JP2014205104A - Water treatment apparatus and method - Google Patents

Water treatment apparatus and method Download PDF

Info

Publication number
JP2014205104A
JP2014205104A JP2013083456A JP2013083456A JP2014205104A JP 2014205104 A JP2014205104 A JP 2014205104A JP 2013083456 A JP2013083456 A JP 2013083456A JP 2013083456 A JP2013083456 A JP 2013083456A JP 2014205104 A JP2014205104 A JP 2014205104A
Authority
JP
Japan
Prior art keywords
tank
water
water treatment
effluent
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013083456A
Other languages
Japanese (ja)
Inventor
佳記 西田
Yoshiki Nishida
佳記 西田
一郎 山野井
Ichiro Yamanoi
一郎 山野井
浩人 横井
Hiroto Yokoi
浩人 横井
隆広 舘
Takahiro Tachi
隆広 舘
剛 武本
Takeshi Takemoto
剛 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013083456A priority Critical patent/JP2014205104A/en
Publication of JP2014205104A publication Critical patent/JP2014205104A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment apparatus and method which maintains both activity of DPAO and quality of treated water in the AN method.SOLUTION: A water treatment apparatus includes an anaerobic tank 1 into which raw water flows, a sludge separation tank 2 which separates an activated sludge mixed liquor flowing out from the anaerobic tank 1 into a supernatant liquid and concentrated sludge, a nitrification tank 3 which treats the supernatant liquid, an anoxic tank 4 into which the concentrated sludge and outflow water from the nitrification tank 3 flow, and an aerobic tank 5 into which outflow water from the anoxic tank 4 flows. The water treatment apparatus is provided with water quality measuring means 16, 18 which measure an index of the nitrate nitrogen concentration in the inflow water and the outflow water of the anoxic tank 4, and first air volume control means 19 which calculates the nitrate nitrogen concentrations in the inflow water and the outflow water of the anoxic tank 4 from the index measured by the water quality measuring means 16, 18 and controls the aeration air volume of the nitrification tank 3 using the calculated nitrate nitrogen concentrations.

Description

本発明は,活性汚泥を用いた生物処理による水処理プロセスに関する。
The present invention relates to a water treatment process by biological treatment using activated sludge.

下水処理場をはじめとする水処理プラントにおいて,処理水質の向上を目的として有機物に加えて窒素やリンを活性汚泥(微生物群)により除去する高度処理が各地で導入されている。高度処理における一般的な生物学的窒素除去は,硝化工程と脱窒工程から構成されている。硝化工程は好気状態で行われ,硝化菌により下水中のアンモニア性窒素(NH4-N)は硝酸性窒素(NO3-N)へ酸化される。脱窒工程は無酸素状態で行われ,脱窒菌によりNO3-NはN2ガスへ還元される。N2ガスは大気中へ放出されるため,液相中から窒素は除去される。一方,生物学的リン除去は,リン蓄積菌(PAO)と呼ばれる微生物の働きを利用している。このPAOは,嫌気工程において細胞内に蓄積したポリリン酸を加水分解し,エネルギー(ATP:アデノシン三リン酸)を獲得する。このATPを利用し,PAOは有機物を摂取するが,同時に分解されたポリリン酸がリン酸態リン(PO4-P)として放出されるため,液相中のPO4-P濃度は上昇する。一方,好気工程では,PAOの細胞内に蓄積した有機物が酸素により酸化分解され,エネルギー (ATP)が発生する。PAOはこのATPを利用して放出量以上のPO4-Pを取り込み,ポリリン酸として蓄積する。そして,PO4-Pが蓄積した活性汚泥は沈殿池で引き抜かれ,系外へリンが除去される。 In water treatment plants such as sewage treatment plants, advanced treatment has been introduced in various places to remove nitrogen and phosphorus with activated sludge (microorganism group) in addition to organic substances in order to improve the quality of treated water. General biological nitrogen removal in advanced treatment consists of a nitrification process and a denitrification process. The nitrification process is performed in an aerobic state, and ammonia nitrogen (NH 4 -N) in sewage is oxidized to nitrate nitrogen (NO 3 -N) by nitrifying bacteria. The denitrification process is performed in the absence of oxygen, and NO 3 -N is reduced to N 2 gas by denitrifying bacteria. Since N 2 gas is released into the atmosphere, nitrogen is removed from the liquid phase. On the other hand, biological phosphorus removal uses the action of microorganisms called phosphorus accumulating bacteria (PAO). This PAO hydrolyzes the polyphosphate accumulated in the cells during the anaerobic process and acquires energy (ATP: adenosine triphosphate). Using this ATP, PAO ingests organic matter, but simultaneously decomposed polyphosphoric acid is released as phosphate phosphorus (PO 4 -P), increasing the concentration of PO 4 -P in the liquid phase. On the other hand, in the aerobic process, organic substances accumulated in the cells of PAO are oxidatively decomposed by oxygen to generate energy (ATP). PAO uses this ATP to capture more PO 4 -P and releases it as polyphosphate. The activated sludge accumulated with PO 4 -P is extracted in the sedimentation basin, and phosphorus is removed from the system.

窒素とリンの除去を両立するプロセスとしては,嫌気―無酸素―好気法(A2O法)がある。A2O法では,硝化菌,脱窒菌,PAOの併用により窒素とリンを除去している。しかし,脱窒菌とPAOは共に従属栄養細菌であるため,両者の間には有機物を巡る競合関係が存在する。そのため,特に日本のような流入下水中の有機物濃度が低い場合,有機物が制限因子となり窒素とリンの除去が不十分になるおそれがある。このような問題の解決手段として,PAOの持つリン除去能力に加えて脱窒能力をも有する脱窒性リン蓄積菌 (DPAO)の活用が期待されている。全てのPAOは電子受容体として酸素を利用することができるが,DPAOは酸素に加えて硝酸も利用することができる。DPAOは単独で窒素とリンを除去するため,有機物の効率的な利用が可能である。 An anaerobic-anoxic-aerobic method (A 2 O method) is a process that achieves both nitrogen and phosphorus removal. In the A 2 O method, nitrogen and phosphorus are removed by the combined use of nitrifying bacteria, denitrifying bacteria, and PAO. However, since denitrifying bacteria and PAO are both heterotrophic bacteria, there is a competitive relationship for organic matter between them. Therefore, especially when the concentration of organic matter in the inflowing sewage is low as in Japan, the organic matter may become a limiting factor and the removal of nitrogen and phosphorus may be insufficient. As a means of solving such problems, it is expected to utilize denitrifying phosphorus accumulating bacteria (DPAO) which has denitrification ability in addition to the phosphorus removal ability of PAO. All PAOs can use oxygen as an electron acceptor, but DPAO can use nitric acid in addition to oxygen. Since DPAO removes nitrogen and phosphorus independently, it can efficiently use organic substances.

DPAO活用プロセスとしては,Single-sludge systemとTwo-sludge systemがある。Single-sludge systemの例としては,嫌気−好気−無酸素活性汚泥法(AOA法)がある([特許文献1]を参照)。AOA法における活性汚泥は嫌気,好気,無酸素状態の全てに曝される。AOA法では,好気工程でのDPAOによるリン摂取を抑制し,無酸素工程で十分な脱窒を行うために,好気工程開始前に有機物の添加が必要であるとされている。一方,Two-sludge system の例としては,外部硝化嫌気無酸素法法(A2N法あるいはDEPHANOX法)([非特許文献1]参照)がある。A2N法では,嫌気槽の後段に汚泥分離槽が設置される。汚泥分離槽において活性汚泥を沈降させ,上澄み液と,濃縮させた濃縮汚泥とに分離される。上澄み液は硝化槽へ移送され,硝化槽内に存在する硝化菌によりNH4-NがNO3-Nに硝化される。そして,無酸素槽において硝化槽流出水と,濃縮汚泥が混合される。無酸素槽の後段には最終沈殿池が設置され,活性汚泥と上澄み液を沈降分離し,上澄み液を処理水として系外に放流する。沈降した活性汚泥は返送ポンプにより嫌気槽へと返送され,再度一連の生物処理に利用される。下水中の有機物は嫌気槽においてDPAOにより摂取され,窒素は硝化槽での硝化を経て,無酸素槽においてDPAOもしくは脱窒菌により脱窒され,リンは硝化槽流出水中の硝酸を用いてDPAOが摂取することにより除去される。 The DPAO utilization process includes the single-sludge system and the two-sludge system. An example of a single-sludge system is an anaerobic-aerobic-anoxic activated sludge method (AOA method) (see [Patent Document 1]). Activated sludge in the AOA method is exposed to anaerobic, aerobic, and anoxic conditions. In the AOA method, it is said that organic substances must be added before the start of the aerobic process in order to suppress phosphorus intake by DPAO in the aerobic process and perform sufficient denitrification in the anaerobic process. On the other hand, as an example of the two-sludge system, there is an external nitrification anaerobic anoxic method (A 2 N method or DEPHANOX method) (see [Non-patent Document 1]). In the A 2 N method, a sludge separation tank is installed after the anaerobic tank. Activated sludge is settled in the sludge separation tank and separated into supernatant and concentrated concentrated sludge. The supernatant is transferred to the nitrification tank, and NH 4 -N is nitrified to NO 3 -N by nitrifying bacteria present in the nitrification tank. Then, the nitrification tank effluent and concentrated sludge are mixed in the anoxic tank. A final sedimentation basin is installed after the anaerobic tank, where activated sludge and supernatant liquid are settled and separated, and the supernatant liquid is discharged out of the system as treated water. The sedimented activated sludge is returned to the anaerobic tank by a return pump and used again for a series of biological treatments. Organic matter in sewage is ingested by DPAO in the anaerobic tank, nitrogen is nitrified in the nitrification tank, denitrified by DPAO or denitrifying bacteria in the anaerobic tank, and phosphorus is ingested by DPAO using nitric acid in the nitrification tank effluent. To be removed.

A2N法では,硝化工程と脱窒・リン除去工程で用いる活性汚泥を分離しており,後者の活性汚泥は好気条件に曝露されないため,電子受容体として酸素のみ利用可能なPAOに比べてDPAOの活性は高まり,DPAOは高度に集積する。集積したDPAOの活用により,酸素供給なしにリン除去が可能となるため,ブロワの消費電力を低減できる。また,DPAOは蓄積した有機物は脱窒とリン除去の両方に利用するため,流入有機物負荷が低い場合においても窒素・リン除去が可能となる。
In the A 2 N method, activated sludge used in the nitrification process and denitrification / phosphorus removal process is separated, and the latter activated sludge is not exposed to aerobic conditions. As a result, the activity of DPAO increases and DPAO accumulates highly. Utilizing the integrated DPAO makes it possible to remove phosphorus without supplying oxygen, reducing the power consumption of the blower. In addition, DPAO uses accumulated organic matter for both denitrification and phosphorus removal, so it is possible to remove nitrogen and phosphorus even when the inflowing organic matter load is low.

特許第4267860号公報Japanese Patent No. 4267860

T. Kuba, M.C.M Van Loosdrecht, J.J. Heijnen: Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system. Water Research, Vol.30, No.7, pp.1702-1710, 1996.T. Kuba, MCM Van Loosdrecht, JJ Heijnen: Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system.Water Research, Vol.30, No.7, pp.1702-1710, 1996. 山野井一郎,武本剛,田所秀之:酸化還元電位 (ORP)によるN2O抑制制御方式の開発,学会誌「EICA」,Vol.2/3, pp.28-37, 2011.Yamanoi Ichiro, Takemoto Tsuyoshi, Tadokoro Hideyuki: Development of N2O suppression control system using redox potential (ORP), Journal of EICA, Vol.2 / 3, pp.28-37, 2011.

非特許文献1のA2N法の構成では,硝化工程での硝化が不十分であると,後段の無酸素工程におけるDPAOの脱窒・リン蓄積量および脱窒菌の脱窒量が減少し,処理水質が悪化するという問題がある。また,無酸素工程でのDPAOや脱窒菌の活性が低い場合,無酸素工程での窒素・リン除去が低下し,処理水質が悪化する恐れがある。そこで,本発明では,A2N法におけるDPAOの窒素・リン除去性能を確保し,高い処理水質を維持する水処理装置および方法を提供することを目的とする。
In the configuration of the A 2 N method of Non-Patent Document 1, if nitrification in the nitrification process is insufficient, the amount of denitrification / phosphorus accumulation of DPAO and the amount of denitrification of denitrifying bacteria in the subsequent anaerobic process is reduced. There is a problem that the quality of treated water deteriorates. In addition, if the activity of DPAO and denitrifying bacteria is low in the anaerobic process, the removal of nitrogen and phosphorus in the anoxic process may be reduced and the quality of the treated water may be deteriorated. Accordingly, an object of the present invention is to provide a water treatment apparatus and method that ensure the nitrogen / phosphorus removal performance of DPAO in the A 2 N method and maintain high treated water quality.

上記課題を達成するために本発明は,原水が流入する嫌気槽と,前記嫌気槽から流出する活性汚泥混合液を上澄み液と濃縮汚泥とに分離する汚泥分離槽と,前記上澄み液を処理する硝化槽と,前記濃縮汚泥と前記硝化槽からの流出水が流入する無酸素槽と,前記無酸素槽からの流出水が流入する好気槽とを備えた水処理装置において,
前記無酸素槽の流入水および流出水の硝酸性窒素濃度の指標を計測する水質計測手段を備え,前記水質計測手段から,前記無酸素槽の流入水および流出水の硝酸性窒素濃度を算出し,該算出した硝酸性窒素濃度を用いて前記硝化槽の曝気風量を制御する第1風量制御手段を備えたことを特徴とするものである。
To achieve the above object, the present invention processes an anaerobic tank into which raw water flows, a sludge separation tank that separates an activated sludge mixed liquid flowing out from the anaerobic tank into a supernatant liquid and a concentrated sludge, and the supernatant liquid. In a water treatment apparatus comprising a nitrification tank, an oxygen-free tank into which the effluent from the concentrated sludge and the nitrification tank flows, and an aerobic tank into which the effluent from the oxygen-free tank flows.
Water quality measuring means for measuring an index of nitrate nitrogen concentration of the inflow water and effluent water of the anoxic tank is provided, and the nitrate nitrogen concentration of the inflow water and effluent water of the anoxic tank is calculated from the water quality measurement means. The first air volume control means for controlling the aeration air volume of the nitrification tank using the calculated nitrate nitrogen concentration is provided.

更に,本発明の水処理装置は,前記水質計測手段として,硝酸性窒素濃度計,又は酸化還元電位計を設置したことを特徴とするものである。   Furthermore, the water treatment apparatus of the present invention is characterized in that a nitrate nitrogen concentration meter or a redox potential meter is installed as the water quality measuring means.

更に,本発明の水処理装置は,前記濃縮汚泥の流量を制御する移送汚泥量制御手段を備え,前記水質計測手段により計測した前記無酸素槽の流出水の硝酸性窒素濃度を算出し,該算出した硝酸性窒素濃度に基づいて前記移送汚泥量制御手段による前記濃縮汚泥の流量の制御を行うことを特徴とするものである。   Further, the water treatment apparatus of the present invention comprises a transfer sludge amount control means for controlling the flow rate of the concentrated sludge, calculates the nitrate nitrogen concentration of the effluent of the oxygen-free tank measured by the water quality measurement means, The flow rate of the concentrated sludge is controlled by the transferred sludge amount control means based on the calculated nitrate nitrogen concentration.

更に,本発明の水処理装置は,前記好気槽の曝気風量を制御する第2風量制御手段と,前記無酸素槽の流出水のリン濃度を計測するリン濃度計測手段とを備え,前記リン濃度計測手段により計測した前記無酸素槽の流出水のリン濃度に基づいて,前記第2風量制御手段による前記好気槽の曝気風量を制御することを特徴とするものである。   Furthermore, the water treatment apparatus of the present invention comprises second air volume control means for controlling the aeration air volume of the aerobic tank, and phosphorus concentration measurement means for measuring the phosphorus concentration of the effluent of the anaerobic tank. The aeration air volume of the aerobic tank is controlled by the second air volume control unit based on the phosphorus concentration of the outflow water of the oxygen-free tank measured by the concentration measuring unit.

更に,本発明の水処理装置は,前記好気槽の曝気風量を制御する第2風量制御手段と,前記無酸素槽の流出水のリン濃度を計測するリン濃度計測手段とを備え,前記無酸素槽の流出水のリン濃度と目標値のリン濃度の差分に基づいて前記第2風量制御手段の曝気風量の制御を行うことを特徴とするものである。     Further, the water treatment apparatus of the present invention comprises second air volume control means for controlling the aeration air volume of the aerobic tank, and phosphorus concentration measurement means for measuring the phosphorus concentration of the effluent water of the oxygen-free tank. The aeration air volume of the second air volume control means is controlled based on the difference between the phosphorus concentration of the effluent of the oxygen tank and the phosphorus concentration of the target value.

また,上記課題を達成するために本発明は,原水が流入する嫌気槽と,前記嫌気槽から流出する活性汚泥混合液を上澄み液と濃縮汚泥とに分離する汚泥分離槽と,前記上澄み液を処理する硝化槽と,前記濃縮汚泥と前記硝化槽からの流出水が流入する無酸素槽と,前記無酸素槽からの流出水が流入する好気槽とを備え,前記原水を処理する水処理方法において,
前記無酸素槽の流入水および流出水の硝酸性窒素濃度の指標を計測し,前記無酸素槽の流入水および流出水の硝酸性窒素濃度を算出して,前記硝化槽の曝気風量を制御することを特徴とするものである。
To achieve the above object, the present invention comprises an anaerobic tank into which raw water flows, a sludge separation tank for separating an activated sludge mixed liquid flowing out of the anaerobic tank into a supernatant liquid and a concentrated sludge, and the supernatant liquid. A water treatment for treating the raw water, comprising a nitrification tank to be treated, an oxygen-free tank into which the effluent from the concentrated sludge and the nitrification tank flows, and an aerobic tank into which the effluent from the oxygen-free tank flows. In the method,
Measure the nitrate nitrogen concentration index of the inflow and effluent of the anoxic tank, calculate the nitrate nitrogen concentration of the inflow and effluent of the anoxic tank, and control the aeration air volume of the nitrification tank It is characterized by this.

更に,本発明の水処理方法は,前記硝酸性窒素濃度の指標を計測するために,硝酸性窒素濃度計,又は酸化還元電位計を用いることを特徴とするものである。   Furthermore, the water treatment method of the present invention is characterized in that a nitrate nitrogen concentration meter or an oxidation-reduction potentiometer is used for measuring the index of nitrate nitrogen concentration.

更に,本発明の水処理方法は,前記無酸素槽の流出水の硝酸性窒素濃度を算出し,該算出した硝酸性窒素濃度に基づいて前記濃縮汚泥の流量の制御を行うことを特徴とするものである。
更に,本発明の水処理方法は,前記無酸素槽の流出水のリン濃度を計測し,計測したリン濃度に基づいて,前記好気槽の曝気風量を制御することを特徴とするものである。
Furthermore, the water treatment method of the present invention is characterized in that the nitrate nitrogen concentration of the effluent of the oxygen-free tank is calculated, and the flow rate of the concentrated sludge is controlled based on the calculated nitrate nitrogen concentration. Is.
Furthermore, the water treatment method of the present invention is characterized in that the phosphorus concentration in the anaerobic tank effluent is measured and the aeration air volume in the aerobic tank is controlled based on the measured phosphorus concentration. .

更に,本発明の水処理方法は,前記無酸素槽の流出水のリン濃度を計測し,計測したリン濃度と目標値のリン濃度の差分に基づいて,前記好気槽の曝気風量を制御することを特徴とするものである。
Furthermore, the water treatment method of the present invention measures the phosphorus concentration of the effluent of the anaerobic tank, and controls the amount of aeration air in the aerobic tank based on the difference between the measured phosphorus concentration and the target phosphorus concentration. It is characterized by this.

本発明によれば,脱窒性リン蓄積菌を用いた水処理における安定的な窒素,リン除去を実現することが可能になる。   According to the present invention, stable nitrogen and phosphorus removal can be realized in water treatment using denitrifying phosphorus accumulating bacteria.

実施例1に係る水処理装置Sの構成を示す構成図である。1 is a configuration diagram showing a configuration of a water treatment device S according to Embodiment 1. FIG. 実施例1における,第1ブロワ9の曝気風量および移送ポンプ7の制御フロー図である。FIG. 3 is a control flow diagram of the aeration air volume of the first blower 9 and the transfer pump 7 in the first embodiment. 実施例2に係る水処理装置Sの構成を示す構成図である。It is a block diagram which shows the structure of the water treatment apparatus S which concerns on Example 2. FIG. 実施例2における,第2ブロワ11の曝気風量の制御フロー図である。FIG. 10 is a control flow diagram of the aeration air volume of the second blower 11 in the second embodiment. 実施例2の変形例に係る水処理装置Sの構成を示す構成図である。It is a block diagram which shows the structure of the water treatment apparatus S which concerns on the modification of Example 2. FIG. 実施例2の変形例における,第2ブロワ11の曝気風量の制御フロー図である。It is a control flow figure of the aeration air volume of the 2nd blower 11 in the modification of Example 2. FIG.

図1は,第1実施形態に係る水処理装置500の構成を示す構成図である。この水処理装置500は,DPAOを活用して窒素とリンを除去する。
FIG. 1 is a configuration diagram illustrating a configuration of a water treatment device 500 according to the first embodiment. This water treatment device 500 removes nitrogen and phosphorus using DPAO.

(水処理装置の構成)
図1に示すように,水処理装置500は,主な構成要素として,嫌気槽1,汚泥分離槽2,硝化槽3,無酸素槽4,好気槽5及び最終沈殿池6を有している。これらの構成要素の機能について以下説明する。
(Configuration of water treatment equipment)
As shown in FIG. 1, the water treatment apparatus 500 has an anaerobic tank 1, a sludge separation tank 2, a nitrification tank 3, an oxygen-free tank 4, an aerobic tank 5 and a final sedimentation tank 6 as main components. Yes. The function of these components will be described below.

(嫌気槽)
嫌気槽1は,活性汚泥中のPAO及びDPAOに原水(下水100)中の有機物を摂取させ,有機物を除去する槽である。
(Anaerobic tank)
The anaerobic tank 1 is a tank that removes organic substances by allowing PAO and DPAO in activated sludge to ingest organic substances in raw water (sewage 100).

(汚泥分離槽)
汚泥分離槽2は,上澄み液101と,活性汚泥を沈降させて濃縮した濃縮汚泥102とに分離する槽である。上澄み液101は硝化槽3に移送され,濃縮汚泥102は無酸素槽4に移送される。
(Sludge separation tank)
The sludge separation tank 2 is a tank that separates the supernatant liquid 101 and the concentrated sludge 102 obtained by sedimenting and concentrating the activated sludge. The supernatant liquid 101 is transferred to the nitrification tank 3, and the concentrated sludge 102 is transferred to the anoxic tank 4.

(硝化槽)
硝化槽3には,汚泥分離槽2で分離された上澄み液101が移送され,硝化槽3内に存在する硝化菌によりNH4-Nを硝化し,NO3-Nとする槽である。
(Nitrification tank)
The supernatant liquid 101 separated in the sludge separation tank 2 is transferred to the nitrification tank 3, and NH 4 -N is nitrified by nitrifying bacteria present in the nitrification tank 3 to make NO 3 -N.

(無酸素槽)
無酸素槽4は,DPAOや脱窒菌が,硝化槽3で硝化により生成したNO3-Nを脱窒して除去するとともに,硝化槽3で生成した硝酸イオンを用いて,DPAOがリンを摂取する槽である。
(Anoxic tank)
In the anoxic tank 4, DPAO and denitrifying bacteria remove and remove NO 3 -N produced by nitrification in the nitrification tank 3, and DPAO ingests phosphorus using nitrate ions produced in the nitrification tank 3. It is a tank to do.

(好気槽)
好気槽5は,無酸素槽4の流出水中の脱窒気泡を曝気により除去し,活性汚泥の沈降性を維持するとともに,無酸素槽4の流出水中に残存したNH4-Nの硝化や,PAOやDPAOによる補完的な好気的リン除去を行う槽である。
(Aerobic tank)
The aerobic tank 5 removes denitrification bubbles in the effluent of the anaerobic tank 4 by aeration, maintains the settleability of the activated sludge, and nitrifies NH 4 -N remaining in the effluent of the anaerobic tank 4. , This tank performs complementary aerobic phosphorus removal with PAO and DPAO.

(最終沈殿池)
最終沈殿池6は,上澄み液と活性汚泥を沈降分離する施設である。沈降分離した上澄み液は,処理水103として系外に放流される。また,沈降分離した活性汚泥は嫌気槽1へと返送され,再度一連の生物処理に利用される。
(Final sedimentation basin)
The final sedimentation basin 6 is a facility that separates and separates the supernatant and activated sludge. The supernatant liquid that has settled and separated is discharged out of the system as treated water 103. The activated sludge separated and separated is returned to the anaerobic tank 1 and used again for a series of biological treatments.

以下,水処理装置500についてより詳細に説明する。   Hereinafter, the water treatment apparatus 500 will be described in more detail.

図1に示すように,嫌気槽1と汚泥分離槽2は流路により連通している。汚泥分離槽2の下流に硝化槽3が設置され,また,汚泥分離槽2は流路200と移送ポンプ7を通じて無酸素槽4と連通している。硝化槽3には,第1散気部8と,これに空気を供給する第1ブロワ9が設置されている。硝化槽3の下流には無酸素槽4が設置されており,無酸素槽4には,硝化槽3からの流出水と,移送ポンプ7により移送される汚泥分離槽2からの濃縮汚泥102とが流入する。無酸素槽4の下流には好気槽5が設置されており,好気槽5には第2散気部10と,これに空気を供給する第2ブロワ11が設置されている。好気槽5の下流側には最終沈殿池6が設置されており,流路800と返送ポンプ12を通じて嫌気槽1と連通している。硝化槽3には,活性汚泥担体13が投入されており,硝化槽3の末端には活性汚泥担体13を捕捉するためにスクリーン14が設置されている。   As shown in FIG. 1, the anaerobic tank 1 and the sludge separation tank 2 communicate with each other through a flow path. A nitrification tank 3 is installed downstream of the sludge separation tank 2, and the sludge separation tank 2 communicates with the anoxic tank 4 through the flow path 200 and the transfer pump 7. The nitrification tank 3 is provided with a first air diffuser 8 and a first blower 9 for supplying air thereto. An oxygen-free tank 4 is installed downstream of the nitrification tank 3. The oxygen-free tank 4 includes effluent water from the nitrification tank 3 and concentrated sludge 102 from the sludge separation tank 2 transferred by the transfer pump 7. Flows in. An aerobic tank 5 is installed downstream of the anaerobic tank 4, and a second air diffuser 10 and a second blower 11 for supplying air to the aerobic tank 5 are installed. A final sedimentation basin 6 is installed on the downstream side of the aerobic tank 5 and communicates with the anaerobic tank 1 through the flow path 800 and the return pump 12. An activated sludge carrier 13 is introduced into the nitrification tank 3, and a screen 14 is installed at the end of the nitrification tank 3 in order to capture the activated sludge carrier 13.

嫌気槽1の上流側に,下水100の流入水量を計測する流量計15が設置されている。硝化槽3と無酸素槽4とを連通する流路には,NO3-N濃度の指標を計測する水質計測手段である第1水質計16が設置されており,無酸素槽4の流入水のNO3-N濃度が算出される。さらに,硝化槽3と無酸素槽4とを連通する流路には,無酸素槽4の流入水のNH4-N濃度の指標を計測する水質計測手段である第2水質計17が設置されており,無酸素槽4の流入水のNH4-N濃度が算出される。また,無酸素槽4と好気槽5とを連通する流路には,NO3-N濃度の指標を計測する水質計測手段である第3水質計18が設置されており,無酸素槽4からの流出水のNO3-N濃度が算出される。本実施例では,第1水質計16および第3水質計18として,ともにNO3-N濃度計を用いる。また,本実施例では,第2水質計17として,NH4-N濃度計を用いる。第1ブロワ9には第1風量制御手段19が接続されており,第1風量制御手段19により第1ブロワ9の曝気風量は制御される。また,移送ポンプ7には移送汚泥量制御手段20が接続されており,移送汚泥量制御手段20により移送ポンプ7の流量は制御される。
On the upstream side of the anaerobic tank 1, a flow meter 15 that measures the inflow amount of the sewage 100 is installed. In the flow path connecting the nitrification tank 3 and the anoxic tank 4, a first water quality meter 16, which is a water quality measuring means for measuring the NO 3 -N concentration index, is installed. The NO 3 -N concentration is calculated. Further, a second water quality meter 17 that is a water quality measuring means for measuring the NH 4 -N concentration index of the inflow water of the oxygen-free tank 4 is installed in the flow path that connects the nitrification tank 3 and the oxygen-free tank 4. The NH 4 -N concentration of the inflow water of the anoxic tank 4 is calculated. In addition, a third water quality meter 18 that is a water quality measuring means for measuring the NO 3 -N concentration index is installed in the flow path that connects the anaerobic tank 4 and the aerobic tank 5. The NO 3 -N concentration of the effluent from the water is calculated. In this embodiment, NO 3 -N concentration meters are used as the first water quality meter 16 and the third water quality meter 18. In this embodiment, an NH 4 -N concentration meter is used as the second water quality meter 17. First air volume control means 19 is connected to the first blower 9, and the aeration air volume of the first blower 9 is controlled by the first air volume control means 19. Further, a transfer sludge amount control means 20 is connected to the transfer pump 7, and the flow rate of the transfer pump 7 is controlled by the transfer sludge amount control means 20.

前述したように,水処理装置500は,硝化工程で用いる活性汚泥と,脱窒・リン除去工程で用いる活性汚泥とを分離するA2N法を実施する。 As described above, the water treatment apparatus 500 performs the A 2 N method for separating the activated sludge used in the nitrification process and the activated sludge used in the denitrification / phosphorus removal process.

活性汚泥中のPAOには,リンの取り込み時において,電子受容体として酸素のみ利用可能なPAOと,酸素と硝酸の両方を利用可能なPAO (DPAO)存在する。A2N法では,脱窒・リン除去工程で用いられる活性汚泥は,長時間の好気状態が存在する硝化槽3を通過しないため,電子受容体として酸素のみ利用可能なPAOに比べてDPAOの活性は高まり,DPAOの集積度は上昇する。
PAO in activated sludge includes PAO that can use only oxygen as an electron acceptor and PAO (DPAO) that can use both oxygen and nitric acid when phosphorus is taken up. In the A 2 N method, the activated sludge used in the denitrification / phosphorus removal process does not pass through the nitrification tank 3 where a long-term aerobic condition exists, so DPAO compared to PAO which can use only oxygen as an electron acceptor. Activity increases and the level of DPAO accumulation increases.

第1実施形態に係る水処理装置500によるA2N法での処理の流れは以下の通りである。 The flow of treatment in the A 2 N method by the water treatment apparatus 500 according to the first embodiment is as follows.

原水(下水100)は嫌気槽1に流入し,下水100中の有機物は活性汚泥中のPAO及びDPAOにより摂取される。嫌気槽1からの活性汚泥は汚泥分離槽2に流入し,重力により上澄み液101と濃縮汚泥102とに分離される(沈降分離)。上澄み液101は硝化槽3に流入し,活性汚泥担体13内に固定化された硝化菌により,上澄み液101中のNH4-NはNO3-Nに硝化される。無酸素槽4には,硝化槽3からの流出水と,流路200及び移送ポンプ7により汚泥分離槽2から移送される濃縮汚泥102とが流入する。無酸素槽4ではDPAOによる脱窒・リン除去と,脱窒菌による脱窒が行われる。好気槽5では残存したNH4-Nの硝化と好気的なリン除去が行われる。また,好気槽5において脱窒気泡は曝気により除去され,最終沈殿池6における活性汚泥の沈降性が維持される。最終沈殿池6では,好気槽5からの活性汚泥が固液分離され,上澄み液は処理水103として系外に排出される。一方,最終沈殿池6において分離された活性汚泥は流路800と返送ポンプ12により嫌気槽1へ返送される。
Raw water (sewage 100) flows into the anaerobic tank 1, and organic matter in the sewage 100 is ingested by PAO and DPAO in the activated sludge. The activated sludge from the anaerobic tank 1 flows into the sludge separation tank 2 and is separated into the supernatant liquid 101 and the concentrated sludge 102 by gravity (sedimentation separation). The supernatant 101 flows into the nitrification tank 3, and NH 4 -N in the supernatant 101 is nitrified to NO 3 -N by the nitrifying bacteria immobilized in the activated sludge carrier 13. Outflow water from the nitrification tank 3 and concentrated sludge 102 transferred from the sludge separation tank 2 by the flow path 200 and the transfer pump 7 flow into the anoxic tank 4. In the anaerobic tank 4, denitrification and phosphorus removal by DPAO and denitrification by denitrifying bacteria are performed. In the aerobic tank 5, nitrification of remaining NH 4 -N and aerobic phosphorus removal are performed. Further, the denitrification bubbles are removed by aeration in the aerobic tank 5, and the sedimentation property of the activated sludge in the final sedimentation basin 6 is maintained. In the final sedimentation basin 6, the activated sludge from the aerobic tank 5 is solid-liquid separated, and the supernatant liquid is discharged out of the system as treated water 103. On the other hand, the activated sludge separated in the final sedimentation basin 6 is returned to the anaerobic tank 1 by the flow path 800 and the return pump 12.

従来のA2N法では第1ブロワ9の曝気風量は一定に維持するか,下水100の流入水量に対する比を一定に制御する。また,移送ポンプ7の流量は一定に維持するか,上澄み液101の流量と濃縮汚泥102の流量との比率を一定に制御する。そのため,第1ブロワ9の曝気風量が少ない場合,硝化槽3での硝化が不十分となる可能性がある。無酸素槽4への流入NO3-N量が低下すると,DPAOによる無酸素的リン摂取および脱窒菌による脱窒が制限され,無酸素槽4における窒素・リン除去性能が低下する。また,無酸素槽4におけるDPAOの活性が低い場合,無酸素槽4での窒素除去性能が低下し,処理水103中の窒素濃度が上昇する可能性がある。そこで,本実施例では,硝化槽3での硝化効率と無酸素槽4での脱窒効率とを評価し,評価結果から第1ブロワ9の曝気風量,および移送ポンプ7の流量を調整する制御フローを示す。図2は第1ブロワ9の曝気風量および移送ポンプ7の流量の制御フロー図である。以下,第1風量制御手段19および移送汚泥量制御手段20における前記制御フローについて詳細に説明する。
In the conventional A 2 N method, the aeration air volume of the first blower 9 is kept constant or the ratio of the sewage 100 to the inflow water volume is controlled to be constant. Further, the flow rate of the transfer pump 7 is kept constant, or the ratio between the flow rate of the supernatant liquid 101 and the flow rate of the concentrated sludge 102 is controlled to be constant. Therefore, when the aeration air volume of the first blower 9 is small, nitrification in the nitrification tank 3 may be insufficient. When the amount of NO 3 -N flowing into the anaerobic tank 4 decreases, anaerobic phosphorus intake by DPAO and denitrification by denitrifying bacteria are limited, and the nitrogen / phosphorus removal performance in the anoxic tank 4 decreases. Moreover, when the activity of DPAO in the anoxic tank 4 is low, the nitrogen removal performance in the anoxic tank 4 may be reduced, and the nitrogen concentration in the treated water 103 may be increased. Therefore, in this embodiment, the nitrification efficiency in the nitrification tank 3 and the denitrification efficiency in the anoxic tank 4 are evaluated, and the control for adjusting the aeration air volume of the first blower 9 and the flow rate of the transfer pump 7 from the evaluation results. The flow is shown. FIG. 2 is a control flow chart of the aeration air volume of the first blower 9 and the flow rate of the transfer pump 7. Hereinafter, the control flow in the first air volume control means 19 and the transferred sludge quantity control means 20 will be described in detail.

まず,ステップ101(以下,S101と称す)で流量計15により計測した下水100の流入水量 (Q)に,設定した空気倍率 (k1)を乗ずることにより第1ブロワ9の曝気風量 (q1)を算出する。なお,この段階では第1ブロワ9の曝気風量 (q1)は下水100の流入水量 (Q)に関わらず一定でもよい。次に,S102で,第1水質計16の計測値 (CNO3)と,第2水質計17の計測値 (CNH4)と,第3水質計18の計測値 (C’NO3)とを取り込む。S103で,評価指標として,硝化槽3における硝化率 (RN)と,無酸素槽4の流出水のNO3-N濃度 (C’NO3)を算出する。ここで,硝化槽3における硝化率 (RN)とは,無酸素槽4の流入水のNH4-N濃度 (CNH4)およびNO3-N濃度 (CNO3)の合計量に占めるNO3-N濃度 (CNO3)の割合を表し式(1)で定義される。
First, the aeration air volume (q 1 ) of the first blower 9 is obtained by multiplying the inflow water volume (Q) of the sewage 100 measured by the flow meter 15 in step 101 (hereinafter referred to as S101) by the set air magnification (k 1 ). ) Is calculated. At this stage, the aeration air volume (q 1 ) of the first blower 9 may be constant regardless of the inflow water volume (Q) of the sewage 100. Next, in S102, taking measurements of the first water meter 16 and (C NO3), the measured value of the second water meter 17 and (C NH4), the measured value of the third water meter 18 and (C 'NO3) . In S103, the nitrification rate (R N ) in the nitrification tank 3 and the NO 3 -N concentration (C ′ NO3 ) of the effluent of the anaerobic tank 4 are calculated as evaluation indexes. Here, the nitrification rate (R N ) in the nitrification tank 3 is NO 3 occupying the total amount of NH 4 -N concentration (C NH4 ) and NO 3 -N concentration (C NO3 ) of the inflow water of the anoxic tank 4. It represents the percentage of -N concentration (C NO3 ) and is defined by equation (1).

S104で,第1風量制御手段19において算出した硝化槽3における硝化率 (RN)が目標値 (RN-0)以上であれば,S105で,第1ブロワ9の曝気風量 (q1)を一定とする,または,硝化率 (RN)が目標値 (RN-0)より小さくならない程度に減少させる。一方,S104で,硝化槽3における硝化率(RN)が目標値 (RN-0)未満であれば,S106で,第1ブロワ9の曝気風量 (q1)を増加する。これにより,硝化槽3における硝化率 (RN)が向上し,十分量のNO3-Nを無酸素槽4に流入させることができるため,DPAOの活性を維持できる。 If the nitrification rate (R N ) in the nitrification tank 3 calculated by the first air volume control means 19 in S104 is equal to or greater than the target value (R N-0 ), the aeration air volume (q 1 ) of the first blower 9 in S105. Or decrease the nitrification rate (R N ) so that it does not become smaller than the target value (R N-0 ). On the other hand, if the nitrification rate (R N ) in the nitrification tank 3 is less than the target value (R N-0 ) in S104, the aeration air volume (q 1 ) of the first blower 9 is increased in S106. Thereby, the nitrification rate (R N ) in the nitrification tank 3 is improved, and a sufficient amount of NO 3 -N can be flowed into the anoxic tank 4, so that the activity of DPAO can be maintained.

次に,S107で第3水質計18により測定した無酸素槽4の流出水のNO3-N濃度 (C’NO3)が目標値 (C’NO3-0)以下であれば,S108で移送ポンプ7の流量 (qS)を一定とする。一方,S107で第3水質計18により測定した無酸素槽4の流出水のNO3-N濃度 (C’NO3)が目標値 (C’NO3-0)より高ければ,S109で移送ポンプ7の流量 (qS)を増加させる。これにより,硝化槽3を経ずに直接無酸素槽4に流入する濃縮汚泥102量が増大する。DPAOは,好気状態においてもPO4-Pを摂取するため,先に好気状態(硝化槽3)を通過すると,続く無酸素状態(無酸素槽4)におけるDPAOのPO4-Pの摂取量は減少し,これに伴いDPAOによる脱窒量も減少する。また,脱窒菌による脱窒に必要な有機物は好気状態(硝化槽3)において酸化により減少する。以上より,移送ポンプ7の流量 (qS)を増加させ濃縮汚泥102に含まれるDPAOおよび有機物をより多く直接無酸素槽4に流入させることで,無酸素槽4における脱窒性能を向上させることができる。また,DPAOの好気状態(硝化槽3)との接触を低減できるため,DPAOの集積度も向上できる。ただし,移送ポンプ7の流量 (qS)を増加させると,上澄み液101の流量と濃縮汚泥102の流量との比率も変化するため移送ポンプ7の流量 (qS)の変化量 (ΔqS)に応じて,硝化槽3における硝化率の目標値 (RN-0)を調整しても良い。
Next, if the NO 3 -N concentration (C ′ NO3 ) of the effluent of the anaerobic tank 4 measured by the third water quality meter 18 in S107 is less than or equal to the target value ( C′NO3-0 ), the transfer pump in S108 The flow rate (q S ) of 7 is constant. On the other hand, if the NO 3 -N concentration (C ′ NO3 ) of the effluent of the anaerobic tank 4 measured by the third water quality meter 18 in S107 is higher than the target value ( C′NO3-0 ), the transfer pump 7 of S Increase the flow rate (q S ). As a result, the amount of concentrated sludge 102 flowing directly into the anoxic tank 4 without passing through the nitrification tank 3 increases. Since DPAO ingests PO 4 -P even in an aerobic state, if it passes through the aerobic state (nitrification tank 3) first, DPAO's PO 4 -P intake in the subsequent anaerobic state (anoxic tank 4) The amount decreases, and the amount of denitrification by DPAO decreases accordingly. In addition, organic substances necessary for denitrification by denitrifying bacteria are reduced by oxidation in an aerobic state (nitrification tank 3). As described above, the denitrification performance in the oxygen-free tank 4 is improved by increasing the flow rate (q S ) of the transfer pump 7 and allowing more DPAO and organic matter contained in the concentrated sludge 102 to flow directly into the oxygen-free tank 4. Can do. Moreover, since the contact with the aerobic state (nitrification tank 3) of DPAO can be reduced, the integration degree of DPAO can also be improved. However, when the flow rate (q S ) of the transfer pump 7 is increased, the ratio between the flow rate of the supernatant 101 and the flow rate of the concentrated sludge 102 also changes, so the change amount (Δq S ) of the flow rate (q S ) of the transfer pump 7 The target value (R N-0 ) of the nitrification rate in the nitrification tank 3 may be adjusted accordingly.

ここで,第1ブロワ9の曝気風量 (q1)の変化量 (Δq1)は硝化槽3における硝化率 (RN)を目標値 (RN-0)に達するまでに必要な硝化量,つまり無酸素槽4に流入する窒素成分濃度の総和と,硝化率 (RN)と目標値 (RN-0)との差分との関数となる。また,S105で第1ブロワ9の曝気風量 (q1)を減少させる場合もその減少量 (Δq1)は式 (1)に従う。式(2)にΔq1の算出式を示す。また,移送ポンプ7の流量 (qS)の変化量 (ΔqS)は,無酸素槽4の流出水のNO3-N濃度 (C’NO3)と目標値(C’NO3-0)の差分の関数で表される。式(3)にΔqSの算出式を示す。 Here, the amount of change (Δq 1 ) in the aeration air volume (q 1 ) of the first blower 9 is the amount of nitrification necessary for the nitrification rate (R N ) in the nitrification tank 3 to reach the target value (R N-0 ), In other words, this is a function of the total concentration of nitrogen components flowing into the anaerobic tank 4 and the difference between the nitrification rate (R N ) and the target value (R N-0 ). Further, when the aeration air volume (q 1 ) of the first blower 9 is reduced in S105, the reduction quantity (Δq 1 ) follows equation (1). Formula (2) shows the formula for calculating Δq 1 . The amount of change (Δq S ) in the flow rate (q S ) of the transfer pump 7 is the difference between the NO 3 -N concentration (C ' NO3 ) and the target value (C' NO3-0 ) It is expressed by the function of Formula (3) shows the formula for calculating Δq S.



以上の第1ブロワ9の曝気風量および移送ポンプ7の流量の制御により,A2N法の処理性能の安定化とDPAO活性維持を両立できる。すなわち,硝化槽3における硝化効率が不十分な場合,第1ブロワ9の曝気風量を増加し,硝化率を向上させることで,窒素除去率を向上し,さらにDPAOの活性を維持または向上させることができる。また,硝化槽3における硝化率は十分であるが,無酸素槽4における脱窒効率が低い場合,移送ポンプ7の流量を増加させることにより,硝化槽3を経ずに無酸素槽4への流入する有機物量およびDPAOが増加するため,脱窒性能を向上させることができる。
By controlling the aeration air volume of the first blower 9 and the flow rate of the transfer pump 7, the stabilization of the processing performance of the A 2 N method and the maintenance of DPAO activity can be achieved at the same time. That is, when the nitrification efficiency in the nitrification tank 3 is insufficient, the aeration rate of the first blower 9 is increased to improve the nitrification rate, thereby improving the nitrogen removal rate and further maintaining or improving the activity of DPAO. Can do. Further, when the nitrification rate in the nitrification tank 3 is sufficient, but the denitrification efficiency in the anoxic tank 4 is low, the flow rate of the transfer pump 7 is increased so that the nitrification tank 3 can be transferred to the anoxic tank 4 without passing through the nitrification tank 3. Denitrification performance can be improved because the amount of inflowing organic matter and DPAO increase.

なお,本実施例では,硝化槽3に活性汚泥担体13を投入したが,活性汚泥担体13の代わりに浮遊活性汚泥を投入してもよい。その場合,硝化槽3の後段に沈殿池と活性汚泥返送設備を設置し,硝化槽3からの活性汚泥混合液を重力により固液分離し,沈降した活性汚泥は硝化槽3に返送する。   In this embodiment, the activated sludge carrier 13 is introduced into the nitrification tank 3, but floating activated sludge may be introduced instead of the activated sludge carrier 13. In that case, a sedimentation basin and activated sludge return equipment are installed at the subsequent stage of the nitrification tank 3, the activated sludge mixed liquid from the nitrification tank 3 is solid-liquid separated by gravity, and the precipitated activated sludge is returned to the nitrification tank 3.

本実施例では,硝化槽3と無酸素槽4とを連通する流路に第1水質計16を設置したが,無酸素槽4の流入水のNO3-N濃度の指標を測定できる場所であれば,硝化槽3の内部や無酸素槽4の内部に設置しても良い。同様に,第3水質計18を,無酸素槽4の流出水のNO3-N濃度の指標を測定できる場所であれば,無酸素槽4の内部や好気槽5の内部に設置しても良い。 In the present embodiment, the first water quality meter 16 is installed in the flow path that connects the nitrification tank 3 and the anoxic tank 4, but the NO 3 -N concentration index of the inflow water of the anoxic tank 4 can be measured. If present, it may be installed inside the nitrification tank 3 or inside the anoxic tank 4. Similarly, the third water quality meter 18 is installed in the anoxic tank 4 or the aerobic tank 5 if it can measure the NO 3 -N concentration index of the effluent of the anoxic tank 4. Also good.

本実施例では,硝化槽3と無酸素槽4とを連通する流路に,第2水質計としてNH4-N濃度計を設置したが,第2水質計を硝化槽3の上流側に設置し,その計測値から無酸素槽4の流入水のNH4-N濃度を算定しても良い。また,下水100のNH4-N濃度の変動を記録したデータベースに基づき,無酸素槽4の流入水のNH4-N濃度 (CNH4)の最大値を推定し,その推定値を用いても良い。 In this embodiment, an NH 4 -N concentration meter was installed as a second water quality meter in the flow path connecting the nitrification tank 3 and the anoxic tank 4, but the second water quality meter was installed upstream of the nitrification tank 3. Then, the NH 4 -N concentration of the inflow water of the anaerobic tank 4 may be calculated from the measured value. In addition, the maximum NH 4 -N concentration (C NH4 ) of the inflow water in the anaerobic tank 4 can be estimated based on a database that records changes in the NH 4 -N concentration of the sewage 100, and the estimated value can be used. good.

ブロワ9の曝気風量については,上限値を設け,必要以上に曝気風量が増加しないようにしてもよい。   For the aeration air volume of the blower 9, an upper limit value may be provided so that the aeration air volume does not increase more than necessary.

本実施例では,硝化槽3における硝化率の目標値 (RN-0)を設定したが,処理水103の水質が下水の放流水質基準値を満足するように,下水100の窒素濃度または下水100の流量に応じて調整しても良い。また,下水100中のNH4-Nの除去は,硝化を経て脱窒されなければ実現できない。そのため,水処理装置500の窒素除去性能は,汚泥分離槽2の流出水のうち,硝化槽3に流入する割合,つまり,上澄み液101の流量と,濃縮汚泥102の流量との比率に影響を受ける。そこで,硝化槽3における硝化率の目標値 (RN-0)は,処理水103の水質が下水の放流水質基準値を満足するように,上澄み液101の流量と,濃縮汚泥102の流量との比率に応じて調整しても良い。 In this embodiment, the target value (R N-0 ) of the nitrification rate in the nitrification tank 3 is set, but the nitrogen concentration of the sewage 100 or the sewage is set so that the quality of the treated water 103 satisfies the sewage effluent quality standard value. You may adjust according to the flow volume of 100. Moreover, the removal of NH 4 -N in the sewage 100 cannot be realized unless it is denitrified through nitrification. Therefore, the nitrogen removal performance of the water treatment device 500 affects the ratio of the effluent water of the sludge separation tank 2 flowing into the nitrification tank 3, that is, the ratio of the flow rate of the supernatant liquid 101 and the flow rate of the concentrated sludge 102. receive. Therefore, the target value (R N-0 ) of the nitrification rate in the nitrification tank 3 is the flow rate of the supernatant liquid 101 and the flow rate of the concentrated sludge 102 so that the quality of the treated water 103 satisfies the sewage effluent quality standard value. You may adjust according to the ratio.

本実施例では,硝化槽3における硝化率 (RN)の目標値 (RN-0)を設定したが,必ずしも目標値を設定する必要はなく,硝化槽3の硝化率 (RN)に応じて,ブロワ9の曝気風量 (q1)を制御しても良い。 In the present embodiment has been set nitrification rate in the nitrification tank 3 target value (R N) the (R N-0), it is not necessary to set a target value, the nitrification rate of the nitrification tank 3 (R N) Accordingly, the aeration air volume (q 1 ) of the blower 9 may be controlled.

本実施例では,無酸素槽4の流出水の目標値(C’NO3-0)を設定したが,必ずしも目標値を設定する必要なく,無酸素槽4の流出水のNO3-N濃度 (C’NO3)に応じて,移送ポンプ7の流量 (qS)を制御しても良い。

<第1実施形態の変形例1>
前述の第1実施形態では,第1水質計16としてのNO3-N濃度計の計測値と,第2水質計17としてのNH4-N濃度計の計測値とを用いて硝化槽3における硝化率 (RN)を算出したが,第1水質計16として酸化還元電位 (ORP)計を用いて,無酸素槽4の流出水のORPを計測し硝化槽3における硝化率 (RN)を算出しても良い。
In this embodiment, the target value (C ' NO3-0 ) of the effluent of the anaerobic tank 4 is set. However, it is not always necessary to set the target value, and the NO 3 -N concentration ( The flow rate (q S ) of the transfer pump 7 may be controlled according to C ′ NO3 ).

<Variation 1 of the first embodiment>
In the first embodiment described above, in the nitrification tank 3 using the measured value of the NO 3 -N concentration meter as the first water quality meter 16 and the measured value of the NH 4 -N concentration meter as the second water quality meter 17. The nitrification rate (R N ) was calculated, but using the redox potential (ORP) meter as the first water quality meter 16, the ORP of the effluent of the anoxic tank 4 was measured, and the nitrification rate (R N ) in the nitrification tank 3 was measured. May be calculated.

ORPは式(4)に示すNernstの式で定義されており,酸化体と還元体の濃度によって算出される。ここでOxは酸化体,Redは還元体で,m, nは平衡式における係数を表す。また,Eh [V]: 電極電位,E0 [V]: 標準電極電位,R [J/(K・mol)]: 気体定数,T [K]: 絶対温度, n [mol]: 酸化還元反応において授受される電子数,F [C/mol]: ファラデー定数である。活性汚泥混合液中に含まれる酸化還元物質のうち,硝化反応ではNO3-NがNH4-Nに酸化される反応が主反応で,他の物質の濃度は一定と仮定した場合,ORP値は,式(4)に示すようにlog ([NO3-N] / [NH4-N])の一次式で近似できることが知られている(非特許文献2)。ここで,a, bは係数である。ORPを用いて硝化率を表すと,式(6)に示す形となる。そのため,予め式(6)における係数A, Bを下水処理場の実測データに基づき推定しておくと,無酸素槽4の流入水のORPを計測することで,硝化槽3における硝化率 (RN)を導出することが可能である。また,第2水質計17の計測値を用いることで,無酸素槽4の流入水のNO3-N濃度 (CNO3)を導出することも可能である。



ORP is defined by the Nernst equation shown in equation (4), and is calculated based on the concentrations of oxidant and reductant. Here, Ox is an oxidant, Red is a reductant, and m and n are coefficients in an equilibrium equation. E h [V]: Electrode potential, E 0 [V]: Standard electrode potential, R [J / (K ・ mol)]: Gas constant, T [K]: Absolute temperature, n [mol]: Redox The number of electrons exchanged in the reaction, F [C / mol]: Faraday constant. Among redox substances contained in the activated sludge mixed liquor in the reaction is the main reaction of NO 3 -N is oxidized to NH 4 -N in nitrification, the concentration of other materials assuming a constant, ORP value Is known to be approximated by a linear expression of log ([NO 3 -N] / [NH 4 -N]) as shown in Equation (4) (Non-patent Document 2). Here, a and b are coefficients. When the nitrification rate is expressed using ORP, the shape is as shown in Equation (6). Therefore, if the coefficients A and B in Equation (6) are estimated in advance based on the actual measurement data of the sewage treatment plant, the nitrification rate (R in the nitrification tank 3 is measured by measuring the ORP of the inflow water in the anoxic tank 4. N ) can be derived. Further, the NO 3 -N concentration (C NO3 ) of the inflow water of the anoxic tank 4 can be derived by using the measured value of the second water quality meter 17.



以上のことから,第1水質計16としてORP計を設置した場合においても,図2に示した制御フローを通じて,第1ブロワ9の曝気風量 (q1)と移送ポンプ7の流量 (qS)を制御することができる。第1水質計としてORP計を用いることで,前述の第1実施形態の効果に加えて,計測器の構成が簡易となり,メンテナンス頻度を低減できる。

<第1実施形態の変形例2>
第1実施形態では,第3水質計18としてNO3-N濃度計を用いて,無酸素槽4の流出水のNO3-N濃度 (C’NO3)を計測したが,第3水質計18としてORP計を用いて,無酸素槽4の流出水のORPを計測し,無酸素槽4の流出水のNO3-N濃度 (C’NO3)を算出しても良い。
From the above, even when an ORP meter is installed as the first water quality meter 16, the aeration air volume (q 1 ) of the first blower 9 and the flow rate (q S ) of the transfer pump 7 through the control flow shown in FIG. Can be controlled. By using the ORP meter as the first water quality meter, in addition to the effects of the first embodiment described above, the configuration of the measuring instrument is simplified and the maintenance frequency can be reduced.

<Modification 2 of the first embodiment>
In the first embodiment, the NO 3 -N concentration meter is used as the third water quality meter 18, and the NO 3 -N concentration (C ′ NO 3 ) of the effluent of the anoxic tank 4 is measured. Alternatively, the ORP meter may be used to measure the ORP of the effluent of the anaerobic tank 4 to calculate the NO 3 -N concentration (C ′ NO3 ) of the effluent of the anoxic tank 4.

無酸素槽4において,活性汚泥混合液中に含まれる酸化還元物質がNO3-NとNH4-Nのみであると仮定すると,無酸素槽4の流出水のORPは,式(5)に示すように,無酸素槽4の流出水のNH4-N濃度とNO3-N濃度 (C’NO3)との比により表される。無酸素槽4においてNH4-N濃度の変化はないと仮定すると,第2水質計17により計測した無酸素槽4の流入水のNH4-N濃度 (CNH4)と,第3水質計18により計測した無酸素槽4の流出水のORPとから,無酸素槽4の流出水のNO3-N濃度 (C’NO3)を算出することが出来る。
Assuming that the redox substances contained in the activated sludge mixture in the anaerobic tank 4 are only NO 3 -N and NH 4 -N, the ORP of the effluent of the anaerobic tank 4 is given by equation (5): As shown, it is represented by the ratio of the NH 4 -N concentration and the NO 3 -N concentration (C ' NO3 ) of the effluent of the anaerobic tank 4. Assuming that there is no change in the NH 4 -N concentration in the anoxic tank 4, the NH 4 -N concentration (C NH4 ) of the inflow water of the anoxic tank 4 measured by the second water quality meter 17 and the third water quality meter 18 The NO 3 -N concentration (C ′ NO 3 ) of the effluent of the anaerobic tank 4 can be calculated from the ORP of the effluent of the anaerobic tank 4 measured by the above.

以上のことから,第3水質計18としてORPを設置した場合においても,図2に示した制御フローを通じて,第1ブロワ9の曝気風量 (q1)と移送ポンプ7の流量 (qS)を制御することができる。第1水質計16および第3水質計18を共にORP計とした場合,前述の第1実施形態の変形例1の効果に加えて,さらに計測器の構成が簡易となりメンテナンス頻度を低減できる。
From the above, even when the ORP is installed as the third water quality meter 18, the aeration air volume (q 1 ) of the first blower 9 and the flow rate (q S ) of the transfer pump 7 are controlled through the control flow shown in FIG. Can be controlled. When both the first water quality meter 16 and the third water quality meter 18 are ORP meters, in addition to the effect of the first modification of the first embodiment described above, the configuration of the measuring instrument is further simplified and the maintenance frequency can be reduced.

図3は,第2実施形態に係る水処理装置500の構成を示す構成図である。第2実施形態では,第1実施形態の構成に加えて,無酸素槽4の流出水のリン濃度計測手段であるリン濃度計21を,無酸素槽4と好気槽5とを連通する流路に設置している。また,第2ブロワ11の曝気風量を制御する第2風量制御手段22を設置している。
FIG. 3 is a configuration diagram showing the configuration of the water treatment device 500 according to the second embodiment. In the second embodiment, in addition to the configuration of the first embodiment, a phosphorus concentration meter 21 which is a phosphorus concentration measuring means for the outflow water of the anoxic tank 4 is connected to the anaerobic tank 4 and the aerobic tank 5. It is installed on the road. Moreover, the 2nd air volume control means 22 which controls the aeration air volume of the 2nd blower 11 is installed.

従来のA2N法では,第1ブロワ9と同様に,第2ブロワ11の曝気風量は一定に維持するか,下水100の流入水量に対する比を一定に制御する。そのため,好気槽5におけるリン除去能力には限界があり,高濃度のリンが好気槽5に流入した場合,処理水103の水質が悪化するおそれがある。そこで,本実施例では,リン濃度計21により計測した無酸素槽4の流出水のリン濃度に応じて,第2ブロワ11の曝気風量を調整する制御フローを考案した。図4は第2ブロワ11の曝気風量の制御フローである。以下,第2風量制御手段22による第2ブロワ11の曝気風量の制御フローについて詳細に説明する。
In the conventional A 2 N method, similarly to the first blower 9, the aeration air volume of the second blower 11 is maintained constant or the ratio of the sewage 100 to the inflow water volume is controlled to be constant. Therefore, there is a limit to the phosphorus removal ability in the aerobic tank 5, and when high concentration phosphorus flows into the aerobic tank 5, the water quality of the treated water 103 may be deteriorated. Therefore, in this embodiment, a control flow was devised that adjusts the aeration air volume of the second blower 11 in accordance with the phosphorus concentration of the outflow water of the anoxic tank 4 measured by the phosphorus concentration meter 21. FIG. 4 is a control flow of the aeration air volume of the second blower 11. Hereinafter, the control flow of the aeration air volume of the second blower 11 by the second air volume control means 22 will be described in detail.

まず,ステップ201(以下,S201と称する)で,流量計15により計測した下水100の流入水量 (Q)に,設定した空気倍率 (k2)を乗ずることにより第2ブロワ11の曝気風量 (q2)を算出する。なお,この段階では第2ブロワ11の曝気風量 (q2)は下水100の流入水量 (Q)に関わらず一定でもよい。次に,S202でリン濃度計21により,無酸素槽4の流出水のリン濃度 (CP)を算出する。S203で無酸素槽4の流出水のリン濃度 (CP)が目標値 (CP-0)以下であれば,S204で第2ブロワ11の曝気風量 (q2)を一定とする。一方,S203で酸素槽4の流出水のリン濃度 (CP)が,目標値 (CP-0)より高ければ,S205で第2ブロワ11の曝気風量 (q2)を増加させる。ブロワ11の曝気風量 (q2)の増加により,好気槽5においてPAOまたはDPAOによる好気的なリン摂取が促進され,リン除去性能が向上する。
First, in step 201 (hereinafter referred to as S201), the amount of aeration air (q2) of the second blower 11 is calculated by multiplying the inflow water amount (Q) of the sewage 100 measured by the flow meter 15 by the set air magnification (k 2 ). 2 ) is calculated. At this stage, the aeration volume (q 2 ) of the second blower 11 may be constant regardless of the inflow volume (Q) of the sewage 100. Next, the phosphorus concentration (C P ) of the effluent of the anoxic tank 4 is calculated by the phosphorus concentration meter 21 in S202. If the phosphorus concentration (C P ) of the effluent water from the anaerobic tank 4 is equal to or less than the target value (C P-0 ) in S203, the aeration air volume (q 2 ) of the second blower 11 is made constant in S204. On the other hand, if the phosphorus concentration (C P ) of the effluent of the oxygen tank 4 is higher than the target value (C P-0 ) in S203, the aeration air volume (q 2 ) of the second blower 11 is increased in S205. By increasing the aeration air volume (q 2 ) of the blower 11, aerobic phosphorus intake by PAO or DPAO is promoted in the aerobic tank 5, and the phosphorus removal performance is improved.

ここで,第2ブロワ11の曝気風量 (q2)の変化量 (Δq2)は,無酸素槽4の流出水のリン濃度 (CP)と目標値(CP-0)の差分の関数で表される。式(7)にΔq2の算出式を示す。
Here, the amount of change (Δq 2 ) in the aeration air volume (q 2 ) of the second blower 11 is a function of the difference between the phosphorus concentration (C P ) of the effluent of the anaerobic tank 4 and the target value (C P-0 ). It is represented by In Equation (7) shows a calculation formula of [Delta] q 2.

以上の第2ブロワ11の曝気風量の制御により,水処理装置500のリン除去能力の維持が可能となる。DPAOの活性が低いなどにより,無酸素槽4におけるリン除去が不十分な場合, ブロワ11の曝気風量を一定制御や下水100との流量比一定制御にしていると,好気的リン摂取能力に限界があり,残存したリンの処理が達成できない可能性がある。これに対し,本実施例では,無酸素槽4の流出水のリン濃度に応じて,処理水基準を満足するようにブロワ11の曝気風量を制御するため,処理性能の維持が実現できる。
By controlling the amount of aeration air of the second blower 11 described above, the phosphorus removal capability of the water treatment device 500 can be maintained. When phosphorus removal in the anoxic tank 4 is insufficient due to low DPAO activity, etc., the aeration air volume of the blower 11 is controlled to be constant or the flow rate ratio to the sewage 100 is controlled. There is a limit and it may not be possible to achieve residual phosphorus treatment. On the other hand, in this embodiment, since the amount of aeration air of the blower 11 is controlled so as to satisfy the treatment water standard according to the phosphorus concentration of the effluent of the anoxic tank 4, it is possible to maintain the treatment performance.

なお,本実施例では,無酸素槽4の流出水のリン濃度の目標値 (CP-0)を設定したが,無酸素槽4の流出水のリン濃度の目標値 (CP-0)は,処理水103の水質が下水の放流水質基準値を満足するように,下水100のリン濃度または下水100の流量に応じて調整しても良い。 In this embodiment, the target value (C P-0 ) of the phosphorus concentration of the effluent of the anaerobic tank 4 is set, but the target value (C P-0 ) of the phosphorus concentration of the effluent of the anoxic tank 4 is set. May be adjusted according to the phosphorus concentration of the sewage 100 or the flow rate of the sewage 100 so that the quality of the treated water 103 satisfies the sewage effluent quality standard value.

本実施例では無酸素槽4の流出水のリン濃度の目標値 (CP-0)を設定したが,必ずしも目標値を設定する必要はなく,無酸素槽4の流出水のリン濃度 (CP)に応じてブロワ11の曝気風量 (q2)を制御しても良い。 In this embodiment, the target value (C P-0 ) of the phosphorus concentration of the effluent of the anaerobic tank 4 is set, but it is not always necessary to set the target value. The aeration volume (q 2 ) of the blower 11 may be controlled according to P ).

本実施例では,無酸素槽4と好気槽5とを連通する流路に,リン濃度計21を設置したが,好気槽5の下流に設置しても良い。例えば,最終沈殿池6の下流側にリン濃度計21を設置し,処理水103のリン濃度に応じて,ブロワ11の曝気風量を制御することも可能である。

<第2実施形態の変形例>
図5は第2実施形態の変形例に係る水処理装置500の構成を示す構成図である。前述の第2実施形態では,リン濃度計21により計測した無酸素槽4の流出水のリン濃度 (CP)を用いて,第2ブロワ11の曝気風量 (q2)を制御したが,第1水質計16および第3水質計18の計測値から算出した無酸素槽4におけるリン濃度の減少量 (ΔP)から,第2ブロワ11の曝気風量 (q2)を制御しても良い。図6は第2実施形態の変形例における第2ブロワ11の曝気風量の制御フロー図である。
In the present embodiment, the phosphorus concentration meter 21 is installed in the flow path connecting the anoxic tank 4 and the aerobic tank 5, but it may be installed downstream of the aerobic tank 5. For example, it is possible to install a phosphorus concentration meter 21 on the downstream side of the final sedimentation basin 6 and control the amount of aeration air of the blower 11 according to the phosphorus concentration of the treated water 103.

<Modification of Second Embodiment>
FIG. 5 is a configuration diagram showing a configuration of a water treatment device 500 according to a modification of the second embodiment. In the second embodiment described above, the aeration air volume (q 2 ) of the second blower 11 is controlled using the phosphorus concentration (C P ) of the effluent of the anoxic tank 4 measured by the phosphorus concentration meter 21. The amount of aeration air (q 2 ) of the second blower 11 may be controlled from the amount of decrease in phosphorus concentration (ΔP) in the oxygen-free tank 4 calculated from the measured values of the 1 water quality meter 16 and the third water quality meter 18. FIG. 6 is a control flow diagram of the aeration air volume of the second blower 11 in a modification of the second embodiment.

第1水質計16および第3水質計18の計測値から,無酸素槽4におけるリン濃度の減少量 (ΔP)を算出する方法について詳細に説明する。   A method for calculating the decrease (ΔP) of the phosphorus concentration in the anoxic tank 4 from the measured values of the first water quality meter 16 and the third water quality meter 18 will be described in detail.

無酸素状態では,DPAOによるリン摂取と,DPAOと脱窒菌とによる脱窒が進行するため,NO3-N濃度とリン濃度は共に減少する。そこで,予め下水処理場の実測データから,無酸素槽4におけるNO3-N濃度の減少量あたりのリン濃度の減少量の比を設定しておくと,第1水質計16および第3水質計18の計測値から算出した無酸素槽4におけるNO3-N濃度の減少量から無酸素槽4におけるリン濃度の減少量 (ΔP)を算出できる。
In the anoxic state, both NO 3 -N concentration and phosphorus concentration decrease because phosphorus intake by DPAO and denitrification by DPAO and denitrifying bacteria progress. Therefore, if the ratio of the decrease amount of phosphorus concentration per decrease amount of NO 3 -N concentration in the anaerobic tank 4 is set in advance from the measured data of the sewage treatment plant, the first water quality meter 16 and the third water quality meter are set. The amount of decrease in phosphorus concentration (ΔP) in the oxygen-free tank 4 can be calculated from the amount of decrease in NO 3 -N concentration in the oxygen-free tank 4 calculated from the 18 measured values.

第2実施形態の変形例における第2ブロワ11の曝気風量の制御フローについて詳細に施説明する。   The control flow of the aeration air volume of the second blower 11 in the modification of the second embodiment will be described in detail.

まず,ステップ301(以下,S301と称す)で,流量計15により計測した下水100の流入水量 (Q)に,設定した空気倍率 (k2)を乗ずることにより第2ブロワ11の曝気風量 (q2)を算出する。なお,この段階では第2ブロワ11の曝気風量 (q2)は下水100の流入水量 (Q)に関わらず一定でもよい。次に,S302で,第1水質計16および第3水質計18の計測値を取り込む。次に,S303で,第1水質計16および第3水質計18の計測値から算出した無酸素槽4におけるNO3-N濃度の減少量から,無酸素槽4におけるリン濃度の減少量 (ΔP)を算出する。S304で無酸素槽4におけるリン濃度の減少量 (ΔP)が目標値 (ΔP-0)以上であれば,S305で第2ブロワ11の曝気風量 (q2)を一定とする。一方,S304で無酸素槽4におけるリン濃度の減少量 (ΔP) が目標値 (ΔP-0)より高ければ,S306で第2ブロワ11の曝気風量 (q2)を増加させる。ブロワ11の曝気風量 (q2)の増加により,好気槽5においてPAOまたはDPAOによる好気的なリン摂取が促進されリン除去性能が向上する。
First, in step 301 (hereinafter referred to as S301), the aeration air volume (q 2 ) of the second blower 11 is obtained by multiplying the inflow water volume (Q) of the sewage 100 measured by the flow meter 15 by the set air magnification (k 2 ). 2 ) is calculated. At this stage, the aeration volume (q 2 ) of the second blower 11 may be constant regardless of the inflow volume (Q) of the sewage 100. Next, the measured value of the 1st water quality meter 16 and the 3rd water quality meter 18 is taken in by S302. Next, in S303, from the decrease in NO 3 -N concentration in the anaerobic tank 4 calculated from the measured values of the first water quality meter 16 and the third water quality meter 18, the decrease in phosphorus concentration in the anaerobic tank 4 (ΔP ) Is calculated. If the amount of decrease in phosphorus concentration (ΔP) in the anaerobic tank 4 is equal to or greater than the target value (ΔP −0 ) in S304, the aeration air volume (q 2 ) of the second blower 11 is made constant in S305. On the other hand, if the decrease amount (ΔP) of the phosphorus concentration in the oxygen-free tank 4 is higher than the target value (ΔP −0 ) in S304, the aeration air volume (q 2 ) of the second blower 11 is increased in S306. By increasing the aeration air volume (q 2 ) of the blower 11, aerobic phosphorus intake by PAO or DPAO is promoted in the aerobic tank 5 and the phosphorus removal performance is improved.

この構成によりリン濃度計の設置が不要となるため,前述の第1実施形態および第2実施形態の効果に加えて,計測器に掛る費用を削減できる。
Since this configuration eliminates the need for a phosphorus concentration meter, in addition to the effects of the first and second embodiments described above, the cost required for the measuring instrument can be reduced.

なお,本実施例では,無酸素槽4におけるリン濃度の減少量の目標値 (ΔP-0)を設定したが,無酸素槽4の流出水のリン濃度の目標値 (ΔP-0)は,処理水103の水質が下水の放流水質基準値を満足するように,下水100のリン濃度または下水100の流量に応じて調整しても良い。 In this embodiment, the target value (ΔP −0 ) of the decrease amount of phosphorus concentration in the anaerobic tank 4 is set, but the target value (ΔP −0 ) of phosphorus concentration in the effluent water of the anoxic tank 4 is You may adjust according to the phosphorus density | concentration of the sewage 100, or the flow volume of the sewage 100 so that the water quality of the treated water 103 may satisfy the sewage effluent quality standard value.

本実施例では,無酸素槽4におけるリン濃度の目標値 (ΔP-0)を設定したが,必ずしも目標値を設定する必要はなく,無酸素槽4におけるリン濃度の減少量 (ΔP)に応じて,ブロワ11の曝気風量 (q2)を制御しても良い。
In this embodiment, the target value (ΔP −0 ) of the phosphorus concentration in the anaerobic tank 4 is set. However, it is not always necessary to set the target value, and it depends on the amount of decrease in the phosphorus concentration (ΔP) in the anoxic tank 4. Thus, the aeration air volume (q 2 ) of the blower 11 may be controlled.

1…嫌気槽
2…汚泥分離槽
3…硝化槽
4…無酸素槽
5…好気槽
6…最終沈殿池
7…移送ポンプ
8…第1散気部
9…第1ブロワ
10…第2散気部
11…第2ブロワ
12…返送ポンプ
13…活性汚泥担体
14…スクリーン
15…流量計
16…第1水質計
17…第2水質計
18…第3水質計
19…第1風量制御手段
20…移送汚泥量制御手段
21…リン濃度計
22…第2風量制御手段
100…下水
101…上澄み液
102…濃縮汚泥
103…処理水
200…硝化槽3への濃縮汚泥の移送流路
500…水処理装置
800…返送汚泥の移送流路
1… Anaerobic tank
2… Sludge separation tank
3 ... Nitrification tank
4… Anoxic tank
5 ... Aerobic tank
6 ... Final sedimentation basin
7 ... Transfer pump
8… First diffuser
9 ... 1st blower
10 ... Second diffuser
11 ... Second blower
12 ... Return pump
13 ... Activated sludge carrier
14 ... Screen
15 ... Flow meter
16 ... 1st water quality meter
17 ... Second water quality meter
18 ... 3rd water quality meter
19: First air volume control means
20… Transfer sludge volume control means
21 ... Phosphor concentration meter
22 ... Second air volume control means
100 ... Sewage
101 ... Supernatant liquid
102 ... Concentrated sludge
103 ... treated water
200: Concentrated sludge transfer channel to nitrification tank 3
500 ... Water treatment equipment
800… Transfer flow path for return sludge

Claims (10)

原水が流入する嫌気槽と,前記嫌気槽から流出する活性汚泥混合液を上澄み液と濃縮汚泥とに分離する汚泥分離槽と,前記上澄み液を処理する硝化槽と,前記濃縮汚泥と前記硝化槽からの流出水が流入する無酸素槽と,前記無酸素槽からの流出水が流入する好気槽とを備えた水処理装置において,
前記無酸素槽の流入水および流出水の硝酸性窒素濃度の指標を計測する水質計測手段を備え,
前記水質計測手段から,前記無酸素槽の流入水および流出水の硝酸性窒素濃度を算出し,該算出した硝酸性窒素濃度を用いて前記硝化槽の曝気風量を制御する第1風量制御手段を備えたことを特徴とする水処理装置。
An anaerobic tank into which raw water flows, a sludge separation tank for separating the activated sludge mixed liquid flowing out from the anaerobic tank into a supernatant liquid and a concentrated sludge, a nitrification tank for treating the supernatant liquid, the concentrated sludge and the nitrification tank In a water treatment apparatus comprising an anaerobic tank into which effluent water flows from and an aerobic tank into which effluent water from the anoxic tank flows,
Water quality measuring means for measuring an index of nitrate nitrogen concentration of the inflow water and the outflow water of the anoxic tank,
First air volume control means for calculating the nitrate nitrogen concentration of the inflow water and effluent water of the anoxic tank from the water quality measuring means and controlling the aeration air volume of the nitrification tank using the calculated nitrate nitrogen concentration. A water treatment apparatus characterized by comprising.
請求項1の水処理装置において,
前記水質計測手段として,硝酸性窒素濃度計,又は酸化還元電位計を設置したことを特徴とする水処理装置。
The water treatment device of claim 1,
A water treatment apparatus comprising a nitrate nitrogen concentration meter or an oxidation-reduction potentiometer as the water quality measuring means.
請求項1,又は請求項2の水処理装置において,
前記濃縮汚泥の流量を制御する移送汚泥量制御手段を備え,
前記水質計測手段により計測した前記無酸素槽の流出水の硝酸性窒素濃度を算出し,該算出した硝酸性窒素濃度に基づいて前記移送汚泥量制御手段による前記濃縮汚泥の流量の制御を行うことを特徴とする水処理装置。
In the water treatment device according to claim 1 or 2,
A transfer sludge amount control means for controlling the flow rate of the concentrated sludge,
Calculate the nitrate nitrogen concentration of the effluent of the anoxic tank measured by the water quality measuring means, and control the flow rate of the concentrated sludge by the transfer sludge amount control means based on the calculated nitrate nitrogen concentration. Water treatment device characterized by.
請求項1から請求項3のうちの1つの水処理装置において,
前記好気槽の曝気風量を制御する第2風量制御手段と,前記無酸素槽の流出水のリン濃度を計測するリン濃度計測手段とを備え,
前記リン濃度計測手段により計測した前記無酸素槽の流出水のリン濃度に基づいて,前記第2風量制御手段による前記好気槽の曝気風量を制御することを特徴とする水処理装置。
In one water treatment apparatus in any one of Claims 1-3,
A second air volume control means for controlling the aeration air volume of the aerobic tank; and a phosphorus concentration measuring means for measuring the phosphorus concentration of the effluent of the anoxic tank,
The water treatment apparatus, wherein the aeration air volume of the aerobic tank by the second air volume control means is controlled based on the phosphorus concentration of the outflow water of the anoxic tank measured by the phosphorus concentration measuring means.
請求項1から請求項3のうちの1つの水処理装置において,
前記好気槽の曝気風量を制御する第2風量制御手段と,
前記無酸素槽の流出水のリン濃度を計測するリン濃度計測手段とを備え,
前記無酸素槽の流出水のリン濃度と目標値のリン濃度の差分に基づいて前記第2風量制御手段の曝気風量の制御を行うことを特徴とする水処理装置。
In one water treatment apparatus in any one of Claims 1-3,
Second air volume control means for controlling the aeration volume of the aerobic tank;
Phosphorus concentration measuring means for measuring the phosphorus concentration of the effluent of the oxygen-free tank,
A water treatment apparatus, wherein the aeration air volume of the second air volume control means is controlled based on a difference between a phosphorus concentration of effluent water of the anoxic tank and a phosphorus concentration of a target value.
原水が流入する嫌気槽と,
前記嫌気槽から流出する活性汚泥混合液を上澄み液と濃縮汚泥とに分離する汚泥分離槽と,
前記上澄み液を処理する硝化槽と,
前記濃縮汚泥と前記硝化槽からの流出水が流入する無酸素槽と,
前記無酸素槽からの流出水が流入する好気槽とを備え,前記原水を処理する水処理方法において,
前記無酸素槽の流入水および流出水の硝酸性窒素濃度の指標を計測し,
前記無酸素槽の流入水および流出水の硝酸性窒素濃度を算出して,前記硝化槽の曝気風量を制御することを特徴とする水処理方法。
An anaerobic tank into which raw water flows,
A sludge separation tank for separating the activated sludge mixed liquid flowing out of the anaerobic tank into a supernatant liquid and a concentrated sludge;
A nitrification tank for treating the supernatant;
An oxygen-free tank into which the concentrated sludge and effluent water from the nitrification tank flow,
An aerobic tank into which effluent water from the anoxic tank flows, and a water treatment method for treating the raw water,
Measure the index of nitrate nitrogen concentration of the inflow and effluent of the anoxic tank,
A water treatment method characterized in that the nitrate nitrogen concentration of inflow water and outflow water of the anoxic tank is calculated to control the amount of aeration air in the nitrification tank.
請求項6の水処理方法において,
前記硝酸性窒素濃度の指標を計測するために,硝酸性窒素濃度計,又は酸化還元電位計を用いることを特徴とする水処理方法。
The water treatment method according to claim 6,
A water treatment method using a nitrate nitrogen concentration meter or an oxidation-reduction potentiometer to measure the index of nitrate nitrogen concentration.
請求項6,又は請求項7の水処理方法において,
前記無酸素槽の流出水の硝酸性窒素濃度を算出し,該算出した硝酸性窒素濃度に基づいて前記濃縮汚泥の流量の制御を行うことを特徴とする水処理方法。
In the water treatment method of Claim 6, or Claim 7,
A water treatment method characterized in that the nitrate nitrogen concentration of the effluent of the anoxic tank is calculated, and the flow rate of the concentrated sludge is controlled based on the calculated nitrate nitrogen concentration.
請求項6から請求項8のうちの1つの水処理方法において,
前記無酸素槽の流出水のリン濃度を計測し,
計測したリン濃度に基づいて,前記好気槽の曝気風量を制御することを特徴とする水処理方法。
The water treatment method according to any one of claims 6 to 8,
Measure the phosphorus concentration of the effluent of the anaerobic tank,
A water treatment method characterized by controlling the aeration volume of the aerobic tank based on the measured phosphorus concentration.
請求項6から請求項8のうちの1つの水処理方法において,
前記無酸素槽の流出水のリン濃度を計測し,
計測したリン濃度と目標値のリン濃度の差分に基づいて,前記好気槽の曝気風量を制御することを特徴とする水処理方法。
The water treatment method according to any one of claims 6 to 8,
Measure the phosphorus concentration of the effluent of the anaerobic tank,
A water treatment method characterized by controlling the aeration air volume in the aerobic tank based on the difference between the measured phosphorus concentration and the target phosphorus concentration.
JP2013083456A 2013-04-12 2013-04-12 Water treatment apparatus and method Pending JP2014205104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013083456A JP2014205104A (en) 2013-04-12 2013-04-12 Water treatment apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083456A JP2014205104A (en) 2013-04-12 2013-04-12 Water treatment apparatus and method

Publications (1)

Publication Number Publication Date
JP2014205104A true JP2014205104A (en) 2014-10-30

Family

ID=52119147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083456A Pending JP2014205104A (en) 2013-04-12 2013-04-12 Water treatment apparatus and method

Country Status (1)

Country Link
JP (1) JP2014205104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671602A (en) * 2015-02-02 2015-06-03 浦华环保有限公司 Multi-cell A<2>O system of sludge anoxic and strengthened fermentation hydrolysis and application thereof
CN107200429A (en) * 2016-03-18 2017-09-26 上海宝钢化工有限公司 Coking chemical waste water mixed liquor nitrogen rejection facility and the method for lifting Denitrification of Coking Wastewater ability
CN109824147A (en) * 2019-03-27 2019-05-31 合肥訫淼环境工程有限责任公司 Composite integrated sewage disposal device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104671602A (en) * 2015-02-02 2015-06-03 浦华环保有限公司 Multi-cell A<2>O system of sludge anoxic and strengthened fermentation hydrolysis and application thereof
CN107200429A (en) * 2016-03-18 2017-09-26 上海宝钢化工有限公司 Coking chemical waste water mixed liquor nitrogen rejection facility and the method for lifting Denitrification of Coking Wastewater ability
CN109824147A (en) * 2019-03-27 2019-05-31 合肥訫淼环境工程有限责任公司 Composite integrated sewage disposal device

Similar Documents

Publication Publication Date Title
AU2016204416B2 (en) Wastewater treatment apparatus, wastewater treatment method, wastewater treatment system, control device, control method, and program
Sun et al. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes
Zaborowska et al. Strategies for mitigating nitrous oxide production and decreasing the carbon footprint of a full-scale combined nitrogen and phosphorus removal activated sludge system
EP2740713A1 (en) Method for starting up and controlling a biological process for ammonium removal by the action of autotrophic bacteria in wastewater
JP3968781B2 (en) Nitrogen removal method and apparatus
JP2012200705A (en) Nitrogen-containing wastewater treatment method and apparatus
JP3691650B2 (en) Water treatment method and control device
JP2012200705A5 (en)
JP2010269254A (en) Water treatment equipment
WO2016203675A1 (en) Method for controlling amount of aeration in activated sludge
Ma et al. Achieving nitritation and phosphorus removal in a continuous-flow anaerobic/oxic reactor through bio-augmentation
Qiu et al. A novel technology with precise oxygen-input control: application of the partial nitritation-anammox process
JP4995215B2 (en) Sewage treatment equipment
JP4229999B2 (en) Biological nitrogen removal equipment
JP5956372B2 (en) Water treatment apparatus and water treatment method
KR102041326B1 (en) Oxygen control system for activated sludge process using harmony search algorithm
JP2014205104A (en) Water treatment apparatus and method
JP2017113725A (en) Operation support system and operation support method of sewage treatment plant
JP2006136820A (en) Method for removing phosphorus and/or nitrogen from sewage
JP4008694B2 (en) Sewage treatment plant water quality controller
JP5175647B2 (en) Water quality prediction method and biological treatment method
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP3271521B2 (en) Wastewater nitrogen removal method and apparatus
JP2011245359A (en) Sewage treatment apparatus
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate