JPH08192179A - Device for setting residence time of sludge in activated sludge process - Google Patents

Device for setting residence time of sludge in activated sludge process

Info

Publication number
JPH08192179A
JPH08192179A JP7005355A JP535595A JPH08192179A JP H08192179 A JPH08192179 A JP H08192179A JP 7005355 A JP7005355 A JP 7005355A JP 535595 A JP535595 A JP 535595A JP H08192179 A JPH08192179 A JP H08192179A
Authority
JP
Japan
Prior art keywords
sludge
concentration
srt
meter
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7005355A
Other languages
Japanese (ja)
Inventor
Takahiro Konishi
隆裕 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7005355A priority Critical patent/JPH08192179A/en
Publication of JPH08192179A publication Critical patent/JPH08192179A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE: To precisely set SRT by determining a set value of SRT by taking into account the amount SS flowing into a treating system measured by a first flowmeter and a concentration meter and the amount SS flowing out of the system measured by a second flowmeter and a concentration meter. CONSTITUTION: Measured values of flow rate of excess sludge measured by excess sludge flowmeters 26, 27 and concentration thereof are inputted into an SRT controller 28 to determine a set value of SRT. And measured values of flow rate and concentration measured by a first flowmeter 29 and a first concentation meter 30 which are provided at a raw water intake part of an aeration tank 21 to measure the flow rate and concentration of the raw water are inputted into the controller 28 to determine a set value of SRT. Further, measured values of flow rate and concentration measured by a second flowmeter 31 and a second concentration meter 32 for measuring flow rate and concentration of treated water of a final settling reservoir 23, also, are inputted into the controller 28 to determine a set value of SRT. At the controller 28, a set value of SRT is determined using each of the measured values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は活性汚泥法における汚
泥滞留時間設定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sludge retention time setting device in an activated sludge method.

【0002】[0002]

【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、閉鎖性水域の富栄養化の原因物
質と考えられている窒素及びリンを除去する方法が種々
提案されている。特に近時は窒素の除去率を高めること
が要求されており、窒素に関する規制も厳しくなること
が予想されるので、これを除去することができる高度処
理プロセスを採用する施設が増加するものと考えられ
る。
2. Description of the Related Art Various methods have conventionally been proposed for efficiently removing organic matter in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative agents of eutrophication in closed water areas. . Particularly in recent years, it has been required to increase the removal rate of nitrogen, and it is expected that regulations on nitrogen will become stricter.Therefore, it is thought that the number of facilities that employ advanced treatment processes that can remove this will increase. To be

【0003】生物学的に窒素とリンを同時に除去する方
法として、従来の活性汚泥法の変法として嫌気−好気活
性汚泥法が注目されている。この嫌気−好気活性汚泥法
とは、例えば、図2に示したように、生物反応槽を溶存
酸素(以下DOと略称)の存在しない嫌気槽1a,1b
とDOの存在する複数段の好気槽2a,2b,2cとに
仕切り、この嫌気槽1a,1bにより、流入する原水3
を無酸素状態下で撹拌機構10による撹拌を行って活性
汚泥中の脱窒菌による脱窒を行い、次に好気槽2a,2
b,2cの内方に配置した散気管4にブロワ5から空気
を供給することにより、エアレーションによる酸素の存
在下で活性汚泥による有機物の酸化分解と硝化菌による
アンモニアの硝化を行い、そして、最終段の好気槽2c
の硝化液を硝化液循環ポンプ6を用いて嫌気槽1aに送
り込むことにより、嫌気槽1a,1bの脱窒効果が促進
されるようにしたものである。
As a biological method for simultaneously removing nitrogen and phosphorus, the anaerobic-aerobic activated sludge method has attracted attention as a modified method of the conventional activated sludge method. The anaerobic-aerobic activated sludge method is, for example, as shown in FIG. 2, the biological reaction tanks are anaerobic tanks 1a and 1b in which dissolved oxygen (hereinafter abbreviated as DO) does not exist.
And a plurality of stages of aerobic tanks 2a, 2b, 2c in which DO exists, and raw water 3 flowing in is divided by the anaerobic tanks 1a, 1b.
The mixture is agitated by an agitation mechanism 10 under anoxic conditions to denitrify it with denitrifying bacteria in the activated sludge, and then the aerobic tanks 2a, 2
By supplying air from the blower 5 to the air diffusing tube 4 arranged inside b and 2c, oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria are carried out in the presence of oxygen by aeration, and finally, Tiered aerobic tank 2c
By feeding the nitrification solution of No. 1 into the anaerobic tank 1a by using the nitrification solution circulation pump 6, the denitrification effect of the anaerobic tanks 1a and 1b is promoted.

【0004】前記脱窒菌とは、嫌気条件下で硝酸呼吸に
よりN02−N及びN03−NをN2やNO2に還元する細
菌を指している。又、原水中のリンは嫌気槽1a,1b
内で放出され、好気槽2a,2b,2c内で活性汚泥に
取り込まれて除去される。7は最終沈澱池であり、この
最終沈澱池7の上澄液は、処理水11として図示しない
消毒槽等を経由してから放流され、該最終沈澱池7内に
沈降した汚泥の一部は汚泥返送ポンプ8により嫌気槽1
aに返送され、残りの汚泥は余剰汚泥引抜ポンプ9から
図示しない余剰汚泥処理装置に送り込まれて処理され
る。
The above-mentioned denitrifying bacterium refers to a bacterium that reduces N0 2 -N and N0 3 -N to N 2 and NO 2 by respiration of nitric acid under anaerobic conditions. Also, phosphorus in raw water is anaerobic tanks 1a and 1b.
It is released inside and is taken in and removed by the activated sludge in the aerobic tanks 2a, 2b and 2c. Reference numeral 7 denotes a final settling basin, and the supernatant of the final settling basin 7 is discharged as treated water 11 after passing through a disinfection tank or the like (not shown), and a part of the sludge settled in the final settling basin 7 is Anaerobic tank 1 by sludge return pump 8
The remaining sludge is returned to a and is sent from the excess sludge drawing pump 9 to an excess sludge treatment device (not shown) for treatment.

【0005】最終沈殿池7からの余剰汚泥引き抜きはエ
アレーションタンク内のMLSS制御(エアレーション
タンク内のMLSS濃度を指標に余剰汚泥を引き抜く方
法)とF/M比一定制御(流入基質量とMLSS量との
比を指標に余剰汚泥を引き抜く方法)によっておこなわ
れるのが従来主流であった。しかし、下水処理に活性汚
泥循環変法などの高度処理が採用されるようになると、
それらに代わってSRT(汚泥滞留時間)制御(処理系
内の活性汚泥の滞留時間を指標に余剰汚泥を引き抜く方
法)が採用されるなって来た。このSRT制御は余剰汚
泥引抜量を小さくして硝化反応を促進して、硝化槽内の
活性汚泥濃度を高めて硝化菌が系外に排出されないよう
にした方法である。かかる嫌気−好気活性汚泥処理方法
を用いることにより、通常の標準活性汚泥法で達成され
る有機物除去効果と、同程度の効果が得られる上、窒素
とリンに関しては活性汚泥法よりも高い除去率が達成さ
れる。
Excessive sludge removal from the final settling basin 7 is performed by MLSS control in the aeration tank (method of extracting excess sludge using the MLSS concentration in the aeration tank as an index) and F / M ratio constant control (inflow base mass and MLSS amount). The method used to remove excess sludge based on the ratio of (1) was used as the mainstream. However, when advanced treatment such as activated sludge circulation method is adopted for sewage treatment,
Instead of them, SRT (sludge retention time) control (a method of extracting excess sludge using the retention time of activated sludge in the treatment system as an index) has been adopted. This SRT control is a method in which the excess sludge withdrawal amount is reduced to promote the nitrification reaction, and the concentration of activated sludge in the nitrification tank is increased to prevent nitrifying bacteria from being discharged out of the system. By using such an anaerobic-aerobic activated sludge treatment method, it is possible to obtain the same level of effect as the organic substance removal effect achieved by the normal standard activated sludge method, and to remove nitrogen and phosphorus at a higher level than the activated sludge method. Rate is achieved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の嫌気−好気活性汚泥処理法の場合、効率的な
運転制御方法の確立が困難であり、特に好気槽における
硝化速度を推定して目標とする硝化速度を確保して硝化
効率を高め、それに伴って嫌気槽における脱窒効果を高
めるという制御を実施することが困難であるという課題
があった。更に硝化速度を高めるために一般に採用され
ている前記SRT制御は、水温の急激な変化があった際
には適切な制御が実施できない場合があり、安定した硝
化反応が維持できないという問題がある。
However, in the case of such conventional anaerobic-aerobic activated sludge treatment method, it is difficult to establish an efficient operation control method, and in particular, the nitrification rate in the aerobic tank is estimated. Therefore, there is a problem in that it is difficult to implement a control that secures the target nitrification rate to increase the nitrification efficiency, and accordingly enhances the denitrification effect in the anaerobic tank. Further, the SRT control that is generally adopted to increase the nitrification rate may not be able to be properly controlled when the water temperature changes rapidly, and there is a problem that a stable nitrification reaction cannot be maintained.

【0007】即ち、前記嫌気−好気活性汚泥法における
動作態様は、嫌気槽1a,1bにおける脱窒反応と、好
気槽2a,2b,2cにおける硝化反応とに大別するこ
とが出来るが、反応の律速となっているのは後者,即ち
硝化反応である。特に嫌気−好気活性汚泥処理法によっ
て効率的に窒素を除去するためには、嫌気槽における脱
窒と好気槽における硝化を最適な運転条件に保持するこ
とが要求される上、窒素除去工程は硝化工程に影響され
る度合が高いため、良好な窒素除去を行うためには硝化
反応が良好に行われていることが必要である。
That is, the operation mode in the anaerobic-aerobic activated sludge method can be roughly classified into a denitrification reaction in the anaerobic tanks 1a and 1b and a nitrification reaction in the aerobic tanks 2a, 2b and 2c. The latter, that is, the nitrification reaction, is the rate-determining reaction. In particular, in order to remove nitrogen efficiently by the anaerobic-aerobic activated sludge treatment method, it is required to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under the optimum operating conditions, and the nitrogen removing step. Is highly influenced by the nitrification process, so that the nitrification reaction must be performed well in order to perform good nitrogen removal.

【0008】この硝化反応は硝化菌によって引き起こさ
れるが、この硝化菌の活性は、pH,水温等の微妙な変
化により容易に影響を受けることが知られている。又、
エアレーションの時間を十分にとるために、標準活性汚
泥法の場合よりも生物反応槽の容積を2〜3倍にするこ
とが必要であり、都市部等の用地確保が困難な条件下で
の採用が難しいという問題がある。
This nitrification reaction is caused by nitrifying bacteria, and it is known that the activity of this nitrifying bacteria is easily affected by subtle changes such as pH and water temperature. or,
In order to take sufficient aeration time, it is necessary to make the volume of the biological reaction tank 2-3 times larger than in the case of the standard activated sludge method, and it is used under conditions where it is difficult to secure land for urban areas. There is a problem that it is difficult.

【0009】一方、活性汚泥プロセスでは原水中の窒素
成分はアンモニア性窒素に分解される。このアンモニア
性窒素は硝化菌の存在と溶存酸素が豊富な条件下では硝
酸性窒素に酸化される。下水処理場では処理場の特性と
か放流先の条件等で窒素成分をアンモニア性のままとす
るか、もしくは硝酸性窒素まで酸化してから放流するか
が運転管理上での重要な課題となっている。特に処理水
中に亜硝酸性窒素が存在していると、この処理水のCO
D(Chemical oxygen demand,化学的酸素要求量)が増
加して多量の酸化剤を必要とするという難点があり、更
に処理水排出先のDOが減少するため、排出先の生物相
にダメージを与えてしまう惧れがある。そこで処理水中
の亜硝酸性窒素は極力除去しなければならないが、その
ためには複数の曝気槽によるエアレーション処理の後
に、脱窒槽による脱窒処理を実施しなければならず、施
設の増大を必要とする上、処理時間が長くかかってしま
うという問題点が生じる。
On the other hand, in the activated sludge process, the nitrogen component in the raw water is decomposed into ammoniacal nitrogen. This ammoniacal nitrogen is oxidized to nitrate nitrogen under the presence of nitrifying bacteria and in the condition of rich dissolved oxygen. At the sewage treatment plant, it is an important issue in operation management whether the nitrogen component remains ammoniacal depending on the characteristics of the treatment plant or the conditions of the discharge destination, or whether the nitrogen component is oxidized to nitrate nitrogen and then discharged. There is. Especially when nitrite nitrogen is present in the treated water, CO
D (Chemical oxygen demand) increases and requires a large amount of oxidant, and the DO of the treated water discharge destination decreases, which damages the biota of the discharge destination. There is a fear of being lost. Therefore, it is necessary to remove nitrite nitrogen in the treated water as much as possible, but for that purpose, denitrification treatment must be performed in the denitrification tank after aeration treatment in multiple aeration tanks, which requires an increase in facilities. In addition, there is a problem that the processing time is long.

【0010】従って放流先の水域の環境を重視するなら
ば硝酸性窒素として放流することが好ましいが、この硝
化反応は一般のBOD酸化細菌に比べて遅いため、水温
とか負荷変動の影響を受けて不安定となり易く、完全な
硝化は困難とされている。この不完全な硝化反応は処理
水のBOD(生物化学的酸素要求量)とか前記CODを
上昇させるので、硝化を促進させる運転は消極的になら
ざるを得ない。又、放流先の水域の富栄養化を防止する
ために窒素除去を行う循環法の場合には硝化を促進する
ことが絶対的条件となっている。このように下水処理に
おいて窒素成分の硝化促進が重要な因子となっている。
Therefore, if importance is attached to the environment of the water body of the discharge destination, it is preferable to discharge it as nitrate nitrogen, but since this nitrification reaction is slower than general BOD oxidizing bacteria, it is affected by water temperature and load fluctuation. Instability tends to occur and complete nitrification is difficult. Since this incomplete nitrification reaction raises the BOD (biochemical oxygen demand) of the treated water and the COD, the operation for promoting nitrification must be passive. Further, in the case of a circulation method in which nitrogen is removed in order to prevent eutrophication in the water area of the discharge destination, it is an absolute condition to promote nitrification. Thus, promotion of nitrification of nitrogen components is an important factor in sewage treatment.

【0011】硝化反応を促進するための一手段として、
前記したように活性汚泥濃度を高めて硝化菌が系外に排
出されないように余剰汚泥引抜量を小さくするSRT
(汚泥滞留時間)制御が一般に採用されている。しかし
ながら余剰汚泥濃度を高めることは沈澱池での固液分離
効率を低下させて流出水中の浮遊物質濃度を増加させる
惧れがあり、自ずからSRT制御には限界がある。特に
水温が低下する冬季には硝化菌の活性も低下するため、
活性汚泥濃度を限界近くまで高くしても適正な硝化反応
を維持することが困難である。現在、SRT制御におけ
る余剰汚泥引き抜き量はエアレーションタンク内のML
SS量のみから算出している。しかし、この方法で流入
水および流出水に含まれるSS量が考慮されていないた
め、実際には正確なSRT設定がなされていない問題が
ある。
As one means for promoting the nitrification reaction,
As described above, the SRT that increases the concentration of activated sludge and reduces the amount of excess sludge drawn so that nitrifying bacteria are not discharged to the outside of the system.
(Sludge retention time) control is generally adopted. However, increasing the excess sludge concentration may reduce the solid-liquid separation efficiency in the settling basin and increase the concentration of suspended solids in the effluent, which naturally limits the SRT control. Especially in winter when the water temperature decreases, the activity of nitrifying bacteria also decreases,
It is difficult to maintain a proper nitrification reaction even if the concentration of activated sludge is increased to the limit. Currently, the amount of excess sludge drawn out by SRT control is ML in the aeration tank.
It is calculated only from the amount of SS. However, since the SS amount contained in the inflow water and the outflow water is not considered in this method, there is a problem that an accurate SRT setting is not actually made.

【0012】この発明は上記の事情に鑑みてなされたも
ので、正確なSRT設定ができるようにした活性汚泥法
における汚泥滞留時間設定装置を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a sludge retention time setting device in the activated sludge method, which enables accurate SRT setting.

【0013】[0013]

【課題を解決するための手段】この発明は、上記の目的
を達成するために、原水が流入するエアレーションタン
クと、このタンク内に配設されたMLSS計と、エアレ
ーションタンクから流出する水が導入され、上澄液を処
理水として流出する最終沈殿池と、この最終沈殿池から
エアレーションタンクに汚泥を返送する返送汚泥ポンプ
と、前記最終沈殿池から余剰汚泥を引き抜く余剰汚泥引
き抜きポンプと、この余剰汚泥引き抜きポンプで引き抜
かれた余剰汚泥の流量と濃度を計測する流量計および濃
度計と、前記MLSS計で計測したMLSS、前記流量
計で計測した流量および前記濃度計で計測した濃度とが
導入され、これら各値でSRT設定が行われ、この設定
値により余剰汚泥引き抜きポンプを制御するSRT制御
部とを備えた活性汚泥法における汚泥滞留時間設定装置
において、前記原水の流量を計測する第1流量計および
前記原水の濃度を計測する第1濃度計と、前記最終沈殿
池から流出される処理水の流量を計測する第2流量計お
よび前記処理水の濃度を計測する第2濃度計とを設け、
第1、第2流量計および濃度計で計測した値を前記SR
T制御部に入力してSRT設定を行うようにしたことを
特徴とするものである。
In order to achieve the above object, the present invention introduces an aeration tank into which raw water flows, an MLSS meter disposed in the tank, and water outflowing from the aeration tank. The final settling basin that uses the supernatant as treated water, the return sludge pump that returns sludge from the final settling basin to the aeration tank, the excess sludge drawing pump that draws excess sludge from the final settling basin, and this surplus A flow meter and a densitometer for measuring the flow rate and the concentration of the excess sludge drawn by the sludge drawing pump, the MLSS measured by the MLSS meter, the flow rate measured by the flow meter and the concentration measured by the densitometer were introduced. , SRT setting is performed with each of these values, and an SRT control unit that controls the excess sludge extraction pump according to these setting values is provided. In a sludge retention time setting device in the mud method, a first flow meter for measuring the flow rate of the raw water, a first concentration meter for measuring the concentration of the raw water, and a flow rate of treated water flowing out from the final settling tank are measured. A second flow meter and a second concentration meter for measuring the concentration of the treated water are provided,
The values measured by the first and second flow meters and the densitometer are the SR
It is characterized in that the SRT setting is performed by inputting to the T control unit.

【0014】[0014]

【作用】余剰汚泥引き抜きポンプを制御するために、余
剰汚泥引き抜き流量と濃度の外に原水の流量と濃度およ
び処理水の流量と濃度も加味してSRT設定値を得たの
で、正確なSRT設定が可能となる。
[Function] In order to control the excess sludge extraction pump, the SRT set value is obtained by taking into consideration the flow rate and concentration of raw water and the flow rate and concentration of treated water in addition to the flow rate and concentration of excess sludge removal. Is possible.

【0015】[0015]

【実施例】以下この発明の一実施例を図面に基づいて説
明する。図1はこの発明の実施例を示す概略構成図で、
21は原水が流入するエアレーションタンクで、このタ
ンク21内にはMLSS計22が配設される。MLSS
計22の計測値は、後述のSRT制御部にSRT設定値
を求めるために入力される。エアレーションタンク21
から流出した液は最終沈殿池23に流入し、上澄液が処
理水として図示しない消毒槽等を経由して放流される。
一方、最終沈殿池23内に沈殿した汚泥の一部は返送汚
泥ポンプ24によりエアレーションタンク21に返送さ
れ、残りの汚泥は余剰汚泥引き抜きポンプ25により引
き抜かれて図示しない余剰汚泥処理装置に送り込まれて
処理される。26は余剰汚泥流量計、27は余剰汚泥濃
度計であり、この余剰汚泥流量計26および濃度計27
で計測した余剰汚泥流量および濃度の計測値はSRT制
御部28にSRT設定値を求めるために入力される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
Reference numeral 21 is an aeration tank into which raw water flows, and an MLSS meter 22 is arranged in this tank 21. MLSS
The measured values of the total 22 are input to the SRT control unit described later in order to obtain the SRT set value. Aeration tank 21
The liquid flowing out of the tank flows into the final settling tank 23, and the supernatant liquid is discharged as treated water via a disinfection tank or the like not shown.
On the other hand, a part of the sludge settled in the final settling tank 23 is returned to the aeration tank 21 by the return sludge pump 24, and the remaining sludge is extracted by the excess sludge extraction pump 25 and sent to the excess sludge treatment device (not shown). It is processed. 26 is a surplus sludge flow meter, 27 is a surplus sludge concentration meter, and the surplus sludge flow meter 26 and the concentration meter 27.
The measured values of the surplus sludge flow rate and the concentration measured in (4) are input to the SRT control unit 28 to obtain the SRT set value.

【0016】29、30はエアレーションタンク21の
原水取り入れ部位に設けられ、原水の流量および濃度を
計測する第1流量計および第1濃度計であり、第1流量
計29および第1濃度計30で計測された流量および濃
度の計測値はSRT制御部28にSRT設定値を求める
ために入力される。31、32は最終沈殿池23の処理
水の流量および濃度を計測する第2流量計および第2濃
度計であり、第2流量計31および第2濃度計32で計
測された流量および濃度の計測値もSRT制御部28に
SRT設定値を求めるために入力される。SRT制御部
28では入力された各計測値を、以下に述べるような式
を用いてSRT設定値を求める。
Reference numerals 29 and 30 denote a first flow meter and a first densitometer, which are provided at the raw water intake portion of the aeration tank 21 and measure the flow rate and the concentration of the raw water. The measured values of the measured flow rate and concentration are input to the SRT control unit 28 to obtain the SRT set value. Reference numerals 31 and 32 denote a second flow meter and a second densitometer for measuring the flow rate and the concentration of the treated water in the final settling tank 23, and the measurement of the flow rate and the concentration measured by the second flow meter 31 and the second densitometer 32. The value is also input to the SRT control unit 28 to obtain the SRT set value. The SRT control unit 28 obtains an SRT set value for each of the input measured values by using an equation described below.

【0017】SRT設定値を求める際、処理系内に流入
するSS量(第1流量計と濃度計による計測)と処理系
内から流出するSS量(第2流量計と濃度計による計
測)を考慮するようにしたため、正確なSRT設定値が
得られるようになる。従って、余剰汚泥引き抜きポンプ
25は正確なSRT設定値の基でSRT制御されるよう
になる。
When determining the SRT set value, the SS amount flowing into the processing system (measurement by the first flow meter and the densitometer) and the SS amount flowing out from the processing system (measurement by the second flow meter and the densitometer) are calculated. Since this is taken into consideration, an accurate SRT set value can be obtained. Therefore, the excess sludge extraction pump 25 is SRT controlled based on the accurate SRT set value.

【0018】次に上記SRT設定値を求める手段を述べ
るに、エアレーションタンク内の汚泥量、1日当たりの
流入SS量、1日当たりの流出SS量、1日当たりの引
き抜き汚泥量は次のように表される。
Next, the means for obtaining the SRT set value will be described. The amount of sludge in the aeration tank, the amount of inflow SS per day, the amount of outflow SS per day, and the amount of sludge drawn out per day are expressed as follows. It

【0019】 エアレーションタンク内の汚泥量 : SSat・Vat(mg) 1日当たりの流入SS量 : SSin・Qin(mg/day) 1日当たりの流出SS量 : SSout・Qout(mg/day) 1日当たりの引き抜き汚泥量 : SSw・Qw(mg/day) SRT : SRT (day) ただし、SSat :エアレーションタンク内MLSS濃
度(mg/L) SSw :引き抜き汚泥濃度(mg/L) SSin :流入SS濃度(mg/L) SSout :流出SS濃度(mg/L) Vat :エアレーションタンク容積(L) Qin :流入水量(L/day) Qout :流出水量(L/day) Qw :引き抜き量(L/day) SRT :SRT(day) である。これらにより第1流量計および濃度計による処
理系内の汚泥量と、第2流量計および濃度計による処理
系外に出る汚泥量のバランスから次のようにSRT設定
値の関係式が成立する。
Amount of sludge in the aeration tank: SS at · V at (mg) Inflow SS amount per day: SS in · Q in (mg / day) Outflow SS amount per day: SS out · Q out (mg / day) Extracted sludge amount per day: SS w · Q w (mg / day) SRT: SRT (day) where SS at : MLSS concentration in aeration tank (mg / L) SS w : Extracted sludge concentration (mg / L) ) SS in : inflow SS concentration (mg / L) SS out : outflow SS concentration (mg / L) V at : aeration tank volume (L) Q in : inflow water amount (L / day) Q out : outflow water amount (L / day) Q w : Extraction amount (L / day) SRT: SRT (day). From these, the relational expression of the SRT set value is established from the balance of the sludge amount in the treatment system by the first flow meter and the concentration meter and the sludge amount discharged from the treatment system by the second flow meter and the concentration meter as follows.

【0020】 SRT=SSat・Vat/(SSout・Qout+SSw・Qw−SSin・Qin) よって、制御したいSRT設定値を決定したならば、最
終沈殿池からの汚泥引き抜き量Qwは次の式より行われ
る。
SRT = SS at · V at / (SS out · Q out + SS w · Q w −SS in · Q in ) Once the SRT set value to be controlled is determined, the amount of sludge drawn from the final settling tank Q w is calculated by the following equation.

【0021】Qw={(SSat・Vat/SRT)+SSin・Qin−S
Sout・Qout}/SS
Q w = {(SS at · V at / SRT) + SS in · Q in −S
S out / Q out } / SS w

【0022】[0022]

【発明の効果】以上述べたように、この発明によれば、
第1流量計および濃度計で処理系内に流入するSS量
と、第2流量計および濃度計で処理系内から流出するS
S量を考慮するようにしたので、正確なSRT設定値が
得られるようになる。
As described above, according to the present invention,
The amount of SS that flows into the processing system with the first flow meter and the concentration meter, and the amount of S that flows out from the processing system with the second flow meter and the concentration meter
Since the S amount is taken into consideration, an accurate SRT set value can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すシステム構成図。FIG. 1 is a system configuration diagram showing an embodiment of the present invention.

【図2】従来例のシステム構成図。FIG. 2 is a system configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

21…エアレーションタンク 22…MLSS計 23…最終沈殿池 24…返送汚泥ポンプ 25…余剰汚泥引き抜きポンプ 26…余剰汚泥流量計 27…余剰汚泥濃度計 28…SRT制御部 29、31…第1、第2流量計 30、32…第1、第2濃度計 21 ... Aeration tank 22 ... MLSS meter 23 ... Final settling tank 24 ... Return sludge pump 25 ... Excess sludge extraction pump 26 ... Excess sludge flow meter 27 ... Excess sludge concentration meter 28 ... SRT control section 29, 31 ... First, second Flowmeters 30, 32 ... First and second densitometers

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水が流入するエアレーションタンク
と、このタンク内に配設されたMLSS計と、エアレー
ションタンクから流出する水が導入され、上澄液を処理
水として流出する最終沈殿池と、この最終沈殿池からエ
アレーションタンクに汚泥を返送する返送汚泥ポンプ
と、前記最終沈殿池から余剰汚泥を引き抜く余剰汚泥引
き抜きポンプと、この余剰汚泥引き抜きポンプで引き抜
かれた余剰汚泥の流量と濃度を計測する流量計および濃
度計と、前記MLSS計で計測したMLSS、前記流量
計で計測した流量および前記濃度計で計測した濃度とが
導入され、これら各値でSRT設定が行われ、この設定
値により余剰汚泥引き抜きポンプを制御するSRT制御
部とを備えた活性汚泥法における汚泥滞留時間設定装置
において、 前記原水の流量を計測する第1流量計および前記原水の
濃度を計測する第1濃度計と、前記最終沈殿池から流出
される処理水の流量を計測する第2流量計および前記処
理水の濃度を計測する第2濃度計とを設け、第1、第2
流量計および濃度計で計測した値を前記SRT制御部に
入力してSRT設定を行うようにしたことを特徴とする
活性汚泥法における汚泥滞留時間設定装置。
1. An aeration tank into which raw water flows, a MLSS meter disposed in the tank, a final settling tank into which water flowing out from the aeration tank is introduced, and a supernatant liquid flows out as treated water. A return sludge pump that returns sludge from the final settling tank to the aeration tank, an excess sludge drawing pump that draws excess sludge from the final settling tank, and a flow rate that measures the flow rate and concentration of excess sludge drawn by this excess sludge drawing pump. Meter and densitometer, the MLSS measured by the MLSS meter, the flow rate measured by the flow meter and the concentration measured by the densitometer are introduced, and SRT setting is performed at each of these values, and excess sludge is set by these set values. In the sludge retention time setting device in the activated sludge method, which comprises an SRT control unit for controlling a drawing pump, A first flow meter for measuring the amount and a first concentration meter for measuring the concentration of the raw water, a second flow meter for measuring the flow rate of the treated water flowing out from the final settling tank, and the concentration of the treated water. A second densitometer is provided, and the first and second
A sludge retention time setting device in the activated sludge method, characterized in that values measured by a flow meter and a densitometer are input to the SRT control unit to perform SRT setting.
JP7005355A 1995-01-18 1995-01-18 Device for setting residence time of sludge in activated sludge process Pending JPH08192179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7005355A JPH08192179A (en) 1995-01-18 1995-01-18 Device for setting residence time of sludge in activated sludge process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7005355A JPH08192179A (en) 1995-01-18 1995-01-18 Device for setting residence time of sludge in activated sludge process

Publications (1)

Publication Number Publication Date
JPH08192179A true JPH08192179A (en) 1996-07-30

Family

ID=11608882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7005355A Pending JPH08192179A (en) 1995-01-18 1995-01-18 Device for setting residence time of sludge in activated sludge process

Country Status (1)

Country Link
JP (1) JPH08192179A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000049300A (en) * 1999-04-13 2000-08-05 니시야마 쇼고 System and Method for Treating Activated Sludge of Sewage
JP2001104979A (en) * 1999-10-13 2001-04-17 Meidensha Corp Wastewater treatment method
JP2002018471A (en) * 2000-07-05 2002-01-22 Japan Sewage Works Agency Method for treating organic wasteliquid
JP2010099560A (en) * 2008-10-22 2010-05-06 Metawater Co Ltd Air supply system and air supply method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000049300A (en) * 1999-04-13 2000-08-05 니시야마 쇼고 System and Method for Treating Activated Sludge of Sewage
JP2001104979A (en) * 1999-10-13 2001-04-17 Meidensha Corp Wastewater treatment method
JP2002018471A (en) * 2000-07-05 2002-01-22 Japan Sewage Works Agency Method for treating organic wasteliquid
JP2010099560A (en) * 2008-10-22 2010-05-06 Metawater Co Ltd Air supply system and air supply method

Similar Documents

Publication Publication Date Title
KR100638158B1 (en) Sewage treatment system
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process
JP3203774B2 (en) Organic wastewater treatment method and methane fermentation treatment device
JP3379199B2 (en) Operation control method of activated sludge circulation method
JPH07136687A (en) Operation control method for modified active sludge circulation process in low water temperature period
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JPH1015590A (en) Removal of nitrogen of waste water and apparatus therefor
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
JP3303475B2 (en) Operation control method of activated sludge circulation method
JPH0691294A (en) Operation control method of batch type active sludge treatment
JPH08117793A (en) Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method
JPH05253597A (en) Nitrification reaction control device in activated sludge treatment
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JPH05192688A (en) Anaerobic-aerobic activated sludge treating device using buffer tank
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus
JP3376905B2 (en) Intermittent aeration activated sludge treatment equipment
JP3260575B2 (en) Control method of intermittent aeration type activated sludge method
JPH05317884A (en) Anaerobic-aerobic activated sludge treating device
JPH07275888A (en) Nitration accelerating method of activated sludge circulation modified method