法)
各サンプルのアンモニア性窒素はJIS K0102(1998)42.1及び42.2に記載されたインドフェノール青吸光光度法により測定した。
(Ammonia nitrogen concentration measurement method)
The ammoniacal nitrogen of each sample was measured by the indophenol blue absorptiometry described in JIS K0102 (1998) 42.1 and 42.2.
(BOD測定方法)
また、各サンプルのBODはJIS K0102(1998)21および32.3に記載された植種希釈により測定した。ここでBODを測定する場合は硝化細菌の作用により残留するアンモニア性窒素の影響を受けてBODの値が変化する場合がある。本分析方法に記載された硝化作用を抑制した方法によりBODの測定を行い、残留するアンモニア性窒素の影響を排除した。
(BOD measurement method)
Moreover, BOD of each sample was measured by the seeding dilution described in JIS K0102 (1998) 21 and 32.3. When measuring BOD here, the value of BOD may change under the influence of residual ammoniacal nitrogen due to the action of nitrifying bacteria. BOD was measured by the method of suppressing nitrification described in this analysis method to eliminate the influence of residual ammoniacal nitrogen.
得られた結果を、グラフ化した様子を図3に示す。
このようにBODとアンモニア性窒素濃度の値については、直線的な相関関係を有していることがわかる。
そして、BODの値を「X」、アンモニア性窒素濃度の値を「Y」とした場合に、これらの間に、「Y=3.68X+2.56」の近似式を成立させ得ることがこの図からもわかる。
FIG. 3 shows a graph of the obtained results.
Thus, it can be seen that there is a linear correlation between the values of BOD and ammoniacal nitrogen concentration.
When the BOD value is “X” and the ammoniacal nitrogen concentration value is “Y”, an approximate expression of “Y = 3.68X + 2.56” can be established between them. You can see from
次いで、この下水処理場から排出される放流水のアンモニア性窒素濃度を、ASM3に基づいて予測した予測結果ならびに放流水のアンモニア性窒素濃度の実測結果を示すグラフを図4に示す。
図に示すように、放流水のアンモニア性窒素濃度については比較的精度の高い予測がなされていることがわかる。
Next, FIG. 4 is a graph showing a prediction result obtained by predicting the ammonia nitrogen concentration of the discharged water discharged from the sewage treatment plant based on ASM3 and an actual measurement result of the ammonia nitrogen concentration of the discharged water.
As shown in the figure, it can be seen that the ammonia nitrogen concentration of the discharged water is predicted with relatively high accuracy.
この放流水のアンモニア性窒素濃度の値を上記式「Y」に代入して、BODの値(上記式「X」)を求めた結果、ならびに、放流水のBODの実測結果を示すグラフを図5に示す。
この図からは、アンモニア性窒素濃度の値に基づいてBODの値を予測することで放流水のBODを比較的精度良く予測し得ることがわかる。
A graph showing the result of substituting the ammonia nitrogen concentration value of the effluent water into the above equation “Y” to obtain the BOD value (the above equation “X”) and the actual measurement result of the BOD of the effluent water is shown in FIG. As shown in FIG.
From this figure, it can be seen that the BOD value of the discharged water can be predicted with relatively high accuracy by predicting the BOD value based on the ammonia nitrogen concentration value.
ちなみに、ASM3に基づいて放流水における易分解性有機物質(SS)の値を予測した結果を、図6に示す。
ASM3では、易分解性有機物質(SS)が殆ど残存しない結果しか得ることができないことがこの図6からもわかる。
Incidentally, the result of having predicted the value of the easily decomposable organic substance (S S ) in the discharged water based on ASM3 is shown in FIG.
It can also be seen from FIG. 6 that ASM3 can obtain only the result that almost no readily decomposable organic substance (S S ) remains.
すなわち、本発明によれば、処理水のBODの値を精度良く予測することができ、ひいては、生物処理方法における処理効率の向上を図りうることがわかる。 That is, according to the present invention, it can be understood that the BOD value of the treated water can be predicted with high accuracy, and as a result, the treatment efficiency in the biological treatment method can be improved.
1,1x:生物処理設備、2: 好気槽、3,3x:沈殿槽、4x:脱窒槽、5x:硝化槽、10,10x:被処理水流入経路、20:生物処理液流通経路、30:上澄み液排出経路、50,50x:返送汚泥流通経路、60,60x:余剰汚泥排出経路 1, 1x: biological treatment equipment, 2: aerobic tank, 3, 3x: sedimentation tank, 4x: denitrification tank, 5x: nitrification tank, 10, 10x: treated water inflow path, 20: biological treatment liquid distribution path, 30 : Supernatant discharge route, 50, 50x: Return sludge distribution route, 60, 60x: Excess sludge discharge route
Claims (2)
前記演算によって処理水のアンモニア性窒素濃度を予測して、該アンモニア性窒素濃度の値に基づいて処理水の生物化学的酸素要求量の値を予測することを特徴とする水質予測方法。 Predicting the quality of treated water after biological treatment of water to be treated containing organic components and nitrogen components by performing calculations based on any of ASM1, ASM2, ASM2d, and ASM3, which are IWA activated sludge models A water quality prediction method,
A method for predicting water quality by predicting the ammoniacal nitrogen concentration of treated water by the calculation and predicting the value of biochemical oxygen demand of treated water based on the value of the ammoniacal nitrogen concentration.
前記演算によって処理水のアンモニア性窒素濃度を予測する工程と、該アンモニア性窒素濃度の値に基づいて処理水の生物化学的酸素要求量の値を算出する工程とを実施することを特徴とする生物処理方法。 The quality of treated water after biological treatment of treated water containing organic components and nitrogen components is predicted by performing an operation based on one of ASM1, ASM2, ASM2d, and ASM3, which are IWA activated sludge models. A biological treatment method for carrying out the biological treatment,
The step of predicting the ammonia nitrogen concentration of the treated water by the calculation and the step of calculating the biochemical oxygen demand value of the treated water based on the value of the ammonia nitrogen concentration are performed. Biological treatment method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008193722A JP5175647B2 (en) | 2008-07-28 | 2008-07-28 | Water quality prediction method and biological treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008193722A JP5175647B2 (en) | 2008-07-28 | 2008-07-28 | Water quality prediction method and biological treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010029771A true JP2010029771A (en) | 2010-02-12 |
JP5175647B2 JP5175647B2 (en) | 2013-04-03 |
Family
ID=41734917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008193722A Expired - Fee Related JP5175647B2 (en) | 2008-07-28 | 2008-07-28 | Water quality prediction method and biological treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5175647B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102531177A (en) * | 2010-12-13 | 2012-07-04 | 中国科学院生态环境研究中心 | Method for improving nitration reaction rate of wetland system |
CN105585129A (en) * | 2016-01-12 | 2016-05-18 | 南京大学 | Device and method for simulating fate of nitrogen in in-situ river channel ecosystem |
CN105858914A (en) * | 2016-05-23 | 2016-08-17 | 浙江大学 | Method and device for treating kitchen oil wastewater through ultraviolet decoupling microbiological method |
CN109133368A (en) * | 2018-09-13 | 2019-01-04 | 无锡跃洋生物科技有限公司 | A kind of complex microorganism water purification agent and preparation method thereof for aquaculture |
CN113516635A (en) * | 2021-06-15 | 2021-10-19 | 中国农业大学 | Fish-vegetable symbiotic system and vegetable nitrogen element demand estimation method based on fish behaviors |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0735741A (en) * | 1993-07-20 | 1995-02-07 | Fuji Electric Co Ltd | Bod measuring equipment |
JP2001198590A (en) * | 2000-01-17 | 2001-07-24 | Hitachi Ltd | Simulation method and device of activated-sludge water treating device |
-
2008
- 2008-07-28 JP JP2008193722A patent/JP5175647B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0735741A (en) * | 1993-07-20 | 1995-02-07 | Fuji Electric Co Ltd | Bod measuring equipment |
JP2001198590A (en) * | 2000-01-17 | 2001-07-24 | Hitachi Ltd | Simulation method and device of activated-sludge water treating device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102531177A (en) * | 2010-12-13 | 2012-07-04 | 中国科学院生态环境研究中心 | Method for improving nitration reaction rate of wetland system |
CN105585129A (en) * | 2016-01-12 | 2016-05-18 | 南京大学 | Device and method for simulating fate of nitrogen in in-situ river channel ecosystem |
CN105585129B (en) * | 2016-01-12 | 2018-12-21 | 南京大学 | A kind of simulation original position river channel ecology system nitrogen returns the device and method to become |
CN105858914A (en) * | 2016-05-23 | 2016-08-17 | 浙江大学 | Method and device for treating kitchen oil wastewater through ultraviolet decoupling microbiological method |
CN109133368A (en) * | 2018-09-13 | 2019-01-04 | 无锡跃洋生物科技有限公司 | A kind of complex microorganism water purification agent and preparation method thereof for aquaculture |
CN113516635A (en) * | 2021-06-15 | 2021-10-19 | 中国农业大学 | Fish-vegetable symbiotic system and vegetable nitrogen element demand estimation method based on fish behaviors |
CN113516635B (en) * | 2021-06-15 | 2024-02-27 | 中国农业大学 | Fish and vegetable symbiotic system and vegetable nitrogen element demand estimation method based on fish behaviors |
Also Published As
Publication number | Publication date |
---|---|
JP5175647B2 (en) | 2013-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Peng et al. | The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge | |
Blum et al. | Nitrous oxide production in intermittently aerated Partial Nitritation-Anammox reactor: oxic N2O production dominates and relates with ammonia removal rate | |
Su et al. | The effect of pH on N2O production in intermittently-fed nitritation reactors | |
Zaborowska et al. | Strategies for mitigating nitrous oxide production and decreasing the carbon footprint of a full-scale combined nitrogen and phosphorus removal activated sludge system | |
JP5435658B2 (en) | Water quality simulation method and apparatus | |
Jemaat et al. | Closed-loop control of ammonium concentration in nitritation: convenient for reactor operation but also for modeling | |
JP5175647B2 (en) | Water quality prediction method and biological treatment method | |
JP4334317B2 (en) | Sewage treatment system | |
JP2012200705A (en) | Nitrogen-containing wastewater treatment method and apparatus | |
KR20120000858A (en) | A rule-based realtime control technology for wastewater treatment process and system | |
JP6974795B2 (en) | Aeration air volume control method and equipment for aeration tanks in sewage treatment equipment | |
JP2004275826A (en) | Sewage treatment plant water quality monitoring and controlling device | |
JP4672816B1 (en) | Biological treatment method | |
JP5956372B2 (en) | Water treatment apparatus and water treatment method | |
Liwarska-Bizukojc et al. | A new approach to determine the kinetic parameters for nitrifying microorganisms in the activated sludge systems | |
JP4922214B2 (en) | Water treatment method and water treatment apparatus | |
JP6334244B2 (en) | Water treatment process control system | |
JP2010155189A (en) | Water treatment method and apparatus | |
JP2009131848A (en) | Simulation method, simulation device, biological treatment method, and biological treatment apparatus | |
JP6375257B2 (en) | Water treatment equipment | |
JP2015029981A (en) | Nitrite-type nitrification method of ammoniac nitrogen-containing effluent | |
JP2015016410A (en) | Wastewater treatment method and apparatus, and control method, control device, and program | |
JP5449072B2 (en) | COD concentration simulation method and apparatus in biological aerobic treatment of aquatic water | |
JP4573575B2 (en) | Advanced sewage treatment method and apparatus | |
Sánchez et al. | Effect of dissolved oxygen concentration on nitrite accumulation in nitrifying sequencing batch reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120824 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120919 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5175647 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |