JP2002018471A - Method for treating organic wasteliquid - Google Patents

Method for treating organic wasteliquid

Info

Publication number
JP2002018471A
JP2002018471A JP2000208229A JP2000208229A JP2002018471A JP 2002018471 A JP2002018471 A JP 2002018471A JP 2000208229 A JP2000208229 A JP 2000208229A JP 2000208229 A JP2000208229 A JP 2000208229A JP 2002018471 A JP2002018471 A JP 2002018471A
Authority
JP
Japan
Prior art keywords
sludge
ozone
amount
treatment
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000208229A
Other languages
Japanese (ja)
Other versions
JP4622057B2 (en
Inventor
Yoshio Sakai
好雄 堺
Masanori Wakayama
正憲 若山
Haruo Miyake
晴男 三宅
Akio Oyama
昭男 大山
Masahide Shibata
雅秀 柴田
Tetsuro Fukase
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Sewage Works Agency
Kurita Water Industries Ltd
Original Assignee
Japan Sewage Works Agency
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Sewage Works Agency, Kurita Water Industries Ltd filed Critical Japan Sewage Works Agency
Priority to JP2000208229A priority Critical patent/JP4622057B2/en
Publication of JP2002018471A publication Critical patent/JP2002018471A/en
Application granted granted Critical
Publication of JP4622057B2 publication Critical patent/JP4622057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method for treating organic wastewater wherein an amount of a medicine and/or an energy to be used in modification of sludge for reducing a volume of the sludge can be modified by making neither too much nor too less a necessary minimum amount, the sludge can be efficiently reduced in a volume to prevent environmental pollution, and treating equipment can be miniaturized. SOLUTION: Organic wastewater 4 is introduced into an aeration tank 2 of an aerobe treating system 1, aerobically, treated and separated into a solid and a liquid by a solid and liquid separator 3. The separated sludge or extracted sludge 24 extracted from mixed solution is introduced into an ozone treating tank 22 and the like of a modification treating system 21, modification treatment of ozone treatment and the like are carried out, and the product is returned to the aeration tank. In that case, a concentration of the sludge in the extracted sludge 24 is measured, and the sludge-extracted amount or the amount of another medicine and/or energy are controlled so that the amount of the medicine and/or energy per the dried amount of the sludge become constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性排液を活性
汚泥の存在下に好気性生物処理する方法、特に活性汚泥
処理系における余剰汚泥を減容化する有機性排液の処理
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating an organic effluent in an aerobic biological treatment in the presence of activated sludge, and more particularly to a method for treating an organic effluent to reduce excess sludge in an activated sludge treatment system. .

【0002】[0002]

【従来の技術】活性汚泥処理法などのように、好気性微
生物の作用を利用して、有機性排液を好気条件で処理す
る好気性生物処理方法は、処理コストが安く、処理性能
も優れているため、一般に広く利用されているが、難脱
水性の余剰汚泥が大量に発生する。このため汚泥を減容
化する処理方法が注目されている。
2. Description of the Related Art An aerobic biological treatment method, such as an activated sludge treatment method, in which an organic effluent is treated under aerobic conditions by utilizing the action of an aerobic microorganism, has a low treatment cost and a high treatment performance. Because of its superiority, it is widely used in general, but generates a large amount of hardly dewaterable surplus sludge. For this reason, a treatment method for reducing the volume of sludge has attracted attention.

【0003】このような汚泥の減容化を行う処理方法と
して、曝気槽または固液分離装置から汚泥を引き抜き、
この引抜汚泥をオゾン処理、加熱処理、酸またはアルカ
リ処理等の改質処理により易生物分解性に改質し、改質
された汚泥を曝気槽に返送して生物分解させる方法が提
案されている(例えば特開平7−116685号)。
As a treatment method for reducing the volume of such sludge, sludge is extracted from an aeration tank or a solid-liquid separator,
A method has been proposed in which the extracted sludge is reformed to be easily biodegradable by a reforming treatment such as ozone treatment, heat treatment, acid or alkali treatment, and the modified sludge is returned to an aeration tank for biodegradation. (For example, JP-A-7-116685).

【0004】この方法では引抜汚泥を易生物分解性に改
質して曝気槽に返送することにより、易分解性となった
改質汚泥を曝気槽内の微生物に資化させ、これにより余
剰汚泥の発生量が減少する。この場合負荷BODから生
成する汚泥量よりも多い量の引抜汚泥を改質して返送す
ると、余剰汚泥量を実質的にゼロにすることができる。
[0004] In this method, the extracted sludge is reformed to be easily biodegradable and returned to the aeration tank, whereby the easily degraded modified sludge is assimilated into microorganisms in the aeration tank, thereby producing excess sludge. The amount of generation decreases. In this case, if the amount of the extracted sludge which is larger than the amount of the sludge generated from the load BOD is reformed and returned, the surplus sludge amount can be substantially reduced to zero.

【0005】このような処理方法では、生成汚泥量は流
入する負荷BODに比例するので、流入する負荷量に一
定の係数を乗じた量の汚泥を引き抜いて改質処理するこ
とにより、所定の減容化を行うことができる。改質処理
としてオゾン処理を行う場合、想定される負荷量に対応
する一定量の汚泥を引き抜き、想定される汚泥濃度に対
応する汚泥乾物量を改質するのに必要な一定量のオゾン
を注入して改質を行っている。
In such a treatment method, the amount of generated sludge is proportional to the inflowing load BOD. Therefore, a predetermined amount of sludge is extracted and reformed by multiplying the amount of inflowing load by a constant coefficient to thereby reduce the predetermined amount of sludge. Can be performed. When performing ozone treatment as a reforming process, a certain amount of sludge corresponding to the expected load is drawn out, and a certain amount of ozone required to reform the sludge dry matter corresponding to the expected sludge concentration is injected. And reforming.

【0006】ところが流入する負荷BODは変動し、ま
た曝気槽や固液分離装置の処理条件も変動するため、引
抜汚泥の汚泥濃度も変動する。これに対して従来は負荷
および汚泥濃度を一定量に仮定して、一定流量で汚泥を
引き抜き一定量のオゾン注入を行っているため、実際の
汚泥濃度が高い場合にはオゾン注入量が過少となり汚泥
減容化率が低くなる。逆に汚泥濃度が低い場合には過剰
のオゾンが排ガスとして排出されて排オゾン塔での触媒
や活性炭消耗の原因となる。一般的には汚泥濃度が高い
場合を想定してオゾン注入量が決められるため、汚泥濃
度が低い場合には大量の余剰オゾンが排出され、これを
処理するための処理装置が大型化するという問題点があ
る。このようなことはオゾン処理に限らず汚泥改質に他
の薬剤および/またはエネルギーを用いる場合にも同様
の問題がある。
However, the load BOD that flows in fluctuates, and the processing conditions of the aeration tank and the solid-liquid separator also fluctuate, so that the sludge concentration of the extracted sludge also fluctuates. On the other hand, conventionally, assuming that the load and sludge concentration are constant, sludge is extracted at a constant flow rate and a certain amount of ozone is injected, so when the actual sludge concentration is high, the ozone injection amount becomes too small. Sludge volume reduction rate is low. Conversely, when the sludge concentration is low, excess ozone is discharged as exhaust gas, causing exhaustion of the catalyst and activated carbon in the discharged ozone tower. In general, the amount of ozone injected is determined on the assumption that the sludge concentration is high. Therefore, when the sludge concentration is low, a large amount of excess ozone is discharged, and the processing apparatus for processing the ozone becomes large. There is a point. Such a problem is not limited to the ozone treatment but has a similar problem when other chemicals and / or energy are used for sludge reforming.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、汚泥
減容化のための汚泥改質に使用する薬剤および/または
エネルギーの量を過不足なく、必要最少限の量として改
質を行うことができ、これにより効率よく汚泥を減容化
することができ、処理設備を小型化することができる有
機性排液の処理方法を得ることである。
SUMMARY OF THE INVENTION It is an object of the present invention to carry out reforming by using a minimum amount of chemicals and / or energy to be used for sludge reforming for reducing sludge volume. Accordingly, it is an object of the present invention to provide a method for treating an organic waste liquid, which can efficiently reduce the volume of sludge and reduce the size of a treatment facility.

【0008】[0008]

【課題を解決するための手段】本発明は、次の有機性排
液の処理方法である。 (1) 有機性排液を曝気槽に導入して、活性汚泥の存
在下に好気性生物処理する生物処理工程と、曝気槽から
混合液を固液分離装置に導いて固液分離し、分離液を処
理液として排出し、分離汚泥の少なくとも一部を曝気槽
に返送する固液分離工程と、分離汚泥または混合液から
活性汚泥の少なくとも一部を引き抜き、この引抜汚泥に
薬剤および/またはエネルギーを加えて易生物分解性に
改質し、改質汚泥を曝気槽に返送する改質処理工程と、
引抜汚泥中の汚泥濃度を計測する汚泥濃度計測工程と、
引抜汚泥の汚泥乾物量あたりの薬剤および/またはエネ
ルギー量が一定となるように、汚泥引抜量あるいは薬剤
および/またはエネルギー量を制御する制御工程とを含
む有機性排液の処理方法。 (2) 改質処理工程がオゾン処理によるものであり、
制御工程が汚泥乾物量あたりのオゾン消費率を0.00
2〜0.1g−O3/g−SSの範囲で一定とするよう
に、汚泥引抜量またはオゾン注入量を制御する上記
(1)記載の方法。
SUMMARY OF THE INVENTION The present invention is a method for treating an organic wastewater. (1) A biological treatment step of introducing an organic wastewater into an aeration tank and performing aerobic biological treatment in the presence of activated sludge, and conducting a mixed liquid from the aeration tank to a solid-liquid separation device to perform solid-liquid separation and separation. Discharging the liquid as a treatment liquid and returning at least a part of the separated sludge to the aeration tank; and extracting at least a part of the activated sludge from the separated sludge or the mixed liquid, and adding a chemical and / or energy to the extracted sludge. To improve the biodegradability and return the modified sludge to the aeration tank;
A sludge concentration measuring step of measuring the sludge concentration in the extracted sludge,
A control step of controlling the amount of sludge withdrawal or the amount of chemicals and / or energy so that the amount of chemicals and / or energy per sludge dry matter of the extracted sludge is constant. (2) the reforming process is by ozone treatment;
The control process reduces the ozone consumption rate per sludge dry matter by 0.00
2~0.1g-O 3 / g-SS as a constant in the range of, the controlling the sludge withdrawal amount or ozone injection volume (1) The method according.

【0009】本発明において処理の対象となる有機性排
液は、通常の好気性生物処理法により処理される有機物
を含有する排液であるが、難生物分解性の有機物または
無機物が含有されていてもよく、またアンモニア性窒素
等が含有されていてもよい。このような有機性排液とし
ては、下水、し尿、食品工場排水その他の産業排液など
があげられる。
The organic effluent to be treated in the present invention is an effluent containing an organic substance which is treated by a usual aerobic biological treatment method, but contains an organic or inorganic substance which is hardly biodegradable. And ammonia nitrogen or the like may be contained. Such organic effluents include sewage, night soil, food factory effluents and other industrial effluents.

【0010】本発明における好気性生物処理は、有機性
排液を曝気槽に導入して、活性汚泥の存在下に好気性生
物処理を行うように構成する。また固液分離工程は曝気
槽から混合液を固液分離装置に導いて固液分離し、分離
液を処理液として排出し、分離汚泥の少なくとも一部を
曝気槽へ返送するように構成する。このような処理系と
しては、有機性排液を曝気槽で活性汚泥と混合して曝気
し、混合液を固液分離装置において固液分離し、分離汚
泥の一部を曝気槽に返送する標準活性汚泥処理法におけ
る好気性生物処理が一般的であるが、これを変形した他
の処理方法、例えば、環状水路に被処理液を循環させる
オキシデーションデッチ法などでもよい。アンモニア性
窒素を含む排液を処理する場合は硝化脱窒工程を組合せ
て処理することができる。
[0010] The aerobic biological treatment in the present invention is configured such that an organic effluent is introduced into an aeration tank and the aerobic biological treatment is performed in the presence of activated sludge. In the solid-liquid separation step, the mixed liquid is guided from the aeration tank to a solid-liquid separation device to perform solid-liquid separation, the separated liquid is discharged as a treatment liquid, and at least a part of the separated sludge is returned to the aeration tank. As such a treatment system, a standard method is used in which an organic wastewater is mixed with activated sludge in an aeration tank and aerated, the mixed liquid is separated into solid and liquid in a solid-liquid separation device, and a part of the separated sludge is returned to the aeration tank. Aerobic biological treatment in the activated sludge treatment method is generally used, but another modified treatment method such as an oxidation ditch method in which the liquid to be treated is circulated in an annular waterway may be used. When treating the wastewater containing ammoniacal nitrogen, the treatment can be performed in combination with the nitrification and denitrification step.

【0011】本発明では、このような好気性生物処理に
おける処理系からの生物汚泥の一部を引き抜き、この引
抜汚泥を易生物分解性に改質する改質処理を行う。生物
汚泥を引き抜く場合、固液分離装置で分離された分離汚
泥の一部を引き抜くのが好ましいが、曝気槽から混合液
の状態で引き抜いてもよい。分離汚泥から引き抜く場
合、余剰汚泥として排出される部分の一部または全部を
引抜汚泥として引き抜くことができるが、余剰汚泥に加
えて、返送汚泥として曝気槽に返送される返送汚泥の一
部をさらに引き抜いて改質処理することもできる。この
場合系外に排出する余剰汚泥の発生量をより少なくし、
場合によってはゼロにすることができる。なお、本発明
では被処理液中の有機物が微生物により資化されて生成
される生物汚泥を生成汚泥、固液分離装置で処理液と分
離されて得られる汚泥を分離汚泥、固液分離装置から曝
気槽に返送される分離汚泥の一部を返送汚泥、改質処理
されるために曝気槽または固液分離装置から引き抜かれ
る汚泥を引抜汚泥、改質処理がなされた汚泥を改質汚
泥、好気性生物処理系外へ排出される汚泥を余剰汚泥と
称する。
In the present invention, a part of the biological sludge from the treatment system in such aerobic biological treatment is withdrawn, and a reforming treatment for modifying the extracted sludge to be easily biodegradable is performed. When extracting biological sludge, it is preferable to extract a part of the separated sludge separated by the solid-liquid separator, but it is also possible to extract the mixed sludge from the aeration tank. When extracting from the separated sludge, part or all of the portion discharged as excess sludge can be extracted as extracted sludge.In addition to excess sludge, a part of the return sludge returned to the aeration tank as return sludge is further added. It can also be pulled out and subjected to a reforming treatment. In this case, the amount of excess sludge discharged out of the system is reduced,
In some cases, it can be zero. In the present invention, biological sludge produced by assimilation of organic matter in the liquid to be treated is assimilated by microorganisms, sludge is separated from the treatment liquid in the solid-liquid separator, and the separated sludge is separated from the solid-liquid separator. A part of the separated sludge returned to the aeration tank is returned, the sludge pulled out of the aeration tank or the solid-liquid separator for the reforming treatment is extracted, and the sludge subjected to the reforming treatment is reformed sludge. Sludge discharged outside the aerobic biological treatment system is referred to as excess sludge.

【0012】引抜汚泥を生物が分解し易い性状に改質す
る改質処理方法としては、引抜汚泥に薬剤および/また
はエネルギーを加えて易生物分解性に改質する方法であ
れば任意の方法を採用することができる。例えば、オゾ
ン処理による改質処理、過酸化水素処理による改質処
理、酸処理による改質処理、アルカリ処理による改質処
理、加熱処理による改質処理、高圧パルス放電処理、ボ
ールミル、コロイドミル等のミルによる磨砕処理、これ
らを組合せた改質処理等を採用することができる。これ
らの中ではオゾン処理による改質処理が、処理操作が簡
単かつ処理効率が高いため好ましい。
As a reforming treatment method for modifying the extracted sludge into a property easily decomposed by living organisms, any method can be used as long as it is a method for modifying the extracted sludge to be easily biodegradable by adding a chemical and / or energy. Can be adopted. For example, reforming treatment by ozone treatment, reforming treatment by hydrogen peroxide treatment, reforming treatment by acid treatment, reforming treatment by alkali treatment, reforming treatment by heating treatment, high pressure pulse discharge treatment, ball mill, colloid mill, etc. A grinding treatment by a mill, a modification treatment combining these, and the like can be employed. Among these, the reforming treatment by ozone treatment is preferable because the treatment operation is simple and the treatment efficiency is high.

【0013】改質処理としてのオゾン処理は、好気性生
物処理系から引き抜いた汚泥をオゾンと接触させればよ
く、オゾンの酸化作用により汚泥は易生物分解性に改質
される。オゾン処理はpH5以下の酸性領域で行うと酸
化分解効率が高くなる。このときのpHの調整は、硫
酸、塩酸または硝酸などの無機酸をpH調整剤として生
物汚泥に添加するか、生物汚泥を酸発酵処理して調整す
るか、あるいはこれらを組合せて行うのが好ましい。p
H調整剤を添加する場合、pHは3〜4に調整するのが
好ましく、酸発酵処理を行う場合、pHは4〜5となる
ように行うのが好ましい。
In the ozone treatment as the reforming treatment, the sludge extracted from the aerobic biological treatment system may be brought into contact with ozone, and the sludge is reformed to easily biodegradable by the oxidizing action of ozone. When the ozone treatment is performed in an acidic region having a pH of 5 or less, the efficiency of oxidative decomposition increases. It is preferable to adjust the pH at this time by adding an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid to the biological sludge as a pH adjuster, adjusting the biological sludge by an acid fermentation treatment, or by combining them. . p
When an H adjuster is added, the pH is preferably adjusted to 3 to 4, and when the acid fermentation treatment is performed, the pH is preferably adjusted to 4 to 5.

【0014】オゾン処理は、引抜汚泥または酸発酵処理
液をそのまま、または必要により遠心分離機などで濃縮
した後pH5以下に調整し、オゾンと接触させることに
より行うことができる。なお、pH調整は必ずしも要し
ない。接触方法としては、オゾン処理槽に汚泥を導入し
てオゾンを吹込む方法、機械攪拌による方法、充填層を
利用する方法などが採用できる。オゾンとしてはオゾン
ガスの他、オゾン含有空気、オゾン化空気などのオゾン
含有ガスが使用できる。オゾンは0.002〜0.1g
−O3/g−SS、好ましくは0.01〜0.08g−
3/g−SSの消費率となるようにするのが望まし
い。オゾン処理により生物汚泥は酸化分解されて、BO
D成分に変換される。オゾン処理する汚泥乾物量はオゾ
ン処理槽1m 3あたり0.7〜40kg−SS/h、好
ましくは1〜25kg−SS/h程度とする。
[0014] The ozone treatment is performed by drawing sludge or acid fermentation.
Concentrate the liquid as it is or, if necessary, with a centrifuge
After that, adjust the pH to 5 or less and bring it into contact with ozone.
More can be done. Note that pH adjustment is not always necessary.
Absent. As a contact method, sludge is introduced into the ozone treatment tank.
Ozone injection method, mechanical stirring method, packed bed
The method used can be adopted. Ozone as ozone
In addition to gas, ozone such as ozone-containing air and ozonized air
A contained gas can be used. Ozone is 0.002-0.1g
-OThree/ G-SS, preferably 0.01 to 0.08 g-
OThree/ G-SS consumption rate
No. Biological sludge is oxidatively decomposed by ozone treatment,
It is converted to a D component. The amount of sludge dried for ozonation is
Treatment tank 1m Three0.7 ~ 40kg-SS / h, good
More preferably, it is about 1 to 25 kg-SS / h.

【0015】改質処理としての過酸化水素処理は好気性
生物処理系から引き抜いた引抜汚泥を改質槽に導き、過
酸化水素水と混合する。過酸化水素の使用量は0.00
1〜0.2g−H22/g−SSとする。このとき引抜
汚泥に塩酸などの酸を添加してpH3〜5とすることが
好ましく、この場合、過酸化水素の使用量は0.001
〜0.07g−H22/g−SSとするのが好ましい。
In the hydrogen peroxide treatment as the reforming treatment, the extracted sludge extracted from the aerobic biological treatment system is led to a reforming tank and mixed with a hydrogen peroxide solution. The amount of hydrogen peroxide used is 0.00
And 1~0.2g-H 2 O 2 / g -SS. At this time, it is preferable to add an acid such as hydrochloric acid to the extracted sludge to adjust the pH to 3 to 5. In this case, the amount of hydrogen peroxide used is 0.001 to 0.005.
Preferably the ~0.07g-H 2 O 2 / g -SS.

【0016】改質方法としての酸処理では、好気性生物
処理系から引き抜いた引抜汚泥を改質槽に導き、塩酸、
硫酸などの鉱酸を加え、pH2.5以下、好ましくはp
H1〜2の酸性条件下で所定時間滞留させればよい。滞
留時間としては、例えば5〜24時間とする。この際、
汚泥を加熱、例えば50〜100℃に加熱すると改質が
促進されるので好ましい。このような酸による処理によ
り汚泥は易生物分解性となり、好気性生物処理系に戻す
ことにより容易に分解除去できるようになる。
In the acid treatment as a reforming method, the extracted sludge extracted from the aerobic biological treatment system is led to a reforming tank, and hydrochloric acid,
A mineral acid such as sulfuric acid is added, and pH 2.5 or less, preferably p
What is necessary is just to stay for a predetermined time under the acidic condition of H1-2. The residence time is, for example, 5 to 24 hours. On this occasion,
It is preferable to heat the sludge, for example, to 50 to 100 ° C., since the reforming is promoted. The sludge becomes easily biodegradable by the treatment with the acid, and can be easily decomposed and removed by returning the sludge to the aerobic biological treatment system.

【0017】また、汚泥の改質方法としてのアルカリ処
理では、好気性生物処理系から引き抜いた引抜汚泥を改
質槽に導き、水酸化ナトリウム、水酸化カリウム等のア
ルカリを汚泥に対して0.1〜1重量%加え、所定時間
滞留させればよい。滞留時間は0.5〜2時間程度で汚
泥は易生物分解性に改質される。この際、汚泥を加熱
し、例えば5〜100℃に加熱すると改質が促進される
ので好ましい。
In the alkali treatment as a method for reforming sludge, the extracted sludge extracted from the aerobic biological treatment system is led to a reforming tank, and alkali such as sodium hydroxide and potassium hydroxide is added to the sludge in an amount of 0.1%. What is necessary is just to add 1 to 1% by weight and to stay for a predetermined time. The residence time is about 0.5 to 2 hours, and the sludge is reformed to be easily biodegradable. At this time, it is preferable to heat the sludge, for example, to 5 to 100 ° C. because the reforming is promoted.

【0018】改質方法としての加熱処理は、加熱処理単
独で行うこともできるが、酸処理またはアルカリ処理と
組合せて行うのが好ましい。加熱処理単独で行う場合
は、例えば温度70〜100℃、滞留時間2〜3時間と
することができる。
The heat treatment as a reforming method can be performed alone, but is preferably performed in combination with an acid treatment or an alkali treatment. When heat treatment is performed alone, for example, the temperature may be 70 to 100 ° C., and the residence time may be 2 to 3 hours.

【0019】高電圧のパルス放電処理は、電極間隔3〜
10mm、好ましくは4〜8mmのタングステン/トリ
ウム合金等の+極と、ステンレス鋼等の−極間に汚泥を
存在させ、印加電気10〜50kV、好ましくは20〜
40kV、パルス間隔20〜80Hz、好ましくは40
〜60Hzでパルス放電を行い、汚泥は順次循環させな
がら処理を行うことができる。
The high-voltage pulse discharge process is performed with an electrode interval of 3 to
Sludge is present between a positive electrode of 10 mm, preferably 4 to 8 mm such as a tungsten / thorium alloy, and a negative electrode of stainless steel or the like, and the applied electricity is 10 to 50 kV, preferably 20 to 50 kV.
40 kV, pulse interval 20-80 Hz, preferably 40
Pulse discharge is performed at 〜60 Hz, and the treatment can be performed while the sludge is circulated sequentially.

【0020】このようにして易生物分解性に改質した改
質汚泥は、好気性生物処理工程の曝気槽に導入して好気
性処理を行い、好気性微生物に資化させる。曝気槽では
生物汚泥のVSS/SS比を0.2〜0.8、好ましく
は0.3〜0.7、MLVSSを500〜10000m
g/l、好ましくは1000〜5000mg/lに維持
するように制御することにより、汚泥の性状を悪化させ
ることなく好気性生物処理を行う。
The sludge thus modified to be easily biodegradable is introduced into an aeration tank in an aerobic biological treatment step, subjected to aerobic treatment, and assimilated into aerobic microorganisms. In the aeration tank, the VSS / SS ratio of the biological sludge is 0.2 to 0.8, preferably 0.3 to 0.7, and the MLVSS is 500 to 10000 m.
g / l, preferably 1000 to 5000 mg / l, so that the aerobic biological treatment is performed without deteriorating the properties of the sludge.

【0021】本発明では前記生物処理工程から引き抜く
引抜汚泥の汚泥濃度(汚泥乾物濃度)を計測するために
汚泥濃度計測工程を設ける。引抜汚泥の濃度の計測は、
水分を蒸発させて残存固形物への秤量を行う直接定量式
の汚泥濃度計、あるいは光、超音波、マイクロ波等を用
いる間接定量式の汚泥濃度計などを用いて汚泥の乾物重
量を測定する。これらは連続的に、または間欠的に計測
することができる。
In the present invention, a sludge concentration measuring step is provided to measure the sludge concentration (sludge dry matter concentration) of the extracted sludge extracted from the biological treatment step. The measurement of the concentration of the extracted sludge
Measure the dry matter weight of sludge using a direct quantitative sludge densitometer that evaporates water and weighs the remaining solids, or an indirect quantitative sludge densitometer that uses light, ultrasonic waves, microwaves, etc. . These can be measured continuously or intermittently.

【0022】制御工程は引抜汚泥中の汚泥乾物量あたり
の改質のための薬剤および/またはエネルギー量が一定
となるように、汚泥引抜量あるいは薬剤および/または
エネルギー量を制御するように構成する。この場合、改
質槽に加える薬剤および/またはエネルギー量を定量と
しておき、引抜汚泥濃度の変動に対応して引抜汚泥中の
汚泥乾物量が一定量となるように汚泥引抜流量を変化さ
せると、単純にポンプまたは弁の制御をするだけでよい
ので制御が容易になり好ましい。
The control step is configured to control the amount of sludge withdrawn or the amount of chemical and / or energy so that the amount of chemical and / or energy for reforming per amount of dry matter of sludge in the extracted sludge is constant. . In this case, the amount of chemical and / or energy added to the reforming tank is determined as a fixed amount, and the sludge withdrawal flow rate is changed so that the amount of dry matter in the withdrawn sludge becomes constant in response to the fluctuation of the withdrawal sludge concentration. It is preferable to simply control the pump or the valve, so that the control is facilitated.

【0023】他の制御方法としては汚泥引抜流量を一定
としておき、汚泥の濃度変動に対応して薬剤および/ま
たはエネルギーの量を変化させる方法である。オゾン処
理の場合は、オゾン発生機に供給する空気量を一定とし
ておき、オゾン発生機の電圧または電流を変えて発生す
るオゾンの濃度を増減させてオゾン発生量を変え、オゾ
ン注入量を変化させてもよく、またオゾン発生機の電
圧、電流を一定として発生するオゾン濃度を一定として
おき、オゾン発生機への送風量を変化させることによっ
ても注入オゾン量を変化させることができる。
Another control method is a method of keeping the sludge withdrawal flow rate constant and changing the amount of chemicals and / or energy in response to a change in sludge concentration. In the case of ozone treatment, the amount of air supplied to the ozone generator is kept constant, and the voltage or current of the ozone generator is changed to increase or decrease the concentration of generated ozone, thereby changing the amount of ozone generated and changing the amount of ozone injected. Alternatively, it is also possible to change the amount of injected ozone by changing the amount of air blown to the ozone generator while keeping the generated ozone concentration constant while keeping the voltage and current of the ozone generator constant.

【0024】上記の汚泥引抜量あるいは薬剤および/ま
たはエネルギー量を制御するためには、これらの計測手
段を設け、その計測結果をコンピュータ等の制御装置に
入力し、制御するのが好ましい。この場合、引抜汚泥の
汚泥濃度の変動により上記の制御を行っても長期には平
均化した処理が行われ、目的とする汚泥減容化を行える
ように、汚泥引抜量あるいは薬剤および/またはエネル
ギーの注入量の設定を行っておくことができる。
In order to control the amount of sludge withdrawal or the amount of chemicals and / or energy, it is preferable to provide these measuring means and to input the measurement results to a control device such as a computer for control. In this case, even if the above-mentioned control is performed by the fluctuation of the sludge concentration of the extracted sludge, the averaged treatment is performed for a long time, and the sludge withdrawal amount or the chemical and / or energy is used so that the desired sludge volume reduction can be performed. Can be set in advance.

【0025】上記のようにして生物処理系からの引抜汚
泥を易生物分解性に改質して生物処理系に返送して好気
性処理を行うと、改質汚泥は生物処理系の好気性微生物
に資化されて減容化する。このとき引抜汚泥の汚泥濃度
を計測し、その濃度変化に応じて引抜汚泥量あるいは薬
剤および/またはエネルギー量を制御すると、引抜汚泥
中の汚泥乾物量に対応する量の薬剤および/またはエネ
ルギーが加えられ、効率のよい改質が行われる。この場
合加えられた薬剤および/またはエネルギーは過不足な
く改質に利用され、目的とする汚泥の減容化が達成でき
る。
As described above, when the sludge extracted from the biological treatment system is modified to be easily biodegradable and returned to the biological treatment system for aerobic treatment, the modified sludge is treated with the aerobic microorganisms of the biological treatment system. It is utilized and reduced in volume. At this time, the sludge concentration of the extracted sludge is measured, and the amount of the extracted sludge or the amount of the chemical and / or the energy is controlled in accordance with the change in the concentration, so that the amount of the chemical and / or the energy corresponding to the amount of the sludge dry matter in the extracted sludge is added. Thus, efficient reforming is performed. In this case, the added chemicals and / or energy are used for reforming without excess or deficiency, and the desired sludge volume reduction can be achieved.

【0026】[0026]

【発明の効果】以上の通り、本発明によれば、生物処理
工程で生成する汚泥を改質処理工程で改質する際、引抜
汚泥の汚泥濃度の変動に応じて引抜汚泥量あるいは薬剤
および/またはエネルギー量を制御するようにしたの
で、汚泥減容化のための汚泥改質に使用する薬剤および
/またはエネルギーの量を過不足なく、必要最少限の量
として改質を行うことができ、これにより効率よく汚泥
を減容化することができ、処理設備を小型化することが
できる。
As described above, according to the present invention, when the sludge generated in the biological treatment step is reformed in the reforming treatment step, the amount of the extracted sludge or the chemical and / or chemical is changed according to the change in the sludge concentration of the extracted sludge. Or, since the amount of energy was controlled, the amount of chemicals and / or energy used for sludge reforming for sludge volume reduction can be reformed as a minimum necessary amount without excess or deficiency, Thereby, the sludge volume can be efficiently reduced, and the processing equipment can be downsized.

【0027】[0027]

【発明の実施の形態】次に本発明の実施形態について説
明する。図1は実施形態の好気性生物処理装置を示すフ
ローシートであり、改質処理としてオゾン処理を採用し
た例である。
Next, an embodiment of the present invention will be described. FIG. 1 is a flow sheet showing an aerobic biological treatment apparatus according to an embodiment, in which an ozone treatment is employed as a reforming treatment.

【0028】図1において、1は好気性生物処理系で、
曝気槽2および固液分離装置3から構成されている。曝
気槽2には被処理液路4、返送汚泥路5およびオゾン処
理汚泥導入路6が連絡し、また底部には散気装置7が設
けられ、空気供給路8が連絡している。曝気槽2から固
液分離装置3に連絡路9が連絡している。固液分離装置
3には処理液路10および分離汚泥排出路11が連絡
し、分離汚泥排出路11から返送汚泥路5が分岐してい
る。返送汚泥路5にはポンプ12が設けられている。
In FIG. 1, 1 is an aerobic biological treatment system,
It comprises an aeration tank 2 and a solid-liquid separation device 3. The aeration tank 2 communicates with the liquid passage 4, the return sludge passage 5, and the ozone-treated sludge introduction passage 6, and a diffuser 7 is provided at the bottom, and the air supply passage 8 communicates therewith. A communication path 9 communicates from the aeration tank 2 to the solid-liquid separation device 3. The treatment liquid path 10 and the separated sludge discharge path 11 communicate with the solid-liquid separation device 3, and the return sludge path 5 branches off from the separated sludge discharge path 11. A pump 12 is provided in the return sludge passage 5.

【0029】21は改質処理系で、オゾン処理槽22お
よびオゾン発生機23から構成されている。オゾン処理
槽22には引抜汚泥路24および排オゾン路25が上部
に連絡している。排オゾン路25は、触媒や活性炭など
を充填した排オゾン処理塔(図示せず)と接続する。引
抜汚泥路24にはポンプ26が設けられている。またオ
ゾン処理槽22の下部にはオゾン注入路27およびオゾ
ン処理汚泥導入路6が連絡している。28は原料空気供
給路である。
Reference numeral 21 denotes a reforming treatment system, which comprises an ozone treatment tank 22 and an ozone generator 23. A drawing sludge passage 24 and a waste ozone passage 25 are connected to the upper part of the ozone treatment tank 22. The exhaust ozone passage 25 is connected to an exhaust ozone treatment tower (not shown) filled with a catalyst, activated carbon, or the like. A pump 26 is provided in the drawn sludge passage 24. Further, an ozone injection passage 27 and an ozonized sludge introduction passage 6 communicate with a lower portion of the ozone treatment tank 22. 28 is a raw material air supply path.

【0030】30は制御装置であり、引抜汚泥路24に
設けられた汚泥濃度計31および汚泥流量計32から計
測信号を入力し、ポンプ26に制御信号を出力するよう
に接続するとともに、オゾン注入路27に設けられたオ
ゾン濃度計33およびオゾン流量計34から計測信号を
入力し、オゾン発生機23および送風器35に制御信号
を出力するように接続している。
Reference numeral 30 denotes a control device, which is connected to a sludge concentration meter 31 and a sludge flow meter 32 provided in the drawn-out sludge passage 24 so as to input a measurement signal and output a control signal to a pump 26, and to inject ozone. A measurement signal is input from an ozone concentration meter 33 and an ozone flow meter 34 provided in a passage 27, and the ozone generator 23 and the blower 35 are connected to output control signals.

【0031】上記の装置による有機性排液の好気性生物
処理方法は、被処理液路4から有機性排液を曝気槽2に
導入し、またポンプ12を駆動して返送汚泥路5から返
送汚泥を返送し、曝気槽2内の活性汚泥と混合し、空気
供給路8から供給される空気を散気装置7から散気して
好気性生物処理を行う。これにより排液中の有機物は生
物酸化反応によって分解される。
In the aerobic biological treatment method for organic waste liquid by the above-described apparatus, the organic waste liquid is introduced into the aeration tank 2 from the liquid passage 4 to be treated, and the pump 12 is driven to be returned from the return sludge passage 5. The sludge is returned, mixed with the activated sludge in the aeration tank 2, and the air supplied from the air supply path 8 is diffused from the diffuser 7 to perform aerobic biological treatment. Thereby, the organic matter in the wastewater is decomposed by the biological oxidation reaction.

【0032】曝気槽2内の混合液(好気性処理液)の一
部は連絡路9を通して固液分離装置3に導入し、沈殿分
離により分離液と分離汚泥とに分離する。分離液は処理
液として処理液路10から系外に排出する。分離汚泥は
分離汚泥排出路11から取出し、その一部は返送汚泥と
して返送汚泥路5から曝気槽2に返送する。
A part of the mixed liquid (aerobic treatment liquid) in the aeration tank 2 is introduced into the solid-liquid separator 3 through the communication line 9 and separated into a separated liquid and a separated sludge by sedimentation. The separated liquid is discharged out of the system from the processing liquid path 10 as a processing liquid. The separated sludge is taken out from the separated sludge discharge passage 11 and a part thereof is returned to the aeration tank 2 from the returned sludge passage 5 as returned sludge.

【0033】分離汚泥の残部は、ポンプ26を駆動して
引抜汚泥路24からオゾン処理槽22に導入する。余剰
汚泥が生じる場合は、余剰汚泥排出路29から系外へ排
出することができるが、生成汚泥量より多い汚泥をオゾ
ン処理槽22へ導入してオゾン処理し、曝気槽2に戻す
と、余剰汚泥の発生量がゼロになるので、余剰汚泥排出
路29を省略することもできる。オゾン処理槽22で
は、オゾン発生機23で発生したオゾンをオゾン注入路
27から導入し、汚泥と接触させてオゾン処理する。こ
れにより、汚泥は易生物分解性物質に変換される。オゾ
ン排ガスは排オゾン路25から排オゾン処理塔を経て系
外へ排出する。
The remaining part of the separated sludge is introduced into the ozone treatment tank 22 from the drawn sludge passage 24 by driving the pump 26. When excess sludge is generated, the excess sludge can be discharged out of the system through the excess sludge discharge passage 29. However, when sludge having a larger amount than the generated sludge is introduced into the ozone treatment tank 22 and subjected to ozone treatment, and returned to the aeration tank 2, excess sludge is produced. Since the amount of generated sludge becomes zero, the excess sludge discharge passage 29 can be omitted. In the ozone treatment tank 22, ozone generated by the ozone generator 23 is introduced from the ozone injection passage 27, and is brought into contact with sludge for ozone treatment. Thereby, the sludge is converted into a readily biodegradable substance. The ozone exhaust gas is discharged from the discharge ozone passage 25 to the outside of the system through a discharge ozone treatment tower.

【0034】オゾン処理汚泥はオゾン処理汚泥導入路6
から曝気槽2に導入する。オゾン処理により汚泥は易生
物分解性に改質されるので、これを曝気槽2に戻すこと
により被処理液路4から流入するBODとともに、曝気
槽2内の活性汚泥中の微生物により資化されて分解す
る。アンモニア性窒素を含有する被処理液を処理する場
合には、曝気槽2の前に脱窒槽を設け、この脱窒槽に被
処理液、返送汚泥およびオゾン処理汚泥を導入するとと
もに、曝気槽2から硝化液を循環して脱窒およびBOD
除去を行い、曝気槽2では主に硝化を行うように処理が
行われる。
The ozonized sludge is supplied to the ozonated sludge introduction passage 6
And introduced into the aeration tank 2. Since the sludge is reformed to be easily biodegradable by the ozone treatment, the sludge is returned to the aeration tank 2 and assimilated by microorganisms in the activated sludge in the aeration tank 2 together with the BOD flowing from the liquid passage 4 to be treated. Decompose. When treating the liquid to be treated containing ammoniacal nitrogen, a denitrification tank is provided in front of the aeration tank 2, and the liquid to be treated, the return sludge and the ozone-treated sludge are introduced into the denitrification tank and Denitrification and BOD by circulating nitrification solution
The removal is performed, and the aeration tank 2 performs a process to mainly perform nitrification.

【0035】上記の処理において、引抜汚泥路24の引
抜汚泥の汚泥濃度を汚泥濃度計31で計測し、また引抜
汚泥の流量を汚泥流量計32で計測して制御装置30に
入力する。制御装置30では汚泥濃度の変動に応じて、
引抜汚泥の汚泥乾物量が一定となるように流量を演算し
てポンプ26に制御信号を送り、汚泥流量を制御する。
このときオゾン注入路27のオゾン濃度計33でオゾン
濃度を計測し、オゾン流量計34でオゾンガスの流量を
測定して制御装置30に入力し、制御装置30からの制
御信号によりオゾン発生機23のオゾン発生量を一定に
し、かつ送風機35の送風量を一定にするように制御す
る。なお、送風機35の送風量とオゾン発生機23の電
圧および電流を一定とすれば一定量のオゾンが発生する
ので、送風量とオゾン発生機23の電圧および電流を一
定値に設定すれば必ずしもオゾンの濃度および流量を測
定して制御しなくてもよい。
In the above process, the sludge concentration of the extracted sludge in the extracted sludge path 24 is measured by the sludge concentration meter 31, and the flow rate of the extracted sludge is measured by the sludge flow meter 32 and input to the control device 30. In the control device 30, according to the variation of the sludge concentration,
The flow rate is calculated so that the amount of dry matter of the extracted sludge becomes constant, and a control signal is sent to the pump 26 to control the sludge flow rate.
At this time, the ozone concentration is measured by the ozone concentration meter 33 of the ozone injection path 27, the flow rate of the ozone gas is measured by the ozone flow meter 34, and the measured ozone gas flow is input to the control device 30. Control is performed so that the amount of ozone generated is constant and the amount of air blown by the blower 35 is constant. It is to be noted that a constant amount of ozone is generated if the amount of air blown by the blower 35 and the voltage and current of the ozone generator 23 are constant. It is not necessary to measure and control the concentration and flow rate of.

【0036】これによりオゾン処理槽22に注入するオ
ゾン量は一定になり、かつ汚泥濃度の変動に応じて汚泥
流量が変化するため、オゾン処理槽22に注入される汚
泥乾物重量は一定となる。このためオゾンが過不足なく
注入されることになるため、所定の汚泥減容化が達成さ
れ、しかも未反応のオゾンが排出される量は少なくな
り、排オゾン処理装置を小型化することができる。この
方法では単に汚泥引抜量を変化させるだけで正確に制御
でき、その操作は容易である。
As a result, the amount of ozone injected into the ozone treatment tank 22 becomes constant, and the sludge flow rate changes in accordance with the change in sludge concentration. Therefore, the weight of the sludge dry matter injected into the ozone treatment tank 22 becomes constant. For this reason, ozone is injected without excess and deficiency, so that predetermined sludge volume reduction is achieved, and the amount of unreacted ozone discharged is reduced, and the size of the waste ozone treatment apparatus can be reduced. . In this method, accurate control can be achieved simply by changing the sludge withdrawal amount, and the operation is easy.

【0037】他の制御方法としては、引抜汚泥流量を一
定にしておき、汚泥濃度の変動に応じてオゾン処理槽2
2に注入するオゾン量を変動させる方法である。オゾン
の注入量を変動させるためには、送風機35の送風量を
一定としておき、汚泥濃度の変動に応じてオゾン発生機
23の電圧等を制御することにより発生するオゾンの濃
度を増減させ、オゾン発生量を変化させることができ
る。またオゾン発生機23の電圧等を一定として発生す
るオゾン濃度は変えず、送風機35の送風量を変化させ
ることによってもオゾンの注入量を変化させることがで
きる。
As another control method, the flow rate of the extracted sludge is kept constant, and the ozone treatment tank 2 is controlled according to the change in the sludge concentration.
This is a method in which the amount of ozone to be injected into the sample No. 2 is changed. In order to change the amount of injected ozone, the amount of ozone generated is increased or decreased by controlling the voltage or the like of the ozone generator 23 in accordance with the change in sludge concentration while keeping the amount of air blown from the blower 35 constant. The amount of generation can be changed. The ozone injection amount can also be changed by changing the blown air amount of the blower 35 without changing the ozone concentration generated while keeping the voltage of the ozone generator 23 constant.

【0038】これらの中ではオゾン注入量を一定にして
おき、汚泥濃度の変動に合わせて汚泥流量を変化させる
方法が最も容易かつ正確に汚泥乾物量に対するオゾン量
を制御することができるので好ましい。オゾン濃度を制
御する方法はその次に容易かつ正確な方法である。
Among these, the method of keeping the ozone injection amount constant and changing the sludge flow rate in accordance with the change in the sludge concentration is preferable because the ozone amount with respect to the sludge dry matter amount can be controlled most easily and accurately. The method of controlling the ozone concentration is the next easy and accurate method.

【0039】上記の方法により引抜汚泥の乾物流量に対
応するオゾン量を改質槽に供給してオゾン処理による改
質を行うことにより、必要最少限のオゾンを供給して効
率よく汚泥の改質を行って所定の汚泥減容化を行うこと
ができ、しかも排オゾン量を少なくして、これにより排
オゾン処理装置を小型化することができる。
According to the above-described method, the amount of ozone corresponding to the dry matter flow rate of the extracted sludge is supplied to the reforming tank to perform the reforming by the ozone treatment, thereby supplying the minimum necessary ozone and efficiently reforming the sludge. To reduce the volume of sludge and reduce the amount of exhausted ozone, thereby making it possible to reduce the size of the waste ozone treatment apparatus.

【0040】上記の実施形態はオゾン処理による改質の
例であるが、他の薬剤および/またはエネルギーを加え
て汚泥の改質を行う場合も、これに準じて処理を行うこ
とができる。また上記の好気性生物処理系および改質処
理系の具体的な構成は図示のものに限らず、変更するこ
とが可能である。
The above embodiment is an example of reforming by ozone treatment. However, when sludge is reformed by adding other chemicals and / or energy, the treatment can be performed according to this. Further, specific configurations of the aerobic biological treatment system and the reforming treatment system are not limited to those shown in the drawings, and can be changed.

【0041】以下、本発明の設計例について説明する。 設計例1 有機物をBODとして150〜200mg/l含む下水
を容量1000m3の曝気槽に1000m3/dで導入
し、DOが0.5〜1ppmとなるよう空気曝気しなが
ら活性汚泥処理したのち、曝気槽流出水を固液分離装置
(最終沈殿池)に導入して固液分離を行い、固液分離に
より得られる分離汚泥は固液分離装置から引き抜き、一
部は曝気槽に返送し、他部はオゾン処理槽に供給する。
生成汚泥量は平均して1日あたり約130kgで、オゾ
ン処理槽に供給する引抜汚泥量は1日あたりに発生する
汚泥の約3.4倍に当たる440kgとする。オゾン処
理槽にはオゾン発生機からオゾンを供給して処理し、オ
ゾン処理汚泥を上記好気性処理装置の曝気槽へ返送す
る。この場合、供給するオゾン濃度を120g/m3
オゾンガス流量を7.9m3/hで一定に設定し、引抜
汚泥の濃度の変動に応じて引抜流量を変動させ、汚泥乾
物に対するオゾン消費率を0.05g−O3/g−SS
(=乾燥重量で1gの汚泥に対し、オゾンを0.05g
反応させる)で一定となるようオゾン注入量を一定にす
る。このとき、オゾン注入量に対応する引抜汚泥流量y
は下式で表される。 y=引抜汚泥の乾物量/引抜汚泥濃度 ・・・(1)
Hereinafter, a design example of the present invention will be described. Design Example 1 Sewage containing 150 to 200 mg / l of organic matter as BOD was introduced into an aeration tank with a capacity of 1000 m 3 at 1000 m 3 / d, and activated sludge treatment was performed while aerating the air so that DO became 0.5 to 1 ppm. The effluent from the aeration tank is introduced into a solid-liquid separator (final sedimentation tank) to perform solid-liquid separation. Separated sludge obtained by solid-liquid separation is withdrawn from the solid-liquid separator, and partly returned to the aeration tank. The section supplies to the ozone treatment tank.
The amount of generated sludge is about 130 kg per day on average, and the amount of withdrawn sludge supplied to the ozone treatment tank is 440 kg, which is about 3.4 times the amount of sludge generated per day. Ozone is supplied from an ozone generator to the ozone treatment tank for treatment, and the ozonized sludge is returned to the aeration tank of the aerobic treatment device. In this case, the supplied ozone concentration is 120 g / m 3 ,
The flow rate of the ozone gas was set to be constant at 7.9 m 3 / h, the flow rate was changed in accordance with the change in the concentration of the drawn sludge, and the ozone consumption rate for the sludge dry matter was 0.05 g-O 3 / g-SS.
(= 1 g of sludge by dry weight, 0.05 g of ozone
(React) to make the ozone injection amount constant. At this time, the drawn sludge flow rate y corresponding to the ozone injection amount
Is represented by the following equation. y = dry matter of extracted sludge / concentration of extracted sludge (1)

【0042】ここで引抜汚泥濃度は図2(a)の□印の
ように変動する場合、引抜汚泥流量を図2(a)の●印
のように変動させると、引抜汚泥の乾物量(=引抜汚泥
の濃度(%)×引抜汚泥流量)は図2(b)の●印のよ
うに一定となる。ここでオゾンの注入量は一定で、引抜
汚泥の乾物量も一定なので、オゾン消費率を図2(b)
の□印のように一定とすることができる。
Here, when the concentration of the extracted sludge fluctuates as indicated by a square in FIG. 2A, when the flow rate of the extracted sludge is varied as indicated by a black circle in FIG. 2A, the dry matter amount (= The concentration of the extracted sludge (%) × the amount of the extracted sludge is constant as shown by the black circle in FIG. Here, since the injection amount of ozone is constant and the dry matter amount of the extracted sludge is also constant, the ozone consumption rate is shown in FIG.
Can be made constant as indicated by the square mark.

【0043】比較例1 設計例1において最高汚泥濃度0.7重量%を基準とし
て、オゾン消費率が0.05g−O3/g−SSとなる
ように、引抜汚泥流量を図3(a)の●印に示す通り一
定にする。このときオゾン注入量も一定とする。ここで
汚泥濃度は図3(a)の□印(図2(a)の□印と同
じ)のように変動するので、引抜汚泥の乾物量は図3
(b)の●印のように汚泥濃度の変動に伴って引抜汚泥
濃度と同じ変動パターンを示す。この時、オゾン注入量
は一定で、引抜汚泥の乾物量が変化するのでオゾン消費
率は図3(b)の□印のように変動する。
Comparative Example 1 Based on the maximum sludge concentration of 0.7% by weight in Design Example 1, the flow rate of the extracted sludge was adjusted so that the ozone consumption rate was 0.05 g-O 3 / g-SS, as shown in FIG. Make it constant as shown by ●. At this time, the ozone injection amount is also fixed. Here, the sludge concentration fluctuates as indicated by the squares in FIG. 3 (a) (the same as the squares in FIG. 2 (a)).
(B) shows the same fluctuation pattern as the extracted sludge concentration with the fluctuation of the sludge concentration, as indicated by the ● marks. At this time, the ozone injection amount is constant, and the dry matter amount of the extracted sludge changes, so that the ozone consumption rate fluctuates as indicated by the squares in FIG.

【0044】以上の例から、引抜汚泥の乾物量に対して
一定のオゾン注入量となるように引抜汚泥流量を変化さ
せることにより、排ガス中のオゾン濃度を低くできるこ
とがわかる。
From the above examples, it can be seen that the ozone concentration in the exhaust gas can be reduced by changing the flow rate of the extracted sludge so that the ozone injection amount is constant with respect to the dry matter amount of the extracted sludge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の好気性生物処理装置を示すフローシー
トである。
FIG. 1 is a flow sheet showing an aerobic biological treatment device of an embodiment.

【図2】(a)は設計例1の引抜汚泥濃度と引抜汚泥流
量の日変動、(b)は設計例1のオゾン消費率と引抜汚
泥の乾物量の日変動をそれぞれ表したグラフである。
2A is a graph showing the daily variation of the extracted sludge concentration and the extracted sludge flow rate in Design Example 1, and FIG. 2B is a graph showing the daily variation of the ozone consumption rate and the dried matter amount of the extracted sludge in Design Example 1. .

【図3】(a)は比較例1の引抜汚泥濃度と引抜汚泥流
量の日変動、(b)は比較例1のオゾン消費率と引抜汚
泥の乾物量の日変動をそれぞれ表したグラフである。
3 (a) is a graph showing the daily variation of the extracted sludge concentration and the extracted sludge flow rate of Comparative Example 1, and FIG. 3 (b) is a graph showing the daily variation of the ozone consumption rate and the dried matter amount of the extracted sludge of Comparative Example 1. .

【符号の説明】[Explanation of symbols]

1 好気性生物処理系 2 曝気槽 3 固液分離装置 4 被処理液路 5 返送汚泥路 6 オゾン処理汚泥導入路 7 散気装置 8 空気供給路 9、28 連絡路 10 処理液路 11 分離汚泥排出路 12、26 ポンプ 21 改質処理系 22 オゾン処理槽 23 オゾン発生機 24 引抜汚泥路 25 排オゾン路 27 オゾン注入路 28 原料空気供給路 29 余剰汚泥排出路 30 制御装置 31 汚泥濃度計 32 汚泥流量計 33 オゾン濃度計 34 オゾン流量計 35 送風機 Reference Signs List 1 aerobic biological treatment system 2 aeration tank 3 solid-liquid separation device 4 liquid passage to be treated 5 return sludge passage 6 ozone treatment sludge introduction passage 7 air diffuser 8 air supply passage 9, 28 communication passage 10 treatment liquid passage 11 separation sludge discharge Paths 12, 26 Pump 21 Reforming system 22 Ozone treatment tank 23 Ozone generator 24 Extraction sludge path 25 Waste ozone path 27 Ozone injection path 28 Raw material air supply path 29 Excess sludge discharge path 30 Control device 31 Sludge concentration meter 32 Sludge flow rate Total 33 Ozone concentration meter 34 Ozone flow meter 35 Blower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 晴男 埼玉県戸田市上戸田五丁目6番6−205号 (72)発明者 大山 昭男 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 柴田 雅秀 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 深瀬 哲朗 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D028 BC28 BD11 BE01 CA11 CB02 CC11 CD00 4D059 AA03 BC02 BF20 DA43 EA01 EB02 EB11 EB20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Haruo Miyake, Inventor 5-6-1-6-205 Uedoda, Toda City, Saitama (72) Inventor Akio Oyama 3-4-2, Nishishinjuku, Shinjuku-ku, Tokyo In-company (72) Inventor Masahide Shibata 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Kogyo Co., Ltd. F term (reference) 4D028 BC28 BD11 BE01 CA11 CB02 CC11 CD00 4D059 AA03 BC02 BF20 DA43 EA01 EB02 EB11 EB20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有機性排液を曝気槽に導入して、活性汚
泥の存在下に好気性生物処理する生物処理工程と、 曝気槽から混合液を固液分離装置に導いて固液分離し、
分離液を処理液として排出し、分離汚泥の少なくとも一
部を曝気槽に返送する固液分離工程と、 分離汚泥または混合液から活性汚泥の少なくとも一部を
引き抜き、この引抜汚泥に薬剤および/またはエネルギ
ーを加えて易生物分解性に改質し、改質汚泥を曝気槽に
返送する改質処理工程と、 引抜汚泥中の汚泥濃度を計測する汚泥濃度計測工程と、 引抜汚泥の汚泥乾物量あたりの薬剤および/またはエネ
ルギー量が一定となるように、汚泥引抜量あるいは薬剤
および/またはエネルギー量を制御する制御工程とを含
む有機性排液の処理方法。
1. A biological treatment step of introducing an organic effluent into an aeration tank and performing aerobic biological treatment in the presence of activated sludge; and conducting a mixed liquid from the aeration tank to a solid-liquid separation device to perform solid-liquid separation. ,
A solid-liquid separation step of discharging the separated liquid as a treatment liquid and returning at least a part of the separated sludge to the aeration tank; extracting at least a part of the activated sludge from the separated sludge or the mixed liquid; A reforming process that applies energy to easily biodegrade and returns the reformed sludge to the aeration tank; a sludge concentration measurement process that measures the sludge concentration in the extracted sludge; Controlling the amount of sludge withdrawal or the amount of chemicals and / or energy so that the amount of chemicals and / or energy is constant.
【請求項2】 改質処理工程がオゾン処理によるもので
あり、 制御工程が汚泥乾物量あたりのオゾン消費率を0.00
2〜0.1g−O3/g−SSの範囲で一定とするよう
に、汚泥引抜量またはオゾン注入量を制御する請求項1
記載の方法。
2. The reforming process is performed by an ozone treatment, and the control process is performed by setting the ozone consumption rate per sludge dry matter to 0.00.
2~0.1g-O 3 / g-SS as a constant in the range of, claim 1 of controlling the sludge withdrawal amount or ozone injection amount
The described method.
JP2000208229A 2000-07-05 2000-07-05 Organic wastewater treatment method Expired - Fee Related JP4622057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000208229A JP4622057B2 (en) 2000-07-05 2000-07-05 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000208229A JP4622057B2 (en) 2000-07-05 2000-07-05 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2002018471A true JP2002018471A (en) 2002-01-22
JP4622057B2 JP4622057B2 (en) 2011-02-02

Family

ID=18704851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000208229A Expired - Fee Related JP4622057B2 (en) 2000-07-05 2000-07-05 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4622057B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026524A (en) * 2004-07-15 2006-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for volume-reducing surplus sludge
JP2009050850A (en) * 2008-09-24 2009-03-12 Hitachi Plant Technologies Ltd Inclusion immobilization carrier and production process thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117389A (en) * 1981-01-12 1982-07-21 Toshiba Corp Apparatus for treating sewage
JPH06254583A (en) * 1993-03-03 1994-09-13 Kurita Water Ind Ltd Aerobic treatment of nitrogen and/or phosphorus-deficient organic waste liquid
JPH07116685A (en) * 1993-10-22 1995-05-09 Kurita Water Ind Ltd Aerobic biological treatment of organic waste liquor
JPH08103786A (en) * 1994-10-06 1996-04-23 Kurita Water Ind Ltd Aerobic treating method for organic waste liquid
JPH08192197A (en) * 1995-01-18 1996-07-30 Meidensha Corp Method and device for treating sludge using ozone
JPH08192179A (en) * 1995-01-18 1996-07-30 Meidensha Corp Device for setting residence time of sludge in activated sludge process
JPH09150184A (en) * 1995-11-30 1997-06-10 Ebara Corp Treatment of organic sewage
JPH09168791A (en) * 1995-12-20 1997-06-30 Meidensha Corp Control of quantity of activated sludge in activated sludge treatment
JPH09234497A (en) * 1995-12-25 1997-09-09 Ebara Corp Method for anaerobically digesting activated sludge
JPH10137778A (en) * 1996-11-14 1998-05-26 Kurita Water Ind Ltd Aerobic treatment of organic liquid waste and equipment therefor
JPH10165976A (en) * 1996-12-05 1998-06-23 Nissin Electric Co Ltd Sewage water treatment apparatus
JPH1190496A (en) * 1997-09-19 1999-04-06 Kurita Water Ind Ltd Apparatus and method for ozone treatment of biological sludge
JPH11128975A (en) * 1997-10-30 1999-05-18 Ebara Corp Treatment of organic waste water
JPH11188394A (en) * 1997-12-26 1999-07-13 Shinko Pantec Co Ltd Method and apparatus for treating organic waste water
JP2000246293A (en) * 1999-02-26 2000-09-12 Meidensha Corp Sludge treatment method and apparatus

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117389A (en) * 1981-01-12 1982-07-21 Toshiba Corp Apparatus for treating sewage
JPH06254583A (en) * 1993-03-03 1994-09-13 Kurita Water Ind Ltd Aerobic treatment of nitrogen and/or phosphorus-deficient organic waste liquid
JPH07116685A (en) * 1993-10-22 1995-05-09 Kurita Water Ind Ltd Aerobic biological treatment of organic waste liquor
JPH08103786A (en) * 1994-10-06 1996-04-23 Kurita Water Ind Ltd Aerobic treating method for organic waste liquid
JPH08192197A (en) * 1995-01-18 1996-07-30 Meidensha Corp Method and device for treating sludge using ozone
JPH08192179A (en) * 1995-01-18 1996-07-30 Meidensha Corp Device for setting residence time of sludge in activated sludge process
JPH09150184A (en) * 1995-11-30 1997-06-10 Ebara Corp Treatment of organic sewage
JPH09168791A (en) * 1995-12-20 1997-06-30 Meidensha Corp Control of quantity of activated sludge in activated sludge treatment
JPH09234497A (en) * 1995-12-25 1997-09-09 Ebara Corp Method for anaerobically digesting activated sludge
JPH10137778A (en) * 1996-11-14 1998-05-26 Kurita Water Ind Ltd Aerobic treatment of organic liquid waste and equipment therefor
JPH10165976A (en) * 1996-12-05 1998-06-23 Nissin Electric Co Ltd Sewage water treatment apparatus
JPH1190496A (en) * 1997-09-19 1999-04-06 Kurita Water Ind Ltd Apparatus and method for ozone treatment of biological sludge
JPH11128975A (en) * 1997-10-30 1999-05-18 Ebara Corp Treatment of organic waste water
JPH11188394A (en) * 1997-12-26 1999-07-13 Shinko Pantec Co Ltd Method and apparatus for treating organic waste water
JP2000246293A (en) * 1999-02-26 2000-09-12 Meidensha Corp Sludge treatment method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026524A (en) * 2004-07-15 2006-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for volume-reducing surplus sludge
JP2009050850A (en) * 2008-09-24 2009-03-12 Hitachi Plant Technologies Ltd Inclusion immobilization carrier and production process thereof

Also Published As

Publication number Publication date
JP4622057B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
US3660277A (en) Oxygenation-ozonation of bod-containing water
JP5347221B2 (en) Nitrogen-containing liquid processing method and apparatus
Ahn et al. Reduction of sludge by ozone treatment and production of carbon source for denitrification
CN101570385A (en) Denitrification process of waste water
JP3483917B2 (en) Sewage treatment method
KR20080019975A (en) Wastewater treatment apparatus using hybrid bio-electrochemical sequencing batch reactor combined a biological reactor and an electrode system
AU2018331439B2 (en) Simultaneous nitrification/denitrification (SNDN) in sequencing batch reactor applications
US12024450B2 (en) Atomizer-based system for wastewater treatment through microorganism biochemical pathway optimization
Saaymant et al. The effect of chemical bulking control on biological nutrient removal in a full scale activated sludge plant
JP4576845B2 (en) Nitrogen-containing waste liquid treatment method
JP2002018471A (en) Method for treating organic wasteliquid
JP3959843B2 (en) Biological treatment method for organic drainage
JP3551526B2 (en) Aerobic treatment of organic wastewater
JP4631162B2 (en) Organic waste treatment methods
CN216005557U (en) Integrated treatment system for high-ammonia-nitrogen wastewater difficult to biodegrade
JP2007253011A (en) Biological treatment method and apparatus for organic liquid waste
JP3661354B2 (en) Aerobic treatment method of organic drainage
JP2946163B2 (en) Wastewater treatment method
JPH11333494A (en) Method and apparatus for biological dentrification of waste water
JP2001269697A (en) Nitrogen-containing drainage treating method
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JP2004275996A (en) Sludge volume reduction method
JP2000117289A (en) Treatment of dehydration-separated liquid from anaerobic-digested sludge and equipment therefor
JP5757928B2 (en) Organic wastewater treatment method and treatment apparatus
JPH10128398A (en) Solubilization treatment of biologically treated sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees