JPH0788490A - Method and apparatus for treating waste water - Google Patents

Method and apparatus for treating waste water

Info

Publication number
JPH0788490A
JPH0788490A JP23697193A JP23697193A JPH0788490A JP H0788490 A JPH0788490 A JP H0788490A JP 23697193 A JP23697193 A JP 23697193A JP 23697193 A JP23697193 A JP 23697193A JP H0788490 A JPH0788490 A JP H0788490A
Authority
JP
Japan
Prior art keywords
reaction tank
water
sewage
treated
dissolved oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23697193A
Other languages
Japanese (ja)
Other versions
JP3213657B2 (en
Inventor
Isao Somiya
功 宗宮
Hiroshi Tsuno
洋 津野
Toshio Yamada
登志夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ataka Kogyo KK
Ataka Construction and Engineering Co Ltd
Original Assignee
Ataka Kogyo KK
Ataka Construction and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ataka Kogyo KK, Ataka Construction and Engineering Co Ltd filed Critical Ataka Kogyo KK
Priority to JP23697193A priority Critical patent/JP3213657B2/en
Publication of JPH0788490A publication Critical patent/JPH0788490A/en
Application granted granted Critical
Publication of JP3213657B2 publication Critical patent/JP3213657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE:To improve purification efficiency and reliability by a method in which the degree of contamination at each position along the flow of water to be treated in a reaction tank is calculated by given expressions on the basis of the contamination condition of the inflow waste water and the concentration of the dissolved oxygen in the water to be treated in the tank to control the concentration of dissolved oxygen. CONSTITUTION:The flow rate Q1 of waste water 3 flowing into a reaction tank 1 from a residual removing apparatus through an inflow pipe 5, the concentration C10 of organic substances and various kinds of nitrogen compounds in the waste water 3 are measured to input the values into a control means. The control means to which the concentration of dissolved oxygen of the water 3a to be treated existing in the reaction tank 1 which is measured in the intermediate part of the reaction tank 1 is input calculates the contamination condition of the water to be treated by applying the measurement results to the material balance expression of organic substances, nitrogen compounds, and microorganisms in the water 3a to be treated, the reaction rate expressions of the removal of the organic substances, the conversion of the nitrogen compounds, and the propagation of the microorganisms, and the generation rate expressions of the organic substances and the nitrogen compounds. The results are compared with the calculated values of the simulation of a status model to control the inflow amount Q1, the reflux amount Q2, the sludge return amounts Q5, Q6, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、単一槽にて有機物や窒
素化合物などを含有する汚水を浄化処理する汚水の処理
方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating sewage which purifies sewage containing organic substances and nitrogen compounds in a single tank.

【0002】[0002]

【従来の技術】従来より、有機物や窒素化合物などを含
有する例えばし尿などの汚水を浄化処理する場合、溶存
酸素(DO:Dissolved Oxygen)が存在する好気性雰囲
気で、好気性菌や通性嫌気性菌などが汚水に含有される
有機物を栄養源として活性化し、有機物を好気性菌や通
性嫌気性菌などにて酸化分解する酸化分解工程、溶存酸
素の存在下、アンモニア性窒素を亜硝酸菌や硝酸菌にて
亜硝酸性窒素や硝酸性窒素の酸化態窒素に酸化する硝化
工程、および、有機物もしくは自己分解により栄養を得
て溶存酸素が存在しない嫌気性雰囲気で、硝化された酸
化態窒素を脱窒菌が硝酸呼吸にて窒素ガスに還元する脱
窒工程を考慮する必要がある。
2. Description of the Related Art Conventionally, when purifying sewage containing organic matter, nitrogen compounds, etc., such as human waste, in an aerobic atmosphere in which dissolved oxygen (DO) is present, aerobic bacteria and facultative anaerobes are present. Oxidative decomposition process in which sexual bacteria activate organic substances contained in sewage as nutrient sources and oxidize and decompose organic substances with aerobic and facultative anaerobic bacteria. Nitrification process in which bacteria or nitric acid bacteria oxidize nitrite nitrogen or nitrate nitrogen to oxidized nitrogen, and in an anaerobic atmosphere where nutrients are obtained by organic substances or self-decomposition and dissolved oxygen does not exist It is necessary to consider the denitrification process in which nitrogen denitrifying bacteria reduce nitrogen to nitrogen gas by respiration of nitric acid.

【0003】したがって、雰囲気の異なる処理工程と、
各処理工程間の汚水の移送と、有機物、各種窒素化合物
および各種菌の増減との複雑な関係を把握して制御する
必要がある。このため、各工程での溶存酸素濃度および
有機物、各種窒素化合物および各種菌の量の関係を、各
種数式にて演算して把握し、演算結果を基に浄化処理を
自動制御する方法、例えば特開昭61−212395号
公報、特開昭63−209796号公報および特開昭6
4−51197号公報に記載の構成が知られている。
Therefore, the processing steps in different atmospheres,
It is necessary to understand and control the complicated relationship between the transfer of sewage between each treatment process and the increase and decrease of organic matter, various nitrogen compounds and various bacteria. Therefore, the relationship between the dissolved oxygen concentration and the amount of organic matter, various nitrogen compounds, and various bacteria in each step is calculated by various mathematical expressions and grasped, and a method for automatically controlling the purification treatment based on the calculated results, for example, JP-A-61-212395, JP-A-63-209796, and JP-A-6-26
The configuration described in Japanese Patent Publication No. 4-51197 is known.

【0004】そして、特開昭61−212395号公報
に記載の汚水の処理方法は、嫌気性の脱窒槽内への汚水
の流入量、汚水の全窒素濃度、分離槽から脱窒槽へ返送
する汚泥の返送汚泥濃度、好気性の硝化槽から脱窒槽へ
の循環水の活性汚泥濃度を測定する。さらに、これらを
制御因子として流入水量に対する循環水の比、および、
流入水量に対する返送汚泥の比を演算する。そして、こ
れらの演算値に基づき循環水量および返送汚泥量を制御
して、汚水の生物学的脱窒素を全自動的に効率よく行い
浄化処理する。
The method for treating sewage described in Japanese Patent Laid-Open No. 61-212395 discloses a method of inflowing sewage into an anaerobic denitrification tank, total nitrogen concentration in sewage, and sludge returned from the separation tank to the denitrification tank. And the concentration of activated sludge in circulating water from the aerobic nitrification tank to the denitrification tank. Further, using these as control factors, the ratio of circulating water to inflow water, and
Calculate the ratio of returned sludge to inflow water. Then, the amount of circulating water and the amount of sludge to be returned are controlled based on these calculated values, and biological denitrification of the wastewater is carried out fully automatically and efficiently for purification treatment.

【0005】しかしながら、この特開昭61−2123
95号公報に記載の汚水の処理方法は、各処理工程に直
接起因する溶存酸素濃度を、流入水量に対する循環水、
および、流入水量に対する返送汚泥の割合に基づいて間
接的に管理するため、各処理工程における溶存酸素濃度
が変動しやすく、良好な浄化処理が行えないおそれがあ
る。さらに、硝化・脱窒工程の循環における循環水量と
返送汚泥量とに基づいて浄化処理の制御を行うため、流
入する汚水の有機物の量が変動したり、汚水の有機物に
よる汚染濃度の変動により、酸化分解工程が良好に行え
ず、硝化・脱窒工程に関与する有機物の収支が変動し、
良好に浄化処理できないおそれがある。また、溶存酸素
濃度の管理を容易にすべく、好気性の硝化槽と嫌気性の
脱窒槽の2つの反応槽を用いて各処理工程を行うため、
装置が大型化するとともに、設置スペースが拡大する問
題がある。
However, this Japanese Patent Laid-Open No. 61-2123
The method for treating sewage described in Japanese Patent Publication No. 95 discloses the dissolved oxygen concentration directly attributable to each treatment step as
Further, since the indirect management is performed based on the ratio of the returned sludge to the inflow water amount, the dissolved oxygen concentration in each treatment process tends to fluctuate, and there is a possibility that good purification treatment cannot be performed. Furthermore, because the purification treatment is controlled based on the amount of circulating water and the amount of returned sludge in the circulation of the nitrification / denitrification process, the amount of organic matter in the inflowing wastewater varies, and the concentration of pollution caused by the organic matter in the wastewater varies. The oxidative decomposition process cannot be performed well, and the balance of organic substances involved in the nitrification and denitrification process changes.
There is a possibility that the purification process cannot be performed properly. Further, in order to easily control the dissolved oxygen concentration, each treatment step is performed using two reaction tanks, an aerobic nitrification tank and an anaerobic denitrification tank,
There is a problem that the device becomes large and the installation space is enlarged.

【0006】また、特開昭63−209796号公報に
記載の汚水の処理装置は、汚水の水温やpHなどの環境
因子が安定している際の動力学的定数、炭素系および窒
素系の各基質除去速度式、炭素系および窒素系の各菌体
増殖速度式、溶存酸素濃度に関連する物質収支式、およ
び、プロセス内汚泥量の物質収支式を用いて演算してシ
ミュレーションを実施する。
Further, the wastewater treatment apparatus described in JP-A-63-209796 discloses a kinetic constant, a carbon type and a nitrogen type when environmental factors such as the temperature and pH of the wastewater are stable. The simulation is performed by using the substrate removal rate equation, the carbon-based and nitrogen-based cell growth rate equations, the mass balance equation related to the dissolved oxygen concentration, and the mass balance equation for the amount of sludge in the process.

【0007】一方、これにより定常状態のプロセス内の
硝化に寄与する菌体量または硝化率の経時変化データを
算出し、このデータのうち硝化菌体量または硝化率が安
定した値を目標値として第1のシミュレータ部で出力す
る。また、動力学的定数を環境因子の関数で表して各時
点の環境因子に応じた動力学的定数を用いるとともに、
第1のシミュレータ部からの目標値を導入し、炭素系お
よび窒素系の各基質除去速度式、炭素系および窒素系の
各菌体増殖速度式、溶存酸素濃度に関連する物質収支
式、および、プロセス内汚泥量の物質収支式を用いて演
算してシミュレーションを実施する。
On the other hand, the time-dependent change data of the bacterial cell amount or nitrification rate that contributes to nitrification in the steady-state process is calculated by using this, and the stable value of the nitrifying bacterial cell volume or nitrification rate is used as the target value. It is output by the first simulator section. In addition, the dynamic constant is expressed as a function of the environmental factor, and the dynamic constant corresponding to the environmental factor at each time point is used,
Introducing the target value from the first simulator part, carbon-based and nitrogen-based substrate removal rate equations, carbon-based and nitrogen-based cell growth rate equations, mass balance equations related to dissolved oxygen concentration, and A simulation is performed by calculating the amount of sludge in the process using a mass balance formula.

【0008】そして、このシミュレーションにより、各
時点の溶存酸素濃度の制御要素の適切設定値を第2のシ
ミュレータ部にて求め、有機性汚水および活性汚泥の混
合溶液を反応槽内で曝気し、水温やpHなどの環境因子
が変動しても硝化菌体量あるいは硝化率を目標値に維持
して良好に浄化処理する。
Then, by this simulation, an appropriate set value of the control element for the dissolved oxygen concentration at each time point is obtained in the second simulator section, and the mixed solution of the organic sewage and the activated sludge is aerated in the reaction tank to obtain the water temperature. Even if environmental factors such as pH and pH fluctuate, the amount of nitrifying bacteria or the nitrification rate is maintained at the target value and the purification treatment is performed well.

【0009】しかしながら、この特開昭63−2097
96号公報に記載の装置は、硝化菌体量あるいは硝化率
を一定に維持させ、硝化工程を効率よく良好に進行させ
るものである。したがって、汚水を浄化処理するために
は、この硝化工程後に脱窒工程を行う装置を必要とす
る。このため、汚水の浄化処理を行う装置が大型化し、
設置スペースが拡大するとともに、浄化処理の操作が煩
雑となる問題がある。
However, this Japanese Patent Laid-Open No. 63-2097
The apparatus described in Japanese Patent Laid-Open No. 96 keeps the amount of nitrifying bacteria or the nitrification rate constant and allows the nitrification step to proceed efficiently and satisfactorily. Therefore, in order to purify the sewage, an apparatus for performing the denitrification step after this nitrification step is required. For this reason, the device for purifying the sewage becomes large,
There is a problem that the installation space increases and the operation of the purification process becomes complicated.

【0010】また、特開昭64−51197号公報に記
載の汚水の処理装置は、硝化槽の入口、中間、出口部の
それぞれの溶存酸素濃度を測定し、あらかじめ設定して
あるそれぞれの目標値と比較して、それぞれ測定した溶
存酸素濃度が対応する各目標値となるように、硝化槽内
の曝気装置を構成する風量調整弁および送風機の吸込み
弁を制御して曝気する。
The sewage treatment apparatus described in Japanese Patent Laid-Open No. 64-51197 measures the dissolved oxygen concentration at the inlet, middle and outlet of the nitrification tank, and sets the respective preset target values. In comparison with the above, the air volume control valve and the suction valve of the blower that configure the aeration device in the nitrification tank are controlled and aerated so that the measured dissolved oxygen concentrations reach the corresponding target values.

【0011】さらに、脱窒槽の酸化還元電位をあらかじ
め設定した脱窒に適した酸化還元電位と比較して、測定
した酸化還元電位が設定した酸化還元電位となるよう
に、硝化槽から脱窒槽への循環水量を制御する。
Further, the redox potential of the denitrification tank is compared with a preset redox potential suitable for denitrification so that the measured redox potential becomes the set redox potential from the nitrification tank to the denitrification tank. Control the amount of circulating water.

【0012】そして、入口部での溶存酸素濃度の不足に
よる硝化効率の低下を防止するとともに、脱窒槽への溶
存酸素の持ち込みによる脱窒効率の低下を防止して、効
率よく良好に浄化処理する。
The nitrification efficiency is prevented from lowering due to the insufficient dissolved oxygen concentration at the inlet, and the denitrification efficiency is prevented from lowering due to the introduction of dissolved oxygen into the denitrification tank for efficient and satisfactory purification treatment. .

【0013】しかしながら、この特開昭64−5119
7号公報に記載の装置は、硝化槽の溶存酸素濃度および
脱窒槽の脱窒状態を示す酸化還元電位に基づいて循環水
量および曝気状態を制御し硝化・脱窒工程の浄化処理を
制御するので、有機物の酸化分解工程を監視しておら
ず、酸化分解工程を良好に行わせるための制御が行われ
ていないため、汚水の流入量および有機物による汚染状
態の変動により、有機物を良好に酸化分解できず、ま
た、硝化・脱窒工程に関与する有機物の収支が変動する
ことによる硝化・脱窒工程が良好に行われないおそれが
ある。さらに、硝化槽と脱窒槽の2つを設けているた
め、装置が大型化するとともに、設置スペースが拡大す
る問題がある。
However, this Japanese Patent Laid-Open No. 64-5119
Since the apparatus described in Japanese Patent Publication No. 7 controls the amount of circulating water and the aeration state based on the dissolved oxygen concentration in the nitrification tank and the redox potential indicating the denitrification state in the denitrification tank, the purification treatment in the nitrification / denitrification process is controlled. Since the oxidative decomposition process of organic substances is not monitored and control is not performed to perform the oxidative decomposition process satisfactorily, it is possible to oxidize and decompose organic substances satisfactorily due to changes in the inflow of sewage and the pollution state due to organic substances. In addition, there is a risk that the nitrification / denitrification process will not be performed well due to fluctuations in the balance of organic substances involved in the nitrification / denitrification process. Further, since two nitrification tanks and denitrification tanks are provided, there is a problem that the apparatus becomes large and the installation space expands.

【0014】[0014]

【発明が解決しようとする課題】上述したように、上記
特開昭61−212395号公報に記載の汚水の処理方
法では、各処理工程における溶存酸素濃度の変動によ
り、良好な浄化処理が行えないおそれがあるとともに、
流入する汚水の有機物の量の変動および有機物による汚
染状態の変動により、酸化分解工程が良好に行えず、硝
化・脱窒工程に関与する有機物の収支が変動し、良好に
浄化処理できないおそれがある。
As described above, in the method for treating sewage described in JP-A-61-212395, a satisfactory purification treatment cannot be performed due to the fluctuation of the dissolved oxygen concentration in each treatment step. There is a possibility that
Due to fluctuations in the amount of organic matter in the inflowing wastewater and changes in the pollution state due to organic matter, the oxidative decomposition process may not be performed well, and the balance of organic substances involved in the nitrification / denitrification process may fluctuate, which may prevent good purification treatment. .

【0015】また、特開昭63−209796号公報に
記載の汚水の処理装置では、硝化工程を基に、有機物の
収支を管理するため、流入する汚水の有機物の量の変動
および有機物による汚染状態の変動により、有機物の酸
化分解工程が良好に行えず、硝化・脱窒工程に関与する
有機物の収支が変動し、良好に浄化処理できないおそれ
がある。
Further, in the wastewater treatment apparatus described in Japanese Patent Laid-Open No. 63-209796, since the balance of organic matter is managed based on the nitrification process, the fluctuation of the amount of organic matter in the inflowing wastewater and the state of contamination by the organic matter. Due to the fluctuation of the above, the oxidative decomposition process of the organic matter cannot be performed well, the balance of the organic matter involved in the nitrification / denitrification process varies, and there is a possibility that the purification treatment cannot be performed satisfactorily.

【0016】さらに、特開昭64−51197号公報に
記載の汚水の処理装置では、有機物の酸化分解工程を良
好に行わせるための制御を行わないため、汚水の流入量
および有機物による汚染状態の変動により、有機物を良
好に酸化分解できず、硝化・脱窒工程に関与する有機物
の収支が変動することによる硝化・脱窒工程が良好に行
えないおそれがある。
Further, in the wastewater treatment apparatus described in Japanese Patent Laid-Open No. 64-51197, control is not performed to favorably perform the oxidative decomposition step of organic matter, so that the inflow amount of wastewater and the state of contamination by organic matter can be prevented. Due to the fluctuation, the organic matter cannot be oxidatively decomposed well, and the balance of the organic matter involved in the nitrification / denitrification step may fluctuate, so that the nitrification / denitrification step may not be performed well.

【0017】そして、特開昭61−212395号公報
に記載の汚水の処理方法、および、特開昭64−511
97号公報に記載の汚水の処理装置では、硝化槽と脱窒
槽の2つを設けており、特開昭63−209796号公
報に記載の汚水の処理装置では、汚水を浄化処理するた
めには、別途脱窒槽などの装置を必要とするため、装置
が大型化するとともに、設置スペースが拡大する問題が
ある。
A method for treating sewage described in JP-A-61-212395 and JP-A-64-511.
The sewage treatment apparatus described in Japanese Patent Publication No. 97 is provided with two nitrification tanks and denitrification tanks. With the sewage treatment apparatus described in Japanese Patent Application Laid-Open No. 63-209796, in order to purify sewage, Since a device such as a denitrification tank is required separately, there is a problem that the device becomes large and the installation space expands.

【0018】本発明は、上記の問題点に鑑みなされたも
ので、単一槽で有機物の酸化分解、硝化、脱窒をそれぞ
れ行わせ、容易で効率よく確実に浄化処理する信頼性の
高い汚水の処理方法およびその装置を提供することを目
的とする。
The present invention has been made in view of the above-mentioned problems, and is highly reliable sewage which is easily and efficiently and surely purified by causing oxidative decomposition, nitrification and denitrification of organic substances in a single tank. It is an object of the present invention to provide a processing method and a device therefor.

【0019】[0019]

【課題を解決するための手段】請求項1記載の汚水の処
理方法は、反応槽に流入する汚水の汚染状態を計測する
とともに、前記反応槽内の被処理水の溶存酸素濃度を測
定し、前記被処理水が流過する方向に沿った前記反応槽
内の各位置における前記被処理水の汚染状態を、前記反
応槽に流入する汚水の汚染状態の計測結果と前記溶存酸
素濃度の測定結果とに基づいて、前記被処理水中の有機
物、各種窒素化合物および各種微生物の物質収支式と、
有機物の除去、各種窒素化合物の変換および各種微生物
の増殖の反応速度式と、有機物および各種窒素化合物の
生成速度式とからそれぞれ演算し、前記被処理水の溶存
酸素濃度を制御するものである。
According to a first aspect of the present invention, there is provided a method for treating sewage, wherein the sewage contaminated state flowing into the reaction tank is measured, and the dissolved oxygen concentration of the water to be treated in the reaction tank is measured. The polluted state of the treated water at each position in the reaction tank along the direction in which the treated water flows, the measurement result of the polluted state of the wastewater flowing into the reaction tank and the measurement result of the dissolved oxygen concentration Based on, and the material balance equation of the organic matter in the water to be treated, various nitrogen compounds and various microorganisms,
The dissolved oxygen concentration is controlled by calculating from the reaction rate equations of removal of organic matter, conversion of various nitrogen compounds and growth of various microorganisms, and the production rate equations of organic matter and various nitrogen compounds, respectively.

【0020】請求項2記載の汚水の処理方法は、請求項
1記載の汚水の処理方法において、反応槽に流入する汚
水の汚染状態を、前記汚水の流入量と、前記汚水中の有
機物と、前記汚水中の各種窒素化合物との少なくともい
ずれか一方に基づいて計測するものである。
According to a second aspect of the present invention, there is provided a wastewater treatment method according to the first aspect, wherein the state of pollution of the wastewater flowing into the reaction tank is determined by the inflow amount of the wastewater and the organic matter in the wastewater. The measurement is based on at least one of various nitrogen compounds in the waste water.

【0021】請求項3記載の汚水の処理方法は、請求項
1または2記載の処理方法において、被処理水の溶存酸
素濃度を、反応槽に流入する汚水の流入量、この反応槽
内の被処理水への酸素供給量および前記反応槽の下流側
から上流側への前記被処理水の還流量の少なくともいず
れか1つに基づいて制御するものである。
The method for treating sewage according to claim 3 is the same as the treatment method according to claim 1 or 2, wherein the dissolved oxygen concentration of the water to be treated is determined by the inflow amount of the sewage flowing into the reaction tank, The control is performed based on at least one of the oxygen supply amount to the treated water and the reflux amount of the treated water from the downstream side to the upstream side of the reaction tank.

【0022】請求項4記載の汚水の処理装置は、汚水が
流入する流入口を有した反応槽と、この反応槽に設けら
れ反応槽内の被処理水に酸素を供給する酸素供給手段
と、この反応槽に設けられ前記反応槽の下流側から上流
側へ前記被処理水を還流させる還流手段と、前記流入口
を介して流入する汚水の流入量を調整する流入調整手段
と、前記流入口の近傍に設けられ流入する前記汚水の汚
染状態を計測する汚染計測手段と、前記反応槽内に前記
被処理水の溶存酸素濃度を測定する溶存酸素測定手段
と、前記汚染計測手段および前記溶存酸素測定手段の少
なくともいずれか一方による測定結果に基づいて、前記
酸素供給手段、前記流入調整手段および前記還流手段の
少なくともいずれか1つを制御する制御手段とを具備し
たものである。
According to a fourth aspect of the present invention, there is provided an apparatus for treating sewage, comprising: a reaction tank having an inflow port for sewage; and an oxygen supply means provided in the reaction tank for supplying oxygen to the water to be treated in the reaction tank. A recirculation means provided in this reaction tank for recirculating the water to be treated from a downstream side to an upstream side of the reaction tank; an inflow adjusting means for adjusting an inflow amount of waste water flowing in through the inflow port; and the inflow port A pollution measuring means for measuring the polluted state of the inflowing sewage, a dissolved oxygen measuring means for measuring the dissolved oxygen concentration of the water to be treated in the reaction tank, the pollution measuring means and the dissolved oxygen. The control means controls at least one of the oxygen supply means, the inflow adjustment means, and the reflux means based on the measurement result by at least one of the measurement means.

【0023】[0023]

【作用】請求項1記載の汚水の処理方法は、反応槽内の
被処理水の流過する方向に沿った各位置での汚染状態
を、反応槽に流入する汚水の汚染状態と、反応槽内の被
処理水の溶存酸素濃度とに基づいて、被処理水中の有機
物、各種窒素化合物および各種微生物の物質収支式と、
有機物の除去、各種窒素化合物の変換および各種微生物
の増殖の反応速度式と、有機物および各種窒素化合物の
生成速度式とからそれぞれ演算し、被処理水の溶存酸素
濃度を制御するため、1つの反応槽で、有機物を微生物
にて酸化分解する酸化分解工程、アンモニア性窒素を微
生物にて酸化態窒素に酸化する硝化工程、および、酸化
態窒素を微生物にて窒素ガスに還元する脱窒工程がそれ
ぞれ良好に進行し、汚水が良好に浄化処理される。
The method for treating wastewater according to claim 1, wherein the pollution state at each position along the flowing direction of the water to be treated in the reaction tank is determined by the pollution state of the wastewater flowing into the reaction tank and the reaction tank. Based on the dissolved oxygen concentration of the water to be treated in the organic matter in the water to be treated, various nitrogen compounds and mass balance equations of various microorganisms,
One reaction to control the dissolved oxygen concentration of the water to be treated by calculating from the reaction rate equations for removal of organic substances, conversion of various nitrogen compounds and growth of various microorganisms, and the production rate equations for organic substances and various nitrogen compounds In the tank, there are an oxidative decomposition step in which organic matter is oxidatively decomposed by microorganisms, a nitrification step in which ammonia nitrogen is oxidized by microorganisms into oxidized nitrogen, and a denitrification step in which oxidized nitrogen is reduced by microorganisms into nitrogen gas. Good progress and good purification of wastewater.

【0024】請求項2記載の汚水の処理方法は、請求項
1記載の汚水の処理方法において、反応槽に流入する汚
水の汚染状態を、汚水の流入量と、汚水中の有機物と、
汚水中の各種窒素化合物との少なくともいずれか一方に
基づいて計測するため、反応槽に流入する汚水の汚染状
態から反応槽内の被処理水の流過する方向に沿った各位
置での汚染状態を容易に演算可能で、汚水の浄化処理が
容易となる。
According to a second aspect of the present invention, there is provided the wastewater treatment method according to the first aspect, wherein the state of pollution of the wastewater flowing into the reaction tank is determined by the inflow amount of the wastewater and the organic matter in the wastewater.
Since it is measured based on at least one of various nitrogen compounds in the wastewater, the pollution status at each position along the flowing direction of the treated water in the reaction tank from the pollution status of the wastewater flowing into the reaction tank Can be easily calculated, and sewage can be easily purified.

【0025】請求項3記載の汚水の処理方法は、請求項
1または2記載の処理方法において、反応槽内の被処理
水の溶存酸素濃度を、反応槽に流入する汚水の流入量、
反応槽内の被処理水への酸素供給量および反応槽の下流
側から上流側への被処理水の還流量の少なくとも1つに
基づいて制御するため、汚水の浄化処理操作が容易で、
有機物を微生物にて酸化分解する酸化分解工程、アンモ
ニア性窒素を微生物にて酸化態窒素に酸化する硝化工
程、および、酸化態窒素を微生物にて窒素ガスに還元す
る脱窒工程が、1つの反応槽で良好に効率よく進行し、
汚水が良好に浄化処理される。
The method for treating wastewater according to claim 3 is the method for treating wastewater according to claim 1 or 2, wherein the dissolved oxygen concentration of the water to be treated in the reaction tank is determined by the inflow amount of the wastewater flowing into the reaction tank,
Since the control is performed based on at least one of the amount of oxygen supplied to the water to be treated in the reaction tank and the amount of reflux of the water to be treated from the downstream side to the upstream side of the reaction tank, the purification treatment operation of the wastewater is easy,
One reaction is an oxidative decomposition process in which microorganisms oxidize and decompose, a nitrification process in which ammonia nitrogen is oxidized into oxidized nitrogen by microorganisms, and a denitrification process in which oxidized nitrogen is reduced to nitrogen gas by microorganisms. Good progress in the tank,
Sewage is purified well.

【0026】請求項4記載の汚水の処理装置は、反応槽
の流入口の近傍に設けた汚染計測手段にて、流入口を介
して反応槽に流入する汚水の汚染状態を計測するととも
に、溶存酸素測定手段にて反応槽内の被処理水の溶存酸
素濃度を測定し、これらの結果の少なくともいずれか一
方に基づいて制御手段にて、被処理水に酸素を供給する
酸素供給手段、汚水の流入量を調整する流入調整手段お
よび反応槽の下流側から上流側へ被処理水を還流させる
還流手段の少なくともいずれか1つを制御して、被処理
水の汚水の溶存酸素濃度を制御し、汚水を浄化処理する
ため、汚水の浄化処理操作が容易で、有機物を微生物に
て酸化分解する酸化分解工程、アンモニア性窒素を微生
物にて酸化態窒素に酸化する硝化工程、および、酸化態
窒素を微生物にて窒素ガスに還元する脱窒工程が1つの
反応槽で良好に効率よく進行し、汚水が良好に浄化処理
される。
In the sewage treatment apparatus according to a fourth aspect of the present invention, the pollution measuring means provided in the vicinity of the inflow port of the reaction tank measures the state of pollution of the sewage flowing into the reaction tank through the inflow port and dissolves it. The dissolved oxygen concentration of the water to be treated in the reaction tank is measured by the oxygen measuring means, and the control means based on at least one of these results, the oxygen supply means for supplying oxygen to the water to be treated, the sewage. At least one of the inflow adjusting means for adjusting the inflow amount and the reflux means for refluxing the treated water from the downstream side to the upstream side of the reaction tank is controlled to control the dissolved oxygen concentration of the sewage in the treated water. Since sewage is purified, the sewage purification operation is easy, and the oxidative decomposition step in which organic matter is oxidatively decomposed by microorganisms, the nitrification step in which ammonia nitrogen is oxidized by microorganisms into oxidized nitrogen, and the oxidized nitrogen are With microorganisms Denitrification step of reducing the hydrogen gas proceeds well better efficiency in one reaction vessel, sewage is satisfactorily purification treatment.

【0027】[0027]

【実施例】本発明の汚水の処理方法を実施する装置の一
実施例の構成を図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of an embodiment of an apparatus for carrying out the wastewater treatment method of the present invention will be described with reference to the drawings.

【0028】図1において、1は反応槽で、この反応槽
1は、例えば容積が270m3 で、水深が10mの円筒
状に形成され、下端には下方に漏斗状に突出する底部2
が形成されている。そして、この反応槽1の下部には、
有機物および各種窒素化合物を含有する例えばし尿排水
などの汚水3が流入する流入口4が開口形成され、この
流入口4には、汚水中の砂や礫、金属片、紙、ビニール
などの夾雑物を分離する図示しない除渣装置から導出さ
れた流入管5が接続されている。さらに、この流入管5
には、除渣装置にて夾雑物が除去された汚水3の反応槽
1への流入を制御する図示しない電磁弁が設けられてい
る。また、この流入管5には、反応槽1に流入する汚水
3の流入量を測定する図示しない流量計が設けられてい
る。
In FIG. 1, reference numeral 1 is a reaction tank, and this reaction tank 1 is formed in a cylindrical shape having a volume of 270 m 3 and a water depth of 10 m, for example, and a bottom portion 2 protruding downward in a funnel shape is formed at a lower end thereof.
Are formed. And, in the lower part of this reaction tank 1,
An inflow port 4 is formed to allow inflow of sewage 3 containing organic matter and various nitrogen compounds, such as human waste water, and foreign substances such as sand and gravel in sewage, metal pieces, paper and vinyl are formed in the inflow port 4. Is connected to an inflow pipe 5 derived from a residue removal device (not shown) that separates. Furthermore, this inflow pipe 5
Is provided with a solenoid valve (not shown) for controlling the inflow of the wastewater 3 from which contaminants have been removed by the residue removal device into the reaction tank 1. Further, the inflow pipe 5 is provided with a flow meter (not shown) for measuring the inflow amount of the dirty water 3 flowing into the reaction tank 1.

【0029】そして、この反応槽1には、底部2の下端
から反応槽1の上部に反応槽1内の流入した汚水3と反
応槽1内の各種微生物との混合液である被処理水3aを還
流させる還流管7が接続され、この還流管7には、図示
しない還流ポンプおよび流量計が設けられている。さら
に、この還流管7の上部には、被処理水3aが反応槽1内
に流入する際に、被処理水3aの流過にて発生する負圧に
より空気を吸入し、被処理水3a中に空気を混入させる図
示しないエゼクタが設けられている。
Then, in the reaction tank 1, treated water 3a which is a mixed liquid of waste water 3 flowing into the reaction tank 1 from the lower end of the bottom 2 to the upper part of the reaction tank 1 and various microorganisms in the reaction tank 1 Is connected to a reflux pipe 7, and the reflux pipe 7 is provided with a reflux pump and a flow meter (not shown). Further, when the water 3a to be treated flows into the reaction tank 1, air is sucked into the upper part of the reflux pipe 7 by the negative pressure generated by the flow-through of the water 3a to be treated. An ejector (not shown) for mixing air in is provided.

【0030】なお、反応槽1内の各種微生物は、反応槽
1内にて順養したり、後述する分離槽10から汚泥を返送
するなどにより得られる。
The various microorganisms in the reaction tank 1 can be obtained by culturing in the reaction tank 1 or returning sludge from the separation tank 10 described later.

【0031】また、反応槽1の略中間部には、反応槽1
内の被処理水3aの溶存酸素(DO:Dissolved Oxygen)
の濃度を測定する図示しないセンサが設けられていると
ともに、この中間部分の被処理水3aを反応槽1外に流出
する流出管8が接続されている。そして、この流出管8
には、被処理水3aの流出量を制御する図示しない電磁弁
および流量計が設けられている。
Further, the reaction tank 1 is provided at a substantially middle portion of the reaction tank 1.
Oxygen (DO: Dissolved Oxygen) of treated water 3a inside
A sensor (not shown) for measuring the concentration of the water is provided, and an outflow pipe 8 for outflowing the treated water 3a in the intermediate portion to the outside of the reaction tank 1 is connected. And this outflow pipe 8
Is provided with a solenoid valve and a flow meter (not shown) that control the outflow amount of the water 3a to be treated.

【0032】一方、10は分離槽で、この分離槽10は、下
部に下方に漏斗状に突出する沈殿部11を設け容積が30
3 の円筒状に形成されている。そして、この分離槽10
の上部に反応槽1に接続された流出管8が接続されてい
る。また、分離槽10の沈殿部11の下端には、沈殿部11に
沈殿した汚泥を反応槽1の下部に返送する汚泥管12が接
続され、この汚泥管12には図示しない汚泥ポンプおよび
流量計が設けられている。さらに、この分離槽10には、
分離槽10内の水面に浮遊する汚泥を反応槽1の上部に返
送する返送管13が設けられ、この返送管13には図示しな
い返送ポンプおよび流量計が設けられている。そして、
分離槽10には、浄化処理された上澄み分を処理水として
放流する放流口14が形成されている。
On the other hand, 10 is a separation tank, and this separation tank 10 is provided with a settling section 11 projecting downward in a funnel shape at the bottom and has a volume of 30.
It is formed in a cylindrical shape of m 3 . And this separation tank 10
The outflow pipe 8 connected to the reaction tank 1 is connected to the upper part of the. A sludge pipe 12 for returning the sludge settled in the settling unit 11 to the lower portion of the reaction tank 1 is connected to the lower end of the settling unit 11 of the separation tank 10, and the sludge pipe 12 and a flow meter (not shown) are connected to the sludge pipe 12. Is provided. Furthermore, in this separation tank 10,
A return pipe 13 for returning the sludge floating on the water surface in the separation tank 10 to the upper part of the reaction tank 1 is provided, and the return pipe 13 is provided with a return pump and a flow meter (not shown). And
The separation tank 10 is formed with a discharge port 14 for discharging the purified supernatant as treated water.

【0033】なお、反応槽1および分離槽10は、水容積
の変化がないように形成されている。さらに、分離槽10
は、沈殿式のものに限らず、濾過膜にて汚泥を分離する
膜分離式や遠心分離式などいずれの構造のものでもでき
る。
The reaction tank 1 and the separation tank 10 are formed so that the water volume does not change. Furthermore, the separation tank 10
Is not limited to the sedimentation type, and may have any structure such as a membrane separation type in which sludge is separated by a filtration membrane or a centrifugal separation type.

【0034】また、この装置には、図示しない制御手段
が設けられ、この制御手段は、反応槽1に流入する汚水
3の汚染状態、例えば流入する汚水3の流入量、およ
び、汚水3中の有機物、各種窒素化合物の濃度から算出
される反応槽1に流入する汚染物質の量などの数値を入
力可能で、反応槽1内の被処理水3aの溶存酸素濃度を測
定するセンサが接続されている。そして、制御手段は、
これら各種測定値や入力値に基づいて、各電磁弁の開
度、および、還流ポンプ、汚泥ポンプおよび返送ポンプ
の駆動状態を制御する。
Further, this apparatus is provided with a control means (not shown), which controls the polluted state of the sewage 3 flowing into the reaction tank 1, for example, the amount of the sewage 3 flowing in and the amount of the sewage 3 in the sewage 3. Numerical values such as the amount of pollutants flowing into the reaction tank 1 calculated from the concentrations of organic substances and various nitrogen compounds can be input, and a sensor for measuring the dissolved oxygen concentration of the treated water 3a in the reaction tank 1 is connected. There is. And the control means
The opening degree of each solenoid valve and the driving states of the reflux pump, the sludge pump and the return pump are controlled based on these various measured values and input values.

【0035】次に、この装置についての動作を汚水の処
理について説明する。
Next, the operation of this apparatus will be described for the treatment of sewage.

【0036】まず、除渣装置から流入管5を介して反応
槽1に流入する汚水3を少量採取し、この汚水3中の有
機物、すなわち、生物化学的酸素要求量(Biochemical
Oxygen Demand :BOD)および化学的酸素要求量(Ch
emical Oxygen Demand:COD)と各種窒素化合物の濃
度とを測定し、この測定結果を制御手段に入力する。そ
して、制御手段が、流入管5の電磁弁を所定の開度に開
口し、除渣装置からの汚水3を流入口4から反応槽1の
下部に流入させる。なお、制御手段は、所定の汚水3の
流量になった時点で電磁弁を閉塞する。
First, a small amount of sewage 3 flowing into the reaction tank 1 through the inflow pipe 5 is collected from the decontamination device, and the organic matter in the sewage 3, that is, the biochemical oxygen demand (Biochemical oxygen demand) (Biochemical
Oxygen Demand: BOD) and chemical oxygen demand (Ch
Emical Oxygen Demand (COD) and the concentrations of various nitrogen compounds are measured, and the measurement results are input to the control means. Then, the control means opens the electromagnetic valve of the inflow pipe 5 to a predetermined opening degree, and causes the dirty water 3 from the residue removing device to flow into the lower portion of the reaction tank 1 from the inflow port 4. The control means closes the solenoid valve when the flow rate of the dirty water 3 reaches a predetermined level.

【0037】そして、反応槽1に汚水3が流入し混合し
た被処理水3aは、反応槽1内に増殖する微生物にて浄化
され、制御手段にて駆動された還流ポンプにて還流管7
を流過し、エゼクタにより空気を導入しつつ反応槽1の
上部に還流する。
Then, the treated water 3a in which the wastewater 3 flows into the reaction tank 1 and is mixed is purified by the microorganisms growing in the reaction tank 1, and the reflux pipe 7 is driven by the reflux pump driven by the control means.
Is introduced to the upper part of the reaction tank 1 while introducing air by an ejector.

【0038】さらに、反応槽1を各種微生物にて浄化処
理されつつ徐々に下部に流過し、一部は、制御手段にて
電磁弁の開度が制御され開口する流出管8から分離槽10
に流入し、残りは再び反応槽1の底部から還流管7を介
して反応槽1の上部に還流する。
Further, the reaction tank 1 is gradually purified by various microorganisms and gradually flows to the lower part, and a part of the reaction tank 1 is separated from the outlet pipe 8 opened by the opening of the solenoid valve being controlled by the control means.
And the rest recirculates from the bottom of the reaction tank 1 to the upper part of the reaction tank 1 via the reflux pipe 7.

【0039】そして、分離槽10に流入した被処理水3a
は、この被処理水3a中に浮遊する汚泥が沈殿分離され、
沈殿した汚泥は、制御手段にて制御された汚泥ポンプの
駆動により、再び汚泥管12を介して反応槽1の底部に搬
送する。また、分離槽10の水面に浮遊する汚泥は、返送
管13を介して制御手段にて制御された返送ポンプの駆動
により反応槽1の上部に返送する。
Then, the treated water 3a flowing into the separation tank 10
Sludge floating in this treated water 3a is separated and separated,
The sludge that has settled is transported to the bottom of the reaction tank 1 through the sludge pipe 12 again by driving the sludge pump controlled by the control means. The sludge floating on the water surface of the separation tank 10 is returned to the upper part of the reaction tank 1 through the return pipe 13 by driving the return pump controlled by the control means.

【0040】そして、浄化処理した分離槽10内の処理水
は放流口14を介して放流する。
Then, the treated water in the purified separation tank 10 is discharged through the discharge port 14.

【0041】なお、制御手段は、汚水の汚染状態である
入力したCOD、BODおよび各窒素化合物の濃度と、
汚水の流入量と、反応槽の中間部に設けたセンサにより
測定した被処理水3aの溶存酸素濃度とに基づいて演算す
る。そして、適切な処理結果が得られる被処理水3aの溶
存酸素濃度、すなわち、被処理水3a中の有機物もしくは
自己分解により栄養を得て嫌気性雰囲気で、硝化された
酸化態窒素を脱窒菌が硝酸呼吸にて窒素ガスに還元する
脱窒工程、溶存酸素濃度が存在する好気性雰囲気で、好
気性菌や通性嫌気性菌などが被処理水3a中の残存する有
機物を栄養源として活性化し、この有機物を好気性菌や
通性嫌気性菌などにて酸化分解する酸化分解工程、およ
び、溶存酸素の存在下、アンモニア性窒素を亜硝酸菌や
硝酸菌にて亜硝酸性窒素や硝酸性窒素の酸化態窒素に酸
化する硝化工程の反応工程が良好に進行し、汚水3が良
好に浄化処理される溶存酸素濃度となるように、各電磁
弁や各ポンプを各流量計の流量値を監視しつつ制御す
る。
The control means controls the concentration of input COD, BOD and each nitrogen compound, which is the polluted state of the sewage,
It is calculated based on the inflow amount of sewage and the dissolved oxygen concentration of the water to be treated 3a measured by a sensor provided in the middle part of the reaction tank. Then, the dissolved oxygen concentration of the water to be treated 3a for which an appropriate treatment result is obtained, that is, the organic substances in the water to be treated 3a or the nutrients obtained by self-decomposition in an anaerobic atmosphere to denitrify the nitrified oxidized nitrogen. Denitrification process of reducing to nitrogen gas by respiration of nitric acid, aerobic bacterium and facultative anaerobic bacterium in the aerobic atmosphere where dissolved oxygen concentration exists activates the remaining organic matter in the treated water 3a as a nutrient source. , An oxidative decomposition process in which this organic matter is oxidatively decomposed by aerobic bacteria or facultative anaerobic bacteria, and in the presence of dissolved oxygen, ammoniacal nitrogen is converted into nitrite nitrogen or nitrate by nitrite bacteria or nitric acid bacteria. The flow rate of each solenoid valve and each pump should be adjusted so that the reaction process of the nitrification process, which oxidizes nitrogen to nitrogen, progresses satisfactorily and the sewage 3 has a dissolved oxygen concentration that is satisfactorily purified. Control while monitoring.

【0042】次に、上記実施例の作用を説明する。Next, the operation of the above embodiment will be described.

【0043】まず、有機物および窒素化合物を含有する
汚水3の浄化処理において、溶存酸素濃度が存在する好
気性雰囲気で、好気性菌や通性嫌気性菌などが流入する
汚水3に含有される有機物を栄養源として活性化し、有
機物を好気性菌や通性嫌気性菌などにて酸化分解する酸
化分解工程、溶存酸素の存在下、アンモニア性窒素を亜
硝酸菌や硝酸菌にて亜硝酸性窒素や硝酸性窒素の酸化態
窒素に酸化する硝化工程、および、有機物もしくは自己
分解により栄養を得て嫌気性雰囲気で、硝化された酸化
態窒素を脱窒菌が硝酸呼吸にて窒素ガスに還元する脱窒
工程の3つ主たる反応工程を考慮する必要がある。
First, in the purification treatment of the sewage 3 containing the organic matter and the nitrogen compound, the organic matter contained in the sewage 3 into which the aerobic bacteria and facultative anaerobic bacteria flow in the aerobic atmosphere in which the dissolved oxygen concentration exists. Oxidative decomposition process that activates as a nutrient source and oxidatively decomposes organic matter with aerobic bacteria and facultative anaerobic bacteria.In the presence of dissolved oxygen, ammonia nitrogen is converted into nitrite nitrogen by nitrite bacteria and nitric acid bacteria. And nitrification process of oxidizing nitric acid to oxidized nitrogen, and denitrifying bacteria that reduce nitrified oxidized nitrogen to nitrogen gas by respiration of nitric acid in an anaerobic atmosphere with nutrients obtained by organic substances or autolysis. It is necessary to consider the three main reaction processes of the nitrification process.

【0044】そして、このことから、図2のブロック図
に示すように、状態変数として、亜硝酸菌(BA1)、硝
酸菌(BA2)、他栄養性細菌(BH )、難分解性固形性
有機物(炭素CDS、窒素NDS)、易分解性固形性有機物
(炭素CS 、窒素NS )、難分解性溶解性有機物(炭素
DD、窒素NDD)、易分解性溶解性有機物(炭素CD
窒素ND )、アンモニア性窒素(NA )、亜硝酸性窒素
(NB1)、硝酸性窒素(NB2)を設定して、物質変換の
モデルが作成される。
From this fact, as shown in the block diagram of FIG. 2, as the state variables, nitrite bacteria (B A1 ), nitric acid bacteria (B A2 ), allotrophic bacteria (B H ), persistent biodegradability Solid organic matter (carbon C DS , nitrogen N DS ), easily decomposable solid organic matter (carbon C S , nitrogen N S ), hardly decomposable soluble organic matter (carbon C DD , nitrogen N DD ), easily decomposable solubility Organic matter (carbon C D ,
A model of material conversion is created by setting nitrogen N D ), ammonia nitrogen (NA), nitrite nitrogen (N B1 ), and nitrate nitrogen (N B2 ).

【0045】なお、この図2に示す各物質変換の係数
は、表1ないし表4に示す。そして、これら表1ないし
表4に示す値は、硝化に関する半飽和定数の値以外は、
下水処理の分野で使用される値である。
The coefficients of each substance conversion shown in FIG. 2 are shown in Tables 1 to 4. The values shown in Tables 1 to 4 are, except for the value of the half-saturation constant related to nitrification,
It is a value used in the field of sewage treatment.

【0046】[0046]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 また、この図2の各状態変数の変換過程は、易分解性固
形性有機物の易分解性および難分解性の溶解性有機物へ
の可溶化、アンモニア性窒素の生成である易分解性溶解
性有機物の無機化と他栄養性細菌の増殖、アンモニア性
窒素の亜硝酸化と亜硝酸菌の増殖、亜硝酸性窒素の硝酸
化と硝酸菌の増殖、硝酸性窒素の亜硝酸性窒素への還元
および亜硝酸性窒素の脱窒と有機物除去および他栄養性
細菌の増殖、および、各細菌の易分解性および難分解性
の固形性有機物への自己分解である。
[Table 4] Further, the conversion process of each state variable in FIG. 2 is performed by solubilizing easily decomposable solid organic matter into easily decomposable and hardly decomposable soluble organic matter, and easily decomposable soluble organic matter as production of ammonia nitrogen. Mineralization and growth of allotrophic bacteria, nitration of ammoniacal nitrogen and nitrite growth, nitration of nitrite nitrogen and growth of nitrites, reduction of nitrate nitrogen to nitrite nitrogen and Denitrification of nitrite nitrogen, removal of organic substances and growth of allotrophic bacteria, and self-decomposition of each bacterium into easily and persistently degradable solid organic substances.

【0047】なお、これらの変換する反応速度は、関与
する基質などの影響が半飽和定数(Michaelis 定数)の
値によって0次反応から1次反応の範囲で表示でき、変
化速度が負となることを防止しうるため、M−M型(Mi
chaelis-Menten型)で表示した。
The reaction rates of these conversions can be displayed in the range of the 0th-order reaction to the 1st-order reaction depending on the value of the half-saturation constant (Michaelis constant), and the rate of change becomes negative. MM type (Mi
chaelis-Menten type).

【0048】そして、易分解性固形性有機物の可溶化速
度(R1 mgCOD/l・hr)は、その濃度にM−M型で影響を
受け他栄養性細菌濃度に比例するとし、易分解性溶解性
有機物の無機化である摂取速度(R2 mgCOD/l・hr)は、
その濃度および溶存酸素濃度の影響をM−M型で受け他
栄養性細菌に比例するとして表示した。
The solubilization rate (R 1 mgCOD / l · hr) of the easily decomposable solid organic matter is affected by the MM type in that concentration and is proportional to the concentration of allotrophic bacteria. Intake rate (R 2 mgCOD / l · hr), which is the mineralization of soluble organic matter, is
The effect of the concentration and the dissolved oxygen concentration was shown as MM type and proportional to allotrophic bacteria.

【0049】また、アンモニア性窒素の亜硝酸化速度
(R31mgN/l・hr)は、その濃度および溶存酸素濃度の影
響をM−M型で受け亜硝酸菌濃度に比例するとし、亜硝
酸性窒素の硝酸化速度(R32mgN/l・hr)は、その濃度お
よび溶存酸素濃度の影響をM−M型で受け硝酸菌濃度に
比例するとして表示した。
Further, the rate of nitrite nitration of ammonia nitrogen (R 31 mgN / l · hr) is affected by the concentration and the dissolved oxygen concentration in MM type and is proportional to the concentration of nitrite bacteria. The nitrification rate (R 32 mgN / l · hr) of natural nitrogen was expressed as being affected by the concentration and the dissolved oxygen concentration in MM type and being proportional to the nitric acid bacterium concentration.

【0050】さらに、亜硝酸性窒素の脱窒および硝酸性
窒素の亜硝酸性窒素への還元の速度(R41,R42mgN/l・
hr)は、それぞれ亜硝酸性窒素あるいは硝酸性窒素の濃
度および有機物濃度にM−M型で影響を受けるとし、溶
存酸素の影響は飽和型阻害関数で表示しうるとし、他栄
養性細菌濃度に比例するとして表示した。
Further, the rate of denitrification of nitrite nitrogen and reduction of nitrate nitrogen to nitrite nitrogen (R 41 , R 42 mgN / l.
hr) is influenced by the MM type in the concentration of nitrite nitrogen or nitrate nitrogen and the concentration of organic matter, respectively, and the effect of dissolved oxygen can be expressed by a saturation type inhibition function, Displayed as proportional.

【0051】また、各細菌の固形性有機物への自己分解
速度(R5 ,R61,R62mgCOD/l・hr)は、それぞれの細
菌濃度に関して一次で、また、溶存酸素濃度にM−M型
で影響を受けるとした。
The autolysis rate (R5, R61, R62mgCOD / l · hr) of each bacterium into a solid organic substance is primary for each bacterium concentration, and the dissolved oxygen concentration is affected by the MM type. I decided to receive it.

【0052】そして、上記各工程の反応速度の数式を表
5に示す。
Table 5 shows the mathematical formulas for the reaction rates in the above steps.

【0053】[0053]

【表5】 一方、反応槽1を、その構造、想定操作条件および上記
各反応工程などを考慮し、図1に示すように、反応槽1
の上部から好気性ゾーン(区画3)、微好気性ゾーン
(区画2)および無酸素ゾーン(区画1)の3つの区画
に、各区画の容積がそれぞれV3 として88m3 、V2
として88m3 、V1 として94m3 に仮想区画する。
[Table 5] On the other hand, in consideration of the structure of the reaction tank 1, the assumed operating conditions, the above reaction steps, etc., as shown in FIG.
From the upper part to the aerobic zone (compartment 3), the microaerobic zone (compartment 2) and the anoxic zone (compartment 1), the volume of each compartment is 88 m 3 and V 2 as V 3 respectively.
Is virtually divided into 88 m 3 and V 1 into 94 m 3 .

【0054】そして、各区画および分離槽10はそれぞれ
完全混合と仮定し、各区画および分離槽10における水量
収支式が、式1ないし式3に示すように表示できる。な
お、各式のQk は、図1に示す各所の水量(m3 /hr)
で、各式の右辺のQk の値は各流量計にて実測される。
Assuming that the compartments and the separation tank 10 are completely mixed, the water balance equations in the compartments and the separation tank 10 can be displayed as shown in Expressions 1 to 3. Note that Q k in each equation is the water amount (m 3 / hr) at each place shown in FIG.
The value of Q k on the right side of each equation is actually measured by each flow meter.

【0055】[0055]

【式1】 [Formula 1]

【0056】[0056]

【式2】 [Formula 2]

【0057】[0057]

【式3】 一方、各区画jや分離槽jにおける状態変数iに関わる
生成速度(Fi,j )は、図2に示す各物質変換のモデル
中の表5に示す反応速度に、収率、変換割合を乗じたも
のとして示される。なお、その一部を表6に例示する。
[Formula 3] On the other hand, the production rate (F i, j ) related to the state variable i in each compartment j and the separation tank j is calculated by adding the yield and the conversion rate to the reaction rate shown in Table 5 in the model of each substance conversion shown in FIG. Shown as multiplied. A part thereof is shown in Table 6.

【0058】[0058]

【表6】 そして、反応槽1の各区画jおよび分離槽jでの易分解
性溶解性有機物、アンモニア性窒素、亜硝酸性窒素など
各物質の状態変数iの濃度(Ci,j )の時間的変動は、
各区画や分離槽10での物質収支式で示され、この物質収
支式を、表7に示す。なお、物質収支式において、分離
槽10では物質変換反応は生じていないものと仮定する。
[Table 6] Then, the temporal variation of the concentration (C i, j ) of the state variable i of each substance such as easily decomposable soluble organic matter, ammonia nitrogen, and nitrite nitrogen in each section j of the reaction tank 1 and the separation tank j is ,
It is shown by the mass balance formula in each compartment and the separation tank 10. The mass balance formula is shown in Table 7. In the mass balance equation, it is assumed that no substance conversion reaction has occurred in the separation tank 10.

【0059】[0059]

【表7】 このように、上述した有機物を好気性菌や通性嫌気性菌
などにて酸化分解する酸化分解工程、アンモニア性窒素
を亜硝酸菌や硝酸菌にて酸化態窒素に酸化する硝化工
程、および、硝化された酸化態窒素を脱窒菌が硝酸呼吸
にて窒素ガスに還元する脱窒工程の3つの主たる反応工
程を考慮して、被処理水3aの各区画における処理の状況
がモデル化される。
[Table 7] Thus, the oxidative decomposition step of oxidatively decomposing the above-mentioned organic matter with aerobic bacteria or facultative anaerobic bacteria, the nitrification step of oxidizing ammonia nitrogen into oxidized nitrogen with nitrite bacteria or nitric acid bacteria, and, Considering the three main reaction steps of the denitrification step in which the denitrifying bacteria reduce the nitrified oxidized nitrogen to nitrogen gas by respiration of nitric acid, the situation of the treatment in each section of the treated water 3a is modeled.

【0060】そして、上記式1ないし式3、表7中の式
(16)ないし式(19)、および、上記実施例において測
定した汚水3中の有機物および各種窒素化合物の濃度を
初期条件、すなわち時間t=0における各区画および分
離槽10の易分解性溶解性有機物、アンモニア性窒素、亜
硝酸性窒素など各物質の状態変数iの濃度として、例え
ば表8に示すCi,1 ,Ci,2 ,Ci,3 ,Ci,4 に0以外
の任意の数値を入力し、Q1 、Q2 、Q5 およびQ6
操作値を入力し、定常状態に達するまで演算したシミュ
レーションの演算値を表9に示す。
Then, the concentrations of the organic substances and various nitrogen compounds in the wastewater 3 measured in the above formulas 1 to 3 and the formulas (16) to (19) in Table 7 and the above-mentioned examples are set as initial conditions, that is, As the concentration of the state variable i of each substance such as easily decomposable soluble organic matter, ammoniacal nitrogen, and nitrite nitrogen in each compartment and the separation tank 10 at time t = 0, for example, C i, 1 and C i shown in Table 8 are shown. , 2 , C i, 3 , C i, 4 input any numerical value other than 0, input operation values of Q 1 , Q 2 , Q 5 and Q 6 and calculate until the steady state is reached. Table 9 shows the calculated values.

【0061】一方、上記実施例において、制御手段によ
る制御として、汚水3の浄化処理操作を、23分間汚水
3を反応槽1に流入させ、37分間は流入を停止する6
0分を1サイクルとし、この1サイクルにおける流入量
は約2.5m3 /hrと設定する。この条件により、反応
槽1内の流入水ベースでの水理学的滞留時間(Hydrauli
c Residence Time :HRT)が4.5日で、この4.
5日で流入する汚水3は被処理水3aとして滞留される。
On the other hand, in the above embodiment, as the control by the control means, the purifying operation of the sewage 3 is made to flow the sewage 3 into the reaction tank 1 for 23 minutes, and the inflow is stopped for 37 minutes.
One minute is set to 0 minute, and the inflow rate in this one cycle is set to about 2.5 m 3 / hr. Due to this condition, the hydraulic retention time (Hydrauli) based on the inflow water in the reaction tank 1
c Residence Time: HRT) is 4.5 days.
Sewage water 3 flowing in in 5 days is retained as treated water 3a.

【0062】さらに、還流ポンプを反応槽1内の被処理
水3aが約27m3 /hrで還流管7を流過し、エゼクタに
より空気を約1100〜1300m3 /hr導入しつつ反
応槽1の上部に還流するように駆動させ、この還流は1
0分間に1回行うように設定する。
Further, the water to be treated 3a in the reaction tank 1 is passed through the reflux pipe 7 by a reflux pump at a flow rate of about 27 m 3 / hr, and air is introduced by an ejector at about 1100 to 1300 m 3 / hr. Drive it to reflux to the top, and this reflux is 1
Set to do once every 0 minutes.

【0063】また、汚泥ポンプを、分離槽10内の沈殿し
た汚泥を2.4m3 /hrで汚泥管12を介して反応槽1の
底部に搬送するように駆動させ、また、分離槽10の水面
に浮遊する汚泥を、3.6m3 /hrで反応槽1の上部に
返送するように返送ポンプを駆動させるように設定す
る。これにより、反応槽1での実質的な滞留時間は、
1.3日となる。
Further, the sludge pump is driven so as to convey the precipitated sludge in the separation tank 10 at 2.4 m 3 / hr to the bottom of the reaction tank 1 through the sludge pipe 12, and the separation tank 10 It is set to drive the return pump so that the sludge floating on the water surface is returned to the upper part of the reaction tank 1 at 3.6 m 3 / hr. As a result, the substantial residence time in the reaction tank 1 is
It will be 1.3 days.

【0064】そして、上記設定で汚水3の浄化処理を行
い、反応槽1および分離槽10の各点で被処理水3aを採水
し、有機物および窒素化合物の物質変換特性を検査し、
実験1を行った。その結果を上述のシミュレーション演
算値と比較して表8ないし表9に示す。また、上記設定
条件による反応槽1および分離槽10での除去率を表10
に示す。
Then, the sewage 3 is purified under the above settings, the treated water 3a is sampled at each point of the reaction tank 1 and the separation tank 10, and the substance conversion characteristics of organic substances and nitrogen compounds are inspected.
Experiment 1 was conducted. The results are shown in Tables 8 to 9 in comparison with the above simulation calculation values. In addition, the removal rates in the reaction tank 1 and the separation tank 10 under the above set conditions are shown in Table 10.
Shown in.

【0065】なお、測定項目は、溶存酸素(DO:Diss
olved Oxygen)、pH、アルカリ度、重クロム酸カリウ
ムにて測定される全および溶解性の化学的酸素要求量
(CODCr)、全および溶解性の生物化学的酸素要求量
(BOD)、全および溶解性の窒素、溶解性の亜硝酸性
窒素や硝酸性窒素の酸化態窒素、アンモニア性窒素、揮
発性浮遊物質(VSS:Volatile Suspended Solids )
などで、日本下水道協会にて1984年に出版された下
水試験方法、および、アメリカン パブリックヘルス
アソシエーション(American Public Health Associati
on:APHA)、アメリカン ウォーター ワークス
アソシエーション(American Water Works Associatio
n:AWWA)、ウォーター ポリューション コント
ロール フェデレーション(Water Pollution Control
Federation:WPCF)にて1985年に第16版とし
て米国で出版されたスタンダード メソッド(STAN
DARD METHODS)に基づいて行った。
The measurement items are dissolved oxygen (DO: Diss
olved Oxygen), pH, alkalinity, total and soluble chemical oxygen demand (COD Cr ) measured in potassium dichromate, total and soluble biochemical oxygen demand (BOD), total and Soluble Nitrogen, Soluble Nitrite Nitrogen and Nitrate Oxidized Nitrogen, Ammonia Nitrogen, Volatile Suspended Solids (VSS)
Sewage test method published by the Japan Sewer Association in 1984 and American Public Health
Association (American Public Health Associati
on: APHA), American Water Works
Association (American Water Works Associatio
n: AWWA), Water Pollution Control Federation
Standard Method (STAN) published in the United States as the 16th edition in 1985 by the Federation: WPCF).
DARD METHODS).

【0066】[0066]

【表8】 [Table 8]

【表9】 [Table 9]

【表10】 そして、表8および表9に示すように、上記設定による
浄化処理において、反応槽1内の被処理水3aのアルカリ
度は平均500(標準偏差35)mg/l、pHは6.9
である。そして、これら結果から、物質変換速度への影
響は小さいものと判断される。また、区画2に配設した
センサにより測定した溶存酸素濃度は、約0.5mg/l
であった。さらに、反応槽1に流入した汚水3の全窒素
(TN:Total Nitrogen)は約3450mg/l、全化学
的酸素要求量(T(Total )−CODCr)は約1550
0mg/l、アンモニア性窒素(NH4 + −N)は約27
00mg/l、溶解性化学的酸素要求量(S(Soluble )
−CODCr)は約5530mg/lである。
[Table 10] Then, as shown in Tables 8 and 9, in the purification treatment with the above settings, the alkalinity of the water 3a to be treated in the reaction tank 1 is 500 (standard deviation 35) mg / l on average, and the pH is 6.9.
Is. From these results, it is judged that the influence on the substance conversion rate is small. Further, the dissolved oxygen concentration measured by the sensor arranged in the section 2 is about 0.5 mg / l.
Met. Furthermore, the total nitrogen (TN: Total Nitrogen) of the wastewater 3 flowing into the reaction tank 1 is about 3450 mg / l, and the total chemical oxygen demand (T (Total) -COD Cr ) is about 1550.
0 mg / l, ammoniacal nitrogen (NH 4 + -N) is about 27
00 mg / l, soluble chemical oxygen demand (S (Soluble)
-COD Cr ) is about 5530 mg / l.

【0067】また、表10に示すように、反応槽1およ
び分離槽10において、固形物関連(浮遊物質 SS:Su
spended Solids、および、揮発性浮遊物質 VSS:Vo
latile Suspended Solids 等)は20〜35%程度除去
され、溶解性物質はほぼ90%以上が除去されている。
特に、溶解性窒素(SN:Soluble Nitrogen)および溶
解性生物化学的酸素要求量(S−BOD)は95%程度
除去され、それぞれ約130および100mg/lとなっ
ており、汚水3が良好に浄化処理されていることが分か
る。
Further, as shown in Table 10, in the reaction tank 1 and the separation tank 10, the solid matter-related (suspended material SS: Su
spended Solids and volatile floating substances VSS: Vo
Latile Suspended Solids, etc.) are removed by about 20 to 35%, and soluble substances are removed by about 90% or more.
In particular, soluble nitrogen (SN: Soluble Nitrogen) and soluble biochemical oxygen demand (S-BOD) are removed by about 95%, which are about 130 and 100 mg / l, respectively, and sewage 3 is well purified. You can see that it is being processed.

【0068】さらに、上記設定による浄化処理の水質と
シミュレーションの演算値とが近似しており、シミュレ
ーションを構成する表1ないし表7、および、式1ない
し式3に示す各式が、汚水3の浄化処理によく適合して
いることが判断できる。
Further, the water quality of the purification treatment by the above settings and the calculated value of the simulation are close to each other, and the equations shown in Tables 1 to 7 and Equations 1 to 3 constituting the simulation are the same as those of the sewage 3. It can be judged that it is well suited for purification treatment.

【0069】次に、表1ないし表7、および、式1ない
し式3に示す各式からなる汚水3の浄化処理のモデルに
て、汚水3の浄化処理をシミュレートし、その結果を、
実際の汚水3の浄化処理と比較して、実験2を行った。
Next, the purification treatment of the sewage 3 was simulated with the model of the purification treatment of the sewage 3 made up of the equations shown in Tables 1 to 7 and Equations 1 to 3, and the results are
Experiment 2 was carried out in comparison with the actual purification treatment of sewage 3.

【0070】この実験2は、表8および表9に示す流入
汚水3の水質と、反応槽1の各区画の容積と、汚水3の
還流量および分離槽10の沈殿および浮遊汚泥の返送量
と、各区画での溶存酸素濃度(区画1は0mg/l、区画
2は0.5mg/l、区画3は1mg/l)とを、表1ない
し表7、および、式1ないし式3に示す各式からなる各
区画における被処理水3aの浄化処理のモデルに入力し、
各区画での被処理水3aが定常状態になるまで演算を繰り
返し、汚水3の浄化処理をシミュレートした。
In this experiment 2, the water quality of the inflowing sewage 3 shown in Tables 8 and 9, the volume of each section of the reaction tank 1, the recirculation amount of the sewage 3 and the returning amount of the sedimentation and floating sludge in the separation tank 10 were measured. The dissolved oxygen concentration in each compartment (0 mg / l for compartment 1, 0.5 mg / l for compartment 2, 1 mg / l for compartment 3) is shown in Tables 1 to 7 and Equations 1 to 3 Input to the model of purification treatment of the treated water 3a in each section consisting of each equation,
The calculation was repeated until the treated water 3a in each section became a steady state, and the purification treatment of the sewage 3 was simulated.

【0071】また、実験1の装置を用いて、実験1と同
様な操作により浄化処理し、反応槽1および分離槽10の
各点で採水し、有機物および窒素化合物の物質変換特性
を検査し、定常状態に達した後の1サイクルおよび1日
間におけるシミュレート結果と比較した。その結果を図
3および図4に示す。
Further, using the apparatus of Experiment 1, purification treatment was carried out by the same operation as in Experiment 1, water was sampled at each point of the reaction tank 1 and the separation tank 10, and the substance conversion characteristics of organic substances and nitrogen compounds were examined. , And compared with simulated results for one cycle and one day after reaching a steady state. The results are shown in FIGS. 3 and 4.

【0072】なお、シミュレートにおける定常状態は、
汚水3の流入サイクル間でのアンモニア性窒素、亜硝酸
性窒素や硝酸性窒素の酸化態窒素、他栄養性細菌、易分
解性溶解性有機物、硝酸菌などの濃度の変動状態が同一
となった状態をいう。また、この定常状態において、こ
の実験2の操作条件により汚泥の反応槽1および分離槽
10での合計の滞留時間は約6日で、硝酸菌は系から流亡
し亜硝酸菌のみが残存し、脱窒は亜硝酸脱窒が卓越する
ことが分かる。
The steady state in the simulation is
During the inflow cycle of sewage 3, the fluctuation conditions of the concentrations of ammonia nitrogen, nitrite nitrogen and oxidized nitrogen of nitrate nitrogen, allotrophic bacteria, easily decomposable soluble organic matter, nitric acid bacteria became the same. State. Further, in this steady state, the sludge reaction tank 1 and separation tank were operated under the operating conditions of Experiment 2.
The total residence time at 10 was about 6 days, and it was found that nitric acid bacteria flowed out from the system, only nitrite bacteria remained, and denitrification was predominantly nitrite denitrification.

【0073】この図3および図4に示す結果から、汚水
3の浄化処理のモデルによるシミュレートが、実際の汚
水3の処理状況とサイクル中の汚水3の状態変動も含め
て、良好に近似していることが分かり、この汚水3の浄
化処理のモデルに基づいて、汚水3の浄化処理の操作を
制御することにより、汚水3を良好に浄化処理できるこ
とが分かる。
From the results shown in FIGS. 3 and 4, the simulation by the model of the purification treatment of the sewage 3 gives a good approximation including the actual treatment state of the sewage 3 and the state variation of the sewage 3 during the cycle. It is understood that the sewage 3 can be satisfactorily purified by controlling the operation of the sewage 3 purification process based on the model of the sewage 3 purification process.

【0074】次に、実験2でのシミュレート試験におい
て、区画1の溶存酸素濃度0mg/l、区画2の溶存酸素
濃度0.5mg/l、区画3の溶存酸素濃度1mg/lを、
区画1での溶存酸素濃度を0mg/lに設定し、区画2の
溶存酸素濃度を変化させ、区画3の溶存酸素濃度を区画
2の溶存酸素濃度の2倍とし、定常状態になるまで演算
し、実験3を行った。その結果を図5ないし図7に示
す。なお、反応槽1内の水理学的滞留時間を、実際の浄
化処理操作の条件である4.5日とした。
Next, in a simulated test in Experiment 2, the dissolved oxygen concentration in compartment 1 was 0 mg / l, the dissolved oxygen concentration in compartment 2 was 0.5 mg / l, and the dissolved oxygen concentration in compartment 3 was 1 mg / l.
The dissolved oxygen concentration in compartment 1 is set to 0 mg / l, the dissolved oxygen concentration in compartment 2 is changed, the dissolved oxygen concentration in compartment 3 is set to twice the dissolved oxygen concentration in compartment 2, and calculation is performed until a steady state is reached. Experiment 3 was performed. The results are shown in FIGS. The hydraulic retention time in the reaction tank 1 was set to 4.5 days, which is the condition for the actual purification treatment operation.

【0075】これら図5および図6に示す結果から、区
画2での溶存酸素濃度が0.3〜0.4mg/l程度を境
に、溶存酸素濃度を低下させると、硝化が起こりにくく
なり、酸素呼吸とともに硝酸呼吸の量も減るため、他栄
養性細菌および自栄養性細菌が急激に減少し、系内に保
持できなくなることが分かる。
From the results shown in FIGS. 5 and 6, when the dissolved oxygen concentration in the compartment 2 is about 0.3 to 0.4 mg / l and the dissolved oxygen concentration is lowered, nitrification hardly occurs. It can be seen that since the amount of respiration of nitric acid is reduced together with the respiration of oxygen, the amount of autotrophic bacteria and autotrophic bacteria is rapidly reduced and cannot be retained in the system.

【0076】また、図7に示すように、区画2での溶存
酸素濃度が1mg/l程度を境に、溶存酸素濃度が上昇す
ると亜硝酸性窒素や硝酸性窒素の酸化態窒素の濃度が上
昇し、溶存酸素濃度が低下するとアンモニア性窒素の濃
度および易分解性溶解性有機物が上昇することが分か
る。
Further, as shown in FIG. 7, when the dissolved oxygen concentration rises when the dissolved oxygen concentration in section 2 is about 1 mg / l, the concentration of oxidized nitrogen such as nitrite nitrogen and nitrate nitrogen increases. However, it is understood that when the dissolved oxygen concentration decreases, the concentration of ammonia nitrogen and the easily decomposable soluble organic substance increase.

【0077】そして、アンモニア性窒素が上昇するの
は、硝化に必要な酸素量が不足するためである。また、
溶存酸素濃度が上昇すると酸化態窒素濃度が上昇するの
は、溶存酸素による脱窒の抑制に加え、有機物の酸素呼
吸による消費と硝酸呼吸による消費とのバランスが崩れ
脱窒に必要な有機物量が不足するためである。
The reason why ammonia nitrogen increases is that the amount of oxygen required for nitrification is insufficient. Also,
When the dissolved oxygen concentration rises, the oxidized nitrogen concentration rises because, in addition to suppressing denitrification by dissolved oxygen, the balance between the consumption of organic substances by oxygen respiration and the consumption by nitric acid respiration is disturbed, and the amount of organic substances required for denitrification is increased. This is because there will be a shortage.

【0078】したがって、区画2における溶存酸素濃度
を0.5〜1.5mg/lとなるように、汚水3を浄化処
理することが適当であると判断できる。
Therefore, it can be judged that it is appropriate to purify the sewage 3 so that the dissolved oxygen concentration in the compartment 2 becomes 0.5 to 1.5 mg / l.

【0079】次に、実験3において、区画1での溶存酸
素濃度を0mg/l、区画2の溶存酸素濃度を1mg/l、
区画3の溶存酸素濃度を2mg/lに設定し、反応槽1内
の水理学的滞留時間を変化させ、各区画での被処理水が
定常状態になるまで演算してシミュレートし、実験4を
行った。その結果を図8ないし図10に示す。
Next, in Experiment 3, the dissolved oxygen concentration in compartment 1 was 0 mg / l and the dissolved oxygen concentration in compartment 2 was 1 mg / l.
The dissolved oxygen concentration in the compartment 3 was set to 2 mg / l, the hydraulic retention time in the reaction tank 1 was changed, and the water to be treated in each compartment was calculated and simulated until it reached a steady state, and Experiment 4 was performed. I went. The results are shown in FIGS. 8 to 10.

【0080】この図8に示す結果から、水理学的滞留時
間が2日より長ければ、硝化に関与する自栄養性細菌の
反応槽1内の現存量はあまり変化しないが、有機物の酸
化分解や脱窒に関与する他栄養性細菌の反応槽1内の現
存量は、水理学的滞留時間が6日より短くなるにしたが
って減少することが分かる。
From the results shown in FIG. 8, if the hydraulic retention time is longer than 2 days, the existing amount of autotrophic bacteria involved in nitrification in the reaction tank 1 does not change so much, but oxidative decomposition of organic matter and It can be seen that the existing amount of allotrophic bacteria involved in denitrification in the reaction tank 1 decreases as the hydraulic retention time becomes shorter than 6 days.

【0081】また、図9に示すように、反応槽1から流
出する汚水3の易分解性溶解性有機物の濃度は、水理学
的滞留時間が3日より短いと急激に上昇する。さらに、
酸化態窒素の濃度は、水理学的滞留時間が4.5日より
短いと上昇し、3.6日以下ではその上昇が急激とな
る。また、アンモニア性窒素の濃度は、水理学的滞留時
間が3日以下になると上昇することが分かる。
Further, as shown in FIG. 9, the concentration of the easily decomposable soluble organic matter in the sewage 3 flowing out from the reaction tank 1 sharply rises when the hydraulic retention time is shorter than 3 days. further,
The concentration of oxidized nitrogen increases when the hydraulic retention time is shorter than 4.5 days, and increases sharply after 3.6 days or less. Also, it can be seen that the concentration of ammoniacal nitrogen increases when the hydraulic retention time becomes 3 days or less.

【0082】さらに、図10に示す結果から、全窒素お
よび溶解性窒素の濃度は水理学的滞留時間が3.6日以
下、溶解性有機物の化学的酸素要求量(溶解性CO
Cr)の濃度は2.5日以下になると上昇することが分
かる。
Further, from the results shown in FIG. 10, the concentrations of total nitrogen and soluble nitrogen were such that the hydraulic retention time was 3.6 days or less, the chemical oxygen demand of soluble organic matter (soluble CO 2
It can be seen that the concentration of D Cr ) increases after 2.5 days.

【0083】また、上記実験4において、水理学的滞留
時間を3.6日に設定し、実験3と同様に溶存酸素濃度
を変化させ、定常状態になるまで演算してシミュレート
し、実験5を行った。その結果を図11に示す。
In Experiment 4, the hydraulic retention time was set to 3.6 days, the dissolved oxygen concentration was changed in the same manner as in Experiment 3, and the calculation was performed until the steady state was calculated and simulated. I went. The result is shown in FIG.

【0084】この図11に示す結果から、区画2での溶
存酸素濃度が0.65mg/l以上であれば、易分解性溶
解性有機物による化学的酸素要求量およびアンモニア性
窒素の濃度が低下し、易分解性溶解性有機物およびアン
モニア性窒素が良好に除去されるが、酸化態窒素の濃度
が上昇し始める。このため、区画2での溶存酸素濃度を
0.65〜0.7mg/l程度に設定することにより、水
理学的滞留時間が4.5日に設定した浄化処理と同様に
良好な浄化処理が行えることが分かる。しかしながら、
水理学的滞留時間が3.6日では、良好な汚水3の浄化
処理が行える溶存酸素濃度の幅が極端に狭くなる。
From the results shown in FIG. 11, when the dissolved oxygen concentration in the compartment 2 is 0.65 mg / l or more, the chemical oxygen demand due to the easily decomposable soluble organic matter and the concentration of ammonia nitrogen decrease. , Easily decomposable soluble organic matter and ammonia nitrogen are well removed, but the concentration of oxidized nitrogen begins to rise. Therefore, by setting the dissolved oxygen concentration in the section 2 to about 0.65 to 0.7 mg / l, a good purification treatment can be performed as well as the purification treatment in which the hydraulic retention time is set to 4.5 days. You know what you can do. However,
When the hydraulic retention time is 3.6 days, the range of dissolved oxygen concentration at which good purification treatment of sewage 3 can be performed becomes extremely narrow.

【0085】すなわち、水理学的滞留時間を4.5日に
設定することで、安定した処理が余裕を持って行えると
判断できる。
That is, by setting the hydraulic retention time to 4.5 days, it can be judged that stable treatment can be performed with a margin.

【0086】したがって、上記実施例は、反応槽1に流
入する汚水3の流入量と、汚水3中の有機物および各窒
素化合物の濃度とから、反応槽1内の被処理水3a中の有
機物、各種窒素化合物および各種微生物の物質収支式
と、有機物の除去、各種窒素化合物の変換および各種微
生物の増殖の反応速度式と、有機物および各種窒素化合
物の生成速度式とからなる被処理水3aの処理の状況モデ
ルを反応槽1の各区画において実行し、反応槽1内の被
処理水3aの溶存酸素濃度が算出される結果を、状況モデ
ルのシミュレーションの演算値と比較して、絶えず状況
モデルのシミュレーションの演算値に沿うように、すな
わち、例えば各種測定値および入力値に基づいて、各区
画での被処理水3aの処理の状況モデルをシミュレートし
た結果、酸化分解工程、硝化工程および脱窒工程がそれ
ぞれ良好に進行する溶存酸素濃度となるように、汚水3
の流入量、還流量、汚泥の返送量などを制御し、汚水3
を浄化処理する。
Therefore, in the above-mentioned embodiment, the organic matter in the treated water 3a in the reaction tank 1 is determined from the inflow amount of the wastewater 3 flowing into the reaction tank 1 and the concentrations of the organic matter and the nitrogen compounds in the wastewater 3. Treatment of treated water 3a consisting of mass balance equations of various nitrogen compounds and various microorganisms, reaction rate equations for removal of organic substances, conversion of various nitrogen compounds and growth of various microorganisms, and rate equations for production of organic substances and various nitrogen compounds The situation model is executed in each section of the reaction tank 1, and the result of calculating the dissolved oxygen concentration of the treated water 3a in the reaction tank 1 is compared with the calculation value of the simulation of the situation model to continuously calculate the situation model. As along with the calculated value of the simulation, that is, based on, for example, various measured values and input values, as a result of simulating the situation model of the treatment of the treated water 3a in each section, the oxidation decomposition step As a dissolved oxygen concentration of the nitrification step and the denitrification step proceeds favorably respectively, sewage 3
The amount of sewage is controlled by controlling the inflow rate, recirculation rate, sludge return rate, etc.
Purify.

【0087】このため、1つの反応槽1で、有機物およ
び窒素化合物を含有する汚水3の浄化処理、すなわち、
被処理水3a中の有機物もしくは自己分解により栄養を得
て溶存酸素が存在しない嫌気性雰囲気で、硝化された酸
化態窒素を脱窒菌が硝酸呼吸にて窒素ガスに還元する脱
窒工程、溶存酸素が存在する好気性雰囲気で、好気性菌
や通性嫌気性菌などが被処理水3a中の残存する有機物を
栄養源として活性化し、有機物を好気性菌や通性嫌気性
菌などにて酸化分解する酸化分解工程、および、溶存酸
素の存在下、アンモニア性窒素を亜硝酸菌や硝酸菌にて
亜硝酸性窒素や硝酸性窒素の酸化態窒素に酸化する硝化
工程の3つの主な工程がそれぞれ良好に進行でき、汚水
3を良好に浄化処理できる。
Therefore, in one reaction tank 1, the purification treatment of the sewage 3 containing the organic matter and the nitrogen compound, that is,
In the anaerobic atmosphere where nutrients are obtained by organic substances or self-decomposition in treated water 3a and dissolved oxygen does not exist, the denitrification process in which the denitrifying bacteria reduce nitrified oxidized nitrogen to nitrogen gas by respiration of nitric acid, dissolved oxygen In an aerobic atmosphere in which water is present, aerobic bacteria and facultative anaerobic bacteria activate the remaining organic matter in the treated water 3a as a nutrient source and oxidize the organic matter with aerobic and facultative anaerobic bacteria. The three main steps are the oxidative decomposition step of decomposing and the nitrification step of oxidizing ammonia nitrogen into nitrite nitrogen and oxidized nitrogen of nitrate nitrogen in the presence of dissolved oxygen by nitrite bacteria and nitric acid bacteria. Each can proceed satisfactorily, and the sewage 3 can be satisfactorily purified.

【0088】さらに、1つの反応槽1で汚水3の浄化処
理ができるため、装置が小型化し、設置スペースを縮小
でき、製造性が向上するとともに、装置の運転コストが
低減でき、浄化処理操作も簡略化できる。
Further, since the wastewater 3 can be purified by one reaction tank 1, the apparatus can be downsized, the installation space can be reduced, the manufacturability can be improved, the operating cost of the apparatus can be reduced, and the purification operation can be performed. Can be simplified.

【0089】また、流入汚水3の汚染状態である有機物
および各種窒素化合物の濃度の測定結果などを入力する
のみで、汚水3の浄化処理がほぼ自動的に行われ、浄化
処理操作が容易にできる。
Further, by simply inputting the measurement results of the concentrations of organic substances and various nitrogen compounds in the polluted state of the inflowing wastewater 3, the purification processing of the wastewater 3 is performed almost automatically, and the purification processing operation can be facilitated. .

【0090】なお、上記実施例において、流入汚水3の
汚染状態である有機物による生物化学的酸素要求量や化
学的酸素要求量および各種窒素化合物の濃度をあらかじ
め測定し、この測定結果を制御手段に入力して、浄化処
理することについて説明したが、各種電磁弁や流量計を
用いず、化学的酸素要求量から汚染状態を計測し、流入
量や還流量、汚泥の返送量を一定にして、汚水3を浄化
処理する簡易式のものや、有機物による生物化学的酸素
要求量や化学的酸素要求量および各種窒素化合物の濃度
などをセンサなどにより自動的に測定し、この測定結果
と流入汚水3の流入量とから反応槽1に流入する有機物
や各種窒素化合物などの量を汚染状態として計測し、制
御手段にて汚水3の浄化処理の操作を自動的に制御し
て、汚水3を浄化処理する自動式のものでもできる。
In the above embodiment, the biochemical oxygen demand, the chemical oxygen demand, and the concentration of various nitrogen compounds due to the organic matter, which is the polluted state of the inflowing sewage 3, are measured in advance, and the measurement result is used as the control means. I explained the input and purification process, but without using various solenoid valves and flow meters, I measured the pollution state from the chemical oxygen demand, and made the inflow rate, reflux rate, sludge return rate constant, A simple type for purifying the sewage 3, a biochemical oxygen demand by an organic substance, a chemical oxygen demand and the concentration of various nitrogen compounds are automatically measured by a sensor, etc., and the measurement result and the inflow sewage 3 The amount of organic substances, various nitrogen compounds, etc. flowing into the reaction tank 1 is measured as a polluted state from the inflow amount of the sewage 3, and the control means automatically controls the operation of the purification treatment of the sewage 3 to purify the sewage 3. You can do things of automatic that.

【0091】さらに、被処理水3aの溶存酸素濃度を区画
2の反応槽1の中間に設けたセンサにて測定して説明し
たが、センサを被処理水3aの流過する方向に沿って反応
槽1内に複数設け、それぞれに対応して複数仮想区画
し、それぞれの溶存酸素濃度に基づいて、各区画での被
処理水3aの浄化処理の状況モデルを実行し、それぞれの
区画に設けた曝気装置にて溶存酸素濃度を調整するよう
にしてもできる。そしてさらに、1つのセンサを移動さ
せ、反応槽1の各位置にて溶存酸素濃度を測定して、汚
水3の浄化処理の操作を制御するようにしてもできる。
Further, the dissolved oxygen concentration of the treated water 3a was measured by the sensor provided in the middle of the reaction tank 1 in the section 2 for explanation, but the sensor is reacted along the flowing direction of the treated water 3a. A plurality of tanks are provided in the tank 1, and a plurality of virtual compartments are provided corresponding to the respective compartments. Based on the dissolved oxygen concentration of each, a status model of the purification treatment of the water 3a to be treated in each compartment is executed, and the compartments are provided in each compartment. The dissolved oxygen concentration may be adjusted with an aeration device. Further, one sensor may be moved to measure the dissolved oxygen concentration at each position of the reaction tank 1 to control the operation of purifying the sewage 3.

【0092】また、汚水3として、有機物および各種窒
素化合物を含有する、例えばし尿排水を用いて説明した
が、有機物、各種窒素化合物のいずれか含有するいずれ
の汚水3を対象とすることができる。
Further, as the sewage 3, the explanation has been made by using, for example, human waste water containing an organic substance and various nitrogen compounds, but any sewage 3 containing either an organic substance or various nitrogen compounds can be targeted.

【0093】[0093]

【発明の効果】請求項1記載の汚水の処理方法によれ
ば、反応槽内の被処理水の各位置での汚染状態を、汚水
の汚染状態と、被処理水の溶存酸素濃度とに基づいて、
物質収支式、反応速度式および生成速度式とからそれぞ
れ演算し、被処理水の溶存酸素濃度を制御するため、1
つの反応槽で、有機物を微生物にて酸化分解する酸化分
解工程、アンモニア性窒素を微生物にて酸化態窒素に酸
化する硝化工程、および、酸化態窒素を微生物にて窒素
ガスに還元する脱窒工程がそれぞれ良好に進行でき、汚
水を良好に浄化処理できる。
According to the method for treating sewage according to the first aspect of the present invention, the state of pollution at each position of the water to be treated in the reaction tank is based on the state of contamination of the sewage and the dissolved oxygen concentration of the water to be treated. hand,
In order to control the dissolved oxygen concentration of the water to be treated, it is calculated from the mass balance equation, reaction rate equation and production rate equation, respectively.
In one reaction tank, an oxidative decomposition process in which microorganisms oxidize and decompose, a nitrification process in which ammonia nitrogen is oxidized by microorganisms into oxidized nitrogen, and a denitrification process in which oxidized nitrogen is reduced by microorganisms into nitrogen gas. Can proceed satisfactorily, and sewage can be satisfactorily purified.

【0094】請求項2記載の汚水の処理方法によれば、
請求項1記載の汚水の処理方法において、反応槽に流入
する汚水の汚染状態を、汚水の流入量と、汚水中の有機
物と、汚水中の各種窒素化合物に基づいて計測するた
め、反応槽に流入する汚水の汚染状態から反応槽内の被
処理水の流過する方向に沿った各位置での汚染状態を容
易に演算可能で、汚水を容易に浄化処理できる。
According to the sewage treatment method of claim 2,
The method for treating wastewater according to claim 1, wherein the polluted state of the wastewater flowing into the reaction tank is measured based on the inflow amount of the wastewater, the organic matter in the wastewater, and various nitrogen compounds in the wastewater. The pollution state at each position along the flowing direction of the treated water in the reaction tank can be easily calculated from the pollution state of the inflowing wastewater, and the wastewater can be easily purified.

【0095】請求項3記載の汚水の処理方法によれば、
請求項1または2記載の処理方法において、被処理水の
溶存酸素濃度を、汚水の流入量、被処理水への酸素供給
量および反応槽の下流側から上流側への被処理水の還流
量に基づいて制御するため、汚水の浄化処理操作が容易
にでき、有機物を微生物にて酸化分解する酸化分解工
程、アンモニア性窒素を微生物にて酸化態窒素に酸化す
る硝化工程、および、酸化態窒素を微生物にて窒素ガス
に還元する脱窒工程が、1つの反応槽で良好に効率よく
進行でき、汚水を良好に浄化処理できる。
According to the sewage treatment method of claim 3,
The treatment method according to claim 1 or 2, wherein the dissolved oxygen concentration of the water to be treated is defined as the inflow amount of sewage, the oxygen supply amount to the water to be treated, and the reflux amount of the water to be treated from the downstream side to the upstream side of the reaction tank. Since it is controlled based on the above, the purification treatment operation of wastewater can be easily performed, and the oxidative decomposition step in which organic matter is oxidized and decomposed by microorganisms, the nitrification step in which ammonia nitrogen is oxidized by microorganisms into oxidized nitrogen, and the oxidized nitrogen The denitrification step of reducing methane to nitrogen gas with microorganisms can be effectively and efficiently progressed in one reaction tank, and sewage can be satisfactorily purified.

【0096】請求項4記載の汚水の処理装置によれば、
汚水の汚染状態を汚染計測手段にて計測するとともに、
溶存酸素測定手段にて反応槽内の被処理水の溶存酸素濃
度を測定し、これらの結果に基づいて制御手段にて、酸
素供給手段、流入調整手段および還流手段を制御し、被
処理水の溶存酸素濃度を制御し、汚水を浄化処理するた
め、汚水の浄化処理操作が容易にでき、有機物を微生物
にて酸化分解する酸化分解工程、アンモニア性窒素を微
生物にて酸化態窒素に酸化する硝化工程、および、酸化
態窒素を微生物にて窒素ガスに還元する脱窒工程が、1
つの反応槽で良好に効率よく進行でき、汚水を良好に浄
化処理できる。
According to the wastewater treatment apparatus of the fourth aspect,
While measuring the pollution status of sewage with pollution measuring means,
The dissolved oxygen measuring means measures the dissolved oxygen concentration of the water to be treated in the reaction tank, and the control means controls the oxygen supply means, the inflow adjusting means and the reflux means on the basis of these results to control the treated water. Since the concentration of dissolved oxygen is controlled and sewage is purified, sewage can be easily purified, and an oxidative decomposition process in which organic matter is oxidatively decomposed by microorganisms, nitrification in which ammonia nitrogen is oxidized by microorganisms into oxidized nitrogen The process and the denitrification process of reducing oxidized nitrogen to nitrogen gas by microorganisms are 1
The two reaction tanks can proceed satisfactorily and efficiently, and sewage can be satisfactorily purified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の汚水の処理方法を実施する装置の一実
施例の構成を示す系統説明図である。
FIG. 1 is a system explanatory view showing the configuration of an embodiment of an apparatus for carrying out the wastewater treatment method of the present invention.

【図2】同上汚水の浄化処理工程の物質変換のモデルを
示す系統説明図である。
FIG. 2 is a system explanatory view showing a model of substance conversion in the same sewage purification process.

【図3】同上有機物および窒素化合物の物質変換特性の
定常状態に達した後の1サイクルにおけるシミュレート
結果と実測値との対比を示すグラフである。
FIG. 3 is a graph showing a comparison between a simulation result and an actual measurement value in one cycle after reaching the steady state of the substance conversion characteristics of organic substances and nitrogen compounds.

【図4】同上有機物および窒素化合物の物質変換特性の
定常状態に達した後の1日間におけるシミュレート結果
と実測値との対比を示すグラフである。
FIG. 4 is a graph showing a comparison between a simulation result and a measured value for one day after reaching a steady state of the substance conversion characteristics of organic substances and nitrogen compounds.

【図5】同上区画2の溶存酸素濃度を変化させたシミュ
レート結果を示すグラフである。
FIG. 5 is a graph showing a simulation result in which the dissolved oxygen concentration in the same section 2 is changed.

【図6】同上区画2の溶存酸素濃度を変化させたシミュ
レート結果を示すグラフである。
FIG. 6 is a graph showing a simulation result in which the dissolved oxygen concentration in the same section 2 is changed.

【図7】同上区画2の溶存酸素濃度を変化させたシミュ
レート結果を示すグラフである。
FIG. 7 is a graph showing a simulation result in which the dissolved oxygen concentration in the same section 2 is changed.

【図8】同上水理学的滞留時間を変化させたシミュレー
ト結果を示すグラフである。
FIG. 8 is a graph showing a simulation result in which the hydraulic retention time is changed.

【図9】同上水理学的滞留時間を変化させたシミュレー
ト結果を示すグラフである。
FIG. 9 is a graph showing a simulation result in which the hydraulic retention time is changed.

【図10】同上水理学的滞留時間を変化させたシミュレ
ート結果を示すグラフである。
FIG. 10 is a graph showing a simulation result in which the hydraulic retention time is changed.

【図11】同上区画2の溶存酸素濃度を変化させたシミ
ュレート結果を示すグラフである。
FIG. 11 is a graph showing a simulation result in which the dissolved oxygen concentration in the same section 2 is changed.

【符号の説明】[Explanation of symbols]

1 反応槽 3 汚水 3a 被処理水 4 流入口 5 流入管 7 還流管 1 Reaction Tank 3 Sewage 3a Treated Water 4 Inlet 5 Inflow Pipe 7 Reflux Pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津野 洋 滋賀県大津市衣川二丁目8番14号 (72)発明者 山田 登志夫 大阪府大阪市西区立売堀二丁目1番9号 アタカ工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Tsuno 2-8-14, Kinugawa, Otsu City, Shiga Prefecture (72) Inventor Toshio Yamada 2-9, Sellobori, Nishi-ku, Osaka City, Osaka Prefecture Ataka Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 反応槽に流入する汚水の汚染状態を計測
するとともに、前記反応槽内の被処理水の溶存酸素濃度
を測定し、 前記被処理水が流過する方向に沿った前記反応槽内の各
位置における前記被処理水の汚染状態を、前記反応槽に
流入する汚水の汚染状態の計測結果と前記溶存酸素濃度
の測定結果とに基づいて、前記被処理水中の有機物、各
種窒素化合物および各種微生物の物質収支式と、有機物
の除去、各種窒素化合物の変換および各種微生物の増殖
の反応速度式と、有機物および各種窒素化合物の生成速
度式とからそれぞれ演算し、 前記被処理水の溶存酸素濃度を制御することを特徴とす
る汚水の処理方法。
1. The reaction tank along the direction in which the water to be treated flows, by measuring the polluted state of sewage flowing into the reaction tank and measuring the dissolved oxygen concentration of the water to be treated in the reaction tank. The polluted state of the treated water at each position in the, based on the measurement result of the polluted state of the sewage flowing into the reaction tank and the measurement result of the dissolved oxygen concentration, organic matter in the treated water, various nitrogen compounds And a mass balance equation of various microorganisms, a reaction rate equation for removal of organic matter, conversion of various nitrogen compounds and growth of various microorganisms, and a production rate equation of organic matter and various nitrogen compounds, respectively, to dissolve the treated water A method for treating sewage, which comprises controlling the oxygen concentration.
【請求項2】 反応槽に流入する汚水の汚染状態を、前
記汚水の流入量と、前記汚水中の有機物と、前記汚水中
の各種窒素化合物との少なくともいずれか一方に基づい
て計測することを特徴とする請求項1記載の汚水の処理
方法。
2. A polluted state of sewage flowing into a reaction tank is measured based on at least one of an inflow amount of the sewage, an organic matter in the sewage, and various nitrogen compounds in the sewage. The method for treating sewage according to claim 1, which is characterized in that.
【請求項3】 被処理水の溶存酸素濃度を、反応槽に流
入する汚水の流入量、この反応槽内の被処理水への酸素
供給量および前記反応槽の下流側から上流側への前記被
処理水の還流量の少なくともいずれか1つに基づいて制
御することを特徴とする請求項1または2記載の汚水の
処理方法。
3. The dissolved oxygen concentration of the water to be treated is determined by the inflow amount of sewage flowing into the reaction tank, the amount of oxygen supplied to the water to be treated in the reaction tank, and the amount of oxygen from the downstream side to the upstream side of the reaction tank. The method for treating sewage according to claim 1 or 2, wherein the control is performed based on at least one of the reflux amounts of the water to be treated.
【請求項4】 汚水が流入する流入口を有した反応槽
と、 この反応槽に設けられ反応槽内の被処理水に酸素を供給
する酸素供給手段と、 この反応槽に設けられ前記反応槽の下流側から上流側へ
前記被処理水を還流させる還流手段と、 前記流入口を介して流入する汚水の流入量を調整する流
入調整手段と、 前記流入口の近傍に設けられ流入する前記汚水の汚染状
態を計測する汚染計測手段と、 前記反応槽内に前記被処理水の溶存酸素濃度を測定する
溶存酸素測定手段と、 前記汚染計測手段および前記溶存酸素測定手段の少なく
ともいずれか一方による測定結果に基づいて、前記酸素
供給手段、前記流入調整手段および前記還流手段の少な
くともいずれか1つを制御する制御手段とを具備したこ
とを特徴とする汚水の処理装置。
4. A reaction tank having an inflow port for inflowing sewage, oxygen supply means provided in the reaction tank for supplying oxygen to the water to be treated in the reaction tank, and the reaction tank provided in the reaction tank. Recirculation means for recirculating the water to be treated from the downstream side to the upstream side, inflow adjusting means for adjusting the inflow amount of sewage flowing in through the inflow port, and the inflowing sewage provided in the vicinity of the inflow port Pollution measuring means for measuring the pollution state of, the dissolved oxygen measuring means for measuring the dissolved oxygen concentration of the water to be treated in the reaction tank, the measurement by at least one of the pollution measuring means and the dissolved oxygen measuring means A sewage treatment apparatus comprising: a control unit that controls at least one of the oxygen supply unit, the inflow adjustment unit, and the reflux unit based on the result.
JP23697193A 1993-09-22 1993-09-22 Wastewater treatment method and apparatus Expired - Lifetime JP3213657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23697193A JP3213657B2 (en) 1993-09-22 1993-09-22 Wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23697193A JP3213657B2 (en) 1993-09-22 1993-09-22 Wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH0788490A true JPH0788490A (en) 1995-04-04
JP3213657B2 JP3213657B2 (en) 2001-10-02

Family

ID=17008482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23697193A Expired - Lifetime JP3213657B2 (en) 1993-09-22 1993-09-22 Wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3213657B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241052A (en) * 2008-03-10 2009-10-22 Sumiju Kankyo Engineering Kk Biological wastewater treatment method and biological wastewater treatment apparatus
JP2009291719A (en) * 2008-06-05 2009-12-17 Sumiju Kankyo Engineering Kk Biological wastewater treatment apparatus
JP2010017689A (en) * 2008-07-14 2010-01-28 Kobelco Eco-Solutions Co Ltd Simulation method and biological treatment method
JP2011067727A (en) * 2009-09-24 2011-04-07 Sumiju Kankyo Engineering Kk Method and apparatus for treating wastewater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241052A (en) * 2008-03-10 2009-10-22 Sumiju Kankyo Engineering Kk Biological wastewater treatment method and biological wastewater treatment apparatus
JP2009291719A (en) * 2008-06-05 2009-12-17 Sumiju Kankyo Engineering Kk Biological wastewater treatment apparatus
JP2010017689A (en) * 2008-07-14 2010-01-28 Kobelco Eco-Solutions Co Ltd Simulation method and biological treatment method
JP2011067727A (en) * 2009-09-24 2011-04-07 Sumiju Kankyo Engineering Kk Method and apparatus for treating wastewater

Also Published As

Publication number Publication date
JP3213657B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
Cheng et al. Nitrification/denitrification in intermittent aeration process for swine wastewater treatment
JP4334317B2 (en) Sewage treatment system
JP2001252691A (en) Water quality controlling device for sewage treatment plant
Corsino et al. Achieving complete nitrification below the washout SRT with hybrid membrane aerated biofilm reactor (MABR) treating municipal wastewater
JP4367037B2 (en) Water quality information processing unit
JP3213657B2 (en) Wastewater treatment method and apparatus
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JP6375257B2 (en) Water treatment equipment
JP3303352B2 (en) Operation control method for batch activated sludge treatment
JP3384951B2 (en) Biological water treatment method and equipment
Leonhard et al. Single-stage MBBR as post-treatment step for upgrading large WWTPs–Experiences of one-year pilot plant operation
JPH0938683A (en) Biological water treating device
Kayser Activated sludge process
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
CN110526401A (en) A kind of landfill leachate short-cut nitrification and denitrification biological denitrification method
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JP2006007132A (en) Apparatus for treating sewage
JP2001198590A (en) Simulation method and device of activated-sludge water treating device
JP3782738B2 (en) Wastewater treatment method
Mahendraker et al. Comparative evaluation of mass transfer of oxygen in three activated sludge processes operating under uniform conditions
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus
US20230219833A1 (en) Wastewater treatment systems and methods of use
JP3303475B2 (en) Operation control method of activated sludge circulation method
JP2002136990A (en) Wastewater treatment apparatus and control method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140719

Year of fee payment: 13