JP6375257B2 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP6375257B2
JP6375257B2 JP2015070615A JP2015070615A JP6375257B2 JP 6375257 B2 JP6375257 B2 JP 6375257B2 JP 2015070615 A JP2015070615 A JP 2015070615A JP 2015070615 A JP2015070615 A JP 2015070615A JP 6375257 B2 JP6375257 B2 JP 6375257B2
Authority
JP
Japan
Prior art keywords
tank
switching
ammonia concentration
inflow
estimation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015070615A
Other languages
Japanese (ja)
Other versions
JP2016190181A (en
Inventor
佳記 西田
佳記 西田
一郎 山野井
一郎 山野井
剛 武本
剛 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015070615A priority Critical patent/JP6375257B2/en
Publication of JP2016190181A publication Critical patent/JP2016190181A/en
Application granted granted Critical
Publication of JP6375257B2 publication Critical patent/JP6375257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、活性汚泥を用いた水処理装置に関する。
The present invention relates to a water treatment apparatus using activated sludge.

下水処理場をはじめとする水処理プラントでは、環境汚濁物質を除去するための様々な水処理プロセスが導入されている。例えば、有機物を除去対象としている標準活性汚泥法では、生物反応槽の全てが好気槽となっており、曝気により空気が供給されている。好気槽では、好気性従属栄養細菌が有機物を酸化し、下水中の有機物は除去される。   In water treatment plants such as sewage treatment plants, various water treatment processes for removing environmental pollutants are introduced. For example, in the standard activated sludge method in which organic substances are to be removed, all the biological reaction tanks are aerobic tanks, and air is supplied by aeration. In the aerobic tank, aerobic heterotrophic bacteria oxidize organic matter and remove organic matter in sewage.

一方、閉鎖性水域の環境保全のため、有機物除去に加えて窒素除去の必要性が高まってきている。一般的な窒素除去は、好気状態での硝化と、無酸素状態での脱窒から実現される。硝化は好気状態において、硝化細菌が酸素を用い、下水中のアンモニア性窒素(NH4−N)を硝酸性窒素(NO3−N)へ酸化する反応である。脱窒は無酸素状態において、脱窒細菌が有機物を用い、NO3−NをN2ガスへ還元する反応である。脱窒により生成するN2ガスは大気中へ放出されるため、液相中から窒素は除去される。   On the other hand, in order to preserve the environment of closed water areas, the need for nitrogen removal in addition to organic matter removal is increasing. General nitrogen removal is realized by nitrification in an aerobic state and denitrification in an oxygen-free state. Nitrification is a reaction in which nitrifying bacteria use oxygen to oxidize ammonia nitrogen (NH4-N) in sewage to nitrate nitrogen (NO3-N) in an aerobic state. Denitrification is a reaction in which denitrifying bacteria use organic matter to reduce NO3-N to N2 gas in the absence of oxygen. Since N2 gas generated by denitrification is released into the atmosphere, nitrogen is removed from the liquid phase.

一般的な下水処理プロセスでは、反応槽は好気槽や無酸素槽といったように状態が固定されている。そのため、流入負荷によっては、処理が過不足になるおそれがある。好気、無酸素、好気槽の構成の硝化内生脱窒法を例にとると、好気槽の容積に対し、流入窒素負荷が低い場合、好気槽の途中でNH4−N濃度が目標値を満たし、それ以降の曝気が過剰となる可能性がある。一方、流入窒素負荷が高い場合、好気槽での硝化能力が不十分となり、NH4−N濃度が目標水質を満足しないおそれがある。   In a general sewage treatment process, the reaction tank is fixed in a state such as an aerobic tank or an oxygen-free tank. Therefore, depending on the inflow load, the processing may become excessive or insufficient. Taking the nitrification endogenous denitrification method with an aerobic, anoxic, and aerobic tank as an example, if the inflow nitrogen load is low relative to the volume of the aerobic tank, the NH4-N concentration is targeted in the middle of the aerobic tank. The value may be met and subsequent aeration may be excessive. On the other hand, when the inflow nitrogen load is high, the nitrification ability in the aerobic tank becomes insufficient, and the NH4-N concentration may not satisfy the target water quality.

そこで、過剰曝気の抑制、窒素除去の向上のため、硝化の進行状況に合わせて、好気状態と無酸素状態を切り替えられる切替槽を設ける方法が提案されている。例えば、特許文献1では、好気槽の下流に切替槽を設置し、酸素消費速度計を用いて好気槽での硝化の進行を評価し、切替槽の状態を制御している。特許文献2では、好気槽の上流に切替槽を設置し、アンモニア計等の計測手段により計測した好気槽でのアンモニア性窒素濃度が閾値以下の場合、切替槽を無酸素状態としている。
Therefore, a method of providing a switching tank capable of switching between an aerobic state and an anoxic state in accordance with the progress of nitrification has been proposed in order to suppress excessive aeration and improve nitrogen removal. For example, in patent document 1, the switching tank is installed downstream of the aerobic tank, the progress of nitrification in the aerobic tank is evaluated using an oxygen consumption rate meter, and the state of the switching tank is controlled. In Patent Document 2, a switching tank is installed upstream of the aerobic tank, and when the ammoniacal nitrogen concentration in the aerobic tank measured by measuring means such as an ammonia meter is equal to or less than a threshold value, the switching tank is in an oxygen-free state.

特開平8−117789号公報JP-A-8-117789 特開2013−212490号公報JP 2013-212490 A

先行技術においてアンモニア計や酸素消費速度計など一般的な下水処理場では普及していない計測器を設置する必要があり、計測器の購入費や消耗品等の交換費用、また校正等の維持管理作業が発生する。   It is necessary to install measuring instruments that are not widely used in conventional sewage treatment plants, such as ammonia meters and oxygen consumption rate meters in the prior art, and purchase and purchase of measuring instruments, replacement costs for consumables, etc., and maintenance management of calibration, etc. Work occurs.

また、先行技術では、好気槽の計測値に基づき、切替槽の状態を制御しており、切替槽での硝化の進行は考慮されていない。そのため、切替槽での状態は単一のものとなっており、切替槽が複数ある場合、NH4−Nが残存している上流側の切替槽は好気状態、目標アンモニア濃度を達成した下流側の切替槽は無酸素状態といったような制御は困難である。特許文献1のように切替槽を好気槽の下流に設置する構成では、計測器を設置する好気槽の位置によっては、その上流で目標アンモニア濃度を達成する場合が考えられ、更なる風量削減、窒素除去の余地があると考えられる。また、特許文献1や特許文献2では、切替槽の状態制御は、ブロワに加えて、撹拌機やドラフトチューブエアレータの制御が必要となる。   In the prior art, the state of the switching tank is controlled based on the measured value of the aerobic tank, and the progress of nitrification in the switching tank is not taken into consideration. Therefore, the state in the switching tank is a single one, and when there are a plurality of switching tanks, the upstream switching tank in which NH4-N remains is in the aerobic state, the downstream side that has achieved the target ammonia concentration Such a switching tank is difficult to control such as anoxic state. In the configuration in which the switching tank is installed downstream of the aerobic tank as in Patent Literature 1, depending on the position of the aerobic tank in which the measuring device is installed, there may be a case where the target ammonia concentration is achieved upstream, and further air volume There seems to be room for reduction and nitrogen removal. Moreover, in patent document 1 and patent document 2, in addition to a blower, control of a stirrer and a draft tube aerator is required for the state control of a switching tank.

上記課題を達成するために、本発明は微生物により下水を処理する水処理装置において、
好気状態と無酸素状態とに切り替えられる複数の切替槽を含む反応槽と、少なくとも前記切替槽に設置された散気部と、前記散気部に空気を供給するブロワと、前記反応槽への流入水の流量を推定する流入流量推定部と、前記反応槽への流入水のアンモニア濃度を推定する流入アンモニア濃度推定部と、前記切替槽への風量を推定する第1風量推定部と、
前記切替槽への風量を制御する風量制御部と、前記切替槽でのアンモニア濃度を推定する切替槽アンモニア濃度推定部とを備え、前記切替槽アンモニア濃度推定部が、前記第1風量推定部の出力値と、前記流入流量推定部の出力値とから、前記切替槽でのアンモニア濃度減少量を演算する第1アンモニア減少量演算機能を備え、前記切替槽アンモニア濃度推定部が、前記流入アンモニア濃度推定部の出力値と、前記第1アンモニア減少量演算機能により演算した前記切替槽でのアンモニア濃度減少量とから、前記切替槽でのアンモニア濃度を推定し、複数の前記切替槽のうち、予め設定した目標アンモニア濃度に対して、前記切替槽アンモニア濃度推定部の出力値が前記目標アンモニア濃度以下となる前記切替槽では、前記風量制御部により無酸素状態に制御し、その他の前記切替槽は好気状態に制御することを特徴とするものである。
In order to achieve the above object, the present invention provides a water treatment apparatus for treating sewage with microorganisms,
A reaction tank including a plurality of switching tanks that can be switched between an aerobic state and an oxygen-free state, an air diffuser installed in at least the switch tank, a blower that supplies air to the air diffuser, and the reaction tank An inflow flow rate estimation unit for estimating the flow rate of the inflow water, an inflow ammonia concentration estimation unit for estimating the ammonia concentration of the inflow water to the reaction tank, a first air volume estimation unit for estimating the air volume to the switching tank,
An air volume control unit that controls the air volume to the switching tank; and a switching tank ammonia concentration estimation unit that estimates an ammonia concentration in the switching tank, wherein the switching tank ammonia concentration estimation unit includes: A first ammonia decrease amount calculating function for calculating an ammonia concentration decrease amount in the switching tank from an output value and an output value of the inflow flow rate estimating section, wherein the switching tank ammonia concentration estimating section includes the inflow ammonia concentration From the output value of the estimation unit and the ammonia concentration decrease amount in the switching tank calculated by the first ammonia decrease amount calculation function, the ammonia concentration in the switching tank is estimated, and among the plurality of switching tanks, In the switching tank in which the output value of the switching tank ammonia concentration estimation unit is equal to or lower than the target ammonia concentration with respect to the set target ammonia concentration, the air volume control unit Control is performed in an oxygen state, and the other switching tanks are controlled in an aerobic state.

更に、本発明は水処理装置において、前記風量制御部では、前記切替槽への風量を予め設定した微曝気風量設定値、もしくは零に風量を低減し、前記切替槽を擬似無酸素状態、もしくは無酸素状態に制御することを特徴とするものである。   Further, in the water treatment apparatus according to the present invention, in the air volume control unit, the fine aeration air volume setting value in which the air volume to the switching tank is set in advance, or the air volume is reduced to zero, and the switching tank is in a pseudo anoxic state, or It is characterized by controlling to an anoxic state.

更に、本発明は水処理装置において、前記切替槽を、前記反応槽の最も下流に設置することを特徴とするものである。   Furthermore, the present invention is characterized in that, in the water treatment apparatus, the switching tank is installed on the most downstream side of the reaction tank.

更に、本発明は水処理装置において、前記切替槽が好気槽の下流側に設置された構成であり、前記好気槽への風量を推定する第2風量推定部を備え、前記切替槽アンモニア濃度推定部が、前記第2風量推定部の出力値と、前記流入流量推定部の出力値とから、好気槽でのアンモニア濃度減少量を演算する第2アンモニア減少量演算機能を備え、前記切替槽アンモニア濃度推定部が、前記流入アンモニア濃度推定部の出力値と、前記第2アンモニア減少量演算機能により演算した好気槽でのアンモニア濃度減少量と、前記第1アンモニア減少量演算機能により演算した切替槽でのアンモニア濃度減少量とから、前記切替槽でのアンモニア濃度を推定することを特徴とするものである。   Furthermore, in the water treatment apparatus according to the present invention, the switching tank is installed on the downstream side of the aerobic tank, and includes a second air volume estimating unit that estimates an air volume to the aerobic tank, and the switching tank ammonia The concentration estimation unit has a second ammonia decrease amount calculation function for calculating an ammonia concentration decrease amount in the aerobic tank from the output value of the second air volume estimation unit and the output value of the inflow rate estimation unit, The switching tank ammonia concentration estimation unit uses the output value of the inflow ammonia concentration estimation unit, the ammonia concentration decrease amount in the aerobic tank calculated by the second ammonia decrease amount calculation function, and the first ammonia decrease amount calculation function. The ammonia concentration in the switching tank is estimated from the calculated ammonia concentration decrease amount in the switching tank.

更に、本発明は水処理装置において、
前記流入流量推定部が、日時と、曜日と、降水量とのうち少なくとも一つの項目を用いて前記反応槽への流入水の流量を推定する、もしくは流入流量計測手段を用いて前記反応槽への流入水の流量を計測することを特徴とするものである。
Furthermore, the present invention provides a water treatment apparatus,
The inflow flow rate estimation unit estimates the flow rate of inflow water to the reaction tank using at least one of the date, day of the week, and precipitation, or to the reaction tank using inflow rate measurement means. The flow rate of inflow water is measured.

更に、本発明は水処理装置において、前記流入アンモニア濃度推定部が、日時と、曜日と、降水量と、前記反応槽への流入水の流量とのうち少なくとも一つの項目を用いて、前記反応槽への流入水のアンモニア濃度を推定することを特徴とするものである。   Further, in the water treatment apparatus according to the present invention, the inflow ammonia concentration estimation unit uses the at least one item among date and time, day of the week, precipitation, and flow rate of inflow water to the reaction tank, It is characterized by estimating the ammonia concentration of the inflow water to the tank.

更に、本発明は水処理装置において、
前記反応槽の上流に、前記下水の有機物濃度を計測する有機物濃度計測手段を設置し、前記流入アンモニア濃度推定部が、日時と、曜日と、降水量と、前記反応槽への流入水の流量と、前記有機物濃度計測手段の出力値とのうち少なくとも一つの項目を用いて、前記反応槽への流入水のアンモニア濃度を推定することを特徴とするものである。
Furthermore, the present invention provides a water treatment apparatus,
An organic substance concentration measuring means for measuring the organic substance concentration of the sewage is installed upstream of the reaction tank, and the inflow ammonia concentration estimation unit is configured to include a date, a day of the week, precipitation, and a flow rate of inflow water to the reaction tank. And the ammonia concentration of the inflow water to the reaction tank is estimated using at least one item of the output value of the organic substance concentration measuring means.

本発明によれば、好気槽を有する下水処理装置において、新規計測器を用いず、各反応槽のNH4-N濃度を推定し、切替槽の状態を制御する。これにより、新規計測器に掛かる費用、維持管理作業を低減できる。また、計測器の設置位置に制限されず、切替槽の状態を制御できるため、風量削減、窒素除去向上を両立できる。さらに、風量制御のみで切替槽の状態制御が可能であるため、撹拌機などの導入が不要となる。

According to the present invention, in a sewage treatment apparatus having an aerobic tank, a NH4-N concentration in each reaction tank is estimated and a switching tank state is controlled without using a new measuring instrument. Thereby, the expense concerning a new measuring device and maintenance work can be reduced. Moreover, since it is not restrict | limited to the installation position of a measuring device and the state of a switching tank can be controlled, air volume reduction and nitrogen removal improvement can be made compatible. Furthermore, since it is possible to control the state of the switching tank only by air volume control, it is not necessary to introduce a stirrer or the like.

実施例1に係る水処理装置Sの構成を示す構成図である。It is a block diagram which shows the structure of the water treatment apparatus S which concerns on Example 1. FIG. 実施例1に係る制御フロー図Control flow diagram according to embodiment 1 シミュレータ上での風量とNH4−N濃度の減少量の関係Relationship between air volume on simulator and decrease in NH4-N concentration 切替槽2−a、2−bの状態ごとの、下水および各反応槽でのNH4−N濃度NH4-N concentration in sewage and each reaction tank for each state of switching tank 2-a, 2-b

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1は、実施例1に係る水処理装置Sの構成を示す構成図である。この水処理装置Sは、活性汚泥を利用して有機物と窒素を除去する。
FIG. 1 is a configuration diagram illustrating a configuration of a water treatment device S according to the first embodiment. This water treatment device S removes organic matter and nitrogen using activated sludge.

(水処理装置の構成)
図1に示すように、水処理装置Sは、主な構成要素として、好気槽1と、切替槽2(2aおよび2b)と、最終沈殿池3とを有している。これらの構成要素の機能について、以下に説明する。
(好気槽)
好気槽1は下水100と、返送汚泥102とが流入し、活性汚泥中の硝化細菌により、NH4−NをNO3−Nへ酸化する硝化が行われる。また、好気性従属栄養細菌による有機物酸化が行われる。
(切替槽)
切替槽2(2−aおよび2−b)は、槽内の状態を好気状態と無酸素状態に切り替えられる槽である。切替槽2が好気状態の場合は、残存しているNH4−NがNO3−Nへ硝化され、好気性従属栄養菌による有機物酸化も行われる。切替槽2が無酸素状態の場合は、残存しているNO3-Nを、活性汚泥中の脱窒細菌によりN2ガスへと脱窒される。
(最終沈殿池)
最終沈殿池3は、上澄み液と活性汚泥とを沈降分離する施設である。沈降分離した上澄み液は、処理水101として系外に放流される。また、沈降分離した活性汚泥は返送汚泥102として好気槽1へと返送され、再度一連の生物処理に利用される。

以下、水処理装置Sについてより詳細に説明する。
(Configuration of water treatment equipment)
As shown in FIG. 1, the water treatment device S includes an aerobic tank 1, a switching tank 2 (2 a and 2 b), and a final sedimentation tank 3 as main components. The function of these components will be described below.
(Aerobic tank)
The sewage 100 and the return sludge 102 flow into the aerobic tank 1, and nitrification is performed to oxidize NH4-N to NO3-N by nitrifying bacteria in the activated sludge. In addition, organic matter oxidation by aerobic heterotrophic bacteria is performed.
(Switching tank)
The switching tank 2 (2-a and 2-b) is a tank that can switch the state in the tank between an aerobic state and an oxygen-free state. When the switching tank 2 is in an aerobic state, the remaining NH4-N is nitrified to NO3-N, and organic matter oxidation by aerobic heterotrophic bacteria is also performed. When the switching tank 2 is in an oxygen-free state, the remaining NO3-N is denitrified into N2 gas by denitrifying bacteria in the activated sludge.
(Final sedimentation basin)
The final settling basin 3 is a facility that separates and separates the supernatant liquid and activated sludge. The supernatant liquid that has settled and separated is discharged out of the system as treated water 101. Moreover, the activated sludge separated and separated is returned to the aerobic tank 1 as the return sludge 102 and used again for a series of biological treatments.

Hereinafter, the water treatment apparatus S will be described in more detail.

図1に示すように、好気槽1には下水100と、最終沈殿池3からの返送汚泥102が流入する。好気槽1には好気槽散気部4が設置されている。好気槽1の下流側には、切替槽2−aおよび2−bが設置されており、切替槽2−aには好気槽1からの流出水が流入し、切替槽2−bには切替槽2−aからの流出水が流入する。また、切替槽2−a、2−bにはそれぞれ切替槽散気部5−a、5−bが設置されている。好気槽散気部4と、切替槽散気部5−aと、切替槽散気部5−bには、ブロワ6が設置され、空気が供給される。また、切替槽散気部5−a、5−bには、風量弁7−a、7−bがそれぞれ接続されている。切替槽2−bの下流側には最終沈殿池3が設置されており、流路800と返送ポンプ8を通じて好気槽1と連通している。
As shown in FIG. 1, sewage 100 and return sludge 102 from the final sedimentation tank 3 flow into the aerobic tank 1. The aerobic tank 1 is provided with an aerobic tank aeration unit 4. Switching tanks 2-a and 2-b are installed on the downstream side of the aerobic tank 1, and effluent water from the aerobic tank 1 flows into the switching tank 2-a, and enters the switching tank 2-b. Flows out from the switching tank 2-a. Moreover, switching tank aeration parts 5-a and 5-b are installed in the switching tanks 2-a and 2-b, respectively. The blower 6 is installed in the aerobic tank air diffuser 4, the switching tank air diffuser 5-a, and the switch tank air diffuser 5-b, and air is supplied thereto. Air flow valves 7-a and 7-b are connected to the switching tank air diffusers 5-a and 5-b, respectively. A final sedimentation tank 3 is installed on the downstream side of the switching tank 2-b, and communicates with the aerobic tank 1 through the flow path 800 and the return pump 8.

流入流量計測手段である流量計9と返送汚泥流量計10とが、それぞれ好気槽1の上流と、流路800とに設置されている。流量計9により、下水100の流量を計測する。同様に、返送汚泥流量計10により、返送汚泥102の流量を計測する。流量計9と、返送汚泥流量計10とは、流入流量推定部11に接続されている。流入流量推定部11では、流量計9の計測値と返送汚泥流量計10の計測値とを足し合わせることで、好気槽1への流入水の流量を算出する。   A flow meter 9 and a return sludge flow meter 10 which are inflow flow rate measuring means are installed in the upstream of the aerobic tank 1 and the flow path 800, respectively. The flow rate of the sewage 100 is measured by the flow meter 9. Similarly, the flow rate of the return sludge 102 is measured by the return sludge flow meter 10. The flow meter 9 and the return sludge flow meter 10 are connected to the inflow flow rate estimation unit 11. The inflow flow rate estimation unit 11 calculates the flow rate of the inflow water to the aerobic tank 1 by adding the measurement value of the flow meter 9 and the measurement value of the return sludge flow meter 10.

日時や、曜日、降水量、好気槽1への流入水の流量と、好気槽1への流入水のNH4−N濃度との関係を記録したデータベースを搭載した流入アンモニア濃度推定部12を設置する。流入アンモニア濃度推定部12では、流入流量推定部11により算出した好気槽1への流入水の流量に基づき、日時や曜日、降水量を考慮して、好気槽1への流入水のNH4−N濃度を推定する。   An inflow ammonia concentration estimation unit 12 equipped with a database that records the relationship between the date and time, the day of the week, precipitation, the flow rate of inflow water to the aerobic tank 1 and the NH4-N concentration of inflow water to the aerobic tank 1 Install. The inflow ammonia concentration estimation unit 12 considers the date, day of the week, and precipitation amount based on the flow rate of the inflow water to the aerobic tank 1 calculated by the inflow rate estimation unit 11, and NH4 of the inflow water to the aerobic tank 1. -Estimate N concentration.

風量計13をブロワ6から各反応槽への分岐配管までに設置し、ブロワ6から供給される風量を計測する。風量計12は、第1風量推定部および第2風量推定部である風量推定部14に接続されている。風量推定部14では、風量計13により計測したブロワ6の風量から、好気槽1、切替槽2−a、2−bへの風量を推定する。   An air flow meter 13 is installed from the blower 6 to the branch pipe to each reaction tank, and the air flow supplied from the blower 6 is measured. The air flow meter 12 is connected to an air flow estimation unit 14 that is a first air flow estimation unit and a second air flow estimation unit. The air volume estimation unit 14 estimates the air volume to the aerobic tank 1 and the switching tanks 2-a and 2-b from the air volume of the blower 6 measured by the anemometer 13.

流入流量推定部11と、流入アンモニア濃度推定部12と、風量推定部14とは、切替槽アンモニア濃度推定部15に接続されている。切替槽アンモニア濃度推定部15には第1アンモニア減少量演算機能および第2アンモニア濃度減少量演算機能が搭載されており、流入流量推定部11により推定した好気槽1への流入水の流量と、風量推定部14で推定した好気槽1、切替槽2−a、2−bへの風量とから、好気槽1、切替槽2−a、2−bでのアンモニア濃度の減少量を演算する。さらに、切替槽アンモニア濃度推定部15では、演算した各反応槽でのアンモニア濃度減少量と、流入アンモニア濃度推定部12により推定した好気槽1への流入水のNH4−N濃度とから、好気槽1、切替槽2−a、2−b内のNH4−N濃度を推定する。   The inflow flow rate estimation unit 11, the inflow ammonia concentration estimation unit 12, and the air volume estimation unit 14 are connected to a switching tank ammonia concentration estimation unit 15. The switching tank ammonia concentration estimation unit 15 is equipped with a first ammonia decrease amount calculation function and a second ammonia concentration decrease amount calculation function, and the flow rate of inflow water to the aerobic tank 1 estimated by the inflow rate estimation unit 11 From the air volume to the aerobic tank 1 and the switching tanks 2-a and 2-b estimated by the air volume estimation unit 14, the amount of decrease in the ammonia concentration in the aerobic tank 1 and the switching tanks 2-a and 2-b is calculated. Calculate. Further, the switching tank ammonia concentration estimation unit 15 calculates the ammonia concentration decrease amount in each reaction tank and the NH 4 -N concentration of the inflow water to the aerobic tank 1 estimated by the inflow ammonia concentration estimation unit 12. The NH4-N concentration in the air tank 1 and the switching tanks 2-a and 2-b is estimated.

切替槽アンモニア濃度推定部15は、風量制御部16と接続されている。風量制御部16は、風量弁7−a、7−bと接続されており、切替槽アンモニア濃度推定部15により推定した切替槽2−a、2−bのNH4−N濃度に基づき、風量弁7−a、7−bの開度を制御する。例えば、好気槽1のNH4−N濃度が目標アンモニア濃度以下であれば、風量弁7−a、7−bの開度を槽内の撹拌が維持できる最低限の風量まで低減し、切替槽2−a、2−bを、微曝気撹拌による擬似的な無酸素状態(擬似無酸素状態)に制御する。
The switching tank ammonia concentration estimation unit 15 is connected to the air volume control unit 16. The air volume control unit 16 is connected to the air volume valves 7-a and 7-b, and is based on the NH 4 -N concentration of the switching tanks 2-a and 2-b estimated by the switching tank ammonia concentration estimation unit 15. The opening degree of 7-a, 7-b is controlled. For example, if the NH4-N concentration in the aerobic tank 1 is less than or equal to the target ammonia concentration, the opening degree of the air volume valves 7-a and 7-b is reduced to the minimum air volume that can maintain stirring in the tank, and the switching tank 2-a and 2-b are controlled to a pseudo anoxic state (pseudo anoxic state) by fine aeration stirring.

図2に実施例1に係る切替槽への風量の制御フローを示す。以下、本実施例における切替槽への風量の制御フローについて詳細に説明する。
FIG. 2 shows an air flow control flow to the switching tank according to the first embodiment. Hereinafter, the control flow of the air volume to the switching tank in the present embodiment will be described in detail.

まず、ステップ101(以下、S101と称する)において、目標アンモニア濃度(CNH_0)を設定する。 First, in step 101 (hereinafter referred to as S101), a target ammonia concentration (C NH — 0 ) is set.

次に、S102において、流量計9により下水100の流量(Qw(t))を計測し、返送汚泥流量計10により返送汚泥102の流量(Qr(t))を計測する。S103では、流入流量推定部11において、下水100の流量(Qw(t))と返送汚泥102の流量(Qr(t))の合計として、好気槽1への流入流量(Qin(t))を算出する。 Next, in S102, the flow rate (Q w (t)) of the sewage 100 is measured by the flow meter 9, and the flow rate (Q r (t)) of the return sludge 102 is measured by the return sludge flow meter 10. In S103, the inflow rate estimation unit 11 calculates the inflow rate (Q in (Q in ()) into the aerobic tank 1 as the sum of the sewage 100 flow rate (Q w (t)) and the return sludge 102 flow rate (Q r (t)). t)) is calculated.

S104では、流入アンモニア濃度推定部12により、好気槽1への流入水のNH4−N濃度(CN_in(t))を推定する。一般的な下水処理場では、流入下水の流量や水質に変動パターンがあり、変動パターンは曜日や、降水量などの気象条件によって異なる。そこで、S104において、日時や、曜日、降水量、好気槽1への流入水の流量と、好気槽1への流入水のNH4−N濃度との関係を記録したデータベースを用いて、日時と、曜日と、降水量と、流入量推定部11において算出した好気槽1への流入水の流量とから、好気槽1への流入水のNH4−N濃度(CN_in(t))を推定する。
In S <b> 104, the NH 4 -N concentration (C N_in (t)) of the inflow water to the aerobic tank 1 is estimated by the inflow ammonia concentration estimation unit 12. In general sewage treatment plants, there are fluctuation patterns in the flow rate and quality of influent sewage, and the fluctuation pattern varies depending on the day of the week and the weather conditions such as precipitation. In S104, the date and time, the day of the week, the amount of precipitation, the flow rate of the inflow water to the aerobic tank 1, and the database recording the relationship between the NH4-N concentration of the inflow water to the aerobic tank 1 are used. The NH4-N concentration (C N_in (t)) of the inflow water to the aerobic tank 1 from the day of the week, the precipitation, and the flow rate of the inflow water to the aerobic tank 1 calculated by the inflow amount estimation unit 11 Is estimated.

S105では、風量計13により計測したブロワ6の風量を元に、風量推定部14において、各槽への風量配分比から好気槽1、切替槽2−a、2−bへの風量を推定する。各槽への風量配分比は、風量弁7−a、7−bの開度の関数となる。例えば、算出式(1)により、各槽への風量配分比を算出する。   In S105, based on the air volume of the blower 6 measured by the air volume meter 13, the air volume estimating unit 14 estimates the air volume to the aerobic tank 1, the switching tanks 2-a and 2-b from the air volume distribution ratio to each tank. To do. The air volume distribution ratio to each tank is a function of the opening degree of the air volume valves 7-a and 7-b. For example, the air volume distribution ratio to each tank is calculated by the calculation formula (1).

Figure 0006375257
Figure 0006375257

ここで、Q [m3/min]:ブロワ6の風量、QB(反応槽) [m3/min]:好気槽1、切替槽2−a、2−bのいずれかの風量、VO反応槽 [-]:好気槽1、切替槽2−a、2−bのいずれかの弁開度とする。また、好気槽1の弁開度(VO好気槽)は1.0とするが、好気槽1へのブロワ6からの配管において、風量弁が設置されている場合、その弁開度に従う。
Here, Q B [m 3 / min]: the air volume of the blower 6, Q B (reaction tank) [m 3 / min]: the air volume of any one of the aerobic tank 1 and the switching tanks 2-a and 2-b, VO reaction tank [-]: Set the valve opening of either the aerobic tank 1 or the switching tanks 2-a and 2-b. Further, the valve opening degree (VO aerobic tank ) of the aerobic tank 1 is set to 1.0. However, when an air flow valve is installed in the piping from the blower 6 to the aerobic tank 1, the valve opening degree is set. Follow.

S106では、切替槽アンモニア濃度推定部15において、第1アンモニア減少量演算機能および第2アンモニア減少量演算機能を用いて、好気槽1、切替槽2−a、2−bのNH4−N濃度を推定する。第1アンモニア減少量演算機能および第2アンモニア減少量演算機能では、各反応槽における供給風量からNH4−N濃度の減少量を演算する。
図3に、本発明者が実際の下水処理場を模擬したシミュレータ上で、好気槽での供給風量とNH4−N濃度の減少量の関係を調べた結果を示す。供給した風量からNH4−N濃度の減少量を推定可能であることが分かる。供給した風量は、下水100が各反応槽に滞留している間に供給された風量の積算値であるため、各反応槽への風量と、好気槽1への流入流量(Qin(t))との関数となる。アンモニア減少量演算機能により演算した好気槽1、切替槽2−a、2−bでのNH4−N濃度の減少量を、好気槽1への流入水のNH4-N濃度から減じていくことにより、好気槽1,切替槽2−a、2−bのNH4−N濃度を推定する。
In S106, the switching tank ammonia concentration estimation unit 15 uses the first ammonia decrease amount calculation function and the second ammonia decrease amount calculation function, so that the NH4-N concentrations in the aerobic tank 1, the switching tanks 2-a and 2-b are used. Is estimated. In the first ammonia decrease amount calculation function and the second ammonia decrease amount calculation function, the NH4-N concentration decrease amount is calculated from the supply air volume in each reaction tank.
FIG. 3 shows the result of examining the relationship between the supply air volume in the aerobic tank and the decrease amount of the NH 4 -N concentration on a simulator simulating an actual sewage treatment plant. It can be seen that the amount of decrease in NH4-N concentration can be estimated from the supplied air volume. Since the supplied air volume is an integrated value of the air volume supplied while the sewage 100 stays in each reaction tank, the air volume supplied to each reaction tank and the flow rate (Q in (t )). The decrease amount of NH4-N concentration in the aerobic tank 1 and the switching tanks 2-a and 2-b calculated by the ammonia decrease amount calculation function is subtracted from the NH4-N concentration of the inflow water to the aerobic tank 1. By this, NH4-N density | concentration of the aerobic tank 1, switching tank 2-a, 2-b is estimated.

S107において、切替槽2−a、2−bのNH4−N濃度の推定値と目標アンモニア濃度を比較する。図4に好気槽1、切替槽2−a、2−bの状態ごとの、各反応槽でのNH4−N濃度の概念図を示す。好気槽1で硝化が十分に進行し、好気槽1でのNH4−N濃度の推定値が目標アンモニア濃度以下となった場合、S108において、風量制御部16により、風量弁7−a、7−bの開度を低減し、切替槽2−a、2−bを微曝気撹拌による擬似的な無酸素状態(擬似無酸素状態)とする(図4△のグラフ)。一方、好気槽1のNH4−N濃度の推定値が目標アンモニア濃度より高ければ、切替槽2−aは好気状態を維持する。次に、好気状態とした切替槽2−aにおいて硝化が十分に進行し、切替槽2−aのNH4−N濃度の推定値が目標アンモニア濃度以下となった場合、切替槽2−bは擬似無酸素状態に制御する(図4□のグラフ)。一方、好気状態とした切替槽2−aでの硝化が不十分であり、切替槽2−aのNH4−N濃度の推定値が目標アンモニア濃度より高ければ、好気状態を維持する(図4○のグラフ)。   In S107, the estimated value of the NH4-N concentration in the switching tanks 2-a and 2-b is compared with the target ammonia concentration. The conceptual diagram of NH4-N density | concentration in each reaction tank for every state of the aerobic tank 1 and the switching tanks 2-a and 2-b is shown in FIG. When the nitrification sufficiently proceeds in the aerobic tank 1 and the estimated value of the NH4-N concentration in the aerobic tank 1 is equal to or lower than the target ammonia concentration, in S108, the air volume control unit 16 causes the air volume valve 7-a, The opening degree of 7-b is reduced, and the switching tanks 2-a and 2-b are set in a pseudo anoxic state (pseudo anoxic state) by fine aeration and stirring (graph of FIG. 4A). On the other hand, if the estimated value of the NH4-N concentration in the aerobic tank 1 is higher than the target ammonia concentration, the switching tank 2-a maintains the aerobic state. Next, when the nitrification sufficiently proceeds in the switching tank 2-a in an aerobic state and the estimated value of the NH4-N concentration in the switching tank 2-a becomes equal to or lower than the target ammonia concentration, the switching tank 2-b Control to a pseudo anoxic state (graph in FIG. 4). On the other hand, if the nitrification in the switching tank 2-a in the aerobic state is insufficient and the estimated value of the NH4-N concentration in the switching tank 2-a is higher than the target ammonia concentration, the aerobic state is maintained (FIG. 4 o graph).

このように、NH4計などの計測器の新規導入なしに、各反応槽のNH4−N濃度を推定し、切替槽の状態を制御することで、過剰曝気の抑制、窒素除去の向上が期待できる。また、切替槽が複数ある場合においても、それぞれの切替槽のNH4−N濃度の推定値に応じて擬似無酸素状態に制御する位置および数を決定することができる。   Thus, without introducing a new measuring instrument such as an NH4 meter, the NH4-N concentration in each reaction tank is estimated and the state of the switching tank is controlled, so that it is possible to suppress excessive aeration and improve nitrogen removal. . Moreover, even when there are a plurality of switching tanks, the position and number of control to the pseudo-anoxic state can be determined according to the estimated value of the NH4-N concentration in each switching tank.

なお、本実施例では、流量計9により下水100の流量を計測したが、日時、曜日、降水量と、下水100の流量との関係を記録したデータベースを用い、日時、曜日、降水量の少なくとも一つの項目から下水100の流量を推定しても良い。また、本実施例では、返送汚泥流量計10により返送汚泥102の流量を計測したが、必ずしも返送汚泥流量計10を設置する必要はなく、例えば返送汚泥流量を下水100に対する流量比一定に制御している場合、下水100の流量と、下水100に対する流量比とから算出しても良い。   In the present embodiment, the flow rate of the sewage 100 is measured by the flow meter 9, but at least the date, the day of the week, and the precipitation amount are recorded using a database that records the relationship between the date, day of the week, and the precipitation amount and the flow rate of the sewage 100. The flow rate of the sewage 100 may be estimated from one item. In this embodiment, the flow rate of the return sludge 102 is measured by the return sludge flow meter 10, but it is not always necessary to install the return sludge flow meter 10. For example, the return sludge flow rate is controlled to a constant flow rate ratio with respect to the sewage 100. If it is, it may be calculated from the flow rate of the sewage 100 and the flow rate ratio to the sewage 100.

本実施例では、流入アンモニア濃度推定部12は、日時や、曜日、降水量、好気槽1への流入水の流量と、好気槽1への流入水のNH4−N濃度との関係を記録したデータベースを搭載していたが、日時や、曜日、降水量と、下水100の流量と、下水100のNH4−Nとの関係を記録したデータベースを搭載していても良い。その場合の好気槽1への流入水のNH4−N濃度の推定は以下の手順に従う。まず、日時や、曜日、降水量と、下水100の流量と、下水100のNH4−Nとの関係を記録したデータベースを用いて、日時と、曜日と、降水量と、流量計9により計測した下水100の流量とから、下水100のNH4−N濃度(CN_w(t))を推定する。次に、水処理装置SにおいてNH4−Nに関する目標水質を達成した場合を想定し、返送汚泥102のNH4−N濃度(CN_r(t))を目標アンモニア濃度(CNH_0)に設定する。好気槽1への流入水は、下水100と返送汚泥102との混合水であるため、式(2)に基づき、好気槽1への流入水のNH4−N濃度(CN_in(t))を推定する。 In this embodiment, the inflow ammonia concentration estimation unit 12 determines the relationship between the date and time, the day of the week, the amount of precipitation, the flow rate of the inflow water to the aerobic tank 1, and the NH4-N concentration of the inflow water to the aerobic tank 1. Although the recorded database was mounted, the database which recorded the relationship between the date and time, a day of the week, precipitation, the flow volume of the sewage 100, and NH4-N of the sewage 100 may be mounted. In this case, the NH4-N concentration of the inflow water to the aerobic tank 1 is estimated according to the following procedure. First, the date, day of the week, precipitation, and flowmeter 9 were used to measure the date, day of the week, precipitation, the flow rate of sewage 100, and the relationship between NH4-N in sewage 100 and the flow meter 9. From the flow rate of the sewage 100, the NH4-N concentration (C N — w (t)) of the sewage 100 is estimated. Next, assuming that the target water quality related to NH4-N is achieved in the water treatment apparatus S, the NH4-N concentration (C N — r (t)) of the return sludge 102 is set to the target ammonia concentration (C NH — 0 ). Since the inflow water to the aerobic tank 1 is a mixed water of the sewage 100 and the return sludge 102, the NH4-N concentration (C N_in (t)) of the inflow water to the aerobic tank 1 based on the formula (2). ).

Figure 0006375257
Figure 0006375257

ここで、CN_in(t)[mg/L]:時刻tにおける好気槽1への流入水のNH4-N濃度、CN_w(t)[mg/L]:時刻tにおける下水100のNH4-N濃度、CN_r(t)[mg/L]:時刻tにおける返送汚泥102のNH4-N濃度、Q(t)[m3/min]:時刻tにおける下水100の流量、Q(t)[m3/min]:時刻tにおける返送汚泥102の流量とする。なお、CN_r(t)は、目標アンモニア濃度(CNH_0)に設定しても良い。
Here, CN_in (t) [mg / L]: NH4-N concentration of the inflow water to the aerobic tank 1 at time t, CN_w (t) [mg / L]: NH4- of the sewage 100 at time t N concentration, C N — r (t) [mg / L]: NH 4 —N concentration in the return sludge 102 at time t, Q w (t) [m 3 / min]: Flow rate of sewage 100 at time t, Q r (t ) [M 3 / min]: The flow rate of the return sludge 102 at time t. Note that C N — r (t) may be set to the target ammonia concentration (C NH — 0 ).

本実施例では、流入アンモニア濃度推定部12のデータベースにおいて、好気槽1への流入水のNH4-N濃度を記録していたが、必ずしもNH4−N濃度である必要はなく、全窒素濃度などNH4−N濃度を推定できる指標であれば良い。また、窒素成分以外の指標においてもNH4−N濃度を推定できるものであれば良く、例えば下水100の有機物濃度と窒素濃度の比に変動パターンがある下水処理場では、好気槽1の上流に流入有機物濃度計測手段である有機物濃度計を設置し、有機物濃度計により計測した下水100の有機物濃度から、好気槽1への流入水のNH4−N濃度を推定してもよい。   In the present embodiment, the NH4-N concentration of the inflow water to the aerobic tank 1 is recorded in the database of the inflow ammonia concentration estimation unit 12, but it is not necessarily the NH4-N concentration, and the total nitrogen concentration, etc. Any index that can estimate the NH4-N concentration may be used. In addition, any index other than the nitrogen component may be used as long as it can estimate the NH 4 -N concentration. For example, in a sewage treatment plant having a variation pattern in the ratio of the organic matter concentration to the nitrogen concentration in the sewage 100, An organic matter concentration meter that is an inflowing organic matter concentration measuring means may be installed, and the NH4-N concentration of the inflowing water to the aerobic tank 1 may be estimated from the organic matter concentration of the sewage 100 measured by the organic matter concentration meter.

本実施例では、風量推定部14において、風量計13により計測したブロワ6の風量から、各反応槽への風量を推定したが、風量計13をブロワ6から各反応槽へ接続する配管に設置し、各反応槽への風量を計測しても良い。   In the present embodiment, the air volume estimating unit 14 estimates the air volume to each reaction tank from the air volume of the blower 6 measured by the air volume meter 13, but the air volume meter 13 is installed in a pipe connecting the blower 6 to each reaction tank. Then, the air volume to each reaction tank may be measured.

本実施例では、第1アンモニア減少量演算機能および第2アンモニア減少量演算機能において、各反応槽への風量と、好気槽1への流入水の流量の関数として、NH4−N濃度の減少量を演算したが、風量や流入流量に加えて、水温や活性汚泥濃度、有機物濃度などの水質に関する項を追加しても良い。水温や活性汚泥濃度、有機物濃度は計測器による計測値を用いても良く、またデータベースを参考にしても良い。また、好気槽などに溶存酸素(DO)計などを設置し、風量とDOの関係から、風量とNH4−N濃度の減少量に関する関数を補正しても良い。   In this embodiment, in the first ammonia decrease amount calculation function and the second ammonia decrease amount calculation function, the NH4-N concentration decreases as a function of the air volume to each reaction tank and the flow rate of the inflow water to the aerobic tank 1. Although the amount is calculated, in addition to the air volume and the inflow rate, terms related to water quality such as water temperature, activated sludge concentration, and organic matter concentration may be added. The water temperature, activated sludge concentration, and organic matter concentration may be measured by a measuring instrument or may be referred to a database. Further, a dissolved oxygen (DO) meter or the like may be installed in an aerobic tank or the like, and the function relating to the air volume and the decrease amount of the NH4-N concentration may be corrected from the relationship between the air volume and DO.

本実施例では、切替槽2を無酸素状態とする際、微曝気撹拌による擬似無酸素状態としたが、微曝気による撹拌ではなく、撹拌機を設置し、撹拌機による撹拌を実施しても良い。また、曝気停止時においても活性汚泥の逆流が生じない膜式散気装置を切替槽散気部5として使用している場合、短時間曝気を停止しても良い。   In this embodiment, when the switching tank 2 is brought into an oxygen-free state, it is set in a pseudo oxygen-free state by slightly aerated stirring. However, instead of stirring by slightly aerated, a stirrer is installed and stirring by a stirrer is performed. good. In addition, when a membrane-type air diffuser that does not cause backflow of activated sludge even when aeration is stopped is used as the switching tank aeration unit 5, aeration may be stopped for a short time.

本実施例では、切替槽2−a、切替槽2−bの状態の制御を、それぞれ好気槽1、切替槽2−aのNH4−N濃度の推定値に基づき実施したが、その制御は時間遅れを持っても良い。例えば、切替槽2−aのNH4−N濃度の推定値が目標アンモニア濃度以下となった時刻をtとすると、好気槽1への流入水の流量の関数で表されるΔtを加算し、時刻t+Δtにおいて、切替槽2−bの状態を擬似無酸素状態に制御しても良い。また、切替槽2(2−a、2−b)のNH4−N濃度の推定値が目標アンモニア濃度以下となった時刻において、切替槽2(2−a、2−b)の状態を擬似無酸素状態に制御しても良い。   In this example, the control of the state of the switching tank 2-a and the switching tank 2-b was performed based on the estimated values of the NH4-N concentrations in the aerobic tank 1 and the switching tank 2-a, respectively. You may have a time delay. For example, if the time when the estimated value of the NH4-N concentration in the switching tank 2-a becomes equal to or less than the target ammonia concentration is t, Δt expressed as a function of the flow rate of the inflow water to the aerobic tank 1 is added. At time t + Δt, the state of the switching tank 2-b may be controlled to a pseudo anoxic state. In addition, at the time when the estimated value of the NH4-N concentration in the switching tank 2 (2-a, 2-b) becomes equal to or lower than the target ammonia concentration, the state of the switching tank 2 (2-a, 2-b) is simulated. You may control to an oxygen state.

本実施例では、好気槽1と切替槽2の構成であったが、切替槽2のみの構成でも良い。また、本制御は、嫌気好気活性汚泥法や嫌気好気無酸素法など嫌気槽や無酸素槽を有する処理プロセスにおいても適用可能である。   In the present embodiment, the configuration is the aerobic tank 1 and the switching tank 2, but the configuration of only the switching tank 2 may be used. Moreover, this control is applicable also in the process which has an anaerobic tank and an anaerobic tank, such as an anaerobic aerobic activated sludge method and an anaerobic aerobic anaerobic method.

本実施例では、切替槽2を水処理装置Sの最も下流に設置した。撹拌機により撹拌する通常の無酸素槽では脱窒気泡が生成され、最終沈殿池での活性汚泥の沈降性が低下する。そのため、無酸素槽の後段に脱窒気泡を除去するための好気槽を設置する必要がある。一方、切替槽2では、擬似無酸素状態においても微曝気により撹拌するため、脱窒気泡が除去され、後段の好気槽は不要となる。そのため、目標アンモニア濃度の設定の際に、後段の好気槽でのNH4−N減少量を考慮する必要がなく、制御の信頼性が向上する。なお、好気槽を水処理装置Sの最も下流に設置した場合も、本制御は適用可能である。   In this embodiment, the switching tank 2 is installed on the most downstream side of the water treatment device S. In a normal oxygen-free tank stirred with a stirrer, denitrification bubbles are generated, and the sedimentation property of activated sludge in the final sedimentation basin is lowered. Therefore, it is necessary to install an aerobic tank for removing denitrification bubbles after the anaerobic tank. On the other hand, since the switching tank 2 is agitated by slight aeration even in the pseudo-anoxic state, denitrification bubbles are removed, and a subsequent aerobic tank becomes unnecessary. Therefore, when setting the target ammonia concentration, it is not necessary to consider the amount of NH4-N reduction in the subsequent aerobic tank, and the control reliability is improved. In addition, this control is applicable also when an aerobic tank is installed in the most downstream of the water treatment apparatus S.

本制御は、NH4計など新規計測器を用いないことを特徴としているが、NH4計を導入した場合にも適用可能である。例えば、好気槽1の上流にアンモニア計を設置し、好気槽1への流入水のNH4−N濃度を計測しても良い。


This control is characterized in that a new measuring instrument such as an NH4 meter is not used, but can also be applied when an NH4 meter is introduced. For example, an ammonia meter may be installed upstream of the aerobic tank 1 and the NH4-N concentration of the inflow water to the aerobic tank 1 may be measured.


S…水処理装置
100…下水
101…処理水
102…返送汚泥
800…返送汚泥の移送流路
1…好気槽
2…切替槽
3…最終沈殿池
4…好気槽散気部
5…切替槽散気部
6…ブロワ
7…風量弁
8…返送ポンプ
9…流量計
10…返送汚泥流量計
11…流入流量推定部
12…流入アンモニア濃度推定部
13…風量計
14…風量推定部
15…切替槽アンモニア濃度推定部
16…風量制御部
S ... Water treatment equipment
100 ... Sewage
101 ... treated water
102 ... Return sludge
800… Transfer flow path for return sludge
1 ... Aerobic tank
2 ... Switch tank
3 ... Final sedimentation basin
4… Aerobic tank diffuser
5… Switching tank diffuser
6… Blower
7 ... Air flow valve
8 ... Return pump
9… Flow meter
10 ... Return sludge flow meter
11… Inflow flow rate estimation unit
12… Inflow ammonia concentration estimation part
13 ... Air flow meter
14 ... Air volume estimation unit
15 ... Switching tank ammonia concentration estimation section
16 ... Air volume control unit

Claims (7)

微生物により下水を処理する水処理装置において、
好気状態と無酸素状態とに切り替えられる複数の切替槽を含む反応槽と、
少なくとも前記切替槽に設置された散気部と、
前記散気部に空気を供給するブロワと、
前記反応槽への流入水の流量を推定する流入流量推定部と、
前記反応槽への流入水のアンモニア濃度を推定する流入アンモニア濃度推定部と、
前記切替槽への風量を推定する第1風量推定部と、
前記切替槽への風量を制御する風量制御部と、
前記切替槽でのアンモニア濃度を推定する切替槽アンモニア濃度推定部とを備え、
前記切替槽アンモニア濃度推定部が、前記第1風量推定部の出力値と、前記流入流量推定部の出力値とから、前記切替槽でのアンモニア濃度減少量を演算する第1アンモニア減少量演算機能を備え、
前記切替槽アンモニア濃度推定部が、前記流入アンモニア濃度推定部の出力値と、前記第1アンモニア減少量演算機能により演算した前記切替槽でのアンモニア濃度減少量とから、前記切替槽でのアンモニア濃度を推定し、
複数の前記切替槽のうち、予め設定した目標アンモニア濃度に対して、前記切替槽アンモニア濃度推定部の出力値が前記目標アンモニア濃度以下となる前記切替槽では、前記風量制御部により無酸素状態に制御し、その他の前記切替槽は好気状態に制御することを特徴とする水処理装置。
In a water treatment device that treats sewage with microorganisms,
A reaction tank including a plurality of switching tanks that can be switched between an aerobic state and an oxygen-free state;
At least a diffuser installed in the switching tank;
A blower for supplying air to the air diffuser;
An inflow flow rate estimation unit for estimating the flow rate of inflow water to the reaction vessel;
An inflow ammonia concentration estimation unit for estimating the ammonia concentration of the inflow water to the reaction tank;
A first air volume estimating unit for estimating an air volume to the switching tank;
An air volume control unit for controlling the air volume to the switching tank;
A switching tank ammonia concentration estimation unit for estimating the ammonia concentration in the switching tank;
A first ammonia reduction amount calculation function in which the switching tank ammonia concentration estimation unit calculates an ammonia concentration reduction amount in the switching tank from the output value of the first air volume estimation unit and the output value of the inflow flow rate estimation unit. With
The switching tank ammonia concentration estimation unit calculates the ammonia concentration in the switching tank from the output value of the inflow ammonia concentration estimation unit and the ammonia concentration decrease amount in the switching tank calculated by the first ammonia decrease amount calculation function. Estimate
Among the plurality of switching tanks, in the switching tank in which the output value of the switching tank ammonia concentration estimation unit is equal to or lower than the target ammonia concentration with respect to a preset target ammonia concentration, the air volume control unit makes an oxygen-free state. The water treatment apparatus is characterized in that the other switching tank is controlled to be in an aerobic state.
請求項1の水処理装置において、
前記風量制御部では、前記切替槽への風量を予め設定した微曝気風量設定値、もしくは零に風量を低減し、前記切替槽を擬似無酸素状態、もしくは無酸素状態に制御することを特徴とする水処理装置。
The water treatment device of claim 1,
The air volume control unit is characterized in that the air volume to the switching tank is set to a fine aeration air volume setting value set in advance, or the air volume is reduced to zero, and the switching tank is controlled to a pseudo anoxic state or an oxygen-free state. Water treatment equipment.
請求項1、又は請求項2の水処理装置において、
前記切替槽を、前記反応槽の最も下流に設置することを特徴とする水処理装置。
In the water treatment apparatus of Claim 1 or Claim 2,
The water treatment apparatus, wherein the switching tank is installed on the most downstream side of the reaction tank.
請求項1から請求項3のうちの一つの水処理装置において、前記切替槽が好気槽の下流側に設置された構成であり、
前記好気槽への風量を推定する第2風量推定部を備え、
前記切替槽アンモニア濃度推定部が、前記第2風量推定部の出力値と、前記流入流量推定部の出力値とから、好気槽でのアンモニア濃度減少量を演算する第2アンモニア減少量演算機能を備え、
前記切替槽アンモニア濃度推定部が、前記流入アンモニア濃度推定部の出力値と、前記第2アンモニア減少量演算機能により演算した好気槽でのアンモニア濃度減少量と、前記第1アンモニア減少量演算機能により演算した切替槽でのアンモニア濃度減少量とから、前記切替槽でのアンモニア濃度を推定することを特徴とする水処理装置。
The water treatment device according to any one of claims 1 to 3, wherein the switching tank is installed on the downstream side of the aerobic tank,
A second air volume estimating unit for estimating an air volume to the aerobic tank;
A second ammonia reduction amount calculation function in which the switching tank ammonia concentration estimation unit calculates an ammonia concentration reduction amount in the aerobic tank from the output value of the second air volume estimation unit and the output value of the inflow rate estimation unit. With
The switching tank ammonia concentration estimation unit outputs the output value of the inflow ammonia concentration estimation unit, the ammonia concentration decrease amount in the aerobic tank calculated by the second ammonia decrease amount calculation function, and the first ammonia decrease amount calculation function The ammonia concentration in the said switching tank is estimated from the ammonia concentration reduction amount in the switching tank calculated by (1).
請求項1から請求項4のうちの一つの水処理装置において、
前記流入流量推定部が、日時と、曜日と、降水量とのうち少なくとも一つの項目を用いて前記反応槽への流入水の流量を推定する、もしくは流入流量計測手段を用いて前記反応槽への流入水の流量を計測することを特徴とする水処理装置。
In one water treatment apparatus in any one of Claims 1-4,
The inflow flow rate estimation unit estimates the flow rate of inflow water to the reaction tank using at least one of the date, day of the week, and precipitation, or to the reaction tank using inflow rate measurement means. A water treatment device that measures the flow rate of inflow water.
請求項1から請求項5のうちの一つの水処理装置において、
前記流入アンモニア濃度推定部が、日時と、曜日と、降水量と、前記反応槽への流入水の流量とのうち少なくとも一つの項目を用いて、前記反応槽への流入水のアンモニア濃度を推定することを特徴とする水処理装置。
In one water treatment apparatus in any one of Claims 1-5,
The inflow ammonia concentration estimation unit estimates the ammonia concentration of the inflow water to the reaction tank using at least one of the date, day of the week, precipitation, and the flow rate of the inflow water to the reaction tank. The water treatment apparatus characterized by performing.
請求項1から請求項6のうちの一つの水処理装置において、
前記反応槽の上流に、前記下水の有機物濃度を計測する有機物濃度計測手段を設置し、前記流入アンモニア濃度推定部が、日時と、曜日と、降水量と、前記反応槽への流入水の流量と、前記有機物濃度計測手段の出力値とのうち少なくとも一つの項目を用いて、前記反応槽への流入水のアンモニア濃度を推定することを特徴とする水処理装置。
In one water treatment apparatus in any one of Claims 1-6,
An organic substance concentration measuring means for measuring the organic substance concentration of the sewage is installed upstream of the reaction tank, and the inflow ammonia concentration estimation unit is configured to include a date, a day of the week, precipitation, and a flow rate of inflow water to the reaction tank. And the ammonia concentration of the inflow water to the said reaction tank is estimated using at least 1 item among the output values of the said organic substance density | concentration measurement means, The water treatment apparatus characterized by the above-mentioned.
JP2015070615A 2015-03-31 2015-03-31 Water treatment equipment Active JP6375257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015070615A JP6375257B2 (en) 2015-03-31 2015-03-31 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015070615A JP6375257B2 (en) 2015-03-31 2015-03-31 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2016190181A JP2016190181A (en) 2016-11-10
JP6375257B2 true JP6375257B2 (en) 2018-08-15

Family

ID=57246155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015070615A Active JP6375257B2 (en) 2015-03-31 2015-03-31 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP6375257B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113955851A (en) * 2021-08-18 2022-01-21 北京工业大学 Post-selection anoxic/aerobic internal carbon source reinforced municipal sewage deep denitrification device and method
CN115779505B (en) * 2022-11-23 2023-09-01 广州市龙粤环保机械设备有限公司 Sewage treatment system and treatment method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518699U (en) * 1991-08-28 1993-03-09 株式会社明電舎 Anaerobic / aerobic activated sludge treatment equipment
JPH0518698U (en) * 1991-08-28 1993-03-09 株式会社明電舎 Anaerobic / aerobic activated sludge treatment equipment
JPH0716595A (en) * 1993-06-30 1995-01-20 Meidensha Corp Operation control method in modified method for circulating active sludge
JPH07136687A (en) * 1993-11-12 1995-05-30 Meidensha Corp Operation control method for modified active sludge circulation process in low water temperature period
JPH08117789A (en) * 1994-10-26 1996-05-14 Meidensha Corp Operation control of two-stage activated sludge circulation variation
JP5606513B2 (en) * 2011-11-08 2014-10-15 株式会社東芝 Nitrogen / phosphorus removal treatment method and nitrogen / phosphorus removal treatment apparatus
JP5935166B2 (en) * 2012-06-01 2016-06-15 株式会社日立製作所 Water treatment apparatus and method
JP2015051389A (en) * 2013-09-06 2015-03-19 株式会社日立製作所 Water treatment controller

Also Published As

Publication number Publication date
JP2016190181A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP3961835B2 (en) Sewage treatment plant water quality controller
JP4334317B2 (en) Sewage treatment system
JP5833791B1 (en) Aeration control method for activated sludge
JP2012200705A5 (en)
JP2012200705A (en) Nitrogen-containing wastewater treatment method and apparatus
JP6974795B2 (en) Aeration air volume control method and equipment for aeration tanks in sewage treatment equipment
JP4229999B2 (en) Biological nitrogen removal equipment
JP6532397B2 (en) Operation support device and operation support method of sewage treatment plant
JP2004275826A (en) Sewage treatment plant water quality monitoring and controlling device
JP4008694B2 (en) Sewage treatment plant water quality controller
JP6375257B2 (en) Water treatment equipment
JP5956372B2 (en) Water treatment apparatus and water treatment method
JP6334244B2 (en) Water treatment process control system
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP7158912B2 (en) Regulation compartment control device, regulation compartment control method, computer program and organic wastewater treatment system
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
WO2020170364A1 (en) Water treatment apparatus and water treatment method
JP6805002B2 (en) Water treatment control device and water treatment system
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JP6430324B2 (en) Waste water treatment method and waste water treatment apparatus
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JP4489990B2 (en) Biological water treatment equipment
JP2006142166A (en) Apparatus for treating waste water biologically and method for controlling operation of the apparatus
JPH0788490A (en) Method and apparatus for treating waste water
JP3303475B2 (en) Operation control method of activated sludge circulation method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6375257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150