JPH0947780A - Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor - Google Patents

Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor

Info

Publication number
JPH0947780A
JPH0947780A JP20371495A JP20371495A JPH0947780A JP H0947780 A JPH0947780 A JP H0947780A JP 20371495 A JP20371495 A JP 20371495A JP 20371495 A JP20371495 A JP 20371495A JP H0947780 A JPH0947780 A JP H0947780A
Authority
JP
Japan
Prior art keywords
nitrification
nit
value
reaction
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20371495A
Other languages
Japanese (ja)
Inventor
Kazuhiro Toyooka
和宏 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP20371495A priority Critical patent/JPH0947780A/en
Publication of JPH0947780A publication Critical patent/JPH0947780A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance control precision by obtaining the real value for the oxygen consuming rate in the nitration reaction in a circulation-type nitrating and denitrifying process. SOLUTION: A measuring instrument having a value for the total oxygen consuming rate subtracted by the oxygen consuming rate accompanying the nitration reaction and a dissolved oxygen densitometer 16 are attached to an aerobic tank in a circulation-type nitrating and denitrifying process. The real value [Nit-Rr]real 19 for the oxygen consuming rate in the nitration reaction is obtained from the maximum oxygen consuming rate [Nit-Rr]max 17, half- saturation constant [Kdo] 18 and DO in the nitration reaction obtained from the measured values. The real value is inputted to a nitration reaction controller 20 to estimate the nitrating rate in an anaerobic tank, and DO control 21 and SRT control 22 as the sludge retention time are conducted to control the discharge of the blower 5 to the aerobic tank in accordance with the value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は循環式硝化脱窒法を
用いて廃水中の有機物及び窒素を高効率に除去する際の
硝化反応制御方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrification reaction control method and device for highly efficiently removing organic matter and nitrogen in wastewater by using a circulating nitrification denitrification method.

【0002】[0002]

【従来の技術】従来から下水等の廃水中の有機物を効率
的に除去するとともに、閉鎖性水域の富栄養化の原因物
質と考えられている窒素及びリンを除去する方法が種々
提案されている。更に近時は窒素の除去率を高めること
が要求されており、窒素に関する規制も厳しくなること
が予想されるので、これを除去することができる高度処
理プロセスを採用する施設が増加するものと考えられ
る。
2. Description of the Related Art Various methods have conventionally been proposed for efficiently removing organic matter in wastewater such as sewage and removing nitrogen and phosphorus which are considered to be the causative agents of eutrophication in closed water areas. . Furthermore, it is expected that the removal rate of nitrogen will be increased in recent years, and regulations on nitrogen will be tightened.Therefore, it is thought that the number of facilities adopting advanced treatment processes that can remove this will increase. To be

【0003】廃水中の窒素とかリンを除去する手段とし
て、物理化学的な方法及び生物学的方法が提案されてい
るが、物理化学的方法はコストが嵩む関係から普及して
いない現状にある。例えば物理化学的方法として実用化
されているリン除去方法に凝集沈澱及び晶析手段がある
が、この手段はコストや維持管理面で難点がある。
Although physicochemical methods and biological methods have been proposed as means for removing nitrogen and phosphorus in wastewater, physicochemical methods are not widely used because of the high cost. For example, a phosphorus removal method which has been put into practical use as a physicochemical method includes a coagulation precipitation method and a crystallization method, but this method has a drawback in terms of cost and maintenance.

【0004】一方、生物学的に窒素とリンを同時に除去
する方法として、従来の活性汚泥法の変法として循環式
硝化脱窒法が注目されている。これは例えば図6に示し
たように、生物反応槽を溶存酸素(以下DOと略称)の
存在しない嫌気槽1a,1bとDOの存在する複数段の
好気槽2a,2b,2cとに仕切り、この嫌気槽1a,
1bにより、流入する原水3を無酸素状態下で撹拌機構
10による撹拌を行って活性汚泥中の脱窒菌による脱窒
を行い、次に好気槽2a,2b,2cの内方に配置した
散気管4にブロワ5から空気を供給することにより、エ
アレーションによる酸素の存在下で活性汚泥による有機
物の酸化分解と硝化菌によるアンモニアの硝化を行う。
On the other hand, as a method for biologically removing nitrogen and phosphorus simultaneously, a circulation type nitrification denitrification method has been attracting attention as a modification of the conventional activated sludge method. For example, as shown in FIG. 6, the biological reaction tank is divided into anaerobic tanks 1a and 1b in which dissolved oxygen (hereinafter abbreviated as DO) does not exist and a plurality of aerobic tanks 2a, 2b and 2c in which DO exists. , This anaerobic tank 1a,
1b, the inflowing raw water 3 is agitated by an agitation mechanism 10 under anoxic condition to denitrify by denitrifying bacteria in the activated sludge, and then scattered inside the aerobic tanks 2a, 2b, 2c. By supplying air from the blower 5 to the trachea 4, oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria are performed in the presence of oxygen by aeration.

【0005】そして最終段の好気槽2cの硝化液を硝化
液循環ポンプ6を用いて嫌気槽1aに送り込むことによ
り、嫌気槽1a,1bの脱窒効果が促進される。
Then, the nitrification solution in the last-stage aerobic tank 2c is fed into the anaerobic tank 1a by using the nitrification solution circulation pump 6, whereby the denitrification effect of the anaerobic tanks 1a and 1b is promoted.

【0006】前記脱窒菌とは、嫌気条件下で硝酸呼吸に
よりN02−N及びN03−NをN2やNO2に還元する細
菌を指している。又、原水中のリンは嫌気槽1a,1b
内で放出され、好気槽2a,2b,2c内で活性汚泥に
取り込まれて除去される。7は最終沈澱池であり、この
最終沈澱池7の上澄液は、処理水11として図外の消毒
槽等を経由してから放流され、該最終沈澱池7内に沈降
した汚泥の一部は汚泥返送ポンプ8により嫌気槽1aに
返送され、他の汚泥は余剰汚泥引抜ポンプ9から図外の
余剰汚泥処理装置に送り込まれて処理される。
The above-mentioned denitrifying bacterium refers to a bacterium that reduces N0 2 -N and N0 3 -N to N 2 and NO 2 by respiration of nitric acid under anaerobic conditions. Also, phosphorus in raw water is anaerobic tanks 1a and 1b.
It is released inside and is taken in and removed by the activated sludge in the aerobic tanks 2a, 2b and 2c. Reference numeral 7 denotes a final settling basin, and the supernatant of the final settling basin 7 is discharged as treated water 11 after passing through a disinfection tank or the like not shown in the figure, and a part of sludge settled in the final settling basin 7. Is returned to the anaerobic tank 1a by the sludge return pump 8, and other sludge is sent from the excess sludge drawing pump 9 to an excess sludge treatment device (not shown) for treatment.

【0007】かかる循環式硝化脱窒法を用いることによ
り、通常の標準活性汚泥法で達成される有機物除去効果
と同程度の効果が得られる上、窒素とリンに関しては活
性汚泥法よりも高い除去率が達成される。
[0007] By using such a circulating nitrification denitrification method, an effect comparable to the organic matter removal effect achieved by a normal standard activated sludge method can be obtained, and nitrogen and phosphorus removal rates higher than those of the activated sludge method. Is achieved.

【0008】上記循環式硝化脱窒法における硝化反応で
は、好気槽内で硝化菌によって次式によりアンモニアが
酸化されて硝酸を生成する。
In the nitrification reaction in the above circulation type nitrification denitrification method, ammonia is oxidized by nitrifying bacteria in the aerobic tank according to the following equation to produce nitric acid.

【0009】 NH4 ++2O2 → NO3 -+H2O+2H+・・・・・・・・(1) 硝化菌はBOD資化細菌に比べるとその増殖速度が遅
く、また、流入負荷変動とか水温、DO、pH等の影響
を受けやすく、硝化反応が不安定になりがちである。そ
こで安定した硝化反応を維持するため、通常は硝化反応
がDO律速を受けないように硝化槽の溶存酸素(DO)
を管理するDO制御が行われている。
NH 4 + + 2O 2 → NO 3 + H 2 O + 2H + ... (1) Nitrifying bacteria have a slower growth rate than BOD-assimilating bacteria, and fluctuations in inflow load and water temperature. , DO, pH, etc., and the nitrification reaction tends to be unstable. Therefore, in order to maintain a stable nitrification reaction, the dissolved oxygen (DO) in the nitrification tank is usually kept so that the nitrification reaction is not DO-controlled.
DO control that manages is performed.

【0010】又、本出願人の前出願である特願平6−1
07349号には、硝化反応に伴う酸素消費量〔Nit
−Rr〕を測定して、硝化反応が完了するようなNit
−Rrを保つように硝化槽のDOとかSRT(汚泥滞留
時間)を制御するNit−Rr制御も提案されている。
[0010] Further, Japanese Patent Application No. 6-1 previously filed by the applicant.
07349 describes the amount of oxygen consumed by the nitrification reaction [Nit
-Rr] is measured and Nit is used to complete the nitrification reaction.
Nit-Rr control for controlling DO or SRT (sludge retention time) in the nitrification tank so as to keep -Rr is also proposed.

【0011】[0011]

【発明が解決しようとする課題】循環式硝化脱窒法にお
ける動作態様は、嫌気槽1a,1bにおける脱窒反応
と、好気槽2a,2b,2cにおける硝化反応とに大別
することが出来るが、反応の律速となっているのは後
者,即ち硝化反応である。特に嫌気−好気活性汚泥処理
法によって効率的に窒素を除去するためには、嫌気槽に
おける脱窒と好気槽における硝化を最適な運転条件に保
持することが要求される上、窒素除去工程は硝化工程に
影響される度合が高いため、良好な窒素除去を行うため
には硝化工程が良好に行われていることが必要である。
The operation modes in the circulation type nitrification denitrification method can be roughly classified into a denitrification reaction in the anaerobic tanks 1a and 1b and a nitrification reaction in the aerobic tanks 2a, 2b and 2c. The rate-determining reaction is the latter, that is, the nitrification reaction. In particular, in order to remove nitrogen efficiently by the anaerobic-aerobic activated sludge treatment method, it is required to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under the optimum operating conditions, and the nitrogen removing step. Is highly affected by the nitrification process, so that the nitrification process must be performed well in order to perform good nitrogen removal.

【0012】しかしながら前記〔Nit−Rr〕制御は
硝化菌の呼吸速度を指標とする硝化反応に基づいた制御
方法であるため、単純なDO制御に比べて硝化律速を受
けている場合でも〔Nit−Rr〕は採水した混合液を
一旦高くしてDOの律速を受けない部分で計算されるこ
とになり、全酸素消費速度から硝化反応に伴う酸素消費
速度を差し引いた値の計測器である〔ATU−Rr〕計
で測定された前記〔Nit−Rr〕値は、採水した反応
槽の硝化反応の状態をそのまま反映していない可能性が
ある。
However, since the above [Nit-Rr] control is a control method based on the nitrification reaction using the respiratory rate of nitrifying bacteria as an index, even when the nitrification rate is controlled compared to the simple DO control, Rr] will be calculated in a portion where the sampled liquid mixture is once raised and is not rate-determined by DO, and is a measuring instrument of the value obtained by subtracting the oxygen consumption rate accompanying the nitrification reaction from the total oxygen consumption rate [ The [Nit-Rr] value measured by the ATU-Rr] meter may not directly reflect the nitrification reaction state of the sampled reaction tank.

【0013】そこで本発明はこのような循環式硝化脱窒
法の制御における課題を解消して、硝化反応にかかる酸
素消費速度の真値〔Nit−Rr〕realを求めることに
より制御精度を高めた循環式硝化脱窒法における硝化反
応制御方法及び装置を提供することを目的とするもので
ある。
Therefore, the present invention solves the problem in the control of such a circulation type nitrification denitrification method, and obtains the true value [Nit-Rr] real of the oxygen consumption rate involved in the nitrification reaction to improve the control accuracy. An object of the present invention is to provide a method and apparatus for controlling nitrification reaction in the nitrification denitrification method.

【0014】[0014]

【課題を解決するための手段】本発明は上記の目的を達
成するために、原水を嫌気槽で脱窒細菌により脱窒を行
う工程と、好気槽で硝化細菌により硝化を行う工程と、
沈澱槽で固液分離して上澄液を処理水として放流する工
程とを含む循環式硝化脱窒法による処理において、上記
好気槽に、全酸素消費速度から硝化反応に伴う酸素消費
速度を差し引いた値の計測器と溶存酸素濃度計を付設
し、これらの測定値から求められる硝化反応にかかる最
大酸素消費速度〔Nit−Rr〕max値と半飽和定数
〔Kdo〕及びDO値とによって硝化反応にかかる酸素
消費速度の真値〔Nit−Rr〕realを求め、硝化反応
制御装置に入力して好気槽内の硝化速度を推定し、その
値に応じて好気槽へのブロワの送風量をコントロールす
るDO制御及び汚泥滞留時間であるSRT制御を実施す
る循環式硝化脱窒法における硝化反応制御方法と装置を
提供する。
In order to achieve the above-mentioned object, the present invention comprises a step of denitrifying raw water with denitrifying bacteria in an anaerobic tank, and a step of nitrifying with nitrifying bacteria in an aerobic tank,
In the treatment by the circulation type nitrification denitrification method including the step of solid-liquid separation in the settling tank and discharging the supernatant as treated water, the oxygen consumption rate accompanying the nitrification reaction is subtracted from the total oxygen consumption rate in the aerobic tank. And a dissolved oxygen concentration meter are attached, and the nitrification reaction is performed by the maximum oxygen consumption rate [Nit-Rr] max value and the half-saturation constant [Kdo] and DO value, which are obtained from these measured values. The true value of the oxygen consumption rate [Nit-Rr] real is calculated, input to the nitrification reaction controller to estimate the nitrification rate in the aerobic tank, and the blower air flow to the aerobic tank is calculated according to that value. Provided are a nitrification reaction control method and device in a circulating nitrification denitrification method for performing DO control for controlling the temperature and SRT control for sludge retention time.

【0015】前記最大酸素消費速度〔Nit−Rr〕
maxと半飽和定数〔Kdo〕から硝化反応にかかる酸素
消費速度の真値〔Nit−Rr〕realを、 〔Nit−Rr〕real=〔Nit−Rr〕max・〔DO/(DO+Kdo)〕・・・(7) 式に基づいて求める。
Maximum oxygen consumption rate [Nit-Rr]
From the max and the half-saturation constant [Kdo], the true value [Nit-Rr] real of the oxygen consumption rate involved in the nitrification reaction is [Nit-Rr] real = [Nit-Rr] max · [DO / (DO + Kdo)] · ·・ Calculate based on equation (7).

【0016】かかる循環式硝化脱窒法における硝化反応
制御方法及び装置によれば、原水が嫌気槽もしくは嫌気
条件下で脱窒され、好気槽もしくは好気条件下での曝気
と硝化細菌の作用に基づく硝化が行われる一方、好気槽
からサンプリングされた試料に対してATU−Rr計と
DO計によって硝化反応にかかる最大酸素消費速度〔N
it−Rr〕maxと〔DO〕が測定され、この値と半飽
和定数〔Kdo〕及びDO値とによって硝化反応にかか
る酸素消費速度の真値〔Nit−Rr〕realを求めて硝
化反応制御装置に入力することにより好気槽内の硝化速
度が推定して好気槽へのブロワの送風量をコントロール
するDO制御及び汚泥滞留時間であるSRT制御が実施
される。
According to the method and apparatus for controlling the nitrification reaction in the circulation type nitrification denitrification method, the raw water is denitrified in the anaerobic tank or the anaerobic condition, and the aeration and the action of the nitrifying bacteria in the aerobic tank or the aerobic condition are performed. On the other hand, the maximum oxygen consumption rate [N] for the nitrification reaction is measured by the ATU-Rr meter and the DO meter for the sample sampled from the aerobic tank.
It-Rr] max and [DO] are measured, and the true value [Nit-Rr] real of the oxygen consumption rate involved in the nitrification reaction is obtained from these values and the half-saturation constant [Kdo] and the DO value to determine the nitrification reaction controller. By inputting into, the nitrification rate in the aerobic tank is estimated and the DO control for controlling the blower air flow to the aerobic tank and the SRT control for sludge retention time are executed.

【0017】[0017]

【発明の実施の形態】以下、図面に基づいて本発明にか
かる循環式硝化脱窒法における硝化反応制御方法及び装
置の一実施例を、前記従来の構成部分と同一の構成部分
に同一の符号を付して詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a method and apparatus for controlling a nitrification reaction in a circulating nitrification / denitrification method according to the present invention will be described below with reference to the drawings. It will be described in detail.

【0018】本実施例では反応槽と同じDO律速条件の
硝化反応に伴う酸素消費量〔Nit−Rr〕を用いた
〔Nit−Rr〕制御方法を提供することが主眼となっ
ている。図1は本実施例を連続槽で構成された循環式硝
化脱窒法に適用した例であって、図中の1a,1b,1
cは原水3が流入する嫌気槽、2a,2b,2c.2
d,2eは硝化を行うための複数段の好気槽であり、こ
の嫌気槽1a,1b,1cと好気槽2a,2b,2c,
2d,2eとは同一の生物反応槽を仕切板13で区切っ
て分割構成されている。
In the present embodiment, the main object is to provide a [Nit-Rr] control method using the oxygen consumption [Nit-Rr] accompanying the nitrification reaction under the same DO-controlled condition as the reaction tank. FIG. 1 is an example in which the present embodiment is applied to a circulation type nitrification denitrification method constituted by a continuous tank, and 1a, 1b, 1 in the figure
c is an anaerobic tank into which raw water 3 flows, 2a, 2b, 2c. Two
d and 2e are aerobic tanks of a plurality of stages for performing nitrification, and the anaerobic tanks 1a, 1b and 1c and the aerobic tanks 2a, 2b, 2c,
The same biological reaction tanks as 2d and 2e are divided by a partition plate 13 and divided.

【0019】上記嫌気槽1a,1bには撹拌機構10,
10が配備され、好気槽2a,2b,2c,2d,2e
内にはエア吹出機構としての散気管4,4,4が配置さ
れ、外部に上記散気管4,4,4にエアを供給するため
のブロワ5が配備されている。6は硝化液循環ポンプで
ある。
The anaerobic tanks 1a, 1b have a stirring mechanism 10,
10 are provided and aerobic tanks 2a, 2b, 2c, 2d, 2e
Air diffusers 4, 4 and 4 as an air blowing mechanism are arranged inside, and a blower 5 for supplying air to the air diffusers 4, 4 and 4 is arranged outside. 6 is a nitrification solution circulation pump.

【0020】7は最終沈澱池であり、この最終沈澱池7
には汚泥の一部を嫌気槽1aに返送する汚泥返送ポンプ
8と、他の汚泥を図外の余剰汚泥処理装置に送り込む余
剰汚泥引抜ポンプ9とが配備されている。この余剰汚泥
引抜ポンプ9には通常タイマーが付設されていて、所定
時間毎に余剰汚泥の引抜動作を行うように設定されてい
る。
Reference numeral 7 is a final sedimentation pond, and this final sedimentation pond 7
A sludge return pump 8 for returning a part of the sludge to the anaerobic tank 1a, and a surplus sludge drawing pump 9 for sending another sludge to a surplus sludge treatment device (not shown) are provided in the. The excess sludge removal pump 9 is usually provided with a timer, and is set to perform the removal operation of the excess sludge at every predetermined time.

【0021】そして本実施例では、好気槽2aにATU
−Rr計15とDO計(溶存酸素濃度計)16が付設さ
れている。このATU−Rr計15の測定値から求めら
れる硝化反応にかかる最大酸素消費速度〔Nit−R
r〕max値17とKdo(半飽和定数mg-O2/l)18及び
DO計16で測定したDO値とによって〔Nit−R
r〕real値19が求められて流入水質分析値とともに硝
化反応制御装置20に入力され、該硝化反応制御装置2
0から出力された設定値に基づいてDO制御21とSR
T制御22とが実施される。尚、好気槽2eにはDO計
16aが付設されている。
In this embodiment, the ATU is installed in the aerobic tank 2a.
-Rr meter 15 and DO meter (dissolved oxygen concentration meter) 16 are attached. The maximum oxygen consumption rate [Nit-R] required for the nitrification reaction obtained from the measurement value of the ATU-Rr meter 15.
r] max value 17 and Kdo (half-saturation constant mg-O 2 / l) 18 and DO value measured by DO meter 16 [Nit-R
r] The real value 19 is obtained and input to the nitrification reaction control device 20 together with the inflow water quality analysis value.
DO control 21 and SR based on the set value output from 0
The T control 22 is performed. A DO meter 16a is attached to the aerobic tank 2e.

【0022】図2は本発明にかかる硝化反応制御方法を
回分式反応槽25に適用した例であり、この回分式反応
槽25には撹拌機構26と散気管4及び余剰汚泥引抜管
27とが配備されている。その他の制御用測定機器の配
置は図1と同一であるため、同一の符号を付して表示し
てある。
FIG. 2 shows an example in which the nitrification reaction control method according to the present invention is applied to a batch reaction tank 25. In this batch reaction tank 25, a stirring mechanism 26, an air diffuser pipe 4 and an excess sludge drawing pipe 27 are provided. It has been deployed. The other arrangements of the measuring device for control are the same as those in FIG.

【0023】かかる装置の基本的作用を図1の実施例を
用いて説明する。先ず原水3が嫌気槽1a,1b,1c
へ流入して水中にある撹拌機構10,10の撹拌作用と
脱窒細菌の作用に基づいて、NO3−N、NO2−Nイオ
ンのN2への還元、即ち脱窒が行われる。
The basic operation of such an apparatus will be described with reference to the embodiment shown in FIG. First, raw water 3 is anaerobic tank 1a, 1b, 1c
The NO 3 —N and NO 2 —N ions are reduced to N 2 , that is, denitrification is performed based on the stirring action of the stirring mechanisms 10 and 10 in the water and the action of the denitrifying bacteria.

【0024】次に原水3が好気槽2a,2b,2c,2
d,2eに順次流入して、ブロワ5の駆動に伴って散気
管4,4,4からのエアレーションによる曝気が行わ
れ、硝化菌の作用に基づいてアンモニア性窒素NH4
NのNO2−N又はNO3−Nへの酸化、即ち硝化が行わ
れる。
Next, raw water 3 is converted into aerobic tanks 2a, 2b, 2c, 2
The air is aerated by aeration from the air diffusers 4, 4 and 4 as the blower 5 is driven, and the ammonia nitrogen NH 4 − is generated based on the action of nitrifying bacteria.
Oxidation of N to NO 2 —N or NO 3 —N, that is, nitrification is performed.

【0025】従って硝化反応は硝化菌によるアンモニア
性窒素の酸化作用であり、硝化速度はアンモニア性窒素
の減少速度又はNOX−N(NO2−N+NO3−N)の
増加速度として表わすことができる。
[0025] Thus nitrification reaction is oxidation of ammonium nitrogen by nitrifying bacteria, nitrification rate can be expressed as an increase rate of decreasing speed or NO X -N ammoniacal nitrogen (NO 2 -N + NO 3 -N ) .

【0026】他方の脱窒反応は 2NO3 -+5(H2) → N2↑+2OH-+2H2O として表わすことができる。The other denitrification reaction can be expressed as 2NO 3 +5 (H 2 ) → N 2 ↑ + 2OH + 2H 2 O.

【0027】上記の作用時に、ATU−Rr計15で測
定された値に基づいて演算された硝化反応にかかる最大
酸素消費速度〔Nit−Rr〕max値17、DO計16
により測定されたDO値及びKdo(半飽和定数mg-O2/
l)18とにより、硝化反応にかかる酸素消費速度の真
値〔Nit−Rr〕real19が求められて硝化反応制御
装置20に入力され、該硝化反応制御装置20から出力
された設定値に基づいてブロワ5の送風量をコントロー
ルするDO制御21と余剰汚泥引抜ポンプ9の稼働をコ
ントロールして硝化菌の流出量を減らす等のSRT制御
22とが実施される。
During the above operation, the maximum oxygen consumption rate [Nit-Rr] max value 17 for the nitrification reaction calculated on the basis of the value measured by the ATU-Rr meter 15 and the DO meter 16 were calculated.
DO value and Kdo (half-saturation constant mg-O 2 /
l) and 18, the true value [Nit-Rr] real 19 of the oxygen consumption rate involved in the nitrification reaction is obtained and input to the nitrification reaction control device 20, and based on the set value output from the nitrification reaction control device 20. The DO control 21 for controlling the air flow rate of the blower 5 and the SRT control 22 for controlling the operation of the excess sludge drawing pump 9 to reduce the outflow amount of nitrifying bacteria are carried out.

【0028】最終沈澱池7内に沈降した汚泥の一部は汚
泥返送ポンプ8により嫌気槽1aに返送され、他の汚泥
は余剰汚泥引抜ポンプ9により余剰汚泥処理装置に送り
込まれて処理される。最終沈澱池7の上澄液は処理水1
1として図外の消毒槽等を経由してから放流される。
A part of the sludge settled in the final settling basin 7 is returned to the anaerobic tank 1a by the sludge return pump 8, and the other sludge is sent to the excess sludge treatment device by the excess sludge drawing pump 9 for treatment. The supernatant of the final sedimentation tank 7 is treated water 1
It is discharged after passing through a disinfection tank (not shown) as No. 1.

【0029】上記のATU−Rr計15は、通常好気槽
における硝化反応の進行状況をモニターするために用い
られる。即ち、酸素利用速度(oxygen utilization rat
e respiration,以下Rrと略称する)には有機物の酸
化分解の際に消費される酸素量と、活性汚泥の内生呼吸
に消費される酸素量及び硝化反応で消費される酸素量と
が含まれる。
The above ATU-Rr meter 15 is usually used to monitor the progress of nitrification reaction in an aerobic tank. That is, oxygen utilization rat
e respiration, hereinafter abbreviated as Rr) includes the amount of oxygen consumed during oxidative decomposition of organic matter, the amount of oxygen consumed for endogenous respiration of activated sludge, and the amount of oxygen consumed for nitrification reaction. .

【0030】この値は有機物の除去や内生呼吸による呼
吸速度、即ち、全酸素消費速度から硝化反応に伴う酸素
消費速度を差し引いた値として表わされる。従って硝化
反応の進行状況は、Rrと硝化抑制剤であるN−アリル
チオ尿素(化学式C482S,以下ATUと略称す
る)を添加して測定したRrの差(ATU−Rr)から
求めることができる。
This value is expressed as a respiratory rate due to removal of organic substances and endogenous respiration, that is, a value obtained by subtracting the oxygen consumption rate associated with the nitrification reaction from the total oxygen consumption rate. Therefore, the progress of the nitrification reaction is based on the difference (ATU-Rr) between Rr and Rr measured by adding N-allylthiourea (chemical formula C 4 H 8 N 2 S, hereinafter abbreviated as ATU), which is a nitrification inhibitor. You can ask.

【0031】上記の差を〔Nit−Rr〕とすると、 〔Nit−Rr〕=〔Rr〕−〔ATU−Rr〕・・・・・・・・・・(2) となる。つまり〔Nit−Rr〕は硝化に伴う酸素消費
速度であり、この値が小さければ硝化反応が終了し、大
きければ硝化反応が終了していないものと判断すること
ができる。この値から好気槽2a内の硝化速度を推定す
ることが可能である。
When the difference is [Nit-Rr], [Nit-Rr] = [Rr]-[ATU-Rr] (2) In other words, [Nit-Rr] is the oxygen consumption rate associated with nitrification. If this value is small, it can be determined that the nitrification reaction has ended, and if it is large, the nitrification reaction has not ended. From this value, the nitrification rate in the aerobic tank 2a can be estimated.

【0032】そして前記(2)式における〔Nit−R
r〕の値が大きく、硝化反応を高めなければならない時
には、汚泥返送ポンプ8による最終沈澱池7から嫌気槽
1に戻す汚泥量を多くすることにより、活性汚泥浮遊物
であるMLSSを高め、且つ余剰汚泥引抜ポンプ9の制
御により汚泥滞留時間であるSRTを調整し、好気槽2
による硝化が順調に行われている場合には、硝化液循環
ポンプ6の作用に基づく好気槽2から嫌気槽1に対する
硝化液の返送量を多くし(実用上では200%まで)、
液の循環比を高めることにより、窒素の除去率を大きく
することができる。
[Nit-R in the above equation (2)
When the value of r] is large and the nitrification reaction must be enhanced, the amount of sludge returned from the final settling tank 7 to the anaerobic tank 1 by the sludge return pump 8 is increased to increase the MLSS which is the activated sludge suspended matter, and By controlling the excess sludge drawing pump 9, the SRT, which is the sludge retention time, is adjusted, and the aerobic tank 2
In the case where the nitrification by means of is carried out smoothly, the return amount of the nitrification solution from the aerobic tank 2 to the anaerobic tank 1 based on the action of the nitrification solution circulation pump 6 is increased (up to 200% in practical use),
By increasing the circulation ratio of the liquid, the nitrogen removal rate can be increased.

【0033】又、夜間等の低負荷時には〔Nit−R
r〕の値も極めて小さくなるので、好気槽における曝気
量を低くするとともに硝化液の循環量を低減するとか、
MLSSの濃度を高く保持して嫌気槽1の溶存酸素の消
費量を拡大する等の制御を実施することによって最適な
運転管理を実施することが出来る。
When the load is low at night, [Nit-R]
Since the value of r] is also extremely small, it is necessary to reduce the aeration amount in the aerobic tank and reduce the circulation amount of the nitrification solution.
Optimal operation control can be performed by performing control such as maintaining a high MLSS concentration and increasing the amount of dissolved oxygen consumed in the anaerobic tank 1.

【0034】次に硝化反応モデルについて説明する。前
記硝化菌の比増殖速度μは次式で表わされる。
Next, the nitrification reaction model will be described. The specific growth rate μ of the nitrifying bacteria is expressed by the following equation.

【0035】 μ=μmax・[exp(θ(t−15))]・[1−0.833(7.2−pH)]・[DO/(DO+Kdo)]・・・(3) ここでμ:比増殖速度(l/day),μmax=最大比増殖速
度(1/day) θ:温度係数(−),Kdo:半飽和定数(mg-O2/l),D
O:溶存酸素(mg/l),t:水温(℃) 又、硝化速度Gは下記の式(4)のように表わされる。 G=(μ・XN・Y・Vt)/24・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(4) ここでXN:硝化菌量(mg),Y:収率(-),Vt:反応
槽容積(l) 式(3)(4)より、pH,水温,流入アンモニア濃度
等の運転条件が一定の時、硝化速度GはDOについて式
(5)で表わされる。 G=Gmax・(DO/(DO+Kdo))・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(5) ここでGmax:最大硝化速度(mg-N/L/h) 又、図3によれば硝化速度(mg-N/L/h)と〔Nit−R
r〕(mg-O2/L/h)はほぼ比例関係にあることが実験的
に確認されているため、〔Nit−Rr〕についても硝
化速度と同様に以下の式で表わすことができる。 〔Nit−Rr〕=〔Nit−Rr〕max・〔DO/(DO+Kdo)〕・・・・(6) RrはDOの変化曲線の安定した部分で直線近似して求
められるが、DOが低くなるとDOの変化速度が遅くな
り、〔Nit−Rr〕はDOによって値が変化する。つ
まり種々のDOにおけるDO変化曲線の傾きを求め、前
記(6)式を回帰式として最適化することによりKdo
を求めることができる。
Μ = μ max · [exp (θ (t−15))] · [1−0.833 (7.2−pH)] · [DO / (DO + Kdo)] (3) where μ: specific growth Velocity (l / day), μ max = maximum specific growth rate (1 / day) θ: Temperature coefficient (−), Kdo: Half-saturation constant (mg-O 2 / l), D
O: dissolved oxygen (mg / l), t: water temperature (° C) The nitrification rate G is expressed by the following equation (4). G = (μ ・ X N・ Y ・ V t ) / 24 ... (4) Here X N : amount of nitrifying bacteria (mg), Y: yield (-), V t : reaction tank volume (l) From equations (3) and (4), operating conditions such as pH, water temperature, and inflow ammonia concentration are constant. At this time, the nitrification rate G is represented by the equation (5) for DO. G = G max · (DO / (DO + Kdo)) ········ (5) where G max : maximum Nitrification rate (mg-N / L / h) According to Fig. 3, nitrification rate (mg-N / L / h) and [Nit-R]
It has been experimentally confirmed that r] (mg-O 2 / L / h) is in a substantially proportional relationship, and thus [Nit-Rr] can be expressed by the following equation, like the nitrification rate. [Nit-Rr] = [Nit-Rr] max · [DO / (DO + Kdo)] ··· (6) Rr is linearly approximated at a stable portion of the DO change curve, but when DO becomes low The rate of change of DO becomes slow, and the value of [Nit-Rr] changes depending on DO. That is, the slope of the DO change curve in various DOs is obtained, and the above equation (6) is optimized as a regression equation to obtain Kdo.
Can be requested.

【0036】ここで実際の反応槽の律速を受けた〔Ni
t−Rr〕を〔Nit−Rr〕realとすると、最適化さ
れた〔Nit−Rr〕maxと〔Kdo〕から〔Nit−
Rr〕realは下記の(7)式となる。
Here, the rate-determining effect of the actual reaction tank is applied [Ni
When t-Rr] is [Nit-Rr] real , the optimized [Nit-Rr] max and [Kdo] are converted into [Nit-Rr] max.
Rr] real is expressed by the following expression (7).

【0037】 〔Nit−Rr〕real=〔Nit−Rr〕max・〔DO/(DO+Kdo)〕・・・(7) ここでDOは反応槽のDO実測値 この〔Nit−Rr〕realと硝化速度の相関を図4に示
す。相関係数は0.83となり、〔Nit−Rr〕と硝
化速度との相関係数0.80よりも高い値となった。こ
れは〔Nit−Rr〕realと硝化速度はDO律速を受け
ている実際の硝化菌の呼吸速度であるが、〔Nit−R
r〕はDO律速を受けていない値、つまり実際には律速
を受けていてもそれを考慮しない、いわば硝化菌の呼吸
速度の最大値であるため、〔Nit−Rr〕realと硝化
速度の相関は律速を受けている硝化速度と律速を受けて
いない〔Nit−Rr〕の相関よりも高くなったものと
考えられる。
[0037] [Nit-Rr] real = [Nit-Rr] max · [DO / (DO + Kdo)] (7) where DO is the DO measured value of the reaction vessel [Nit-Rr] real and nitrification rate Is shown in FIG. The correlation coefficient was 0.83, which was higher than the correlation coefficient of 0.80 between [Nit-Rr] and the nitrification rate. This is [Nit-Rr] real and the nitrification rate is the actual respiration rate of nitrifying bacteria that is DO-controlled.
r] is a value that is not subjected to DO rate control, that is, it is the maximum value of the respiration rate of nitrifying bacteria that is not considered even if it is actually rate controlled, so the correlation between [Nit-Rr] real and nitrification rate is Is considered to be higher than the correlation between the nitrification rate that is rate-limited and the rate [Nit-Rr] that is not rate-controlled.

【0038】従って〔Nit−Rr〕よりも〔Nit−
Rr〕realを用いたDO制御の方が精度を高めることが
できる。
Therefore, [Nit-Rr] is more important than [Nit-Rr].
DO control using Rr] real can improve accuracy.

【0039】次に図5のフロー図に基づいて前記制御の
実際例を説明する。先ずステップ100で制御がスタート
し、ステップ101で〔Rr〕,〔ATU−Rr〕を測定
する。次にステップ102で上記〔ATU−Rr〕値から
〔Kdo〕と〔Nit−Rr〕maxが推定され、ステッ
プ103でDOが測定される。
Next, an actual example of the control will be described based on the flow chart of FIG. First, the control starts in step 100, and [Rr] and [ATU-Rr] are measured in step 101. Next, in step 102, [Kdo] and [Nit-Rr] max are estimated from the [ATU-Rr] value, and in step 103, DO is measured.

【0040】ステップ104で上記測定値から〔Nit−
Rr〕realが推定され、ステップ105で〔Nit−R
r〕real≦下限値であるか否かを判定し、YESの場合に
はステップ106で最適なDO値を設定し、NO,即ち測定
値が下限値以上である場合にはそのステップ107で制御
を終了する。
In step 104, [Nit-
Rr] real is estimated, and in step 105, [Nit-R
r] real ≤ lower limit value is determined, and if YES, an optimal DO value is set in step 106, and if NO, that is, the measured value is equal to or greater than the lower limit value, control is performed in step 107 To finish.

【0041】[0041]

【発明の効果】以上詳細に説明したように、本発明にか
かる循環式硝化脱窒法における硝化反応制御方法及び装
置によれば、原水が嫌気槽で脱窒され、好気槽での曝気
と硝化細菌の作用に基づく硝化が行われる一方、好気槽
からサンプリングされた試料に対してATU−Rr計と
DO計によって硝化反応にかかる最大酸素消費速度〔N
it−Rr〕maxと〔DO〕が測定され、この値と半飽
和定数〔Kdo〕及びDO値とによって硝化反応にかか
る酸素消費速度の真値〔Nit−Rr〕realを求めて硝
化反応制御装置に入力することにより、反応の律速とな
っている好気槽内の硝化速度が誤差なく推定されて、好
気槽のDO制御及び汚泥滞留時間であるSRT制御精度
を高めることができる。
As described in detail above, according to the method and apparatus for controlling the nitrification reaction in the circulating nitrification denitrification method according to the present invention, the raw water is denitrified in the anaerobic tank, and aeration and nitrification in the aerobic tank are performed. While the nitrification based on the action of bacteria is performed, the maximum oxygen consumption rate [N] for the nitrification reaction [N] is measured by the ATU-Rr meter and the DO meter on the sample sampled from the aerobic tank.
It-Rr] max and [DO] are measured, and the true value [Nit-Rr] real of the oxygen consumption rate involved in the nitrification reaction is obtained from these values and the half-saturation constant [Kdo] and the DO value to determine the nitrification reaction controller. By inputting into, the nitrification rate in the aerobic tank, which is the rate-determining reaction, can be estimated without error, and the DO control of the aerobic tank and the SRT control accuracy which is the sludge retention time can be improved.

【0042】特に循環式硝化脱窒法によって効率的に窒
素を除去するためには、嫌気槽における脱窒と好気槽に
おける硝化を最適な運転条件に保持することが要求され
る上、窒素除去工程は硝化工程に影響される度合が高い
ため、高い窒素除去率を維持するには硝化反応と脱窒反
応のバランスを良好に保持することが要求されるもので
あるが、本実施例を用いた硝化速度の正確な推定から嫌
気槽における窒素除去率が向上するという効果が得られ
る。
In particular, in order to remove nitrogen efficiently by the circulation type nitrification denitrification method, it is required to maintain denitrification in the anaerobic tank and nitrification in the aerobic tank under the optimum operating conditions, and the nitrogen removing step. Is highly affected by the nitrification process, it is necessary to maintain a good balance between the nitrification reaction and the denitrification reaction in order to maintain a high nitrogen removal rate. An accurate estimation of the nitrification rate has the effect of improving the nitrogen removal rate in the anaerobic tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例にかかる循環式硝化脱窒法の一例を示
す概要図。
FIG. 1 is a schematic diagram showing an example of a circulating nitrification denitrification method according to the present embodiment.

【図2】本実施例を回分式反応槽に適用した例を示す概
要図。
FIG. 2 is a schematic diagram showing an example in which the present embodiment is applied to a batch reaction tank.

【図3】硝化速度と硝化反応にかかる酸素消費速度の相
関を示すグラフ。
FIG. 3 is a graph showing the correlation between nitrification rate and oxygen consumption rate involved in nitrification reaction.

【図4】硝化速度と硝化反応にかかる酸素消費速度の真
値の相関を示すグラフ。
FIG. 4 is a graph showing the correlation between the nitrification rate and the true value of the oxygen consumption rate involved in the nitrification reaction.

【図5】本実施例の制御の実際を示すチャート図。FIG. 5 is a chart showing the actual control of the present embodiment.

【図6】従来の循環式硝化脱窒法の一例を示す概要図。FIG. 6 is a schematic diagram showing an example of a conventional circulating nitrification denitrification method.

【符号の説明】[Explanation of symbols]

1a,1b,1c…嫌気槽 2a,2b,2c,2d,2e…好気槽 4…散気管 5…ブロワ 6…硝化液循環ポンプ 7…最終沈澱池 8…汚泥返送ポンプ 9…余剰汚泥引抜ポンプ 13…仕切板 15…ATU−Rr計 16…DO計 20…硝化反応制御装置 21…DO制御 22…SRT制御 25…回分式反応槽 1a, 1b, 1c ... Anaerobic tank 2a, 2b, 2c, 2d, 2e ... Aerobic tank 4 ... Air diffuser 5 ... Blower 6 ... Nitrification solution circulation pump 7 ... Final sedimentation tank 8 ... Sludge return pump 9 ... Excess sludge extraction pump 13 ... Partition plate 15 ... ATU-Rr meter 16 ... DO meter 20 ... Nitrification reaction control device 21 ... DO control 22 ... SRT control 25 ... Batch reaction tank

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年11月6日[Submission date] November 6, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】一方、生物学的に窒素とリンを同時に除去
する方法として、従来の活性汚泥法の変法として循環式
硝化脱窒法が注目されている。これは例えば図6に示し
たように、生物反応槽を溶存酸素(以下DOと略称)の
存在しない嫌気槽1a,1bとDOの存在する複数段の
好気槽2a,2b,2cとに仕切り、この嫌気槽1a,
1bにより、流入する原水3と循環液を無酸素状態下で
撹拌機構10による撹拌を行って活性汚泥中の脱窒菌に
よる脱窒を行い、次に好気槽2a,2b,2cの内方に
配置した散気管4にブロワ5から空気を供給することに
より、エアレーションによる酸素の存在下で活性汚泥に
よる有機物の酸化分解と硝化菌によるアンモニアの硝化
を行う。
On the other hand, as a method for biologically removing nitrogen and phosphorus simultaneously, a circulation type nitrification denitrification method has been attracting attention as a modification of the conventional activated sludge method. For example, as shown in FIG. 6, the biological reaction tank is divided into anaerobic tanks 1a and 1b in which dissolved oxygen (hereinafter abbreviated as DO) does not exist and a plurality of aerobic tanks 2a, 2b and 2c in which DO exists. , This anaerobic tank 1a,
1b, the inflowing raw water 3 and the circulating liquid are agitated by an agitation mechanism 10 under anoxic conditions to denitrify by denitrifying bacteria in the activated sludge, and then to the inside of the aerobic tanks 2a, 2b, 2c. By supplying air from the blower 5 to the arranged air diffuser 4, oxidative decomposition of organic matter by activated sludge and nitrification of ammonia by nitrifying bacteria are performed in the presence of oxygen by aeration.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0016】かかる循環式硝化脱窒法における硝化反応
制御方法及び装置によれば、原水と循環液中のNO
又はNO 嫌気槽もしくは嫌気条件下で脱窒され、
好気槽もしくは好気条件下での曝気と硝化細菌の作用に
基づく硝化が行われる一方、好気槽からサンプリングさ
れた試料に対してATU−Rr計とDO計によって硝化
反応にかかる最大酸素消費速度〔Nit−Rr〕max
と〔DO〕が測定され、この値と半飽和定数〔Kdo〕
及びDO値とによって硝化反応にかかる酸素消費速度の
真値〔Nit−Rr〕realを求めて硝化反応制御装
置に入力することにより好気槽内の硝化速度が推定して
好気槽へのブロワの送風量をコントロールするDO制御
及び汚泥滞留時間であるSRT制御が実施される。
According to the method and apparatus for controlling the nitrification reaction in the circulation type nitrification denitrification method , NO 2 in the raw water and the circulating liquid is
Or NO 3 is denitrified in an anaerobic tank or under anaerobic conditions,
While the aeration in an aerobic tank or under aerobic conditions and nitrification based on the action of nitrifying bacteria are performed, the maximum oxygen consumption required for the nitrification reaction by the ATU-Rr meter and the DO meter on the sample sampled from the aerobic tank Speed [Nit-Rr] max
And [DO] were measured, and this value and the half-saturation constant [Kdo]
And the DO value, the true value [Nit-Rr] real of the oxygen consumption rate involved in the nitrification reaction is obtained and input to the nitrification reaction control device to estimate the nitrification rate in the aerobic tank, and to blower to the aerobic tank. DO control for controlling the amount of air blown and SRT control for sludge retention time are performed.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0026】他方の脱窒反応は 2NO +5(H) →N↑+2OH
O として表わすことができる。
[0026] On the other hand of the denitrification reaction is 2NO 3 - +5 (H 2) → N 2 ↑ + 2OH - + 4 H 2
It can be represented as O 2.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0033】又、夜間等の低負荷時には〔Nit−R
r〕の値も極めて小さくなるので、好気槽における曝気
量を低くするとともに硝化液の循環量を低減する。ま
た、高負荷時にはMLSSの濃度を高く保持して脱窒速
度を上げるといった運転管理を実施することが出来る。
When the load is low at night, [Nit-R]
Since the value of r] is also extremely small, the amount of aeration in the aerobic tank is reduced and the circulation amount of nitrification liquid is reduced. When the load is high, the concentration of MLSS is kept high and denitrification speed is increased.
It is possible to carry out operation management such as raising the degree .

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0039[Correction target item name] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0039】次に図5のフロー図に基づいて前記制御の
実際例を説明する。先ずステップ100で制御がスター
トし、ステップ101で〔Rr〕,〔ATU−Rr〕を
測定する。次にステップ102で上記〔Rr〕,〔AT
U−Rr〕値から〔Kdo〕と〔Nit−Rr〕max
が推定され、ステップ103でDOが測定される。
Next, an actual example of the control will be described based on the flow chart of FIG. First, control starts at step 100, and [Rr] and [ATU-Rr] are measured at step 101. Next, at step 102, the above [Rr] , [AT
U-Rr] value to [Kdo] and [Nit-Rr] max
Is estimated and DO is measured in step 103.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原水を嫌気槽で脱窒細菌により脱窒を行
う工程と、好気槽で硝化細菌により硝化を行う工程と、
沈澱槽で固液分離して上澄液を処理水として放流する工
程とを含む循環式硝化脱窒法による処理において、上記
好気槽に、全酸素消費速度から硝化反応に伴う酸素消費
速度を差し引いた値の計測器と溶存酸素濃度計を付設
し、これらの測定値から求められる硝化反応にかかる最
大酸素消費速度〔Nit−Rr〕max値と半飽和定数
〔Kdo〕及びDO値とによって硝化反応にかかる酸素
消費速度の真値〔Nit−Rr〕realを求め、硝化反応
制御装置に入力して好気槽内の硝化速度を推定し、その
値に応じて好気槽へのブロワの送風量をコントロールす
るDO制御及び汚泥滞留時間であるSRT制御を実施す
ることを特徴とする循環式硝化脱窒法における硝化反応
制御方法。
1. A step of denitrifying raw water with denitrifying bacteria in an anaerobic tank, and a step of nitrifying with nitrifying bacteria in an aerobic tank.
In the treatment by the circulation type nitrification denitrification method including the step of solid-liquid separation in the settling tank and discharging the supernatant as treated water, the oxygen consumption rate accompanying the nitrification reaction is subtracted from the total oxygen consumption rate in the aerobic tank. And a dissolved oxygen concentration meter are attached, and the nitrification reaction is performed by the maximum oxygen consumption rate [Nit-Rr] max value and the half-saturation constant [Kdo] and DO value, which are obtained from these measured values. The true value of the oxygen consumption rate [Nit-Rr] real is calculated, input to the nitrification reaction controller to estimate the nitrification rate in the aerobic tank, and the blower air flow to the aerobic tank is calculated according to that value. A nitrification reaction control method in a circulation type nitrification denitrification method, characterized in that DO control for controlling the temperature and SRT control for sludge retention time are performed.
【請求項2】 前記最大酸素消費速度〔Nit−Rr〕
maxと半飽和定数〔Kdo〕から硝化反応にかかる酸素
消費速度の真値〔Nit−Rr〕realを、 〔Nit−Rr〕real=〔Nit−Rr〕max・〔DO/(DO+Kdo)〕・・・(7) (DOは反応槽のDO実測値) 式に基づいて求めた請求項1記載の循環式硝化脱窒法に
おける硝化反応制御方法。
2. The maximum oxygen consumption rate [Nit-Rr]
From the max and the half-saturation constant [Kdo], the true value [Nit-Rr] real of the oxygen consumption rate involved in the nitrification reaction is [Nit-Rr] real = [Nit-Rr] max · [DO / (DO + Kdo)] · · (7) (DO is an actual measured value of DO in a reaction tank) The method for controlling nitrification reaction in the circulating nitrification denitrification method according to claim 1, which is obtained based on the equation.
【請求項3】 原水を嫌気槽で脱窒細菌により脱窒を行
う工程と、好気槽で硝化細菌により硝化を行う工程と、
沈澱槽で固液分離して上澄液を処理水として放流する工
程とを含む循環式硝化脱窒法による処理において、上記
好気槽に付設された全酸素消費速度から硝化反応に伴う
酸素消費速度を差し引いた値の計測器と溶存酸素濃度計
と、これら計測器と溶存酸素濃度計から硝化反応にかか
る最大酸素消費速度〔Nit−Rr〕max値と半飽和定
数〔Kdo〕及びDO値とから硝化反応にかかる酸素消
費速度の真値〔Nit−Rr〕realを求めて、好気槽内
の硝化速度を推定する硝化反応制御装置を具備して成る
ことを特徴とする循環式硝化脱窒法における硝化反応制
御装置。
3. A step of denitrifying raw water with denitrifying bacteria in an anaerobic tank, and a step of nitrifying with nitrifying bacteria in an aerobic tank.
In the treatment by the circulation type nitrification denitrification method including the step of solid-liquid separation in the settling tank and discharging the supernatant as treated water, the oxygen consumption rate accompanying the nitrification reaction from the total oxygen consumption rate attached to the aerobic tank From the measuring instrument and the dissolved oxygen concentration meter with the value obtained by subtracting, the maximum oxygen consumption rate [Nit-Rr] max value and the half-saturation constant [Kdo] and the DO value required for the nitrification reaction from these measuring instrument and the dissolved oxygen concentration meter. In the circulation type nitrification denitrification method, which is equipped with a nitrification reaction controller for estimating the true value [Nit-Rr] real of the oxygen consumption rate related to the nitrification reaction and estimating the nitrification rate in the aerobic tank. Nitrification reaction controller.
JP20371495A 1995-08-10 1995-08-10 Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor Pending JPH0947780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20371495A JPH0947780A (en) 1995-08-10 1995-08-10 Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20371495A JPH0947780A (en) 1995-08-10 1995-08-10 Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor

Publications (1)

Publication Number Publication Date
JPH0947780A true JPH0947780A (en) 1997-02-18

Family

ID=16478637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20371495A Pending JPH0947780A (en) 1995-08-10 1995-08-10 Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor

Country Status (1)

Country Link
JP (1) JPH0947780A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104979A (en) * 1999-10-13 2001-04-17 Meidensha Corp Wastewater treatment method
JP2001137881A (en) * 1999-11-10 2001-05-22 Hitachi Ltd Sewage water simulation device
JP2012200705A (en) * 2011-03-28 2012-10-22 Swing Corp Nitrogen-containing wastewater treatment method and apparatus
WO2018179476A1 (en) 2017-03-30 2018-10-04 メタウォーター株式会社 Waste water treatment system, device for controlling air supply volume, and method for controlling air supply volume

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001104979A (en) * 1999-10-13 2001-04-17 Meidensha Corp Wastewater treatment method
JP2001137881A (en) * 1999-11-10 2001-05-22 Hitachi Ltd Sewage water simulation device
JP2012200705A (en) * 2011-03-28 2012-10-22 Swing Corp Nitrogen-containing wastewater treatment method and apparatus
WO2018179476A1 (en) 2017-03-30 2018-10-04 メタウォーター株式会社 Waste water treatment system, device for controlling air supply volume, and method for controlling air supply volume
US11597667B2 (en) 2017-03-30 2023-03-07 Metawater Co., Ltd. Wastewater treatment system, air supply amount control device, and air supply amount control method

Similar Documents

Publication Publication Date Title
JP2803941B2 (en) Control method of intermittent aeration type activated sludge method
US4159243A (en) Process and system for controlling an orbital system
JP4334317B2 (en) Sewage treatment system
JPH07299495A (en) Nitrification accelerating method for activated sludge circulation modulating method and method for predicting nitrification rate
JPH0947780A (en) Method for controlling nitration reaction in circulation-type nitrating and denitrifying process and device therefor
JP3271521B2 (en) Wastewater nitrogen removal method and apparatus
JPH0724492A (en) Method for controlling operation of activated sludge circulation change method
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JPH07148496A (en) Method for controlling operation of modified process for circulation of activated sludge
JP3303352B2 (en) Operation control method for batch activated sludge treatment
JP3608256B2 (en) Operation control method for circulating nitrification denitrification
JPH0780494A (en) Controlling method for operation of activated sludge circulation modification method
JPH08192179A (en) Device for setting residence time of sludge in activated sludge process
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
JP3708752B2 (en) Nitrate nitrogen biological treatment method and apparatus
JP3303475B2 (en) Operation control method of activated sludge circulation method
JPH08117793A (en) Monitoring method of nitration reaction and denitrification reaction state in circulating nitration/ denitrification method
JP2001009497A (en) Biological water treatment and equipment therefor
JP3690537B2 (en) Intermittent aeration
JPH0691292A (en) Operation control method of aerobic-anaerobic active sludge treatment apparatus
JP4453287B2 (en) Sewage treatment method and sewage treatment control system
JPH09174090A (en) Substrate rate determining estimation method in nitrification reaction
JP3782738B2 (en) Wastewater treatment method
JP2005000715A (en) Method for controlling operation of aerating stirrer
JPH01130790A (en) Treatment of sewage

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

A521 Written amendment

Effective date: 20050614

Free format text: JAPANESE INTERMEDIATE CODE: A821