JP2007253011A - Biological treatment method and apparatus for organic liquid waste - Google Patents

Biological treatment method and apparatus for organic liquid waste Download PDF

Info

Publication number
JP2007253011A
JP2007253011A JP2006078325A JP2006078325A JP2007253011A JP 2007253011 A JP2007253011 A JP 2007253011A JP 2006078325 A JP2006078325 A JP 2006078325A JP 2006078325 A JP2006078325 A JP 2006078325A JP 2007253011 A JP2007253011 A JP 2007253011A
Authority
JP
Japan
Prior art keywords
sludge
amount
retained
aeration tank
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006078325A
Other languages
Japanese (ja)
Inventor
Masahide Shibata
雅秀 柴田
Tamotsu Tanaka
有 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006078325A priority Critical patent/JP2007253011A/en
Publication of JP2007253011A publication Critical patent/JP2007253011A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose an aerobic treatment method for organic liquid waste, with which the amount of sludge to be volume-reduced and then discharged to the outside of a system is reduced and the increase/decrease of the amount of sludge to be held is recognized and the proper amount of sludge to be modified is set and controlled quickly and correctly even when a load is fluctuated to treat organic liquid waste stably and obtain the treated water having excellent quality, and an aerobic treatment apparatus for the organic liquid waste. <P>SOLUTION: The aerobic treatment method for the organic liquid waste comprises the steps of: introducing organic liquid waste into an aeration tank 2 to perform aerobic biological treatment on the introduced organic liquid waste; subjecting a part of a liquid mixture in the aeration tank 2 to solid-liquid separation in a solid-liquid separation tank 3; returning the separated sludge of the preset amount to the aeration tank as return sludge; and introducing the remainder of the separated sludge into an ozonization tank 22 to ozonize the introduced sludge and return the ozonized sludge to the aeration tank 2. The amount M of sludge to be held in the system is calculated by using concentration of sludge in the liquid mixture in the aeration tank 2, the amount of the liquid mixture, concentration of sludge precipitated in the solid-liquid separation tank 3 and the amount of the precipitated sludge. The increased/decreased amount ΔM of sludge to be held is calculated by using a difference between the calculated amount M of sludge to be held and the target amount M0 of sludge to be held. The increased/decreased amount ΔS of sludge to be modified is calculated by multiplying the calculated increased/decreased amount ΔM by a VSS conversion factor and a coefficient of the amount of sludge to be modified. The amount of sludge to be modified is controlled so as to be increased/decreased correspondingly to the calculated increased/decreased amount ΔS of sludge. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、有機性排液を活性汚泥の存在下に好気性生物処理する方法、特に活性汚泥処理系における余剰汚泥を減容化する有機性排液の処理方法に関するものである。   The present invention relates to a method for aerobic biological treatment of organic effluent in the presence of activated sludge, and more particularly to a method for treating organic effluent to reduce excess sludge in an activated sludge treatment system.

活性汚泥処理法などのように、好気性微生物の作用を利用して、有機性排液を好気条件で処理する好気性生物処理方法は、処理コストが安く、処理性能も優れていることから一般に広く利用されているが、難脱水性の余剰汚泥が大量に生成するので、汚泥量を減少させる減容化処理方法が行われている。このような汚泥の減容化を行う処理方法として特許文献1には、曝気槽または固液分離槽(沈殿槽)から汚泥を引き抜き、この引抜汚泥をオゾン処理、加熱処理、酸またはアルカリ処理等の改質処理により易生物分解性に改質し、改質された汚泥を曝気槽に返送して生物分解させる方法が提案されている。   The aerobic biological treatment method that treats organic wastewater under aerobic conditions using the action of aerobic microorganisms, such as the activated sludge treatment method, is low in processing cost and excellent in processing performance. Although widely used in general, since a large amount of hardly dewatering excess sludge is generated, a volume reduction treatment method for reducing the amount of sludge has been performed. As a treatment method for reducing the volume of such sludge, Patent Document 1 discloses that sludge is extracted from an aeration tank or a solid-liquid separation tank (precipitation tank), and this extracted sludge is subjected to ozone treatment, heat treatment, acid or alkali treatment, etc. There has been proposed a method of reforming easily biodegradable by the reforming treatment and returning the modified sludge to an aeration tank for biodegradation.

このような処理方法では、生成汚泥量は流入する負荷BODに比例するので、流入する負荷量を測定し、それに一定の係数を乗じた量の汚泥を引き抜いて改質処理すると安定した処理を行うことができる。しかし、流入する被処理液の量、濃度等は変動するため、正確な負荷BODを把握するのは困難であり、従って生成汚泥量を正確に把握することは困難であった。   In such a treatment method, since the amount of generated sludge is proportional to the inflow load BOD, the inflow load amount is measured, and when the amount of sludge multiplied by a certain coefficient is extracted and reformed, a stable treatment is performed. be able to. However, since the amount, concentration, and the like of the liquid to be treated that fluctuates vary, it is difficult to accurately grasp the load BOD, and therefore it is difficult to accurately grasp the amount of generated sludge.

汚泥の減容量が生成量よりも多くなると、MLSS濃度が次第に低下し、処理が悪化する。一方、減容量が少ないとMLSS濃度が増加し、流量増加時等において汚泥が固液分離槽から流出し、処理水質が悪化する。この点を改善するために特許文献1では、曝気槽内の活性汚泥のVSS/SSおよびMLSSを一定量に保つように汚泥の引抜量を制御している。しかしながら、MLSSの測定は手間と時間を要し、処理系の変動に対して迅速に対応することが困難である。   When the sludge reduction capacity is larger than the amount of production, the MLSS concentration gradually decreases, and the processing deteriorates. On the other hand, when the capacity is small, the MLSS concentration increases, and when the flow rate is increased, sludge flows out of the solid-liquid separation tank and the quality of the treated water is deteriorated. In order to improve this point, in Patent Document 1, the amount of sludge withdrawn is controlled so that the VSS / SS and MLSS of the activated sludge in the aeration tank are kept constant. However, the measurement of MLSS requires time and effort, and it is difficult to respond quickly to changes in the processing system.

このような点を改善する方法として特許文献2には、固液分離槽における汚泥界面を監視し、汚泥界面が一定の範囲に維持されるように、固液分離槽における汚泥界面が所定の上限値より高いときには改質処理を行う汚泥量を増加し、所定の下限値より低いときには改質処理を行う汚泥量を減少させるように制御し、増減を行った条件でその後の処理を継続するか、あるいは所定時間だけ増加または減少させるように制御する方法が提案されている。   As a method for improving such a point, Patent Document 2 monitors the sludge interface in the solid-liquid separation tank, and the sludge interface in the solid-liquid separation tank has a predetermined upper limit so that the sludge interface is maintained in a certain range. Whether the amount of sludge to be reformed is increased when the value is higher than the value, and the amount of sludge to be reformed is controlled to be decreased when the value is lower than the predetermined lower limit, and the subsequent processing is continued under the increased or decreased conditions. Alternatively, a method of controlling to increase or decrease for a predetermined time has been proposed.

しかしこのような方法で汚泥改質量を変更すると、汚泥の分解量(減容量)は変化するが、生物的反応であり直ちに対応するというより徐々に変化していく。したがって、例えば汚泥界面が所定の高さより高くなったときに、汚泥改質量が多くなるように制御されても、直ちに汚泥の増加傾向が止まらず、しばらくはその所定高さより高い位置に汚泥界面が存在することになる。その後汚泥の減少傾向に転換し、2〜4日程度で汚泥界面が低下していく。   However, when the amount of sludge reforming is changed by such a method, the amount of sludge decomposition (decreased capacity) changes, but it is a biological reaction and changes gradually rather than responding immediately. Therefore, for example, when the sludge interface becomes higher than a predetermined height, even if the sludge reforming amount is controlled to increase, the sludge increase tendency does not stop immediately, and the sludge interface remains at a position higher than the predetermined height for a while. Will exist. After that, the sludge decreases and the sludge interface decreases in about 2 to 4 days.

このように汚泥改質量の変更から結果が現れるまでに時間がかかり、その間にも被処理液の量、濃度等は変動する。従来、汚泥減量運転を行う際に決定する汚泥改質量は、その時の汚泥発生量を想定して計算している。しかし、減量運転中は、汚泥改質により発生汚泥量を抑えているため、その時の流入水水質や水温、SRTや供給酸素量等の諸条件により変動する汚泥発生量を把握するのは難しい。したがって、適正な汚泥改質量を維持することが難しく、汚泥が増えすぎたり減りすぎたりすることが起き、適正な保持汚泥量を維持しきれないことが起こる。このため従来法では、迅速かつ正確に汚泥改質量を制御して、安定した処理を行うことができないという問題点があった。
特開平7−116685号公報 特開平11−10185号公報
Thus, it takes time from the change of the sludge reforming amount until the result appears, and the amount, concentration, etc. of the liquid to be treated fluctuate during this time. Conventionally, the amount of sludge reforming determined when performing sludge reduction operation is calculated assuming the amount of sludge generated at that time. However, during the weight reduction operation, the amount of sludge generated is controlled by sludge reforming, so it is difficult to grasp the amount of sludge generated that varies depending on various conditions such as the influent water quality, water temperature, SRT, and supply oxygen amount. Therefore, it is difficult to maintain an appropriate amount of sludge reforming, and the amount of sludge increases or decreases too much, and the appropriate amount of retained sludge cannot be maintained. For this reason, the conventional method has a problem in that the amount of sludge reforming cannot be controlled quickly and accurately to perform a stable treatment.
Japanese Unexamined Patent Publication No. 7-116687 Japanese Patent Laid-Open No. 11-10185

本発明の課題は、汚泥を減容化して系外に排出する汚泥量を減少させ、しかも保持汚泥量の増減を常時把握し、負荷変動があっても適切な汚泥改質量を設定して迅速かつ正確に汚泥改質量を制御し、安定した処理を行って良好な処理水質を得ることが可能な有機性排液の好気性処理方法および装置を提案することである。   The problem of the present invention is to reduce the amount of sludge that is discharged out of the system by reducing the volume of sludge, and always grasp the increase or decrease in the amount of retained sludge, and quickly set the appropriate sludge reforming amount even if there is a load fluctuation. The present invention also proposes an aerobic treatment method and apparatus for organic effluent that can accurately control the amount of sludge reforming and perform stable treatment to obtain good treated water quality.

本発明は、次の有機性排液の生物処理方法および装置である。
(1)有機性排液を曝気槽に導入して、活性汚泥の存在下に好気性生物処理する生物処理工程と、
曝気槽の混合液を固液分離槽で固液分離し、分離液を処理液として排出するとともに、分離汚泥の少なくとも一部を曝気槽に返送する固液分離工程と、
分離汚泥または混合液から活性汚泥のうち設定量を引き抜いて、この引抜汚泥を易生物分解性に改質する改質工程と、
改質汚泥を曝気槽に返送する返送工程とを含み、
曝気槽の混合液の汚泥濃度および混合液量、ならびに固液分離槽の分離汚泥の汚泥濃度および分離汚泥量から系内の保持汚泥量を求め、
こうして求められる保持汚泥量と、目標保持汚泥量との差から保持汚泥の増減量を求め、
この保持汚泥の増減量に単位重量当りのVSS換算係数および減量汚泥単位重量当りの汚泥改質量係数を乗じて改質汚泥の増減量を求め、
保持汚泥量が目標保持汚泥量より多い場合には前記設定量を、前記改質処理の増減量に相当する汚泥量分だけ増加し、保持汚泥量が目標保持汚泥量より少ない場合には前記設定量を、前記改質処理の増減量に相当する汚泥量分だけ減少させるように制御することを特徴とする有機性排液の好気性処理方法。
(2)固液分離槽の分離汚泥の汚泥濃度を、曝気槽の混合液の汚泥濃度、および固液分離槽の濃縮比から求める上記(1)記載の方法。
(3)有機性排液を曝気槽に導入して、活性汚泥の存在下に好気性生物処理する生物処理装置と、
曝気槽の混合液を固液分離する固液分離槽を含み、分離液を処理液として排出するとともに、分離汚泥の少なくとも一部を曝気槽に返送する固液分離装置と、
分離汚泥または混合液から活性汚泥のうち設定量を引き抜いて、この引抜汚泥を易生物分解性に改質する改質装置と、
改質汚泥を曝気槽に返送する返送手段と、
曝気槽の混合液の汚泥濃度および固液分離槽の分離汚泥の汚泥濃度、ならびに固液分離槽の分離汚泥量を測定する測定手段と、
測定値から系内の保持汚泥量を求め、こうして求められる保持汚泥量と目標保持汚泥量との差から保持汚泥量の増減量を求め、この保持汚泥量の増減量に汚泥単位重量当りのVSS換算係数および減量汚泥単位重量当りの汚泥改質量係数を乗じて改質汚泥の増減量を求め、保持汚泥量が目標保持汚泥量より多い場合には前記設定量を、前記改質処理の増減量に相当する汚泥量分だけ増加し、保持汚泥量が目標保持汚泥量より少ない場合には前記設定量を、前記改質処理の増減量に相当する汚泥量分だけ減少させるように制御する制御装置と
を備えていることを特徴とする有機性排液の好気性処理装置。
(4)固液分離槽の分離汚泥の汚泥濃度を、曝気槽の混合液の汚泥濃度、および固液分離槽の濃縮比から求めるように構成されている上記(3)記載の装置。
The present invention is the following organic wastewater biological treatment method and apparatus.
(1) A biological treatment process for introducing an organic drainage liquid into an aeration tank and aerobic biological treatment in the presence of activated sludge;
Solid-liquid separation of the mixed liquid in the aeration tank in the solid-liquid separation tank, discharging the separated liquid as a treatment liquid, and returning at least a part of the separated sludge to the aeration tank;
A modification step of extracting a set amount of the activated sludge from the separated sludge or the mixed liquid, and modifying the extracted sludge to be easily biodegradable,
A return process for returning the modified sludge to the aeration tank,
The amount of retained sludge in the system is obtained from the sludge concentration and the amount of liquid mixture in the aeration tank, and the sludge concentration and the amount of separated sludge in the solid-liquid separation tank,
Obtain the amount of retained sludge from the difference between the retained sludge amount thus obtained and the target retained sludge amount,
Multiply the increase / decrease amount of this retained sludge by the VSS conversion factor per unit weight and the sludge reforming amount coefficient per unit weight of the reduced sludge, to obtain the increase / decrease amount of the reformed sludge,
When the retained sludge amount is larger than the target retained sludge amount, the set amount is increased by the sludge amount corresponding to the increase / decrease amount of the reforming treatment, and when the retained sludge amount is smaller than the target retained sludge amount, the setting is performed. An aerobic treatment method for organic drainage, characterized in that the amount is controlled to be reduced by the amount of sludge corresponding to the amount of increase / decrease in the reforming treatment.
(2) The method according to (1) above, wherein the sludge concentration of the separated sludge in the solid-liquid separation tank is obtained from the sludge concentration in the mixed liquid in the aeration tank and the concentration ratio of the solid-liquid separation tank.
(3) a biological treatment apparatus that introduces organic drainage liquid into an aeration tank and performs aerobic biological treatment in the presence of activated sludge;
Including a solid-liquid separation tank for solid-liquid separation of the liquid mixture in the aeration tank, discharging the separation liquid as a processing liquid, and returning at least a part of the separated sludge to the aeration tank;
A reformer that draws a set amount of the activated sludge from the separated sludge or the mixed liquid and reforms the extracted sludge to be easily biodegradable;
A return means for returning the modified sludge to the aeration tank;
Measuring means for measuring the sludge concentration of the mixed liquid in the aeration tank and the sludge concentration of the separated sludge in the solid-liquid separation tank, and the amount of separated sludge in the solid-liquid separation tank;
The amount of retained sludge in the system is obtained from the measured value, the increase / decrease amount of retained sludge is obtained from the difference between the retained sludge amount thus obtained and the target retained sludge amount, and the increase / decrease amount of retained sludge is calculated as VSS per sludge unit weight. Multiplying the conversion coefficient and the sludge reforming amount coefficient per unit weight of the sludge to be reduced, the amount of increase or decrease in the reformed sludge is obtained. Is increased by the amount of sludge corresponding to the control amount, and when the retained sludge amount is smaller than the target retained sludge amount, the control device controls to decrease the set amount by the amount of sludge corresponding to the increase / decrease amount of the reforming process. An aerobic treatment apparatus for organic drainage, comprising:
(4) The apparatus according to (3), wherein the sludge concentration of the separated sludge in the solid-liquid separation tank is determined from the sludge concentration in the mixed liquid in the aeration tank and the concentration ratio of the solid-liquid separation tank.

本発明において処理の対象となる有機性排液は、通常の好気性生物処理法により処理される有機物を含有する排液であるが、難生物分解性の有機物または無機物が含有されていてもよく、またアンモニア性窒素等が含有されていてもよい。このような有機性排液としては、下水、し尿、食品工場排水その他の産業排液などがあげられる。   The organic effluent to be treated in the present invention is an effluent containing an organic substance treated by a normal aerobic biological treatment method, but may contain a hardly biodegradable organic substance or an inorganic substance. In addition, ammonia nitrogen may be contained. Such organic effluents include sewage, human waste, food factory effluents and other industrial effluents.

本発明における好気性生物処理は、有機性排液を曝気槽に導入して、活性汚泥の存在下に好気性生物処理を行うように構成する。また固液分離工程および装置は、曝気槽から混合液を固液分離槽として沈殿槽に導いて固液分離(沈殿分離)し、分離液を処理液として排出し、分離液の少なくとも一部を曝気槽へ返送するように構成することができるが、UF膜等の分離膜を用いて膜分離を行うこともできる。このような処理系としては、有機性排液を曝気槽で活性汚泥と混合して曝気し、混合液を固液分離槽において固液分離分離し、分離汚泥の一部を曝気槽に返送する標準活性汚泥処理法における好気性生物処理が一般的であるが、これを変形した他の処理でもよい。アンモニア性窒素を含む排液を処理する場合は硝化脱窒工程を組合せて処理することができる。   The aerobic biological treatment in the present invention is configured to introduce an organic waste liquid into an aeration tank and perform the aerobic biological treatment in the presence of activated sludge. In addition, the solid-liquid separation step and the apparatus guide the mixed liquid from the aeration tank to the precipitation tank as a solid-liquid separation tank and perform solid-liquid separation (precipitation separation), discharge the separated liquid as a processing liquid, and at least part of the separated liquid Although it can comprise so that it may return to an aeration tank, membrane separation can also be performed using separation membranes, such as a UF membrane. As such a treatment system, organic waste liquid is mixed with activated sludge in an aeration tank and aerated, and the mixed liquid is separated into solid and liquid in a solid-liquid separation tank, and a part of the separated sludge is returned to the aeration tank. The aerobic biological treatment in the standard activated sludge treatment method is common, but other treatments obtained by modifying this may be used. When treating the drainage liquid containing ammonia nitrogen, it can be treated in combination with a nitrification denitrification step.

本発明では、このような好気性生物処理における処理系からの生物汚泥のうち設定量を引き抜き、この引抜汚泥を易生物分解性に改質する改質工程を行う。生物汚泥を引き抜く場合、固液分離装置で分離された分離汚泥の一部を引き抜くのが好ましいが、曝気槽から混合液の状態で引き抜いてもよい。分離汚泥から引き抜く場合、余剰汚泥として排出される部分の一部または全部を引抜汚泥として引き抜くことができるが、余剰汚泥に加えて、返送汚泥として曝気槽に返送される返送汚泥の一部をさらに引き抜いて改質することもできる。この場合系外に排出する余剰汚泥の発生量をより少なくし、場合によってはゼロにすることができる。   In the present invention, a set amount is extracted from the biological sludge from the treatment system in such an aerobic biological treatment, and a reforming step is performed to modify the extracted sludge to be easily biodegradable. When extracting biological sludge, it is preferable to extract a part of the separated sludge separated by the solid-liquid separator, but it may be extracted from the aeration tank in a mixed liquid state. When extracting from the separated sludge, part or all of the portion discharged as excess sludge can be extracted as extraction sludge, but in addition to the excess sludge, a part of the return sludge returned to the aeration tank as return sludge is further added. It can also be modified by drawing. In this case, the amount of excess sludge generated outside the system can be reduced, and in some cases, it can be reduced to zero.

引抜汚泥を生物が分解し易い性状に改質する改質工程としては、任意の方法を採用することができる。例えば、オゾン処理による改質、酸処理による改質、アルカリ処理による改質、加熱処理による改質、高圧パルス放電処理による改質、ボールミル、コロイドミル等のミルを用いる磨砕処理による改質、これらを組合せた改質等を採用することができる。これらの中ではオゾン処理による改質が、処理操作が簡単かつ処理効率が高いため好ましい。   Any method can be adopted as a reforming step for reforming the extracted sludge into a property that is easily decomposed by organisms. For example, modification by ozone treatment, modification by acid treatment, modification by alkali treatment, modification by heat treatment, modification by high-pressure pulse discharge treatment, modification by grinding treatment using a mill such as a ball mill or a colloid mill, It is possible to employ reforming or the like combining these. Among these, the modification by ozone treatment is preferable because the treatment operation is simple and the treatment efficiency is high.

改質工程としてのオゾン処理は、好気性生物処理系から引き抜いた汚泥をオゾンと接触させればよく、オゾンの酸化作用により汚泥は易生物分解性に改質される。オゾン処理はpH5以下の酸性領域で行うと酸化分解効率が高くなる。このときのpHの調整は、硫酸、塩酸または硝酸などの無機酸をpH調整剤として生物汚泥に添加するか、生物汚泥を酸発酵処理して調整するか、あるいはこれらを組合せて行うのが好ましい。pH調整剤を添加する場合、pHは3〜4に調整するのが好ましく、酸発酵処理を行う場合、pHは4〜5となるように行うのが好ましい。   In the ozone treatment as the reforming step, the sludge extracted from the aerobic biological treatment system may be brought into contact with ozone, and the sludge is easily biodegradable by the oxidizing action of ozone. When the ozone treatment is performed in an acidic region having a pH of 5 or less, the oxidative decomposition efficiency is increased. The pH adjustment at this time is preferably performed by adding an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid to the biological sludge as a pH adjusting agent, adjusting the biological sludge by an acid fermentation treatment, or a combination thereof. . When adding a pH adjuster, it is preferable to adjust pH to 3-4, and when performing an acid fermentation process, it is preferable to carry out so that pH may become 4-5.

オゾン処理は、引抜汚泥またはその酸発酵処理液をそのまま、または必要により遠心分離機などで濃縮した後pH5以下に調整し、オゾンと接触させることにより行うことができる。接触方法としては、オゾン処理槽に汚泥を導入してオゾンを吹込む方法、機械攪拌による方法、充填層を利用する方法などが採用できる。オゾンとしてはオゾンガスの他、オゾン含有空気、オゾン化空気などのオゾン含有ガスが使用できる。オゾンの使用は0.02〜0.06g−O3/g−VSS、好ましくは0.02〜0.05g−O3/g−VSSとするのが望ましい。オゾン処理により生物汚泥は酸化分解されて、BOD成分に変換される。 The ozone treatment can be performed by adjusting the extracted sludge or its acid fermentation treatment solution as it is or by concentrating it with a centrifugal separator or the like if necessary, and bringing it into contact with ozone. As a contact method, a method of introducing sludge into an ozone treatment tank and blowing ozone, a method of mechanical stirring, a method of using a packed bed, or the like can be employed. In addition to ozone gas, ozone-containing gas such as ozone-containing air or ozonized air can be used as ozone. The use of ozone is 0.02 to 0.06 g-O 3 / g-VSS, preferably 0.02 to 0.05 g-O 3 / g-VSS. Biological sludge is oxidized and decomposed by ozone treatment and converted into BOD components.

改質工程としての酸処理では、好気性生物処理系から引き抜いた引抜汚泥を改質槽に導き、塩酸、硫酸などの鉱酸を加え、pH2.5以下、好ましくはpH1〜2の酸性条件下で所定時間滞留させればよい。滞留時間としては、例えば5〜24時間とする。この際、汚泥を加熱、例えば50〜100℃に加熱すると改質が促進されるので好ましい。このような酸による処理により汚泥は易生物分解性となり、好気性生物処理系に戻すことにより容易に分解除去できるようになる。   In the acid treatment as the reforming step, the drawn sludge drawn from the aerobic biological treatment system is guided to the reforming tank, and a mineral acid such as hydrochloric acid or sulfuric acid is added, and the pH is 2.5 or lower, preferably pH 1-2. It is only necessary to hold for a predetermined time. The residence time is, for example, 5 to 24 hours. At this time, it is preferable to heat the sludge, for example, to 50 to 100 ° C., because the reforming is promoted. By treatment with such an acid, the sludge becomes readily biodegradable and can be easily decomposed and removed by returning to the aerobic biological treatment system.

また、汚泥の改質工程としてのアルカリ処理では、好気性生物処理系から引き抜いた引抜汚泥を改質槽に導き、水酸化ナトリウム、水酸化カリウム等のアルカリを汚泥に対して0.1〜1重量%加え、所定時間滞留させればよい。滞留時間は0.5〜2時間程度で汚泥は易生物分解性に改質される。この際、汚泥を加熱し、例えば5〜100℃に加熱すると改質が促進されるので好ましい。   In addition, in the alkali treatment as the sludge reforming step, the extracted sludge extracted from the aerobic biological treatment system is guided to the reforming tank, and the alkali such as sodium hydroxide and potassium hydroxide is 0.1 to 1 with respect to the sludge. What is necessary is just to add weight% and hold | maintain for a predetermined time. The residence time is about 0.5 to 2 hours, and the sludge is easily biodegradable. At this time, it is preferable to heat the sludge, for example, to 5 to 100 ° C., since the reforming is promoted.

改質工程としての加熱処理は、加熱処理単独で行うこともできるが、酸処理またはアルカリ処理と組合せて行うのが好ましい。加熱処理単独で行う場合は、例えば温度70〜100℃、滞留時間2〜3時間とすることができる。   The heat treatment as the reforming step can be performed by heat treatment alone, but is preferably performed in combination with acid treatment or alkali treatment. In the case of performing the heat treatment alone, for example, the temperature can be set to 70 to 100 ° C. and the residence time can be set to 2 to 3 hours.

高電圧のパルス放電処理は、電極間隔3〜10mm、好ましくは4〜8mmのタングステン/トリウム合金等の+極と、ステンレス鋼等の−極間に汚泥を存在させ、印加電気10〜50kV、好ましくは20〜40kV、パルス間隔20〜80Hz、好ましくは40〜60Hzでパルス放電を行い、汚泥は順次循環させながら処理を行うことができる。   In the high voltage pulse discharge treatment, sludge is present between a positive electrode such as tungsten / thorium alloy having an electrode interval of 3 to 10 mm, preferably 4 to 8 mm, and a negative electrode such as stainless steel, and an applied electricity of 10 to 50 kV, preferably Can perform pulse discharge at 20 to 40 kV and a pulse interval of 20 to 80 Hz, preferably 40 to 60 Hz, and the sludge can be processed while being circulated sequentially.

このようにして易生物分解性に改質した改質汚泥は、返送工程において好気性生物処理工程の曝気槽に導入して好気性処理を行い、好気性生物物に資化させる。曝気槽では生物汚泥のVSS/SS比を0.2〜0.7、好ましくは0.3〜0.6、MLVSSを500〜10000mg/L、好ましくは1000〜5000mg/Lに維持するように制御することにより、汚泥の沈降性および脱水性を改善することができる。   The modified sludge modified to be readily biodegradable in this way is introduced into the aeration tank of the aerobic biological treatment process in the return process to perform the aerobic treatment, and assimilate to the aerobic biological material. In the aeration tank, the biological sludge is controlled so that the VSS / SS ratio is maintained at 0.2 to 0.7, preferably 0.3 to 0.6, and the MLVSS is maintained at 500 to 10,000 mg / L, preferably 1000 to 5000 mg / L. By doing so, the sedimentation property and dewatering property of sludge can be improved.

本発明では、曝気槽の混合液の汚泥濃度および混合液量、ならびに固液分離槽の分離汚泥の汚泥濃度および分離汚泥量から系内の保持汚泥量を求め、こうして求められる保持汚泥量と、目標保持汚泥量との差から保持汚泥の増減量を求め、この保持汚泥の増減量に汚泥単位重量当りのVSS換算係数および減量汚泥単位重量当りの汚泥改質量係数を乗じて改質汚泥の増減量を求め、保持汚泥量が目標保持汚泥量より多い場合には、改質するために引き抜く汚泥の設定量を、改質処理の増減量に相当する汚泥量分だけ増加し、保持汚泥量が目標保持汚泥量より少ない場合には、前記設定量を前記改質処理の増減量に相当する汚泥量分だけ減少させるように制御する制御装置を設けて制御する。   In the present invention, the amount of retained sludge in the system is determined from the sludge concentration and amount of the mixed liquid in the aeration tank, and the sludge concentration and amount of separated sludge in the solid-liquid separation tank, and the amount of retained sludge thus obtained, Determine the amount of retained sludge increase / decrease based on the difference from the target retained sludge amount, and multiply this retained sludge increase / decrease by the VSS conversion factor per sludge unit weight and sludge reforming amount coefficient per unit weight of sludge reduction. When the amount of retained sludge is larger than the target retained sludge amount, the set amount of sludge to be extracted for reforming is increased by the amount of sludge corresponding to the increase / decrease amount of the reforming treatment, and the retained sludge amount When the amount is less than the target retained sludge amount, a control device is provided to control the set amount so as to decrease by the amount of sludge corresponding to the increase / decrease amount of the reforming process.

測定手段では、曝気槽の混合液の汚泥濃度および固液分離槽の分離汚泥の汚泥濃度、ならびに固液分離槽の分離汚泥量を測定する。曝気槽の保持汚泥量は、曝気槽の混合液のSS濃度と混合液量とから算出されるが、曝気槽の混合液量は決まっているので、ここでは曝気槽の混合液の汚泥濃度だけを測定することができる。曝気槽の混合液の汚泥濃度は、曝気槽または移送路に設けたSS濃度計により測定することができる。   The measuring means measures the sludge concentration of the mixed solution in the aeration tank, the sludge concentration of the separated sludge in the solid-liquid separation tank, and the separated sludge amount in the solid-liquid separation tank. The amount of sludge retained in the aeration tank is calculated from the SS concentration and the amount of the liquid mixture in the aeration tank, but since the amount of the liquid mixture in the aeration tank is determined, only the sludge concentration in the liquid mixture in the aeration tank is used here. Can be measured. The sludge concentration of the mixed solution in the aeration tank can be measured by an SS densitometer provided in the aeration tank or the transfer path.

固液分離槽の保持汚泥量は、固液分離槽の分離汚泥の汚泥濃度と、固液分離槽の分離汚泥量とから算出される。分離汚泥の汚泥濃度は、固液分離槽または返送路に設けたSS濃度計により測定することができるが、曝気槽の混合液の汚泥濃度と固液分離槽の濃縮比とから求めることもできる。この場合、曝気槽の混合液の汚泥濃度を測定するとともに、固液分離槽から流出する処理液の一定時間の積算流量、ならびに固液分離槽から曝気槽へ返送される返送汚泥の一定時間の積算流量を流量計で測定し、流量比から濃縮比を求めることができる。固液分離槽の分離汚泥量は、固液分離槽に設けた汚泥界面計により測定することができる。   The retained sludge amount in the solid-liquid separation tank is calculated from the sludge concentration in the separated sludge in the solid-liquid separation tank and the separated sludge amount in the solid-liquid separation tank. The sludge concentration of the separated sludge can be measured by the SS concentration meter provided in the solid-liquid separation tank or the return path, but can also be obtained from the sludge concentration of the mixed liquid in the aeration tank and the concentration ratio of the solid-liquid separation tank. . In this case, the sludge concentration of the liquid mixture in the aeration tank is measured, the integrated flow rate of the treatment liquid flowing out from the solid-liquid separation tank, and the return sludge returned to the aeration tank from the solid-liquid separation tank The integrated flow rate can be measured with a flow meter, and the concentration ratio can be determined from the flow rate ratio. The amount of separated sludge in the solid-liquid separation tank can be measured by a sludge interface meter provided in the solid-liquid separation tank.

制御装置では、測定手段で測定された測定値から系内の保持汚泥量を求め、こうして求められる保持汚泥量と目標保持汚泥量との差から保持汚泥量の増減量を求め、この保持汚泥量の増減量に汚泥単位重量当りのVSS換算係数および減量汚泥単位重量当りの汚泥改質量係数を乗じて改質汚泥の増減量を求め、保持汚泥量が目標保持汚泥量より多い場合には改質するために引き抜く汚泥の設定量を、改質処理の増減量に相当する汚泥量分だけ増加し、保持汚泥量が目標保持汚泥量より少ない場合には、前記設定量を前記改質処理の増減量に相当する汚泥量分だけ減少させるように制御する構成とされる。   In the control device, the amount of retained sludge in the system is obtained from the measurement value measured by the measuring means, and the increase / decrease amount of retained sludge is obtained from the difference between the retained sludge amount thus obtained and the target retained sludge amount. Is multiplied by the VSS conversion coefficient per sludge unit weight and the sludge reforming coefficient per unit weight of sludge reduction to determine the amount of reformed sludge increase / decrease, and if the retained sludge amount is larger than the target retained sludge amount, reforming is performed. The amount of sludge to be extracted is increased by the amount of sludge corresponding to the amount of increase / decrease in the reforming process, and when the retained sludge amount is less than the target retained sludge amount, the set amount is increased / decreased in the reforming process. It is set as the structure controlled so that it may reduce by the amount of sludge equivalent to the quantity.

系内の保持汚泥量は、曝気槽内の混合汚泥量と固液分離槽の沈殿汚泥量との合計量として計算され、移送路および返送路の汚泥は少ないため、無視されている。この保持汚泥量は、式(1)または式(2)で演算することができる。式(1)または式(2)において、容量換算関数は固液分離槽の分離汚泥界面高さに対応して沈殿汚泥の容量に換算する関数であり、固液分離槽の形状による容量の補正を行う関数である。また濃度勾配関数は、沈殿汚泥と界面付近の汚泥の濃度勾配の補正を行う関数である。式(2)において、処理水流量および返送汚泥流量は、一定時間、好ましくは1日間の積算流量を示す。   The retained sludge amount in the system is calculated as the total amount of the mixed sludge amount in the aeration tank and the precipitated sludge amount in the solid-liquid separation tank, and is neglected because there is little sludge in the transfer path and the return path. This amount of retained sludge can be calculated by equation (1) or equation (2). In Formula (1) or Formula (2), the capacity conversion function is a function that converts the capacity of the precipitated sludge in accordance with the separation sludge interface height of the solid-liquid separation tank, and the capacity correction by the shape of the solid-liquid separation tank Is a function that performs The concentration gradient function is a function for correcting the concentration gradient of the precipitated sludge and the sludge near the interface. In the formula (2), the treated water flow rate and the returned sludge flow rate indicate an integrated flow rate for a predetermined time, preferably 1 day.

M=X・V+Xr・H・A・B・・・・・(1)
あるいは
M=X・V+X・(Q+Qr)/(Qr+Qw)・H・A・B・・・(2)
ここで、Mは保持汚泥量(g)、Xは曝気槽MLSS(g/m)、Vは曝気槽容積(m)、Xrは返送汚泥濃度(g/m)、Hは固液分離槽の分離汚泥界面高さ(m)、Aは容積換算関数(−)、Bは濃度勾配関数(−、通常0.5〜1)、Qは原水流量(m3/day)、Qwは余剰汚泥量(m3/day、100%減容時はゼロ)、Qrは返送汚泥量(m3/day)である。
M = X ・ V + Xr ・ H ・ A ・ B (1)
Or M = X · V + X · (Q + Qr) / (Qr + Qw) · H · A · B (2)
Here, M is the retained sludge amount (g), X is the aeration tank MLSS (g / m 3 ), V is the aeration tank volume (m 3 ), Xr is the return sludge concentration (g / m 3 ), and H is the solid liquid The separation sludge interface height (m) of the separation tank, A is a volume conversion function (-), B is a concentration gradient function (-, usually 0.5 to 1), Q is the raw water flow rate (m 3 / day), Qw is excess sludge Amount (m 3 / day, zero at 100% volume reduction), Qr is the amount of returned sludge (m 3 / day).

汚泥保持量の増減量ΔMは、こうして求められる系内の保持汚泥量Mと、目標保持汚泥量M0との差から、式(3)により演算することができる。
ΔM = M−M0 ・・・・・(3)
The increase / decrease amount ΔM of the sludge retention amount can be calculated by the equation (3) from the difference between the retained sludge amount M in the system thus obtained and the target retained sludge amount M0.
ΔM = M−M0 (3)

式(3)から求められる汚泥保持量の増減量ΔMがプラスの場合には改質処理を行う汚泥量を増加し、汚泥保持量の増減量ΔMがマイナスの場合には改質処理を行う汚泥量を減少させるように制御する。この場合、増減させる改質処理汚泥量は、汚泥保持量の増減量ΔMに汚泥単位重量当りのVSS換算係数および減量汚泥単位重量当りの汚泥改質量係数を乗じて求めることができる。この場合、改質汚泥の増減量ΔSは次の式(4)で演算することができる。   When the increase / decrease amount ΔM of the sludge retention amount obtained from the equation (3) is positive, the amount of sludge to be reformed is increased, and when the increase / decrease amount ΔM of the sludge retention amount is negative, the sludge to be reformed. Control to reduce the amount. In this case, the amount of the modified sludge to be increased / decreased can be obtained by multiplying the increase / decrease amount ΔM of the sludge retention amount by the VSS conversion coefficient per sludge unit weight and the sludge reforming amount coefficient per unit weight of reduced sludge. In this case, the increase / decrease amount ΔS of the modified sludge can be calculated by the following equation (4).

ΔS=ΔM×k1×k2・・・・(4)
ただしΔSは改質槽に供給する汚泥の増減量(kg−VSS/day)、
k1は汚泥のSS単位重量当りのVSS換算係数(kg−VSS/kg−SS)、
k2は減量汚泥単位重量当りの汚泥改質量係数(kg−VSS/kg−VSS)
ΔS = ΔM × k1 × k2 (4)
However, ΔS is the increase / decrease amount of sludge supplied to the reforming tank (kg-VSS / day),
k1 is VSS conversion factor (kg-VSS / kg-SS) per SS unit weight of sludge,
k2 is sludge reforming coefficient per unit weight of sludge reduction (kg-VSS / kg-VSS)

前記式(4)におけるk1は、汚泥の単位重量当りのVSS換算係数(kg−VSS/kg−SS)であって、処理系における活性汚泥の性状に対応して変化するが、特定の処理系、処理条件ではほぼ一定である。式(4)におけるk1は、一般の有機性排水の活性汚泥処理系では、通常0.5〜0.9kg−VSS/kg−SSであり、後記実施例では0.8kg−VSS/kg−SSである。   K1 in the above formula (4) is a VSS conversion factor (kg-VSS / kg-SS) per unit weight of sludge, which varies according to the properties of the activated sludge in the treatment system. The processing conditions are almost constant. In formula (4), k1 is usually 0.5 to 0.9 kg-VSS / kg-SS in the activated sludge treatment system for general organic wastewater, and 0.8 kg-VSS / kg-SS in the examples described later. It is.

式(4)おけるk2は、減量汚泥単位重量当りの汚泥改質量係数(kg−VSS/kg−VSS)であって、減量すべき汚泥量(kg−VSS)に対する改質すべき汚泥量(kg−VSS)の割合を示す。この係数k2は、改質処理の種類等により異なるが、一般の汚泥改質では、通常2〜5、オゾンによる汚泥改質では、k2は通常3〜4余剰汚泥ゼロにする場合は2.9である。   K2 in the equation (4) is a sludge reforming coefficient (kg−VSS / kg−VSS) per unit weight of the sludge to be reduced, and the amount of sludge to be reformed relative to the sludge to be reduced (kg−VSS) (kg− VSS). This coefficient k2 varies depending on the type of reforming treatment, etc., but in general sludge reforming, it is usually 2 to 5, and in sludge reforming with ozone, k2 is usually 2.9 when zero surplus sludge is zero. It is.

制御装置では、測定手段の測定値から式(1)、(2)により系内の保持汚泥量Mを求め、こうして求められる保持汚泥量Mと目標保持汚泥量M0との差から式(3)により保持汚泥の増減量ΔMを求めることにより、系内の汚泥の増減を常時、把握することができる。そして式(4)により保持汚泥の増減量ΔMに汚泥単位重量当りのVSS換算係数および減量汚泥単位重量当りの汚泥改質量係数を乗じて改質汚泥の増減量ΔSを求め、保持汚泥の増減量ΔMがプラスの場合には改質処理の増減量ΔSに相当する汚泥量分だけ増加し、保持汚泥の増減量ΔMがマイナスの場合には改質処理の増減量ΔSに相当する汚泥量分だけ減少させるように制御し、増減量ΔSに応じて改質工程に供給して改質する。改質工程で改質された改質汚泥は易生物分解性になっているので、これを生物処理工程に供給して好気性生物処理すると生物分解され、一部は汚泥に転換される。   In the control device, the retained sludge amount M in the system is obtained from the measured values of the measuring means by the equations (1) and (2), and the difference between the retained sludge amount M thus obtained and the target retained sludge amount M0 is obtained from the equation (3). Thus, by obtaining the increase / decrease amount ΔM of the retained sludge, it is possible to always grasp the increase / decrease in the sludge in the system. Then, the increase / decrease amount of retained sludge is obtained by multiplying the increase / decrease amount ΔM of the retained sludge by the VSS conversion coefficient per sludge unit weight and the sludge reforming amount coefficient per unit weight of the reduced sludge by the equation (4) to obtain the increase / decrease amount ΔS of the reformed sludge. When ΔM is positive, it increases by the amount of sludge corresponding to the increase / decrease amount ΔS of the reforming process, and when ΔM is negative, the amount of sludge corresponding to the increase / decrease amount ΔS of the reforming process increases by ΔS. Control is performed to decrease, and the reforming process is performed according to the increase / decrease amount ΔS. Since the modified sludge modified in the reforming process is easily biodegradable, it is biodegraded by supplying it to the biological treatment process and aerobic biological treatment, and a part thereof is converted into sludge.

上記のように処理を行うことにより、系内の汚泥量を迅速かつ正確に制御して、安定した処理を行うことができる。保持汚泥の増減量ΔMおよび改質汚泥の増減量ΔSの演算を所定時間毎、例えば1日間隔で行うことにより、各種条件により変動する汚泥発生量を、1日遅れで追随して制御することができ、適切な保持汚泥量を、確保することが可能になる。   By performing the treatment as described above, the amount of sludge in the system can be controlled quickly and accurately, and a stable treatment can be performed. By controlling the increase / decrease amount ΔM of the retained sludge and the increase / decrease amount ΔS of the modified sludge at predetermined time intervals, for example, at intervals of one day, the sludge generation amount that fluctuates according to various conditions is controlled following a delay of one day. This makes it possible to secure an appropriate amount of retained sludge.

本発明によれば、曝気槽の混合液の汚泥濃度および混合液量、ならびに固液分離槽の沈殿汚泥の汚泥濃度および沈殿汚泥量から系内の保持汚泥量を求め、こうして求められる保持汚泥量と、目標保持汚泥量との差から保持汚泥の増減量を求め、この保持汚泥の増減量に単位重量当りのVSS換算係数および減量汚泥単位重量当りの汚泥改質量係数を乗じて改質汚泥の増減量を求め、保持汚泥の増減量が目標保持汚泥量より多い場合には前記設定量を、前記改質処理の増減量に相当する汚泥量分だけ増加し、保持汚泥の増減量が保持汚泥量が目標保持汚泥量より少ない場合には前記設定量を、前記改質処理の増減量に相当する汚泥量分だけ減少させるように制御することにより、汚泥を減容化して系外に排出する汚泥量を減少させ、しかも保持汚泥量の増減を常時把握し、負荷変動があっても適切な汚泥改質量を設定して迅速かつ正確に汚泥改質量を制御し、安定した処理を行って良好な処理水質を得ることができる。   According to the present invention, the retained sludge amount in the system is determined from the sludge concentration and the mixed liquid amount in the aeration tank and the sludge concentration and the precipitated sludge amount in the solid-liquid separation tank, and the retained sludge amount thus obtained. The amount of retained sludge increase / decrease is calculated from the difference from the target retained sludge amount, and the increase / decrease amount of retained sludge is multiplied by the VSS conversion coefficient per unit weight and sludge reforming amount coefficient per unit weight of reduced sludge. When the increase / decrease amount of retained sludge is greater than the target retained sludge amount, the set amount is increased by the amount of sludge corresponding to the increase / decrease amount of the reforming treatment, and the increase / decrease amount of retained sludge is retained sludge. When the amount is smaller than the target retained sludge amount, the set amount is controlled so as to decrease by the amount of sludge corresponding to the increase / decrease amount of the reforming treatment, so that the sludge is reduced and discharged out of the system. Reduces sludge volume and retains sludge The increase or decrease constantly grasp the sludge modifying amount controlled quickly and accurately by setting the appropriate sludge modifying amount even if a load change by performing a stable treatment can be obtained good processing quality.

以下、本発明の実施形態を図面により説明する。図1および図2はそれぞれ別の実施形態の好気性生物処理装置を示すフローシートであり、改質工程としてオゾン処理を採用した例である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 and FIG. 2 are flow sheets showing an aerobic biological treatment apparatus according to another embodiment, and is an example in which ozone treatment is adopted as a reforming step.

図1および図2において、1は好気性生物処理系で、生物処理装置としての曝気槽2、および固液分離装置としての固液分離槽3から構成されている。曝気槽2には被処理液路4、返送汚泥路5およびオゾン処理汚泥導入路6が連絡し、また底部には散気装置7が設けられ、空気供給路8が連絡している。曝気槽2から固液分離槽3に連絡路9が連絡している。固液分離槽3には処理液路10および分離汚泥排出路11が連絡し、分離汚泥排出路11から返送汚泥路5が分岐している。返送汚泥路5にはポンプ12が設けられている。   1 and 2, reference numeral 1 denotes an aerobic biological treatment system, which includes an aeration tank 2 as a biological treatment apparatus and a solid-liquid separation tank 3 as a solid-liquid separation apparatus. The aeration tank 2 communicates with the liquid passage 4 to be treated, the return sludge passage 5 and the ozone treatment sludge introduction passage 6, and the air diffuser 7 is provided at the bottom and the air supply passage 8 communicates therewith. A communication path 9 communicates from the aeration tank 2 to the solid-liquid separation tank 3. The treatment liquid path 10 and the separated sludge discharge path 11 communicate with the solid-liquid separation tank 3, and the return sludge path 5 branches from the separated sludge discharge path 11. A pump 12 is provided in the return sludge path 5.

21は改質処理系で、オゾン処理槽22およびオゾン発生機23から構成されている。オゾン処理槽22には引抜汚泥路24および排オゾン路25が上部に連絡している。引抜汚泥路24にはポンプ26が設けられている。またオゾン処理槽22の下部にはオゾン供給路27およびオゾン処理汚泥導入路6が連絡している。23aは原料空気供給路である。   Reference numeral 21 denotes a reforming treatment system, which includes an ozone treatment tank 22 and an ozone generator 23. An extraction sludge passage 24 and a waste ozone passage 25 communicate with the upper portion of the ozone treatment tank 22. A pump 26 is provided in the extraction sludge passage 24. In addition, an ozone supply path 27 and an ozone treatment sludge introduction path 6 communicate with the lower part of the ozone treatment tank 22. 23a is a raw material air supply path.

30は制御装置を構成する制御部であり、図1の実施形態では、曝気槽2に設けられたSS濃度計31により曝気槽2の汚泥濃度信号を入力し、固液分離槽3に設けられた界面計32により固液分離槽3の分離汚泥界面33を測定して界面信号を入力し、返送汚泥路5に設けられたSS濃度計34により固液分離槽3の分離汚泥の汚泥濃度信号を入力し、前記式(1)により系内の汚泥保持量を演算するように構成されている。   30 is a control unit constituting the control device. In the embodiment of FIG. 1, the sludge concentration signal of the aeration tank 2 is input by the SS concentration meter 31 provided in the aeration tank 2, and is provided in the solid-liquid separation tank 3. The separated sludge interface 33 of the solid-liquid separation tank 3 is measured by the interface meter 32 and the interface signal is input, and the sludge concentration signal of the separated sludge of the solid-liquid separation tank 3 is obtained by the SS densitometer 34 provided in the return sludge channel 5. And the sludge retention amount in the system is calculated according to the equation (1).

図2の実施形態では、制御装置を構成する制御部30は、曝気槽2に設けられたSS濃度計31により曝気槽2の汚泥濃度信号を入力し、処理液路10に設けられた流量計35により流出する処理液の1日の流量信号を入力し、返送汚泥路5に設けられた流量計36により返送汚泥の1日の流量信号を入力し、前記式(2)により系内の汚泥保持量を演算するように構成されている。   In the embodiment of FIG. 2, the control unit 30 constituting the control device inputs the sludge concentration signal of the aeration tank 2 from the SS concentration meter 31 provided in the aeration tank 2, and the flow meter provided in the treatment liquid path 10. 35, a daily flow rate signal of the treatment liquid flowing out is input, a daily flow rate signal of the returned sludge is input by the flow meter 36 provided in the return sludge passage 5, and sludge in the system is obtained by the above equation (2). The holding amount is calculated.

上記の装置による有機性排液の好気性生物処理方法は、被処理液路4から有機性排液を曝気槽2に導入し、またポンプ12を駆動して返送汚泥路5から返送汚泥を返送し、曝気槽2内の活性汚泥と混合し、空気供給路8から供給される空気を散気装置7から散気して好気性生物処理を行う。これにより、排液中の有機物は生物酸化反応によって分解される。   In the aerobic biological treatment method of organic waste liquid by the above apparatus, the organic waste liquid is introduced into the aeration tank 2 from the liquid passage 4 to be treated, and the return sludge is returned from the return sludge passage 5 by driving the pump 12. Then, it is mixed with the activated sludge in the aeration tank 2, and the air supplied from the air supply path 8 is diffused from the diffuser 7 to perform the aerobic biological treatment. Thereby, the organic matter in the drainage is decomposed by the biooxidation reaction.

曝気槽2内の混合液(好気性処理液)の一部は連絡路9を通して固液分離槽3に導入し、固液分離により分離液と沈殿汚泥とに分離する。分離液は処理液として処理液路10から系外に排出する。濃縮された分離汚泥は分離汚泥排出路11から取出し、その一部は返送汚泥として返送汚泥路5から曝気槽2に返送する。   A part of the mixed liquid (aerobic treatment liquid) in the aeration tank 2 is introduced into the solid-liquid separation tank 3 through the communication path 9 and separated into the separated liquid and the precipitated sludge by solid-liquid separation. The separation liquid is discharged out of the system from the processing liquid passage 10 as a processing liquid. The concentrated separated sludge is taken out from the separated sludge discharge passage 11, and a part thereof is returned to the aeration tank 2 from the return sludge passage 5 as return sludge.

分離汚泥の残部は、ポンプ26を駆動して引抜汚泥路24からオゾン処理槽22に導入する。余剰汚泥が生じる場合は、余剰汚泥排出路28から系外へ排出することができるが、汚泥生成量より多い汚泥をオゾン処理槽22へ導入してオゾン処理し、曝気槽2に戻すと、余剰汚泥の発生量がゼロになるので、余剰汚泥排出路28を省略することもできる。オゾン処理槽22では、オゾン発生機23で発生したオゾンをオゾン供給路27から導入し、汚泥と接触させてオゾン処理する。これにより、汚泥はBOD化される。オゾン排ガスは排オゾン路25から系外へ排出する。   The remainder of the separated sludge is introduced into the ozone treatment tank 22 from the extraction sludge passage 24 by driving the pump 26. When surplus sludge is generated, it can be discharged out of the system from the surplus sludge discharge passage 28. However, if sludge larger than the sludge generation amount is introduced into the ozone treatment tank 22 for ozone treatment and returned to the aeration tank 2, the surplus is produced. Since the amount of sludge generated becomes zero, the excess sludge discharge path 28 can be omitted. In the ozone treatment tank 22, ozone generated by the ozone generator 23 is introduced from an ozone supply path 27 and is contacted with sludge for ozone treatment. Thereby, sludge is made into BOD. Ozone exhaust gas is discharged from the exhaust ozone passage 25 to the outside of the system.

オゾン処理汚泥はオゾン処理汚泥導入路6から曝気槽2に導入する。オゾン処理により汚泥は易生物分解性に改質されるので、これを曝気槽2に戻すことにより被処理液路4から流入するBODとともに、曝気槽2内の活性汚泥中の微生物により資化されて分解する。アンモニア性窒素を含有する被処理液を処理する場合には、曝気槽2の前に脱窒槽を設け、この脱窒槽に被処理液、返送汚泥およびオゾン処理汚泥を導入するとともに、曝気槽2から硝化液を循環して脱窒およびBOD除去を行い、曝気槽2では主に硝化を行うように処理が行われる。   The ozone-treated sludge is introduced into the aeration tank 2 from the ozone-treated sludge introduction path 6. Since the sludge is easily biodegradable by the ozone treatment, it is assimilated by the microorganisms in the activated sludge in the aeration tank 2 together with the BOD flowing from the liquid channel 4 to be treated by returning it to the aeration tank 2. Disassemble. When processing a liquid to be treated containing ammonia nitrogen, a denitrification tank is provided in front of the aeration tank 2, and the liquid to be treated, the return sludge, and the ozone treatment sludge are introduced into the denitrification tank. The nitrification liquid is circulated to perform denitrification and BOD removal, and the aeration tank 2 performs processing so as to mainly perform nitrification.

図1の実施形態では、曝気槽2に設けられたSS濃度計31により曝気槽2の汚泥濃度を測定し、その曝気槽2の汚泥濃度信号を制御部30に入力し、固液分離槽3に設けられた界面計32により固液分離槽3の沈殿汚泥の界面33を測定し、その界面信号を制御部30に入力し、さらに返送汚泥路5に設けられたSS濃度計34により固液分離槽3の沈殿汚泥の汚泥濃度を測定し、その汚泥濃度信号を制御部30に入力し、前記式(1)により系内の汚泥保持量を演算する。   In the embodiment of FIG. 1, the sludge concentration in the aeration tank 2 is measured by the SS concentration meter 31 provided in the aeration tank 2, and the sludge concentration signal of the aeration tank 2 is input to the control unit 30, and the solid-liquid separation tank 3 The interface 33 of the sludge in the solid-liquid separation tank 3 is measured by the interface meter 32 provided in the vessel, the interface signal is input to the control unit 30, and the SS concentration meter 34 provided in the return sludge passage 5 is further used as the solid-liquid. The sludge concentration of the precipitated sludge in the separation tank 3 is measured, the sludge concentration signal is input to the control unit 30, and the sludge retention amount in the system is calculated by the above equation (1).

この場合制御部30では、曝気槽2の保持汚泥量は、曝気槽2の汚泥濃度信号で示される曝気槽汚泥濃度と、曝気槽容量(曝気槽2内の混合液の容量)との積として演算され、固液分離槽3の保持汚泥量は、返送汚泥路5の汚泥濃度信号で示される沈殿汚泥濃度と、界面信号で示される固液分離槽汚泥界面高さ(沈殿汚泥高さ)と容量換算関数および濃度勾配関数との積として演算され、系内の保持汚泥量Mはこれらの和として演算される。容量換算関数は固液分離槽3の表面積を基準とするが、低部の円錐状の形状による容量を補正する関数となっている。
また、濃度勾配関数は沈殿汚泥濃度と界面汚泥濃度の濃度勾配を補正する関数となっている。
In this case, in the control unit 30, the amount of sludge retained in the aeration tank 2 is the product of the aeration tank sludge concentration indicated by the sludge concentration signal of the aeration tank 2 and the aeration tank capacity (capacity of the mixed liquid in the aeration tank 2). The amount of sludge retained in the solid-liquid separation tank 3 is calculated as follows: the precipitated sludge concentration indicated by the sludge concentration signal of the return sludge passage 5, and the solid-liquid separation tank sludge interface height (precipitation sludge height) indicated by the interface signal. It is calculated as the product of the capacity conversion function and the concentration gradient function, and the retained sludge amount M in the system is calculated as the sum of these. The volume conversion function is based on the surface area of the solid-liquid separation tank 3, but is a function for correcting the volume due to the conical shape of the lower part.
The concentration gradient function is a function for correcting the concentration gradient of the precipitated sludge concentration and the interface sludge concentration.

図2の実施形態では、曝気槽2に設けられたSS濃度計31により曝気槽2の汚泥濃度を測定し、その曝気槽2の汚泥濃度信号を制御部30に入力し、固液分離槽3に設けられた界面計32により固液分離槽3の沈殿汚泥の界面測定し、その界面信号を制御部30に入力し、さらに処理液路10に設けられた流量計35により流出する処理液の1日の流量を測定し、その流量信号を制御部30に入力し、返送汚泥路5に設けられた流量計36により返送汚泥の1日の流量を測定し、その信号を制御部30に入力し、前記式(2)により系内の汚泥保持量を演算する。   In the embodiment of FIG. 2, the sludge concentration in the aeration tank 2 is measured by the SS concentration meter 31 provided in the aeration tank 2, and the sludge concentration signal of the aeration tank 2 is input to the control unit 30, and the solid-liquid separation tank 3 The interface of the sedimentation sludge in the solid-liquid separation tank 3 is measured by the interface meter 32 provided in the process, and the interface signal is input to the control unit 30, and the processing liquid flowing out by the flow meter 35 provided in the process liquid path 10 The daily flow rate is measured, the flow rate signal is input to the control unit 30, the daily flow rate of the returned sludge is measured by the flow meter 36 provided in the return sludge channel 5, and the signal is input to the control unit 30. Then, the sludge retention amount in the system is calculated by the equation (2).

この場合制御部30では、曝気槽2の保持汚泥量は、曝気槽2の汚泥濃度信号で示される曝気槽汚泥濃度と、曝気槽容量(曝気槽2内の混合液の容量)との積として演算され、固液分離槽3の保持汚泥量は、上記の曝気槽汚泥濃度と、(処理液流量+返送汚泥流量)/返送汚泥流量の比と、固液分離槽汚泥界面高さおよび容量換算関数との積として演算され、系内の保持汚泥量Mはこれらの和として演算される。   In this case, in the control unit 30, the amount of sludge retained in the aeration tank 2 is the product of the aeration tank sludge concentration indicated by the sludge concentration signal of the aeration tank 2 and the aeration tank capacity (capacity of the mixed liquid in the aeration tank 2). Calculated, the retained sludge amount in the solid-liquid separation tank 3 is converted into the above-mentioned aeration tank sludge concentration, the ratio of (treatment liquid flow rate + return sludge flow rate) / return sludge flow rate, solid-liquid separation tank sludge interface height and capacity conversion. The amount of retained sludge M in the system is calculated as the sum of these.

図1、図2の場合とも制御部30で、前記式(1)、(2)により求められる系内の保持汚泥量Mと、目標保持汚泥量M0との差から前記式(3)により保持汚泥の増減量ΔMを求めることにより、系内の汚泥の増減を常時、把握することができる。そしてさらに前記式(4)により保持汚泥の増減量ΔMに汚泥単位重量当りのVSS換算係数および減量汚泥単位重量当りの汚泥改質量係数を乗じて改質汚泥の増減量ΔSを求め、保持汚泥の増減量ΔMがプラスの場合には、改質するために引き抜く汚泥の設定量を、改質処理の増減量ΔSに相当する汚泥量分だけ増加し、保持汚泥の増減量ΔMがマイナスの場合には改質処理の増減量ΔSに相当する汚泥量分だけ減少させるように制御し、増減量ΔSに応じて改質工程に供給して改質する。改質工程で改質された改質汚泥は易生物分解性になっているので、これを生物処理工程に供給して好気性生物処理すると生物分解され、一部は汚泥に転換される。   In the case of FIGS. 1 and 2, the control unit 30 holds the above equation (3) from the difference between the retained sludge amount M in the system and the target retained sludge amount M0 obtained by the above equations (1) and (2). By obtaining the sludge increase / decrease amount ΔM, it is possible to always grasp the sludge increase / decrease in the system. Further, the increase / decrease amount ΔS of the reformed sludge is obtained by multiplying the increase / decrease amount ΔM of the retained sludge by the VSS conversion coefficient per sludge unit weight and the sludge reforming amount coefficient per unit weight of the reduced sludge by the above formula (4), When the increase / decrease amount ΔM is positive, the set amount of sludge extracted for reforming is increased by the amount of sludge corresponding to the increase / decrease amount ΔS of the reforming process, and the increase / decrease amount ΔM of retained sludge is negative. Is controlled to decrease by the amount of sludge corresponding to the increase / decrease amount ΔS of the reforming process, and is supplied to the reforming process according to the increase / decrease amount ΔS for reforming. Since the modified sludge modified in the reforming process is easily biodegradable, it is biodegraded by supplying it to the biological treatment process and aerobic biological treatment, and a part thereof is converted into sludge.

上記のように処理を行うことにより、系内の汚泥量を迅速かつ正確に制御して、安定した処理を行うことができる。保持汚泥の増減量ΔMおよび改質汚泥の増減量ΔSの演算を所定の時間間隔で行うことにより、各種条件により変動する汚泥発生量を、所定時間の遅れで追随して制御することができ、適切な保持汚泥量を確保して、安定した処理を行うことができる。   By performing the treatment as described above, the amount of sludge in the system can be controlled quickly and accurately, and a stable treatment can be performed. By performing the calculation of the retained sludge increase / decrease amount ΔM and the modified sludge increase / decrease amount ΔS at a predetermined time interval, the sludge generation amount that fluctuates according to various conditions can be controlled following the delay of the predetermined time, A proper amount of retained sludge can be secured and stable treatment can be performed.

実施例1:
図1の装置により、下水(BOD:200mg/L、流量500m/日)を活性汚泥の存在下に汚泥負荷0.1kg-BOD/kg-VSS/日で好気性生物処理した。固液分離槽3から引き抜いて汚泥改質する汚泥の設定量は、200kg-VSS/日とし、オゾン使用量は対VSS6.7%の13.4kg-O/日とした。24時間後、保持汚泥量Mは目標保持汚泥量M0より50kg-SS多かった。このときのSS当りのVSSは、この汚泥に分析値では80重量%であるため、下式のように、40kg-VSSの汚泥が系内で増えている結果になる。
50kg-SS×0.8kg-VSS/kg-SS=40kg-VSS
Example 1:
Using the apparatus of FIG. 1, sewage (BOD: 200 mg / L, flow rate 500 m 3 / day) was aerobically treated with a sludge load of 0.1 kg-BOD / kg-VSS / day in the presence of activated sludge. The set amount of sludge to be extracted from the solid-liquid separation tank 3 and sludge reformed was 200 kg-VSS / day, and the amount of ozone used was 13.4 kg-O 3 / day, which was 6.7% of VSS. After 24 hours, the retained sludge amount M was 50 kg-SS higher than the target retained sludge amount M0. At this time, the VSS per SS is 80% by weight in the analysis value of this sludge, and as a result, 40kg-VSS sludge is increased in the system.
50kg-SS × 0.8kg-VSS / kg-SS = 40kg-VSS

そこで、保持汚泥量を目標保持汚泥量に戻すため、汚泥改質量を増やした。オゾン減量法の場合、オゾン処理量は、減量したい量の2.9倍であるため、汚泥改質する汚泥の設定量を116kg-VSS/日増加してするように制御し、オゾン処理汚泥量を316kg-VSS/日とした。その結果、汚泥濃度分析結果より、24時間後の汚泥保持量は、目標保持汚泥量となった。   Therefore, in order to return the retained sludge amount to the target retained sludge amount, the sludge reforming amount was increased. In the case of the ozone reduction method, the amount of ozone treatment is 2.9 times the amount to be reduced, so the set amount of sludge for sludge reforming is controlled to increase by 116 kg-VSS / day, and the amount of ozone treatment sludge is 316 kg. -VSS / day. As a result, from the sludge concentration analysis result, the sludge retention amount after 24 hours became the target retained sludge amount.

実施例2:
図2の装置により、実施例1と同じ下水(BOD:200mg/L、流量500m/日)を活性汚泥の存在下に汚泥負荷0.1kg-BOD/kg-VSS/日で好気性生物処理した。固液分離槽3から引き抜いて汚泥改質する汚泥の設定量は、200kg-VSS/日とし、オゾン使用量は対VSS6.75%の13.4kg-O/日とした。24時間後、保持汚泥量Mは目標保持汚泥量M0より50kg多かった。そこでオゾン処理汚泥量を116kg-VSS増加して316kg-VSS/日とするように制御した。その結果、24時間後には、目標保持汚泥量より25kg-SS減少していた。これは、流入BOD量が減少したことによるものと思われた。そこで、保持汚泥量を25kg-SS増やすため、オゾン処理汚泥量を下式のように58kg−VSS減らして、142kg−VSS/日と設定した。汚泥濃度分析結果により24時間後には、保持汚泥量は目標保持汚泥量となった。
25kg-SS×0.8 kg-VSS/ kg-SS×2.9=58kg-VSS
Example 2:
The same sewage as in Example 1 (BOD: 200 mg / L, flow rate 500 m 3 / day) was subjected to aerobic biological treatment with a sludge load of 0.1 kg-BOD / kg-VSS / day using the apparatus shown in FIG. 2 in the presence of activated sludge. . The set amount of sludge to be extracted from the solid-liquid separation tank 3 and sludge reformed was 200 kg-VSS / day, and the amount of ozone used was 13.4 kg-O 3 / day, which was 6.75% of VSS. After 24 hours, the retained sludge amount M was 50 kg more than the target retained sludge amount M0. Therefore, the ozone treatment sludge amount was increased to 116kg-VSS and controlled to 316kg-VSS / day. As a result, after 24 hours, the amount of retained sludge was reduced by 25 kg-SS. This was thought to be due to a decrease in the inflow BOD amount. Therefore, in order to increase the amount of retained sludge by 25 kg-SS, the ozone-treated sludge amount was reduced to 58 kg-VSS as shown in the following formula and set to 142 kg-VSS / day. According to the sludge concentration analysis result, the retained sludge amount became the target retained sludge amount after 24 hours.
25kg-SS × 0.8 kg-VSS / kg-SS × 2.9 = 58kg-VSS

有機性排液を活性汚泥の存在下に好気性生物処理し、活性汚泥処理系における余剰汚泥を減容化する有機性排液の処理方法に利用できる。   The organic effluent can be used in an organic effluent treatment method in which the aerobic biological treatment is performed in the presence of activated sludge and the volume of excess sludge in the activated sludge treatment system is reduced.

実施形態の好気性生物処理装置を示すフローシートである。It is a flow sheet which shows the aerobic biological treatment device of an embodiment. 他の実施形態の好気性生物処理装置を示すフローシートである。It is a flow sheet which shows an aerobic biological treatment device of other embodiments.

符号の説明Explanation of symbols

1 好気性生物処理系
2 曝気槽
3 固液分離槽
4 被処理液路
5 返送汚泥路
6 オゾン処理汚泥導入路
7 散気装置
8 空気供給路
9 連絡路
10 処理液路
11 分離汚泥排出路
12、26 ポンプ
21 オゾン処理系
22 オゾン処理槽
23 オゾン発生機
23a 原料空気供給路
24 引抜汚泥路
25 排オゾン路
27 オゾン供給路
28 余剰汚泥排出路
30 制御部
31、34 SS濃度計
32 界面計
33 界面
35、36流量計
DESCRIPTION OF SYMBOLS 1 Aerobic biological treatment system 2 Aeration tank 3 Solid-liquid separation tank 4 Processed liquid path 5 Return sludge path 6 Ozone treatment sludge introduction path 7 Air diffuser 8 Air supply path 9 Connection path 10 Treatment liquid path 11 Separation sludge discharge path 12 26 Pump 21 Ozone treatment system 22 Ozone treatment tank 23 Ozone generator 23a Raw material air supply path 24 Extracted sludge path 25 Exhaust ozone path 27 Ozone supply path 28 Surplus sludge discharge path 30 Control units 31, 34 SS concentration meter 32 Interface meter 33 Interface 35, 36 flow meter

Claims (4)

有機性排液を曝気槽に導入して、活性汚泥の存在下に好気性生物処理する生物処理工程と、
曝気槽の混合液を固液分離槽で固液分離し、分離液を処理液として排出するとともに、分離汚泥の少なくとも一部を曝気槽に返送する固液分離工程と、
分離汚泥または混合液から活性汚泥のうち設定量を引き抜いて、この引抜汚泥を易生物分解性に改質する改質工程と、
改質汚泥を曝気槽に返送する返送工程とを含み、
曝気槽の混合液の汚泥濃度および混合液量、ならびに固液分離槽の分離汚泥の汚泥濃度および分離汚泥量から系内の保持汚泥量を求め、
こうして求められる保持汚泥量と、目標保持汚泥量との差から保持汚泥の増減量を求め、
この保持汚泥の増減量に単位重量当りのVSS換算係数および減量汚泥単位重量当りの汚泥改質量係数を乗じて改質汚泥の増減量を求め、
保持汚泥量が目標保持汚泥量より多い場合には前記設定量を、前記改質処理の増減量に相当する汚泥量分だけ増加し、保持汚泥量が目標保持汚泥量より少ない場合には前記設定量を、前記改質処理の増減量に相当する汚泥量分だけ減少させるように制御することを特徴とする有機性排液の好気性処理方法。
A biological treatment process for introducing an organic effluent into an aeration tank, and aerobic biological treatment in the presence of activated sludge;
Solid-liquid separation of the mixed liquid in the aeration tank in the solid-liquid separation tank, discharging the separated liquid as a treatment liquid, and returning at least a part of the separated sludge to the aeration tank;
A modification step of extracting a set amount of the activated sludge from the separated sludge or the mixed liquid, and modifying the extracted sludge to be easily biodegradable,
A return process for returning the modified sludge to the aeration tank,
The amount of retained sludge in the system is obtained from the sludge concentration and the amount of liquid mixture in the aeration tank, and the sludge concentration and the amount of separated sludge in the solid-liquid separation tank,
Obtain the amount of retained sludge from the difference between the retained sludge amount thus obtained and the target retained sludge amount,
Multiply the increase / decrease amount of this retained sludge by the VSS conversion coefficient per unit weight and the sludge reforming amount coefficient per unit weight of the reduced sludge to obtain the increase / decrease amount of the reformed sludge,
When the retained sludge amount is larger than the target retained sludge amount, the set amount is increased by the sludge amount corresponding to the increase / decrease amount of the reforming treatment, and when the retained sludge amount is smaller than the target retained sludge amount, the setting is performed. An aerobic treatment method for organic drainage, characterized in that the amount is controlled to be reduced by the amount of sludge corresponding to the amount of increase / decrease in the reforming treatment.
固液分離槽の分離汚泥の汚泥濃度を、曝気槽の混合液の汚泥濃度、および固液分離槽の濃縮比から求める請求項1記載の方法。   The method according to claim 1, wherein the sludge concentration of the separated sludge in the solid-liquid separation tank is determined from the sludge concentration in the mixed liquid in the aeration tank and the concentration ratio of the solid-liquid separation tank. 有機性排液を曝気槽に導入して、活性汚泥の存在下に好気性生物処理する生物処理装置と、
曝気槽の混合液を固液分離する固液分離槽を含み、分離液を処理液として排出するとともに、分離汚泥の少なくとも一部を曝気槽に返送する固液分離装置と、
分離汚泥または混合液から活性汚泥のうち設定量を引き抜いて、この引抜汚泥を易生物分解性に改質する改質装置と、
改質汚泥を曝気槽に返送する返送手段と、
曝気槽の混合液の汚泥濃度および固液分離槽の分離汚泥の汚泥濃度、ならびに固液分離槽の分離汚泥量を測定する測定手段と、
測定値から系内の保持汚泥量を求め、こうして求められる保持汚泥量と目標保持汚泥量との差から保持汚泥量の増減量を求め、この保持汚泥量の増減量に汚泥単位重量当りのVSS換算係数および減量汚泥単位重量当りの汚泥改質量係数を乗じて改質汚泥の増減量を求め、保持汚泥量が目標保持汚泥量より多い場合には前記設定量を、前記改質処理の増減量に相当する汚泥量分だけ増加し、保持汚泥量が目標保持汚泥量より少ない場合には前記設定量を、前記改質処理の増減量に相当する汚泥量分だけ減少させるように制御する制御装置と
を備えていることを特徴とする有機性排液の好気性処理装置。
A biological treatment apparatus that introduces organic waste liquid into the aeration tank and performs aerobic biological treatment in the presence of activated sludge;
Including a solid-liquid separation tank for solid-liquid separation of the liquid mixture in the aeration tank, discharging the separation liquid as a processing liquid, and returning at least a part of the separated sludge to the aeration tank;
A reformer that draws a set amount of the activated sludge from the separated sludge or the mixed liquid and reforms the extracted sludge to be easily biodegradable;
A return means for returning the modified sludge to the aeration tank;
Measuring means for measuring the sludge concentration of the mixed liquid in the aeration tank and the sludge concentration of the separated sludge in the solid-liquid separation tank, and the amount of separated sludge in the solid-liquid separation tank;
The amount of retained sludge in the system is obtained from the measured value, the increase / decrease amount of the retained sludge amount is obtained from the difference between the retained sludge amount thus obtained and the target retained sludge amount, and the increase / decrease amount of the retained sludge amount is expressed as VSS per sludge unit weight. Multiplying the conversion coefficient and the sludge reforming amount coefficient per unit weight of the sludge to be reduced, the amount of increase or decrease in the reformed sludge is obtained. Is increased by the amount of sludge corresponding to the control amount, and when the retained sludge amount is smaller than the target retained sludge amount, the control device controls to decrease the set amount by the amount of sludge corresponding to the increase / decrease amount of the reforming process. An aerobic treatment apparatus for organic drainage, comprising:
固液分離槽の分離汚泥の汚泥濃度を、曝気槽の混合液の汚泥濃度、および固液分離槽の濃縮比から求めるように構成されている請求項3記載の装置。
The apparatus according to claim 3, wherein the sludge concentration of the separated sludge in the solid-liquid separation tank is obtained from the sludge concentration in the mixed liquid in the aeration tank and the concentration ratio of the solid-liquid separation tank.
JP2006078325A 2006-03-22 2006-03-22 Biological treatment method and apparatus for organic liquid waste Pending JP2007253011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078325A JP2007253011A (en) 2006-03-22 2006-03-22 Biological treatment method and apparatus for organic liquid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078325A JP2007253011A (en) 2006-03-22 2006-03-22 Biological treatment method and apparatus for organic liquid waste

Publications (1)

Publication Number Publication Date
JP2007253011A true JP2007253011A (en) 2007-10-04

Family

ID=38627778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078325A Pending JP2007253011A (en) 2006-03-22 2006-03-22 Biological treatment method and apparatus for organic liquid waste

Country Status (1)

Country Link
JP (1) JP2007253011A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105254001A (en) * 2015-10-21 2016-01-20 轻工业环境保护研究所 Aerobic reactor provided with filter material on bottom layer
CN109081499A (en) * 2017-06-14 2018-12-25 三菱电机株式会社 Waste water treatment system and wastewater treatment method
JP6621968B1 (en) * 2019-02-15 2019-12-18 三菱電機株式会社 Water treatment system and water treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105254001A (en) * 2015-10-21 2016-01-20 轻工业环境保护研究所 Aerobic reactor provided with filter material on bottom layer
CN109081499A (en) * 2017-06-14 2018-12-25 三菱电机株式会社 Waste water treatment system and wastewater treatment method
JP2019000781A (en) * 2017-06-14 2019-01-10 三菱電機株式会社 Wastewater treatment system and wastewater treatment method
CN109081499B (en) * 2017-06-14 2022-06-24 三菱电机株式会社 Wastewater treatment system and wastewater treatment method
JP6621968B1 (en) * 2019-02-15 2019-12-18 三菱電機株式会社 Water treatment system and water treatment method

Similar Documents

Publication Publication Date Title
JP4951826B2 (en) Biological nitrogen removal method
JP4780552B2 (en) Biological wastewater treatment method
JP4632356B2 (en) Biological nitrogen removal method and system
WO2013084973A1 (en) Processing system and processing method for nitrogen-containing organic waste water
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
JP4837706B2 (en) Ammonia nitrogen removal equipment
JP2006305488A (en) Method of treating organic sludge
JP2008114215A (en) Method and apparatus for treating sludge
WO2013084972A1 (en) Processing system and processing method for nitrogen-containing organic waste water
JP2007253011A (en) Biological treatment method and apparatus for organic liquid waste
JP2007190492A (en) Method and apparatus for treating nitrogen-containing wastewater
JP3551526B2 (en) Aerobic treatment of organic wastewater
JP3661354B2 (en) Aerobic treatment method of organic drainage
JP2001025789A (en) Treatment of organic waste liquid and device therefor
JP4622057B2 (en) Organic wastewater treatment method
JP4882181B2 (en) Denitrification method and apparatus
JP2001269697A (en) Nitrogen-containing drainage treating method
JP2007190510A (en) Biological wastewater treatment method
JP4617572B2 (en) Nitrogen-containing wastewater treatment method
JP2003010877A (en) Activated sludge treatment method for sewage and its apparatus
JP4929641B2 (en) Organic waste liquid treatment equipment
JP2001212593A (en) Post-treatment method for ascending current anaerobic treatment apparatus
JP2007190491A (en) Method and apparatus for treating nitrogen-containing wastewater
JP2007222793A (en) Biological treatment process and arrangement of organic nature liquid discharge
JP2022127421A (en) Treatment method and treatment apparatus for organic liquid waste