JPH0691294A - Operation control method of batch type active sludge treatment - Google Patents

Operation control method of batch type active sludge treatment

Info

Publication number
JPH0691294A
JPH0691294A JP24745492A JP24745492A JPH0691294A JP H0691294 A JPH0691294 A JP H0691294A JP 24745492 A JP24745492 A JP 24745492A JP 24745492 A JP24745492 A JP 24745492A JP H0691294 A JPH0691294 A JP H0691294A
Authority
JP
Japan
Prior art keywords
reactor
reaction tank
state
control method
operation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24745492A
Other languages
Japanese (ja)
Other versions
JP3303352B2 (en
Inventor
Miyoko Kusumi
美代子 久住
Masahide Ichikawa
雅英 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP24745492A priority Critical patent/JP3303352B2/en
Publication of JPH0691294A publication Critical patent/JPH0691294A/en
Application granted granted Critical
Publication of JP3303352B2 publication Critical patent/JP3303352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To obtain easily data on the factors of a reactor and to provide an operation control method for maintaining the reactor under an optimum condition. CONSTITUTION:In a batch type active sludge treatment apparatus, waste water charged to a reactor 1 equipped with a pH meter and a dissolved-oxygen concentration meter 21 is denitrified under an anaerobic condition and then nitrified by nitrification bacteria under an aerobic condition with air supplied, and the supernatant liquid and the precipitate of sludge in the reactor 1 are extracted by pumps. An oxidation-reduction potentiometer 22 is attached to the reactor 1, and the conditions of denitrification and nitrification are judged by measuring the difference between the oxidation-reduction potentials in an anaerobic state and an aerobic state under cultivation. On the basis of this judgment, factors of the reactor 1 are obtained, providing an operation control method. The factors of the reactor 1 include denitrification time, aeration time, amount of air supplied, and amount of sludge extracted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は回分式活性汚泥処理にお
ける廃水の脱窒と硝化状態とを酸化還元電位計を用いて
判定し、反応槽の運転状態を左右する因子を制御する運
転制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method for determining the denitrification and nitrification state of wastewater in a batch type activated sludge treatment by using an oxidation-reduction potentiometer and controlling a factor affecting the operation state of a reaction tank. It is about.

【0002】[0002]

【従来の技術】従来から下水等の処理プロセスの一つと
して回分式活性汚泥処理法が知られている。この回分式
活性汚泥処理法とは、単一の生物反応槽内への廃水流
入,曝気,沈澱,放流というサイクルを繰り返して行う
方法を主体としており、原水中の窒素成分はアンモニア
性窒素に分解される。そして該アンモニア性窒素は、硝
化菌の存在と溶存酸素(Dissolved oxygen,以下DOと
略称)が豊富に存在するという条件下で硝化反応によっ
て亜硝酸性窒素及び硝酸性窒素に変化する。
2. Description of the Related Art Conventionally, a batch type activated sludge treatment method has been known as one of the treatment processes for sewage and the like. This batch type activated sludge treatment method is mainly a method of repeating the cycle of inflowing wastewater into a single biological reaction tank, aeration, precipitation, and discharge, and the nitrogen component in raw water is decomposed into ammoniacal nitrogen. To be done. Then, the ammoniacal nitrogen is changed into nitrite nitrogen and nitrate nitrogen by the nitrification reaction under the condition that nitrifying bacteria are present and dissolved oxygen (abbreviated as DO hereinafter) is abundant.

【0003】上記1サイクル内での各工程の設定時間の
配分は任意に変更可能であり、例えば反応槽内の曝気を
停止又は再開したりすることで嫌気状態及び好気状態を
作ることができて、生物学的に窒素とかリンを除去する
ことができる。特に小規模な下水道の場合には、上記方
法が実用的な処理技術として注目され、実施化がはから
れている現状にある。
The distribution of the set time of each process in the above-mentioned one cycle can be arbitrarily changed, and for example, the anaerobic state and the aerobic state can be created by stopping or restarting the aeration in the reaction tank. It can biologically remove nitrogen and phosphorus. In particular, in the case of small-scale sewerage, the above-mentioned method has attracted attention as a practical treatment technology and is being put into practice.

【0004】[0004]

【発明が解決しようとする課題】このような従来の活性
汚泥処理法を用いた廃水処理方法で、効率的で且つ経済
的な運転を行うためには、反応槽の運転状態を左右する
因子としての脱窒時間,最適な曝気時間,空気の送入量
及び汚泥の引抜量を制御することが挙げられるが、現状
では硝化反応のモニタリングまでを含めた制御は実施さ
れていないのが実情である。
In order to perform efficient and economical operation in such a wastewater treatment method using the conventional activated sludge treatment method, a factor that influences the operating state of the reaction tank is required. The denitrification time, the optimum aeration time, the amount of air inflow, and the amount of sludge withdrawal can be controlled, but at present the control including monitoring of nitrification reaction is not implemented. .

【0005】本発明は上記に鑑みてなされたものであ
り、簡易に反応槽の運転状態を左右する因子に関するデ
ータを得て、反応槽の運転状態を最適に維持することが
できる運転制御方法を提供することを目的とするもので
ある。
The present invention has been made in view of the above circumstances, and provides an operation control method capable of easily obtaining data relating to factors that influence the operating state of a reaction tank and maintaining the operating state of the reaction tank optimally. It is intended to be provided.

【0006】[0006]

【課題を解決するための手段】本発明は上記の目的を達
成するために、pH計と溶存酸素濃度計とを備えた単一
の反応槽へ流入した廃水を、嫌気条件下での脱窒と、空
気の送入による好気条件下で硝化細菌による硝化を行
い、該反応槽の上澄液と沈澱物としての汚泥をポンプに
よって引抜くようにした回分式活性汚泥処理装置におい
て、上記反応槽に酸化還元電位計を配備して、馴養中の
嫌気状態と好気状態における酸化還元電位の差を測定す
ることによって処理水の脱窒と硝化状態を判断し、この
判断結果から反応槽の運転状態を左右する因子を制御す
る回分式活性汚泥処理の運転制御方法を提供する。
In order to achieve the above-mentioned object, the present invention denitrifies the wastewater flowing into a single reaction tank equipped with a pH meter and a dissolved oxygen concentration meter under anaerobic conditions. In a batch type activated sludge treatment device in which nitrification by nitrifying bacteria is carried out under aerobic conditions by sending in air, and the supernatant of the reaction tank and sludge as a precipitate are pumped out. A redox potential meter is installed in the tank to determine the denitrification and nitrification state of the treated water by measuring the difference between the redox potentials in the anaerobic state and the aerobic state during acclimation. Provided is an operation control method for batch activated sludge treatment, which controls a factor that influences an operation state.

【0007】上記反応槽の運転状態を左右する因子は、
脱窒時間,曝気時間,空気の送入量及び汚泥の引抜量で
あることを特徴としている。
The factors that influence the operating state of the reaction tank are:
It is characterized by the denitrification time, aeration time, the amount of air sent in and the amount of sludge drawn out.

【0008】[0008]

【作用】かかる運転制御方法によれば、廃水を嫌気状態
で脱窒してから曝気を行うことにより、微生物の作用に
基づく有機物の分解と硝化が行われる。この時に反応槽
に配備された溶存酸素濃度計によって廃水の溶存酸素濃
度が測定されるとともに、酸化還元電位計によって廃水
の酸化還元電位が測定され、溶存酸素濃度を設定値以上
に保つために空気の送入量が制御される。更に酸化還元
電位計によって嫌気状態の酸化還元電位値と好気状態の
酸化還元電位とが測定されて、その差である変化量が求
められ、この変化量と総窒素(T−N)除去率との相関
図から処理水のT−N除去の状態が把握されて、反応槽
の運転状態を左右する因子である脱窒時間、曝気時間、
送風量が最適であるように制御が行われる。
According to such an operation control method, by denitrifying waste water in an anaerobic state and then performing aeration, decomposition of organic substances and nitrification based on the action of microorganisms are performed. At this time, the dissolved oxygen concentration meter installed in the reaction tank measures the dissolved oxygen concentration of the wastewater, and the oxidation-reduction potential meter measures the oxidation-reduction potential of the wastewater to maintain the dissolved oxygen concentration above the set value. The feed rate of is controlled. Furthermore, the redox potential value in the anaerobic state and the redox potential in the aerobic state are measured by an oxidation-reduction potentiometer, and a change amount, which is the difference between them, is obtained. The change amount and the total nitrogen (TN) removal rate The state of TN removal of treated water is grasped from the correlation diagram with, and denitrification time, aeration time, which are factors that influence the operating state of the reaction tank,
The control is performed so that the air flow rate is optimum.

【0009】[0009]

【実施例】図1に示す回分式活性汚泥処理装置に基づい
て本発明の実施例と比較例の検討を行った。図中の1は
反応槽であり、この反応槽1は恒温槽2内に配置されて
いる。この反応槽1にはブロワ3から送り込まれる空気
を放散する散気管4と、撹拌機本体5及び羽根6で成る
撹拌機構が配備されている。
EXAMPLES Examples and comparative examples of the present invention were examined based on the batch type activated sludge treatment device shown in FIG. In the figure, 1 is a reaction tank, and this reaction tank 1 is arranged in a constant temperature tank 2. The reaction tank 1 is provided with a diffusing pipe 4 that diffuses the air sent from the blower 3, and a stirring mechanism including a stirrer body 5 and blades 6.

【0010】一方、7は原水調製槽であり、この原水調
製槽7には撹拌機本体8及び羽根9で成る撹拌機構と、
液位計10とが配備されている。11は原液、12は水
道水であり、夫々原液ポンプ13と水ポンプ14によっ
て前記原水調製槽7に原液と水道水を供給するように構
成されている。15は反応槽1からの上澄液排出用ポン
プ、16は余剰汚泥引抜用ポンプである。
On the other hand, 7 is a raw water preparation tank, and this raw water preparation tank 7 has a stirring mechanism composed of a stirrer body 8 and blades 9,
A liquid level gauge 10 is provided. Reference numeral 11 is a stock solution, and 12 is tap water. The stock solution pump 13 and the water pump 14 respectively supply the stock solution and the tap water to the raw water preparation tank 7. Reference numeral 15 is a pump for discharging the supernatant from the reaction tank 1, and 16 is a pump for extracting excess sludge.

【0011】上記の反応槽1には、計測器としてpH計
20と、溶存酸素濃度を測定する溶存酸素濃度計21
(以下DO計21と略称)と、酸化還元電位計22(Ox
idation reduction potential,以下ORP計22と略
称)とが配備されている。そして図外のシーケンスコン
トローラに上記のpH計20とDO計21及びORP計
22が検出した値が入力され、且つ該コントローラによ
って前記ブロワ3,上澄液排出用ポンプ15及び余剰汚
泥引抜用ポンプ16の稼働状態が制御される。
The reaction tank 1 has a pH meter 20 as a measuring instrument and a dissolved oxygen concentration meter 21 for measuring the dissolved oxygen concentration.
(Hereinafter abbreviated as DO meter 21) and redox potentiometer 22 (Ox
idation reduction potential, hereinafter abbreviated as ORP total 22). Then, the values detected by the pH meter 20, the DO meter 21, and the ORP meter 22 are input to a sequence controller (not shown), and the controller 3 causes the blower 3, the supernatant liquid discharging pump 15 and the excess sludge drawing pump 16 to be input. The operating state of is controlled.

【0012】上記ORP計22の測定原理である酸化還
元電位とは、酸化態と還元態を含む溶液中に標準水素電
極と白金電極を入れた時に生じる電位差をいい、溶液の
酸化力あるいは還元力の強さを知る指標として利用可能
である。この酸化還元電位計として通常「redox
meter」が利用される。本実施例では、測定された
酸化還元電位の変化量を総窒素除去率のモニターとして
利用したことが大きな特徴となっている。
The redox potential, which is the measurement principle of the ORP meter 22, refers to the potential difference that occurs when a standard hydrogen electrode and a platinum electrode are placed in a solution containing an oxidizing state and a reducing state, and the oxidizing or reducing power of the solution. It can be used as an index to know the strength of. This redox potentiometer is usually called "redox
"meter" is used. The present Example is characterized in that the measured change amount of the redox potential was used as a monitor of the total nitrogen removal rate.

【0013】本実施例では、原液11として肉エキス,
ペプトン,酢酸ナトリウムを主体とする人工下水を用意
し、水道水12とともに原水調製槽7に投入し、撹拌機
構を稼働して撹拌した後に管路17を介して反応槽1に
原水を流入させる。反応槽1の運転パターンは、原水の
投入15分、嫌気撹拌1時間、ブロワ3を稼働した曝気
撹拌4時間、沈澱30分、排出15分(全量の50%排
出)の計6時間を1サイクルとし、1日4サイクルの運
転を行った。
In the present embodiment, the stock solution 11 is a meat extract,
An artificial sewage mainly composed of peptone and sodium acetate is prepared, and it is put into the raw water preparation tank 7 together with the tap water 12, and the stirring mechanism is operated to stir the raw water, and then the raw water is allowed to flow into the reaction tank 1 through the pipe line 17. The operation pattern of the reaction tank 1 is 15 minutes for raw water, 1 hour for anaerobic stirring, 4 hours for aeration with the blower 3 operating, 30 minutes for precipitation, and 15 minutes for discharging (50% of the total amount is discharged) for a total of 6 hours for one cycle. And operated for 4 cycles a day.

【0014】即ち、原水が反応槽1に流入してから嫌気
状態で撹拌を1時間行い、次にブロワ3の駆動に伴って
散気管4からのエアレーションによる曝気を行うことに
より、微生物の作用に基づいて原水中の有機物が分解さ
れ、同時に原水中の有機体窒素はアンモニア性窒素(N
4−N)になり、このアンモニア性窒素は好気状態下
で活性汚泥中の亜硝酸菌(Nitrosomonas)によって亜硝
酸性窒素(NO2−N)に酸化され、更に硝酸菌(Nitro
bacter)によって硝酸性窒素(NO3−N)にまで酸化
される。
That is, stirring the raw water for 1 hour in an anaerobic state after the raw water has flowed into the reaction tank 1 and then performing aeration by aeration from the air diffusing tube 4 as the blower 3 is driven, the action of microorganisms is improved. Based on this, organic matter in the raw water is decomposed, and at the same time, organic nitrogen in the raw water is ammonia nitrogen (N
Becomes H 4 -N), the ammonium nitrogen is oxidized to nitrite nitrogen (NO 2 -N) by nitrifying bacteria in the activated sludge under aerobic conditions (Nitrosomonas), further nitric acid bacteria (Nitro
bacter) by being oxidized to nitrate nitrogen (NO 3 -N).

【0015】 NH4−N ←→ NO2−N ←→ NO3−N ・・・・・・・・・・(1) 上記の運転時において、反応槽1に配備されたDO計2
1によって原水の溶存酸素濃度が測定されるとともにO
RP計22によって原水の酸化還元電位が測定される。
そして制御手段としての図外のコントローラが余剰汚泥
の引抜量を演算し、余剰汚泥引抜用ポンプ16の稼働を
制御するとともにDOを設定値以上に保つためにブロワ
3の稼働を制御する。更に上澄液排出用ポンプ15によ
って上澄液が放流される。
NH 4 −N ← → NO 2 −N ← → NO 3 −N (1) During the above operation, the DO meter 2 arranged in the reaction tank 1
1 measures the dissolved oxygen concentration of raw water and
The redox potential of the raw water is measured by the RP meter 22.
Then, a controller (not shown) as a control means calculates the amount of excess sludge drawn out, controls the operation of the excess sludge drawing pump 16, and controls the operation of the blower 3 to keep the DO at or above the set value. Furthermore, the supernatant liquid is discharged by the supernatant liquid discharge pump 15.

【0016】本実施例では1日1回曝気時に活性汚泥混
合液の所定量を引き抜くことにより、実施例の汚泥滞留
時間(sludge retention time,以下SRTと略称)1
3.6日、比較例1としてのSRT9日、比較例2とし
てのSRT5.6日となるように馴養した。
In this embodiment, a predetermined amount of the activated sludge mixed liquid is drawn out during aeration once a day, so that the sludge retention time (SRT) of the embodiment 1
The sample was acclimated to have 3.6 days, SRT 9 days as Comparative Example 1 and SRT 5.6 days as Comparative Example 2.

【0017】そして上記の3種の試料を用いて1週間に
1度混合液のサンプリングと分析を行い、処理水中の窒
素の分析を行った。
Then, the above-mentioned three kinds of samples were used to sample and analyze the mixed solution once a week to analyze the nitrogen in the treated water.

【0018】他方で嫌気状態の酸化還元電位値(嫌気O
RP)と沈澱状態の酸化還元電位(処理水ORP)を測
定して、その差であるORPの変化量を計算した。その
馴養約1ケ月の結果を表1に示す。
On the other hand, the redox potential value in the anaerobic state (anaerobic O
RP) and the redox potential in the precipitated state (treated water ORP) were measured, and the difference in ORP, which was the difference, was calculated. Table 1 shows the results of the acclimation for about one month.

【0019】[0019]

【表1】 [Table 1]

【0020】表1によれば、実施例ではORPの変化量
が311mvから398mvまで徐々に増加しており、
それに伴ってT−N(総窒素)除去率も上昇している。
これに対して比較例1,2では、ORPの変化量は30
0mv前半止まりでそれ以上増加せず、T−N除去率は
40%止まりであった。
According to Table 1, the amount of change in ORP gradually increases from 311 mv to 398 mv in the embodiment,
Along with that, the TN (total nitrogen) removal rate is also increasing.
On the other hand, in Comparative Examples 1 and 2, the amount of change in ORP is 30.
At the first half of 0 mv, there was no further increase and the TN removal rate remained at 40%.

【0021】図2は本実施例でのORPの変化量とT−
N除去率との相関図である。同図によればORPの変化
量が増加すると、T−Nの除去率も上昇することが確認
された。従って嫌気状態のORP値と沈澱時のORPの
変化量を見ることによって処理水のT−N除去の状態を
把握することができる。そしてT−Nの除去率が上昇し
た際に、そのサイクルにおける曝気時間、送風量、脱窒
時間はほぼ最適であるので、これらの時間を短縮して運
転を行うことが可能である。
FIG. 2 shows the amount of change in ORP and T- in this embodiment.
It is a correlation diagram with N removal rate. According to the figure, it was confirmed that as the amount of change in ORP increased, the removal rate of TN also increased. Therefore, the TN removal state of the treated water can be grasped by observing the ORP value in the anaerobic state and the change amount of the ORP at the time of precipitation. When the removal rate of TN is increased, the aeration time, the air flow rate, and the denitrification time in that cycle are almost optimal, so that it is possible to shorten these times for operation.

【0022】従って馴養開始から嫌気状態のORP値と
沈澱状態のORP値とを測定してその変化量を計算し、
変化量が350mv以下であれば硝化が不十分であるも
のとして、ブロワ3からの送風量を大きくして硝化菌の
活性度を上げたり、又は余剰汚泥の引抜量を小さくして
SRTを長くすることによって硝化菌を増加させたりす
ることにより硝化を促進させる。又、前記変化量が35
0mv以上であれば、硝化が十分に行われてT−N除去
率も上昇し、処理が安定しているものとみなして曝気時
間と脱窒時間を短縮し、それに伴って全サイクル時間を
短縮することができる。
Therefore, from the start of acclimation, the ORP value in the anaerobic state and the ORP value in the precipitated state are measured and the amount of change is calculated,
If the amount of change is 350 mv or less, it is assumed that nitrification is insufficient, and the amount of air blown from the blower 3 is increased to increase the activity of nitrifying bacteria, or the amount of excess sludge withdrawn is decreased to increase the SRT. As a result, nitrification is promoted by increasing nitrifying bacteria. In addition, the change amount is 35
If it is 0 mv or more, nitrification is sufficiently performed and the TN removal rate is also increased, and it is considered that the treatment is stable, and the aeration time and denitrification time are shortened, and the total cycle time is shortened accordingly. can do.

【0023】従って本発明方法によれば、ORPの変化
量から処理水の硝化及び安定度を判断することができ
て、これらの判断結果に基づいて反応槽1の適正な運転
方法を設定することが可能となる。
Therefore, according to the method of the present invention, the nitrification and stability of the treated water can be judged from the amount of change in ORP, and an appropriate operation method of the reaction tank 1 can be set based on these judgment results. Is possible.

【0024】[0024]

【発明の効果】以上詳細に説明したように、本発明にか
かる回分式活性汚泥処理の運転制御方法によれば、廃水
を嫌気状態で脱窒してから曝気を行うことにより、微生
物の作用に基づく有機物の分解と硝化が行われるが、こ
の時に酸化還元電位計によって廃水の酸化還元電位が測
定され、特に嫌気状態の酸化還元電位値と好気状態の酸
化還元電位とが測定されて、その差である変化量と総窒
素(T−N)除去率との相関図から処理水のT−N除去
の状態を把握することが可能となり、更に反応槽の運転
状態を左右する因子である脱窒時間、曝気時間、送風量
を最適状態に制御することができる。
As described above in detail, according to the operation control method for batch type activated sludge treatment according to the present invention, by denitrifying waste water in an anaerobic state and then performing aeration, the action of microorganisms can be improved. Based on the decomposition and nitrification of organic substances, the oxidation-reduction potential of the wastewater is measured by the oxidation-reduction potentiometer at this time, and in particular, the oxidation-reduction potential value in the anaerobic state and the oxidation-reduction potential in the aerobic state are measured. It becomes possible to understand the TN removal state of the treated water from the correlation diagram between the change amount which is the difference and the total nitrogen (TN) removal rate, and the desorption which is a factor that influences the operating state of the reaction tank. It is possible to control the nitriding time, the aeration time, and the air flow rate to the optimum states.

【0025】従って簡易に反応槽の運転状態を左右する
因子に関するデータを得ることが可能となり、このデー
タに基づいて廃水の硝化が不十分である場合には送風量
を大きくしたり余剰汚泥の引抜量を小さくして硝化を促
進させ、硝化が十分に行われている場合には、処理が安
定しているものとみなして曝気時間と脱窒時間を短縮し
て全サイクル時間を短縮することができて、反応槽の効
率的、経済的な運転状態を維持することが出来る。
Therefore, it becomes possible to easily obtain data relating to the factors that affect the operating state of the reaction tank, and based on this data, when the nitrification of waste water is insufficient, the air flow rate is increased or excess sludge is drawn out. If the amount is reduced to promote nitrification, and if nitrification is performed sufficiently, it can be considered that the treatment is stable and the aeration time and denitrification time can be shortened to shorten the total cycle time. As a result, efficient and economical operation of the reaction tank can be maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的実施例を示す概要図。FIG. 1 is a schematic diagram showing a basic embodiment of the present invention.

【図2】本実施例におけるORPの変化量とT−N除去
率との相関図。
FIG. 2 is a correlation diagram between the ORP change amount and the TN removal rate in the present embodiment.

【符号の説明】[Explanation of symbols]

1…生物反応槽 2…恒温槽 3…ブロワ 4…散気管 7…原水調整槽 11…原液 12…水道水 13…原液ポンプ 14…水ポンプ 15…上澄液排出用ポンプ 16…余剰汚泥引抜用ポンプ 20…pH計 21…溶存酸素濃度計(DO計) 22…酸化還元電位計(ORP計) 1 ... Biological reaction tank 2 ... Constant temperature tank 3 ... Blower 4 ... Air diffuser 7 ... Raw water adjusting tank 11 ... Stock solution 12 ... Tap water 13 ... Stock solution pump 14 ... Water pump 15 ... Supernatant discharge pump 16 ... Excess sludge extraction Pump 20 ... pH meter 21 ... Dissolved oxygen concentration meter (DO meter) 22 ... Redox potential meter (ORP meter)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 pH計と溶存酸素濃度計とを備えた単一
の反応槽へ流入した廃水を、嫌気条件下での脱窒と、空
気の送入による好気条件下で硝化細菌による硝化を行
い、該反応槽の上澄液と沈澱物としての汚泥をポンプに
よって引抜くようにした回分式活性汚泥処理装置におい
て、 上記反応槽に酸化還元電位計を配備して、馴養中の嫌気
状態と好気状態における酸化還元電位の差を測定するこ
とによって処理水の脱窒と硝化状態を判断し、この判断
結果から反応槽の運転状態を左右する因子を制御するこ
とを特徴とする回分式活性汚泥処理の運転制御方法。
1. A wastewater flowing into a single reaction tank equipped with a pH meter and a dissolved oxygen concentration meter is subjected to denitrification under anaerobic conditions and nitrification by nitrifying bacteria under aerobic conditions by feeding air. In a batch type activated sludge treatment device in which the supernatant liquid of the reaction tank and sludge as a precipitate are pulled out by a pump, an oxidation-reduction potentiometer is provided in the reaction tank to obtain an anaerobic state during acclimation. And a nitrification state of treated water are determined by measuring the difference between the redox potentials in aerobic and aerobic conditions, and the batch type characterized by controlling the factors that affect the operating state of the reaction vessel from the results of this determination. Operation control method for activated sludge treatment.
【請求項2】 上記反応槽の運転状態を左右する因子
は、脱窒時間,曝気時間,空気の送入量及び汚泥の引抜
量である請求項1記載の回分式活性汚泥処理の運転制御
方法。
2. The operation control method for batch activated sludge treatment according to claim 1, wherein the factors that affect the operation state of the reaction tank are denitrification time, aeration time, air feed amount and sludge withdrawal amount. .
JP24745492A 1992-09-17 1992-09-17 Operation control method for batch activated sludge treatment Expired - Fee Related JP3303352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24745492A JP3303352B2 (en) 1992-09-17 1992-09-17 Operation control method for batch activated sludge treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24745492A JP3303352B2 (en) 1992-09-17 1992-09-17 Operation control method for batch activated sludge treatment

Publications (2)

Publication Number Publication Date
JPH0691294A true JPH0691294A (en) 1994-04-05
JP3303352B2 JP3303352B2 (en) 2002-07-22

Family

ID=17163692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24745492A Expired - Fee Related JP3303352B2 (en) 1992-09-17 1992-09-17 Operation control method for batch activated sludge treatment

Country Status (1)

Country Link
JP (1) JP3303352B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307095A (en) * 2001-04-17 2002-10-22 Mitsubishi Heavy Ind Ltd Wastewater treatment facility
KR100424999B1 (en) * 2002-03-19 2004-03-27 주식회사 한스환경엔지니어링 Controlling system and method of sequencing batch reactor
KR100828669B1 (en) * 2008-03-03 2008-05-09 주식회사 아쿠아테크 Method and apparatus for treating wastewater
JP2009502494A (en) * 2005-08-01 2009-01-29 スエズ アンヴィロンマーン Method and apparatus for nitrogen enrichment (high nitrogen concentration) wastewater treatment in a continuous fractionation cycle biological reactor
KR101449194B1 (en) * 2012-12-24 2014-10-16 주식회사 포스코 The continuous monitoring device for biological reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110422926A (en) * 2018-07-13 2019-11-08 江苏普朗德节能科技有限公司 A kind of biogas slurry nitrification denitrogenation reuse autocontrol method and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307095A (en) * 2001-04-17 2002-10-22 Mitsubishi Heavy Ind Ltd Wastewater treatment facility
KR100424999B1 (en) * 2002-03-19 2004-03-27 주식회사 한스환경엔지니어링 Controlling system and method of sequencing batch reactor
JP2009502494A (en) * 2005-08-01 2009-01-29 スエズ アンヴィロンマーン Method and apparatus for nitrogen enrichment (high nitrogen concentration) wastewater treatment in a continuous fractionation cycle biological reactor
KR100828669B1 (en) * 2008-03-03 2008-05-09 주식회사 아쿠아테크 Method and apparatus for treating wastewater
KR101449194B1 (en) * 2012-12-24 2014-10-16 주식회사 포스코 The continuous monitoring device for biological reactor

Also Published As

Publication number Publication date
JP3303352B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
US9169142B2 (en) Method for treating water within a sequential biological reactor including an in-line measurement of the nitrite concentration inside said reactor
JP2803941B2 (en) Control method of intermittent aeration type activated sludge method
Cheng et al. Nitrification/denitrification in intermittent aeration process for swine wastewater treatment
US8956540B2 (en) Process and apparatus for controlling aeration during nitrification and denitrification of water
EP1721870A1 (en) Method of nitrifying ammonium-nitrogen-containing water and method of treating the same
CN100498832C (en) Device and method for quickly realizing short range biological denitrification by salinity suppressing combined with fuzzy control
JP4327770B2 (en) Biological nitrification treatment method and nitrification treatment apparatus for wastewater containing ammonia nitrogen
Lin et al. Characterization of Denitrification and Nitrification in a Step‐Feed Alternating Anoxic–Oxic Sequencing Batch Reactor
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
JP3303352B2 (en) Operation control method for batch activated sludge treatment
CN110902967A (en) Wastewater treatment method and wastewater treatment system based on sequencing batch membrane biological reaction
CN111217449B (en) Sewage treatment device and method based on accurate control of oxygen input
JP2002001388A (en) Equipment and process for treating sewage
JP2912901B1 (en) Treatment method for nitrogen-containing wastewater
JPS6154296A (en) Treatment of sewage
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JPH05253597A (en) Nitrification reaction control device in activated sludge treatment
JPH06182390A (en) Operation control method for batch type active sludge treatment
JP2003334583A (en) Control method for intermittent aeration method and control device therefor
JP5801506B1 (en) Operation method of biological denitrification equipment
CN218811159U (en) Sewage treatment system with medicine adding device
CN211712879U (en) Wastewater treatment system based on sequencing batch membrane bioreaction
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment
JP2000254683A (en) Method for controlling supply of excess sludge to sewage treatment facility and biological reaction vessel
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees