JP2007190492A - Method and apparatus for treating nitrogen-containing wastewater - Google Patents

Method and apparatus for treating nitrogen-containing wastewater Download PDF

Info

Publication number
JP2007190492A
JP2007190492A JP2006011270A JP2006011270A JP2007190492A JP 2007190492 A JP2007190492 A JP 2007190492A JP 2006011270 A JP2006011270 A JP 2006011270A JP 2006011270 A JP2006011270 A JP 2006011270A JP 2007190492 A JP2007190492 A JP 2007190492A
Authority
JP
Japan
Prior art keywords
nitrogen
denitrification
treated water
water
containing wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006011270A
Other languages
Japanese (ja)
Inventor
Yuichi Muramatsu
勇一 村松
Takaaki Tokutomi
孝明 徳富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2006011270A priority Critical patent/JP2007190492A/en
Publication of JP2007190492A publication Critical patent/JP2007190492A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain treated water of high purity by further highly removing nitrate or nitrous nitrogen remaining in denitrified treated water due to ANAMMOX microorganisms. <P>SOLUTION: In this treatment method of nitrogen-containing wastewater, the nitrogen-containing wastewater is subjected to denitrification treatment with ANAMMOX microorganisms being autrophic denitrifying microorganisms using ammonia nitrogen as an electron donor and nitrous nitrogen as an electron receptor. Thereafter, nitrate nitrogen produced as a byproduct by ANAMMOX reaction or remaining nitrous nitrogen is subjected to denitrification treatment. This treated water is circulated to a denitrification treatment process due to ANAMMOX microorganisms. The pH of the obtained treated water is adjusted to 8.8-9.4 to enhance denitrification efficiency. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は窒素含有排水の処理方法および処理装置に係り、特に、窒素含有排水中の窒素を、アンモニア性窒素を電子供与体、亜硝酸性窒素を電子受容体とする独立栄養性脱窒微生物の作用により脱窒処理した後、水素ガスを電子供与体、亜硝酸性窒素および/または硝酸性窒素を電子受容体とする独立栄養性脱窒微生物の作用により脱窒処理する方法および装置に関する。   The present invention relates to a method and an apparatus for treating nitrogen-containing wastewater, and in particular, an autotrophic denitrifying microorganism using nitrogen in nitrogen-containing wastewater, ammonia nitrogen as an electron donor, and nitrite nitrogen as an electron acceptor. The present invention relates to a method and an apparatus for performing denitrification treatment by the action of an autotrophic denitrification microorganism using hydrogen gas as an electron donor, nitrite nitrogen and / or nitrate nitrogen as an electron acceptor after denitrification treatment by action.

排水中に含まれるアンモニア性窒素は河川、湖沼及び海洋などにおける富栄養化の原因物質の一つであり、排水処理工程で効率的に除去する必要がある。一般に、排水中のアンモニア性窒素は、アンモニア性窒素をアンモニア酸化細菌により亜硝酸性窒素に酸化し、更にこの亜硝酸性窒素を亜硝酸酸化細菌により硝酸性窒素に酸化する硝化工程と、これらの亜硝酸性窒素及び硝酸性窒素を従属栄養性細菌である脱窒菌により、有機物を電子供与体として利用して窒素ガスにまで分解する脱窒工程との2段階の生物反応を経て窒素ガスにまで分解される。   Ammonia nitrogen contained in wastewater is one of the causative substances of eutrophication in rivers, lakes and oceans, and it is necessary to remove it efficiently in the wastewater treatment process. In general, ammonia nitrogen in wastewater is oxidized by ammonia oxidizing bacteria to nitrite nitrogen, and nitrifying nitrogen is oxidized to nitrate nitrogen by nitrite oxidizing bacteria. Nitrite nitrogen and nitrate nitrogen are denitrified bacteria, which are heterotrophic bacteria, and are converted into nitrogen gas through a two-stage biological reaction with a denitrification process that decomposes organic matter into nitrogen gas using an electron donor. Disassembled.

しかし、このような従来の硝化脱窒法では、脱窒工程において電子供与体としてメタノールなどの有機物を多量に必要とし、また硝化工程では多量の酸素が必要であるため、ランニングコストが高いという欠点がある。   However, such a conventional nitrification denitrification method requires a large amount of organic matter such as methanol as an electron donor in the denitrification step, and also requires a large amount of oxygen in the nitrification step, so that the running cost is high. is there.

これに対して、近年、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性脱窒微生物(自己栄養細菌)を利用し、アンモニア性窒素と亜硝酸性窒素とを反応させて脱窒する方法が提案された。この方法であれば、有機物の添加は不要であるため、従属栄養性の脱窒菌を利用する方法と比べて、コストを低減することができる。また、独立栄養性の微生物は収率が低く、汚泥の発生量が従属栄養性微生物と比較すると著しく少ないので、余剰汚泥の発生量を抑えることができる。更に、従来の硝化脱窒法で観察されるNOの発生がなく、環境に対する負荷を低減できるといった特長もある。 On the other hand, in recent years, using an autotrophic denitrifying microorganism (autotrophic bacterium) using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, ammonia nitrogen and nitrite nitrogen A method of denitrifying by reacting was proposed. If this method is used, it is not necessary to add an organic substance, so that the cost can be reduced as compared with a method using heterotrophic denitrifying bacteria. Moreover, since the yield of autotrophic microorganisms is low and the amount of sludge generated is significantly less than that of heterotrophic microorganisms, the amount of surplus sludge generated can be suppressed. Furthermore, there is also a feature that the generation of N 2 O observed by the conventional nitrification denitrification method does not occur and the burden on the environment can be reduced.

この独立栄養性脱窒微生物(以下「ANAMMOX微生物」と称す場合がある。)を利用する生物脱窒プロセスは、Strous, M, et al., Appl. Microbiol. Biotechnol., 50, p.589-596 (1998)に報告されており、以下のような反応でアンモニア性窒素とその約1.3倍量の亜硝酸性窒素が反応して窒素ガスに分解されると考えられている。この生物脱窒反応は、一般的にANAMMOX反応と呼ばれている。   A biodenitrification process using this autotrophic denitrifying microorganism (hereinafter sometimes referred to as “ANAMMOX microorganism”) is described in Strous, M, et al., Appl. Microbiol. Biotechnol., 50, p.589- 596 (1998), it is considered that ammonia nitrogen and about 1.3 times the amount of nitrite nitrogen react and are decomposed into nitrogen gas in the following reaction. This biological denitrification reaction is generally called the ANAMOX reaction.

Figure 2007190492
Figure 2007190492

しかし、ANAMMOX反応では窒素の大部分が窒素ガスにまで変換される一方で、原水中のアンモニア性窒素1モルに対して0.26モルの硝酸性窒素が副生する。この硝酸性窒素は、独立栄養性細菌の菌体合成の際の反応生成物と考えられているが、この硝酸性窒素の副生により、原水中の窒素濃度が高い場合は、処理水中の硝酸性窒素濃度が排水基準値を超えてしまうこととなる。また、アンモニア性窒素に対して反応当量よりも過剰量の亜硝酸性窒素が原水中に含まれる場合は、処理水中に亜硝酸性窒素が残留してしまう。   However, in the ANAMMOX reaction, most of nitrogen is converted into nitrogen gas, while 0.26 mol of nitrate nitrogen is by-produced with respect to 1 mol of ammonia nitrogen in the raw water. This nitrate nitrogen is considered to be a reaction product during cell synthesis of autotrophic bacteria, but if the nitrogen concentration in the raw water is high due to the byproduct of this nitrate nitrogen, the nitrate in the treated water The nitrogen concentration will exceed the wastewater standard value. Further, when the raw water contains an amount of nitrite nitrogen that is larger than the reaction equivalent to ammonia nitrogen, the nitrite nitrogen remains in the treated water.

特開2002−361285号公報には、ANAMMOX微生物による脱窒処理後、残留する硝酸性窒素や亜硝酸性窒素を、従属栄養性脱窒微生物により脱窒処理する方法が記載されている。しかし、従属栄養性脱窒微生物による脱窒処理には、メタノール、エタノール、酢酸などの有機物を水素供与体として添加する必要があり、このような処理を組み合わせることは、有機物の添加が不要なANAMMOX反応を利用することの利点が損なわれる。また、後段に従属栄養型脱窒槽を設けるために、装置構成が複雑になるという欠点もある。   Japanese Patent Application Laid-Open No. 2002-361285 describes a method of denitrifying remaining nitrate nitrogen and nitrite nitrogen by heterotrophic denitrification microorganisms after denitrification treatment by ANAMOX microorganisms. However, denitrification treatment by heterotrophic denitrification microorganisms requires the addition of organic substances such as methanol, ethanol, and acetic acid as hydrogen donors, and combining such treatments does not require the addition of organic substances. The advantage of utilizing the reaction is impaired. In addition, since the heterotrophic denitrification tank is provided in the subsequent stage, there is a disadvantage that the apparatus configuration becomes complicated.

なお、電子供与体として有機物の替わりに水素ガスを用い、独立栄養性脱窒微生物により脱窒処理を行う方法が、例えば特開昭57−201594号公報等に提案されており、この方法であれば、有機物を添加することなく脱窒処理を行うことができる。また、この方法において、水素ガスの利用効率を高めて処理コストを低減するべく、水素ガスをガス透過性膜を介して被処理水中に供給し、膜の被処理水側表面に付着、増殖させた独立栄養性脱窒微生物により効率的な脱窒処理を行う方法が特許第2901323号公報に提案されている。   In addition, for example, Japanese Laid-Open Patent Publication No. 57-201594 has proposed a method of performing denitrification treatment using an autotrophic denitrifying microorganism using hydrogen gas instead of an organic substance as an electron donor. For example, the denitrification treatment can be performed without adding an organic substance. Further, in this method, in order to increase the utilization efficiency of hydrogen gas and reduce the processing cost, hydrogen gas is supplied into the water to be treated through the gas permeable membrane, and adheres to and propagates on the surface of the membrane to be treated. Japanese Patent No. 2901323 proposes a method for performing an efficient denitrification treatment using autotrophic denitrification microorganisms.

しかし、この方法では、水素ガスの溶解工程を必要とし、このために処理速度が遅く、また水素ガスの溶解のために圧縮機を用いるため電気代が高いという点、また高価な水素ガスを多量に用いるためコストが高く、危険度も高いという点が大きな欠点として挙げられる。   However, this method requires a step of dissolving hydrogen gas, and therefore the processing speed is slow, and since a compressor is used for dissolving hydrogen gas, the electricity cost is high, and a large amount of expensive hydrogen gas is used. The cost is high and the degree of danger is high.

なお、従来において、ANAMMOX反応と、水素ガスを電子供与体とする独立栄養性脱窒微生物による脱窒処理とを組み合わせる提案はなく、更には、その場合において、装置構成の簡素化、脱窒処理効率の向上についての検討はなされていない。
特開2002−361285号公報 特開昭57−201594号公報 特許第2901323号公報 Strous, M, et al., Appl. Microbiol. Biotechnol., 50, p.589-596 (1998)
In the past, there was no proposal to combine the ANAMOX reaction with the denitrification treatment by an autotrophic denitrification microorganism using hydrogen gas as an electron donor. Further, in that case, the apparatus configuration was simplified and the denitrification treatment was performed. No consideration has been given to improving efficiency.
JP 2002-361285 A JP-A-57-201594 Japanese Patent No. 2901323 Strous, M, et al., Appl. Microbiol. Biotechnol., 50, p.589-596 (1998)

本発明は上記従来の実情に鑑みてなされたものであって、ANAMMOX微生物による脱窒処理水中に残留する硝酸性窒素や亜硝酸性窒素を更に高度に除去して、高水質の処理水を得る窒素含有排水の処理方法および処理装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, and further removes nitrate nitrogen and nitrite nitrogen remaining in denitrification treated water by the ANAMMOX microorganism to obtain high-quality treated water. It aims at providing the processing method and processing equipment of nitrogen content drainage.

本発明はまた、ANAMMOX微生物を利用した脱窒処理における処理効率を格段に高める窒素含有排水の処理方法および処理装置を提供することを目的とする。   Another object of the present invention is to provide a nitrogen-containing wastewater treatment method and a treatment apparatus that remarkably increase the treatment efficiency in the denitrification treatment using the ANAMOX microorganisms.

本発明はまた、このANAMMOX微生物による脱窒処理水の脱窒処理を行うことによる装置構成の複雑化を解消し、簡易な装置及び操作により効率的な脱窒処理を行う窒素含有排水の処理方法および処理装置を提供することを目的とする。   The present invention also eliminates the complexity of the device configuration due to the denitrification treatment of the denitrification water by the ANAMOX microorganisms, and the nitrogen-containing wastewater treatment method that performs efficient denitrification treatment with a simple device and operation And it aims at providing a processing device.

本発明(請求項1)の窒素含有排水の処理方法は、窒素を含有する排水を生物学的脱窒処理する窒素含有排水の処理方法において、アンモニア性窒素を電子供与体、亜硝酸性窒素を電子受容体とする独立栄養性脱窒微生物の作用により脱窒処理する第一の独立栄養型脱窒工程と、該第一の独立栄養型脱窒工程の処理水を水素ガスを電子供与体、亜硝酸性窒素および/または硝酸性窒素を電子受容体とする独立栄養性脱窒微生物の作用により脱窒処理する第二の独立栄養型脱窒工程と、該第二の独立栄養型脱窒工程の処理水を前記第一の独立栄養型脱窒工程に返送する処理水循環工程とを有することを特徴とする。   The method for treating nitrogen-containing wastewater of the present invention (Claim 1) is the nitrogen-containing wastewater treatment method for biologically denitrifying wastewater containing nitrogen, wherein ammonia nitrogen is used as an electron donor and nitrite nitrogen is used. A first autotrophic denitrification step for denitrification treatment by the action of an autotrophic denitrifying microorganism as an electron acceptor, and hydrogen gas as an electron donor for the treated water of the first autotrophic denitrification step, A second autotrophic denitrification step for denitrification by the action of an autotrophic denitrifying microorganism using nitrite nitrogen and / or nitrate nitrogen as an electron acceptor; and the second autotrophic denitrification step And a treated water circulation step for returning the treated water to the first autotrophic denitrification step.

請求項2の窒素含有排水の処理方法は、請求項1において、前記第一の独立栄養型脱窒工程の処理水の一部を生物学的脱窒処理水として系外へ排出すると共に、残部を前記第二の独立栄養型脱窒工程に送給することを特徴とする。   A method for treating nitrogen-containing wastewater according to claim 2 is the method according to claim 1, wherein a part of the treated water in the first autotrophic denitrification step is discharged out of the system as biological denitrification treated water, and the remainder Is fed to the second autotrophic denitrification step.

請求項3の窒素含有排水の処理方法は、請求項1又は2において、前記第二の独立栄養型脱窒工程は、被処理水と水素ガスとを、膜を介して接触させる水素ガス供給工程を含むことを特徴とする。   The nitrogen-containing wastewater treatment method according to claim 3 is the hydrogen gas supply step according to claim 1 or 2, wherein the second autotrophic denitrification step is a step of bringing the water to be treated and hydrogen gas into contact with each other through a membrane. It is characterized by including.

請求項4の窒素含有排水の処理方法は、請求項3において、前記膜の被処理水側表面に微生物を付着、増殖せしめることにより該膜の被処理水側で微生物反応を行うことを特徴とする。   The method for treating nitrogen-containing wastewater according to claim 4 is characterized in that, in claim 3, microbial reaction is performed on the treated water side of the membrane by attaching and growing microorganisms on the treated water side surface of the membrane. To do.

請求項5の窒素含有排水の処理方法は、請求項1ないし4のいずれか1項において、前記第二の独立栄養型脱窒工程またはその前段に、該第二の独立栄養型脱窒工程の処理水のpHが8.8〜9.4になるようにpH調整するpH調整工程を有することを特徴とする。   The nitrogen-containing wastewater treatment method according to claim 5 is the method according to any one of claims 1 to 4, wherein the second autotrophic denitrification step is performed in the second autotrophic denitrification step or preceding stage. It has the pH adjustment process of adjusting pH so that pH of treated water may be 8.8-9.4.

請求項6の窒素含有排水の処理方法は、請求項1ないし5のいずれか1項において、前記第一の独立栄養型脱窒工程に導入される水のpHが6.5〜8.0となるようにpH調整するpH調整工程を有することを特徴とする。   The nitrogen-containing wastewater treatment method according to claim 6 is the method according to any one of claims 1 to 5, wherein the pH of the water introduced into the first autotrophic denitrification step is 6.5 to 8.0. It has the pH adjustment process which adjusts pH so that it may become.

請求項7の窒素含有排水の処理方法は、請求項1ないし6のいずれか1項において、前記窒素含有排水中のアンモニア性窒素に対する亜硝酸性窒素の割合が1.3モル倍以下であることを特徴とする。   The nitrogen-containing wastewater treatment method according to claim 7 is the method according to any one of claims 1 to 6, wherein a ratio of nitrite nitrogen to ammonia nitrogen in the nitrogen-containing wastewater is 1.3 mol times or less. It is characterized by.

本発明(請求項8)の窒素含有排水の処理装置は、窒素を含有する排水を生物学的脱窒処理する窒素含有排水の処理装置において、アンモニア性窒素を電子供与体、亜硝酸性窒素を電子受容体とする独立栄養性脱窒微生物の作用により脱窒処理する第一の独立栄養型脱窒手段と、水素ガスを電子供与体、亜硝酸性窒素および/または硝酸性窒素を電子受容体とする独立栄養性脱窒微生物の作用により脱窒処理する第二の独立栄養型脱窒手段と、該第二の独立栄養型脱窒手段の処理水を前記第一の独立栄養型脱窒手段に返送する処理水循環手段とを有することを特徴とする。   The nitrogen-containing wastewater treatment apparatus according to the present invention (invention 8) is a nitrogen-containing wastewater treatment apparatus for biologically denitrifying wastewater containing nitrogen, wherein ammonia nitrogen is used as an electron donor and nitrite nitrogen is used. A first autotrophic denitrification means for denitrification by the action of an autotrophic denitrifying microorganism as an electron acceptor, hydrogen gas as an electron donor, nitrite nitrogen and / or nitrate nitrogen as an electron acceptor A second autotrophic denitrification means for performing a denitrification process by the action of the autotrophic denitrifying microorganism, and treated water of the second autotrophic denitrification means is the first autotrophic denitrification means. And a treated water circulation means for returning to the waste water.

請求項9の窒素含有排水の処理装置は、請求項8において、前記第一の独立栄養型脱窒手段の処理水の一部を生物学的脱窒処理水として系外へ排出する手段と、残部を前記第二の独立栄養型脱窒手段に送給する手段とを有することを特徴とする。   The nitrogen-containing wastewater treatment apparatus according to claim 9 is the apparatus according to claim 8, wherein a part of the treated water of the first autotrophic denitrification means is discharged out of the system as biological denitrification treated water; And means for feeding the remainder to the second autotrophic denitrification means.

請求項10の窒素含有排水の処理装置は、請求項8又は9において、前記第二の独立栄養型脱窒手段は、被処理水と水素ガスとを、膜を介して接触させる水素ガス供給手段を含むことを特徴とする。   The nitrogen-containing wastewater treatment apparatus according to claim 10 is the hydrogen gas supply means according to claim 8 or 9, wherein the second autotrophic denitrification means contacts the water to be treated and hydrogen gas through a membrane. It is characterized by including.

請求項11の窒素含有排水の処理装置は、請求項10において、前記膜の被処理水側表面に微生物を付着、増殖せしめることにより該膜の被処理水側で微生物反応を行うことを特徴とする。   The nitrogen-containing wastewater treatment apparatus according to claim 11 is characterized in that, in claim 10, a microorganism reaction is carried out on the treated water side of the membrane by attaching and growing microorganisms on the treated water side surface of the membrane. To do.

請求項12の窒素含有排水の処理装置は、請求項8ないし11のいずれか1項において、前記第二の独立栄養型脱窒手段またはその前段に、該第二の独立栄養型脱窒手段の処理水のpHが8.8〜9.4になるようにpH調整するpH調整手段を有することを特徴とする。   The apparatus for treating nitrogen-containing wastewater according to claim 12 is the apparatus according to any one of claims 8 to 11, wherein the second autotrophic denitrification means or the preceding stage has the second autotrophic denitrification means. It has a pH adjusting means for adjusting pH so that the pH of the treated water is 8.8 to 9.4.

請求項13の窒素含有排水の処理装置は、請求項8ないし12のいずれか1項において、前記第一の独立栄養型脱窒手段に導入される水のpHが6.5〜8.0となるようにpH調整するpH調整手段を有することを特徴とする。   The nitrogen-containing wastewater treatment apparatus according to claim 13 is characterized in that in any one of claims 8 to 12, the pH of the water introduced into the first autotrophic denitrification means is 6.5 to 8.0. It has the pH adjustment means which adjusts pH so that it may become.

請求項14の窒素含有排水の処理装置は、請求項8ないし13のいずれか1項において、前記窒素含有排水中のアンモニア性窒素に対する亜硝酸性窒素の割合が1.3モル倍以下であることを特徴とする。   The apparatus for treating nitrogen-containing wastewater according to claim 14 is the apparatus according to any one of claims 8 to 13, wherein the ratio of nitrite nitrogen to ammonia nitrogen in the nitrogen-containing wastewater is 1.3 mol times or less. It is characterized by.

請求項15の窒素含有排水の処理装置は、請求項8ないし14のいずれか1項において、前記第一の独立栄養型脱窒手段の処理水が導入される循環槽を有し、該循環槽内に前記第二の独立栄養型脱窒手段が設けられていることを特徴とする。   The nitrogen-containing wastewater treatment apparatus according to claim 15 has a circulation tank into which treated water of the first autotrophic denitrification means is introduced according to any one of claims 8 to 14, and the circulation tank The second autotrophic denitrification means is provided inside.

請求項16の窒素含有排水の処理装置は、請求項15において、前記循環槽は、前記窒素含有排水が導入される原水導入部と、前記第一の独立栄養型脱窒手段の処理水が導入される処理水導入部と、前記原水導入部と処理水導入部との間に設けられた前記第二の独立栄養型脱窒手段を保持する脱窒処理部とを有し、前記処理水導入部から前記脱窒処理部を経て前記原水導入部に水が流通可能とされており、前記原水導入部の水を前記第一の独立栄養型脱窒手段に送給する手段と、前記処理水導入部の水を生物学的脱窒処理水として系外へ排出する手段とを有することを特徴とする。   The apparatus for treating nitrogen-containing wastewater according to claim 16 is the apparatus according to claim 15, wherein the circulation tank introduces raw water introduction part into which the nitrogen-containing wastewater is introduced and treated water from the first autotrophic denitrification means. Treated water introduction part, and a denitrification treatment part for holding the second autotrophic denitrification means provided between the raw water introduction part and the treated water introduction part, and the treated water introduction Water through the denitrification treatment unit to the raw water introduction unit, means for supplying the raw water introduction unit water to the first autotrophic denitrification means, and the treated water And means for discharging the water in the introduction section out of the system as biological denitrification treated water.

請求項17の窒素含有排水の処理装置は、請求項16において、前記原水導入部と前記脱窒処理部との間、及び、前記処理水導入部と前記脱窒処理部との間の一方に、下端が循環槽底面から離隔した仕切壁が設けられ、他方に、上端が水面下に没している仕切壁が設けられていることを特徴とする。   A nitrogen-containing wastewater treatment apparatus according to claim 17 is the treatment apparatus according to claim 16, wherein the treatment apparatus is disposed between the raw water introduction unit and the denitrification treatment unit and between the treated water introduction unit and the denitrification treatment unit. A partition wall having a lower end separated from the bottom surface of the circulation tank is provided, and a partition wall having an upper end submerged below the water surface is provided on the other side.

本発明によれば、ANAMMOX微生物による脱窒処理で得られた処理水(以下「ANAMMOX処理水」と称す場合がある。)を、更に、水素ガスを電子供与体、亜硝酸性窒素および/または硝酸性窒素を電子受容体とする独立栄養性脱窒微生物(以下「水素酸化微生物」と称す場合がある。)で脱窒処理し、更にその処理水(以下「水素還元処理水」と称す場合がある。)をANAMMOX微生物により脱窒処理することにより、有機物を添加することなく、ANAMMOX反応で副生する硝酸性窒素や、残留する亜硝酸性窒素を高度に除去して高水質の処理水を得ることができる。   According to the present invention, the treated water obtained by the denitrification treatment by the ANAMOX microorganisms (hereinafter sometimes referred to as “ANAMMOX treated water”), hydrogen gas as the electron donor, nitrite nitrogen and / or Denitrifying treatment with autotrophic denitrifying microorganisms (hereinafter sometimes referred to as “hydrogen-oxidizing microorganisms”) using nitrate nitrogen as an electron acceptor, and further treating the treated water (hereinafter referred to as “hydrogen-reducing treated water”) By denitrifying with ANAMMOX microorganisms, high-quality treated water can be obtained by highly removing nitrate nitrogen and by-product nitrite nitrogen that remain as a by-product in the ANAMMOX reaction without adding organic matter. Can be obtained.

即ち、前述の如く、ANAMMOX微生物による脱窒処理では、ANAMMOX処理水に硝酸性窒素や亜硝酸性窒素が残存してしまうという欠点が挙げられる。   That is, as described above, the denitrification treatment by the ANAMOX microorganism has a drawback that nitrate nitrogen and nitrite nitrogen remain in the ANAMOX treated water.

硝酸性窒素の生物脱窒手段としては、メタノール、エタノール、酢酸などの有機物を還元剤(電子供与体)として添加して従属栄養性脱窒微生物により生物的に脱窒処理する方法があるが、この方法では、これら有機物を炭素源とする微生物群が増殖して余剰汚泥が発生するという欠点がある上に、ANAMMOX反応による脱窒処理と組み合わせた場合、反応槽内の菌叢を大幅に変化させる;脱窒処理水中の残留有機物が脱窒処理の阻害要因となる;などの恐れがある。これに対して、水素ガスを電子供与体とする脱窒処理であれば、水素ガスを利用する水素酸化微生物が主体となるので、余剰汚泥の発生や処理水の汚染を大幅に抑制できるが、処理速度が遅い;電気代が高い;高価な水素ガスを多量に用いるためコストが高く、危険度も高い;という欠点がある。   Biological denitrification means for nitrate nitrogen include a method in which organic substances such as methanol, ethanol and acetic acid are added as a reducing agent (electron donor) and biologically denitrified by heterotrophic denitrifying microorganisms. This method has the disadvantage that microorganisms that use these organic substances as a carbon source grow and generate excess sludge. In addition, when combined with denitrification treatment by the ANAMMOX reaction, the bacterial flora in the reaction vessel is significantly changed. There is a risk that residual organic matter in the denitrified water becomes an obstacle to the denitrification treatment. On the other hand, in the case of denitrification treatment using hydrogen gas as an electron donor, since hydrogen oxidation microorganisms that use hydrogen gas are the main components, generation of excess sludge and contamination of treated water can be significantly suppressed. Disadvantages include low processing speed, high electricity bill, high cost and high risk due to the large amount of expensive hydrogen gas used.

これらの問題点を解消するために、本発明では、ANAMMOX微生物による第一の脱窒処理の後処理として水素酸化微生物による第二の脱窒処理を設け、第一の脱窒処理によるANAMMOX処理水に含まれる硝酸性窒素を第二の脱窒処理により亜硝酸性窒素に還元し、この水素酸化微生物による脱窒処理で生成した亜硝酸性窒素をANAMMOX微生物による第一の脱窒処理においてアンモニア性窒素との反応で脱窒処理することにより、窒素濃度の極めて低い処理水を得る。   In order to solve these problems, in the present invention, a second denitrification treatment by a hydrogen oxidation microorganism is provided as a post-treatment of the first denitrification treatment by the ANAMOX microorganism, and the ANAMOX treated water by the first denitrification treatment is provided. Nitrate nitrogen contained in water is reduced to nitrite nitrogen by the second denitrification treatment, and the nitrite nitrogen produced by the denitrification treatment by the hydrogen-oxidizing microorganism is converted to ammonia in the first denitrification treatment by the ANAMOX microorganism. By performing denitrification treatment by reaction with nitrogen, treated water having an extremely low nitrogen concentration is obtained.

前述の如く、従属栄養性脱窒微生物による脱窒処理では、余剰汚泥が発生するという欠点がある上に、ANAMMOX反応による脱窒処理と組み合わせた場合、反応槽内の菌叢を大幅に変化させる;脱窒処理水中の残留有機物が脱窒処理の阻害要因となる;などの恐れがある。これに対して、水素ガスを電子供与体とする脱窒処理であれば、水素ガスを利用する水素酸化微生物が主体となるので、余剰汚泥の発生や処理水の汚染を大幅に抑制でき、ANAMMOX処微生物による脱窒処理系内での脱窒処理として好適に使用することができるため、ANAMMOX反応系内に容易に組み込むことにより、装置構成の簡易化を図ることもできる。   As described above, the denitrification treatment with heterotrophic denitrification microorganisms has the disadvantage that excessive sludge is generated, and when combined with the denitrification treatment by the ANAMOX reaction, drastically changes the flora in the reaction tank. There is a risk that residual organic matter in the denitrification water will inhibit the denitrification treatment. On the other hand, in the case of denitrification treatment using hydrogen gas as an electron donor, hydrogen oxidation microorganisms that use hydrogen gas are the main components, so excessive sludge generation and contamination of treated water can be greatly suppressed. Since it can be suitably used as a denitrification treatment in a denitrification treatment system by a treatment microorganism, the apparatus configuration can be simplified by being easily incorporated into the ANAMMOX reaction system.

従来のように水素酸化微生物による脱窒処理を単独で行うと、前述のように処理速度、コスト、安全面の問題が大きかったが、本発明では第一の脱窒処理において窒素濃度を大きく低減したANAMMOX処理水に対して、水素酸化微生物による第二の脱窒処理を適用する上に、後述の如く、この第二の脱窒処理では、硝酸性窒素を亜硝酸性窒素に還元するだけで良いため、この第二の脱窒処理で処理に要する水素ガス、電力は従来よりはるかに低減され、水素酸化微生物による脱窒処理の問題は大きく改善される。   When the denitrification process using hydrogen-oxidizing microorganisms is performed independently as in the past, the problems of the processing speed, cost, and safety were large as described above. However, in the present invention, the nitrogen concentration is greatly reduced in the first denitrification process. In addition to applying the second denitrification treatment by hydrogen-oxidizing microorganisms to the treated ANAMMOX water, as described later, in this second denitrification treatment, nitrate nitrogen is simply reduced to nitrite nitrogen. For this reason, the hydrogen gas and electric power required for the second denitrification treatment are greatly reduced as compared with the prior art, and the problem of the denitrification treatment by the hydrogen-oxidizing microorganism is greatly improved.

本発明においては、ANAMMOX処理水の一部を生物学的脱窒処理水として系外へ排出すると共に、残部を第二の脱窒処理に供することが好ましく、これにより、ANAMMOX処理水中の硝酸性窒素を水素酸化微生物により亜硝酸性窒素に変更し、この水素還元処理水中の亜硝酸性窒素をANAMMOX微生物により更に除去して十分に窒素濃度を低減した水を処理水として取り出すことができる(請求項2,9)。   In the present invention, it is preferable that a part of the ANAMMOX treated water is discharged out of the system as a biological denitrification treated water, and the remaining part is subjected to a second denitrification treatment. Nitrogen is changed to nitrite nitrogen by hydrogen oxidation microorganisms, and nitrite nitrogen in this hydrogen reduction treated water is further removed by ANAMMOX microorganisms, and water with a sufficiently reduced nitrogen concentration can be taken out as treated water (claim) Item 2, 9).

本発明において、水素酸化微生物による脱窒処理に当たり、ANAMMOX処理水と水素ガスとを、膜を介して接触させ、水素ガスを膜を透過させてANAMMOX処理水中に供給することにより、効率的に水素ガスを供給することができる(請求項3,10)。この際、膜の被処理水側に水素酸化微生物を付着、増殖させておくことにより、被処理水側の膜面で効率的な脱窒処理を行える(請求項4,11)。   In the present invention, in the denitrification treatment by the hydrogen-oxidizing microorganism, the ANAMOX treated water and the hydrogen gas are brought into contact with each other through the membrane, and the hydrogen gas is permeated through the membrane to be supplied into the ANAMMOX treated water. Gas can be supplied (claims 3 and 10). At this time, by attaching and growing hydrogen-oxidizing microorganisms on the treated water side of the membrane, efficient denitrification treatment can be performed on the membrane surface on the treated water side (claims 4 and 11).

また、水素酸化微生物による脱窒処理は、その処理水のpHが8.8〜9.4となるような条件で行うことにより、硝酸性窒素から亜硝酸性窒素への転換率を高めることができることから、水素酸化微生物による脱窒処理工程又はその前段で、処理水のpHが8.8〜9.4となるようにpH調整することが好ましい(請求項5,12)。   Further, the denitrification treatment by the hydrogen-oxidizing microorganism can be performed under such conditions that the pH of the treated water is 8.8 to 9.4, thereby increasing the conversion rate from nitrate nitrogen to nitrite nitrogen. Therefore, it is preferable to adjust the pH of the treated water so that the pH of the treated water is 8.8 to 9.4 in the denitrification treatment step using hydrogen-oxidizing microorganisms or in the preceding stage (claims 5 and 12).

即ち、水素酸化微生物による脱窒処理は、硝酸性窒素を亜硝酸性窒素を経て窒素にまで還元するものであるが、硝酸性窒素を窒素にまで還元するには、亜硝酸性窒素から窒素に還元するために余分な水素を投入する必要があり、全体の処理効率が非常に悪く、また、そのための水素ガスコストも高くつく。これに対して、この脱窒処理を処理水のpHが8.8〜9.4となるような条件下で行うと、水素酸化微生物による脱窒反応を亜硝酸性窒素の段階で止めることができ、処理効率が格段に高くなると共に水素ガスの使用量を低減することができる。しかして、水素酸化微生物による脱窒処理で生成した亜硝酸性窒素は、ANAMMOX反応によるアンモニア性窒素の脱窒処理に用いることができ、水素酸化微生物による脱窒処理とANAMMOX微生物による脱窒処理とを組み合わせることによる効果を有効に得ることができる。   In other words, the denitrification treatment by hydrogen-oxidizing microorganisms reduces nitrate nitrogen to nitrogen through nitrite nitrogen, but in order to reduce nitrate nitrogen to nitrogen, nitrite nitrogen is changed to nitrogen. In order to reduce, it is necessary to add extra hydrogen, the overall processing efficiency is very poor, and the cost of hydrogen gas is high. On the other hand, if this denitrification treatment is performed under conditions such that the pH of the treated water is 8.8 to 9.4, the denitrification reaction by the hydrogen-oxidizing microorganism can be stopped at the nitrite nitrogen stage. In addition, the processing efficiency is remarkably increased and the amount of hydrogen gas used can be reduced. Thus, the nitrite nitrogen generated by the denitrification treatment by the hydrogen oxidation microorganism can be used for the denitrification treatment of ammonia nitrogen by the ANAMMOX reaction. The denitrification treatment by the hydrogen oxidation microorganism and the denitrification treatment by the ANAMMOX microorganism The effect by combining these can be obtained effectively.

なお、本発明において、このように水素酸化微生物による硝酸性窒素の還元を亜硝酸性窒素で止める場合であっても、ANAMMOX処理水中の一部の亜硝酸性窒素の窒素ガスへの脱窒や一部硝酸性窒素の窒素ガスへの脱窒も起こり得ることから、この工程も脱窒処理工程と言える。   In the present invention, even when the reduction of nitrate nitrogen by hydrogen-oxidizing microorganisms is stopped with nitrite nitrogen, denitrification of some nitrite nitrogen in the ANAMOX treated water to nitrogen gas is performed. This process can be said to be a denitrification process because denitrification of some nitrate nitrogen to nitrogen gas can also occur.

また、本発明においては、このようにpH調整された水素還元処理水を原水と共にANAMMOX反応に供することから、第一の脱窒処理に供される水のpHが6.5〜8.0となるようにpH調整することが好ましく、これにより、ANAMMOX反応効率を高めることが好ましい(請求項6,13)。   Further, in the present invention, the pH-reduced hydrogen reduction treated water is supplied to the ANAMMOX reaction together with the raw water, so that the pH of the water used for the first denitrification treatment is 6.5 to 8.0. It is preferable to adjust the pH so that the ANAMMOX reaction efficiency is improved (claims 6 and 13).

このように、水素還元処理水中の亜硝酸性窒素をANAMMOX反応に供する本発明では、第一の脱窒処理に供される原水中のアンモニア性窒素に対する亜硝酸性窒素の割合は、1.3モル倍以下で、前述のANAMMOX反応当量よりもアンモニア性窒素が多いことが好ましく、これにより、水素還元処理水中の亜硝酸性窒素をANAMMOX反応で高度に脱窒処理することができる(請求項7,14)。   Thus, in the present invention in which nitrite nitrogen in the hydrogen reduction treated water is subjected to the ANAMOX reaction, the ratio of nitrite nitrogen to ammonia nitrogen in the raw water subjected to the first denitrification treatment is 1.3. It is preferable that the amount of ammonia nitrogen is less than the molar ratio and more than the above-mentioned ANAMMOX reaction equivalent, whereby nitrite nitrogen in the hydrogen reduction treated water can be highly denitrified by the ANAMMOX reaction. , 14).

本発明の窒素含有排水の処理装置は、ANAMMOX処理水が導入される循環槽を有し、この循環槽内に第二の独立栄養型脱窒手段が設けられていることが好ましく(請求項15)、特に、この循環槽は、原水が導入される原水導入部と、ANAMMOX処理水が導入される処理水導入部と、原水導入部と処理水導入部との間に設けられた第二の独立栄養型脱窒手段を保持する脱窒処理部とを有し、処理水導入部から脱窒処理部を経て原水導入部に水が流通可能とされており、原水導入部の水を第一の独立栄養型脱窒手段に送給する手段と、処理水導入部の水を生物学的脱窒処理水として系外へ排出する手段とを有することが好ましく(請求項16)、この場合において、循環槽内の原水導入部と脱窒処理部との間、及び、処理水導入部と脱窒処理部との間の一方に、下端が循環槽底面から離隔した仕切壁が設けられ、他方に、上端が水面下に没している仕切壁が設けられていることが好ましい(請求項17)。   It is preferable that the nitrogen-containing wastewater treatment apparatus of the present invention has a circulation tank into which ANAMOX treated water is introduced, and a second autotrophic denitrification means is provided in the circulation tank. ) In particular, this circulation tank is provided with a raw water introduction section into which raw water is introduced, a treated water introduction section into which ANAMOX treated water is introduced, and a second provided between the raw water introduction section and the treated water introduction section. A denitrification treatment unit holding an autotrophic denitrification means, and water can be circulated from the treated water introduction unit through the denitrification treatment unit to the raw water introduction unit. It is preferable to have means for feeding to the autotrophic denitrification means, and means for discharging the water in the treated water introduction part out of the system as biological denitrification treated water (Claim 16). , Between the raw water introduction part and the denitrification treatment part in the circulation tank, and the treated water introduction part It is preferable that a partition wall whose lower end is separated from the bottom surface of the circulation tank is provided on one side with the processing unit, and a partition wall whose upper end is submerged below the water surface is provided on the other side. .

このような窒素含有排水の処理装置であれば、ANAMMOX微生物による脱窒処理と水素酸化微生物による脱窒処理とを組み合わせた、簡易でコンパクトな装置を提供することができる。   Such a nitrogen-containing wastewater treatment apparatus can provide a simple and compact apparatus that combines a denitrification process with an ANAMOX microorganism and a denitrification process with a hydrogen oxidation microorganism.

以下に図面を参照して本発明の窒素含有排水の処理方法及び処理装置の実施の形態を詳細に説明する。
図1は、本発明の窒素含有排水の処理装置の実施の形態を示す系統図である。
Embodiments of a method for treating nitrogen-containing wastewater and a treatment apparatus according to the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a system diagram showing an embodiment of a nitrogen-containing wastewater treatment apparatus of the present invention.

図1において、ANAMMOX反応槽1内の底部に、水を槽内に分散させて導入するための分散部材2が設けられ、上部に気固液分離部材3が設けられている。   In FIG. 1, a dispersion member 2 for dispersing and introducing water into the tank is provided at the bottom of the ANAMOX reaction tank 1, and a gas-solid-liquid separation member 3 is provided at the top.

反応槽1内の下部にANAMMOXグラニュール汚泥床が形成され、気固液分離部材3は、この汚泥床の界面よりも上位に配置されている。   An ANAMOX granule sludge bed is formed in the lower part of the reaction tank 1, and the gas-solid-liquid separation member 3 is arranged above the interface of the sludge bed.

この気固液分離部材3は、筒軸心方向を上下方向とした筒体3aと、該筒体3aの下方に配置されたテーパ部材3bとからなる。筒体3aは、円筒形、角筒形、楕円筒形等のいずれでもよいが、円筒形であることが好ましい。テーパ部材3bは、下方から上昇してきたガスが短絡的に筒体3a内に流入することを防止するためのものである。   The gas-solid-liquid separating member 3 includes a cylindrical body 3a whose vertical direction is the cylindrical axis direction, and a taper member 3b disposed below the cylindrical body 3a. The cylindrical body 3a may be any of a cylindrical shape, a rectangular cylindrical shape, an elliptical cylindrical shape, etc., but is preferably a cylindrical shape. The taper member 3b is for preventing the gas rising from below from flowing into the cylindrical body 3a in a short circuit.

テーパ部材3bは、上面に堆積しようとした汚泥が側方に向って滑落するようにその上面が外周に向って下り勾配となる陣笠状の錘形とされている。このテーパ部材3bは、平面視において筒体3aよりも外方にまで張り出す大きさを有している。筒体3aの下端とテーパ部材3bとの間には、水を筒体3a内に流入させるように所定の間隙があいている。テーパ部材3bは、筒体3aに対し棒状部材等を介して連結支持されている。   The taper member 3b is formed as a Jinkasa-shaped spindle whose upper surface has a downward slope toward the outer periphery so that sludge to be deposited on the upper surface slides sideways. The taper member 3b has a size that projects outward from the cylindrical body 3a in plan view. A predetermined gap is provided between the lower end of the cylindrical body 3a and the tapered member 3b so that water flows into the cylindrical body 3a. The taper member 3b is connected and supported to the cylindrical body 3a via a rod-like member or the like.

後述のANAMMOX処理水取出用の配管13は、筒体3a内から水を取り出すように筒体3a又はそれよりも内方にまで延設されている。   A pipe 13 for taking out AMAMOX treated water, which will be described later, is extended to the cylinder 3a or inward thereof so as to take out water from the cylinder 3a.

反応槽1内を上昇してきた気体は、テーパ部材3b外周と槽1の内周との間を通って上昇し、さらに筒体3aと槽1の内周との間を上昇し、水面に達し、大気中に離脱する。   The gas rising in the reaction tank 1 rises between the outer periphery of the taper member 3b and the inner periphery of the tank 1, and further rises between the cylindrical body 3a and the inner periphery of the tank 1, reaching the water surface. , Leave in the atmosphere.

反応槽1内を上昇してきた汚泥の一部は、テーパ部材3bに当って落下する。一部の汚泥は、テーパ部材3bと筒体3aとの間を通って筒体3a内に入るが、この筒体3a内には気泡は全く殆ど流入せず、水は穏やかに上昇するので、汚泥は該筒体3a内で沈降し、テーパ部材3bの上面を滑落し、テーパ部材3bの外周縁から反応槽1の下方へ沈降していく。   Part of the sludge that has risen in the reaction tank 1 hits the taper member 3b and falls. Some sludge enters between the tapered member 3b and the cylindrical body 3a and enters the cylindrical body 3a, but almost no air bubbles flow into the cylindrical body 3a, and the water rises gently. Sludge settles in the cylindrical body 3a, slides down the upper surface of the taper member 3b, and settles down from the outer peripheral edge of the taper member 3b to the reaction tank 1.

このようにして、気体及び汚泥が分離された水が配管13へ取り出される。   In this way, water from which the gas and sludge have been separated is taken out to the pipe 13.

このANAMMOX反応槽1から配管13によって取り出されたANAMMO処理水は循環槽20に導入される。この循環槽20内は、下端が水槽底部から離隔し、上端が水面上に位置する仕切板21と、槽底面から立設され上端が水面下に没した仕切板22とにより、原水室(原水導入部)23、脱窒室(脱窒処理部)24と処理水室(処理水導入・排出部)25とに区画されている。   The ANAMMO treated water taken out from the ANAMOX reaction tank 1 through the pipe 13 is introduced into the circulation tank 20. The circulation tank 20 has a raw water chamber (raw water) by a partition plate 21 whose lower end is separated from the bottom of the water tank and whose upper end is located above the water surface, and a partition plate 22 which is erected from the bottom of the tank and whose upper end is submerged below the water surface. It is divided into an introduction section 23, a denitrification chamber (denitrification processing section) 24, and a treated water chamber (treated water introduction / discharge section) 25.

原水は、原水導入配管11を介して循環槽22の原水室23の上部から導入され、原水室23の下部から配管12を介して前記分散部材2へ供給される。この配管12にはpH計4Aが設けられ、この配管12内の水、即ちANAMMOX反応槽1に送給される水のpHを測定し、この測定結果に基いて、循環槽20の原水室23に配管16より酸又はアルカリを添加する酸・アルカリ添加手段5Aが設けられている。   The raw water is introduced from the upper part of the raw water chamber 23 of the circulation tank 22 through the raw water introduction pipe 11 and supplied to the dispersion member 2 from the lower part of the raw water chamber 23 through the pipe 12. The pipe 12 is provided with a pH meter 4A, and the pH of the water in the pipe 12, that is, the water supplied to the ANAMOX reaction tank 1 is measured. Based on the measurement result, the raw water chamber 23 of the circulation tank 20 is measured. An acid / alkali addition means 5 </ b> A for adding acid or alkali from the pipe 16 is provided.

前記配管13からのANAMMOX処理水は処理室25の下部へ導入され、水面付近の集水部材26及び配管14を経て系外へ取り出される。   The ANAMOX treated water from the pipe 13 is introduced into the lower part of the treatment chamber 25 and taken out of the system through the water collecting member 26 and the pipe 14 near the water surface.

循環槽20の脱窒室24内には膜エレメント10が設けられ、この膜エレメント10に水素ガスを供給する配管15が接続されている。また、循環槽20の仕切板21の下部から原水室23に流入する水素還元処理水のpHを測定するpH計4Bと、このpH計4Bの測定結果に基いて膜エレメント10の上部に配管17より酸又はアルカリを添加する酸・アルカリ添加手段5Bが設けられている。   A membrane element 10 is provided in the denitrification chamber 24 of the circulation tank 20, and a pipe 15 for supplying hydrogen gas is connected to the membrane element 10. Further, a pH meter 4B for measuring the pH of the hydrogen reduction treated water flowing into the raw water chamber 23 from the lower part of the partition plate 21 of the circulation tank 20, and a pipe 17 at the upper part of the membrane element 10 based on the measurement result of the pH meter 4B. An acid / alkali addition means 5B for adding more acid or alkali is provided.

この図1の処理装置による原水処理手順は次の通りである。   The raw water treatment procedure by the treatment apparatus of FIG. 1 is as follows.

原水(アンモニア性窒素と亜硝酸性窒素を含む亜硝酸型硝化処理水)は、配管11より循環槽20の原水室23、配管12を経て水素還元処理水と共にANAMMOX反応槽1の下部の分散部材2から反応槽1内に供給され、ANAMMOX反応槽1内を上昇する間にANAMMOX微生物により脱窒処理される。即ち、原水中のアンモニア性窒素と亜硝酸性窒素との反応でこれらが除去され、硝酸性窒素が生成する。なお、この反応槽1に導入されるANAMMOX被処理水は、必要に応じて、酸・アルカリ添加手段5Aより酸又はアルカリが添加されて後述のANAMMOX反応に好適なpHに調整される。   The raw water (nitrite-type nitrification water containing ammonia nitrogen and nitrite nitrogen) passes through the raw water chamber 23 of the circulation tank 20 and the pipe 12 from the pipe 11, and the dispersion member at the lower part of the ANAMOX reaction tank 1 together with the hydrogen reduction treated water. 2 is fed into the reaction tank 1 and denitrified by the ANAMOX microorganism while ascending in the ANAMMOX reaction tank 1. That is, these are removed by the reaction of ammonia nitrogen and nitrite nitrogen in the raw water to produce nitrate nitrogen. The water to be treated with ANAMMOX introduced into the reaction tank 1 is adjusted to a pH suitable for the later-described ANAMMOX reaction by adding acid or alkali from the acid / alkali addition means 5A as necessary.

ANAMMOX処理水は筒体3a内に流入し、配管13から循環槽20の処理水室25に導入され、処理水室25内を上昇し、一部が配管14より系外へ排出され、残部は仕切板22の上端を回り込んで脱窒室24に流入する。   The ANAMMOX treated water flows into the cylinder 3a, is introduced from the pipe 13 into the treated water chamber 25 of the circulation tank 20, rises in the treated water chamber 25, a part is discharged out of the system from the pipe 14, and the remainder is It goes around the upper end of the partition plate 22 and flows into the denitrification chamber 24.

この脱窒室24に流入したANAMMOX処理水は、配管17からの酸又はアルカリで後述の水素還元処理に好適なpHにpH調整され、脱窒室24を流下する間に配管15から供給される水素ガスの存在下、膜エレメント10の膜面に付着、増殖した水素酸化微生物により、ANAMMOX反応で副生した硝酸性窒素が亜硝酸性窒素に還元処理される。この水素還元処理水は、仕切板21の下端を回り込んで原水室23に流入し、原水と共に配管12を経てANAMMOX反応槽1に送給される。   The ANAMOX treated water that has flowed into the denitrification chamber 24 is adjusted to a pH suitable for the hydrogen reduction treatment described later with acid or alkali from the pipe 17 and supplied from the pipe 15 while flowing down the denitrification chamber 24. In the presence of hydrogen gas, nitrate nitrogen produced as a by-product in the ANAMMOX reaction is reduced to nitrite nitrogen by the hydrogen-oxidizing microorganisms attached and grown on the membrane surface of the membrane element 10. This hydrogen-reduced water flows around the lower end of the partition plate 21 and flows into the raw water chamber 23, and is sent to the ANAMMOX reaction tank 1 through the pipe 12 together with the raw water.

このような窒素含有排水の処理装置において、原水室23に送られる水素還元処理水のpHが8.8〜9.4となるように酸・アルカリ添加手段5Bを制御することにより、前述の如く、水素酸化微生物による還元を亜硝酸性窒素で止め、効率的な処理を行える。このpHが8.8未満では硝酸性窒素が窒素ガスまで還元されてしまうため好ましくなく、9.4を超えると水素還元処理が進行せず好ましくない。なお、水素酸化微生物による還元で硝酸性窒素が還元されることにより処理水のpHが上昇するため、このpH調整には、硫酸、塩酸等の酸が用いられる。
また、排水の緩衝能により水素還元処理においてpHが十分に上昇しない場合には、水酸化ナトリウムや炭酸ナトリウムなどのアルカリを添加する。
In such a nitrogen-containing wastewater treatment apparatus, the acid / alkali addition means 5B is controlled so that the pH of the hydrogen reduction treated water sent to the raw water chamber 23 is 8.8 to 9.4, as described above. In addition, the reduction by hydrogen oxidation microorganisms can be stopped with nitrite nitrogen and efficient treatment can be performed. If the pH is less than 8.8, nitrate nitrogen is reduced to nitrogen gas, which is not preferable, and if it exceeds 9.4, the hydrogen reduction treatment does not proceed. In addition, since nitrate pH is reduced by reduction by hydrogen-oxidizing microorganisms, the pH of the treated water rises. For this pH adjustment, an acid such as sulfuric acid or hydrochloric acid is used.
Further, when the pH does not rise sufficiently in the hydrogen reduction treatment due to the buffer capacity of the waste water, an alkali such as sodium hydroxide or sodium carbonate is added.

また、原水は通常pH6.5〜8.0程度であり、このような原水にpH8.8〜9.4の水素還元処理水が混合されることにより、pHが上昇するが、ANAMMOX反応に好適なpHは6.5〜8.0程度であるため、このようなpHになるように、酸添加手段5Aを制御して硫酸、塩酸等の酸を添加することが好ましい。   In addition, the raw water usually has a pH of about 6.5 to 8.0. When such raw water is mixed with hydrogen-reduced water having a pH of 8.8 to 9.4, the pH increases, but this is suitable for the ANAMOX reaction. Since the pH is about 6.5 to 8.0, it is preferable to add acid such as sulfuric acid and hydrochloric acid by controlling the acid addition means 5A so as to reach such pH.

本発明において、水素還元処理水はその全量をANAMMOX反応に供することが好ましく、また、ANAMMOX処理水のうち、系外へ排出する水と水素還元処理に供する水との割合については、系外への排出水量が多いと処理効率は向上するが、処理水の水質が低下する傾向にあり、逆に水素還元処理に供する水の割合が多いと処理水の水質は向上するが、処理効率が低下するため、この割合は要求される処理水水質と処理効率とを考慮して適宜決定されるが、通常の場合、ANAMMOX処理水の40〜60%を系外へ排出し、残部を水素還元処理に供することが好ましい。   In the present invention, it is preferable that the entire amount of the hydrogen reduction treated water is subjected to the ANAMOX reaction, and the ratio of the water discharged out of the system and the water subjected to the hydrogen reduction treatment out of the system is out of the system. If there is a large amount of discharged water, the treatment efficiency will improve, but the quality of the treated water will tend to decrease. Conversely, if the proportion of water used for hydrogen reduction treatment is large, the quality of the treated water will improve, but the treatment efficiency will decrease. Therefore, this ratio is appropriately determined in consideration of the required quality of the treated water and the treatment efficiency. In normal cases, 40 to 60% of the ANAMOX treated water is discharged out of the system, and the remainder is reduced with hydrogen. It is preferable to use for.

なお、図1は、本発明の窒素含有排水の処理装置の実施の形態の一例を示すものであり、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではないが、図1に示すように、既存の処理水槽又はANAMMOX反応槽に水素ガスを供給する膜エレメントを浸漬配置することにより、新たな反応槽を設けることなく本発明を実施することができ、好ましい。
この場合、膜エレメントは、生物汚泥と処理水とがほぼ完全に分離される領域に設けることが望ましく、従って、処理水槽がある場合には、図1に示すように、処理水槽に浸漬することが好ましい。
In addition, FIG. 1 shows an example of an embodiment of a treatment apparatus for nitrogen-containing wastewater of the present invention, and the present invention is not limited to what is shown in the drawings unless it exceeds the gist. As shown in FIG. 1, the present invention can be carried out without providing a new reaction tank by immersing a membrane element for supplying hydrogen gas into an existing treated water tank or an ANAMOX reaction tank, which is preferable.
In this case, it is desirable to provide the membrane element in an area where the biological sludge and the treated water are almost completely separated. Therefore, if there is a treated water tank, the membrane element should be immersed in the treated water tank as shown in FIG. Is preferred.

本発明において、水素ガス供給手段として水槽内に浸漬配置される膜エレメントのガス透過性膜としては、精密濾過(MF)膜、限外濾過(UF)膜、ナノ濾過(NF)膜、その他の膜が挙げられ、その型式としては、中空糸膜、平膜等の各種のものを採用することができる。水素ガスの供給圧力は、被処理水の脱窒対象窒素量に応じて適宜決定される。   In the present invention, the gas permeable membrane of the membrane element immersed in the water tank as the hydrogen gas supply means includes a microfiltration (MF) membrane, an ultrafiltration (UF) membrane, a nanofiltration (NF) membrane, and other Examples of the type include a hollow fiber membrane and a flat membrane. The supply pressure of hydrogen gas is appropriately determined according to the amount of nitrogen to be denitrified for the water to be treated.

本発明において、処理対象となる排水は窒素を含有するものであり、例えば次のようなものが挙げられる。
(1) アンモニア性窒素を含む水を亜硝酸型硝化により、アンモニア性窒素の一部を亜硝酸性窒素に変換した亜硝酸型硝化処理水
(2) アンモニア性窒素を含む水と、亜硝酸性窒素を含む水(アンモニア性窒素を含む水に含まれる亜硝酸性窒素の殆どすべてを亜硝酸性窒素に変換した亜硝酸型硝化処理水)との混合水
In the present invention, wastewater to be treated contains nitrogen, and examples thereof include the following.
(1) Nitrite-type nitrification water in which ammonia nitrogen is partially converted to nitrite nitrogen by nitrite-type nitrification
(2) Water containing ammonia nitrogen and water containing nitrite nitrogen (nitrite-type nitrification water in which almost all nitrite nitrogen contained in water containing ammonia nitrogen is converted to nitrite nitrogen) Mixed water with

上記アンモニア性窒素を含む水は、有機物及び有機性窒素を含むものであっても良いが、これらは脱窒処理前に予めアンモニア性窒素になる程度まで分解しておくことが好ましい。原水は無機物を含んでいても良い。一般的には、下水、し尿、嫌気性消化脱離液等のアンモニア性窒素、有機性窒素及び有機物を含む排水が処理対象となる場合が多いが、この場合、これらを好気性又は嫌気性処理して有機物を分解し、有機性窒素をアンモニア性窒素に分解した後、必要に応じて亜硝酸型硝化を行った後、本発明による脱窒処理に供することが好ましい。   The water containing ammonia nitrogen may contain organic matter and organic nitrogen, but these are preferably decomposed to ammonia nitrogen before denitrification. The raw water may contain an inorganic substance. In general, wastewater containing ammonia nitrogen, organic nitrogen and organic matter such as sewage, human waste, anaerobic digestion and desorption liquid is often treated. In this case, these are treated aerobically or anaerobically. Then, after decomposing organic substances and decomposing organic nitrogen into ammoniacal nitrogen, it is preferable to perform nitrite-type nitrification as necessary and then subject to denitrification treatment according to the present invention.

本発明による脱窒処理に供される排水中のアンモニア性窒素と亜硝酸性窒素の割合は、ANAMMOX反応当量よりも若干アンモニア性窒素が多くなるように調整した排水例えばアンモニア性窒素に対する亜硝酸性窒素の割合が1.3モル倍以下、好ましくは1.2〜1.3モル倍の排水であることが好ましく、このような排水であれば、ANAMMOX反応で生成した硝酸性窒素を水素酸化微生物により亜硝酸性窒素に還元し、これを再びANAMMOX反応で処理して、アンモニア性窒素、亜硝酸性窒素、硝酸性窒素を極低濃度にまで除去することが可能となる。
本発明において、独立栄養性微生物は従属栄養的にも生育することができる任意化学独立栄養菌であっても構わないし、有機物を利用できない絶対化学独立栄養菌であっても構わない。
The ratio of ammonia nitrogen and nitrite nitrogen in the waste water subjected to the denitrification treatment according to the present invention is adjusted so that the amount of ammonia nitrogen is slightly higher than the ANAMMOX reaction equivalent, for example, nitrite to ammonia nitrogen It is preferable that the wastewater has a nitrogen ratio of 1.3 mol times or less, preferably 1.2 to 1.3 mol times, and in such a wastewater, nitrate nitrogen produced by the ANAMOX reaction is converted into a hydrogen-oxidizing microorganism. It is possible to reduce ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen to extremely low concentrations by reducing them to nitrite nitrogen and treating them again with the ANAMOX reaction.
In the present invention, the autotrophic microorganism may be any chemical autotrophic bacterium capable of growing heterotrophically or may be an absolute chemical autotrophic bacterium that cannot use organic matter.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
図1に示す装置により、下記水質の亜硝酸型硝化処理水を原水として微生物処理を行った。
(原水水質)
NH−N:250mg/L
NO−N:310mg/L
NO−N:0mg/L
pH:7.0
Example 1
Using the apparatus shown in FIG. 1, microbial treatment was performed using the following water quality nitrite type nitrification water as raw water.
(Raw water quality)
NH 4 -N: 250 mg / L
NO 2 -N: 310mg / L
NO 3 -N: 0 mg / L
pH: 7.0

ANAMMOX反応槽1の容積は25L、循環槽20の容積は5Lであり、循環槽20には親水性中空糸膜エレメント((株)クラレ製「8258A」、膜表面積12m)10を浸漬し、水素ガスを0.10MPaの供給圧で供給した。 The volume of the ANAMOX reaction tank 1 is 25 L, the volume of the circulation tank 20 is 5 L, and a hydrophilic hollow fiber membrane element (“8258A” manufactured by Kuraray Co., Ltd., membrane surface area 12 m 2 ) 10 is immersed in the circulation tank 20. Hydrogen gas was supplied at a supply pressure of 0.10 MPa.

原水の通水量は7.3L/hrとし、ANAMMOX反応槽1と循環槽20との循環水量は7.3L/hrとした。また、pH計4A,4Bの測定pH値が表1に示す値となるように、循環槽20にpH調整のための酸を添加した。
各部の処理水の水質を調べ、結果を表1に示した。
The flow rate of the raw water was set to 7.3 L / hr, and the circulating water volume between the ANAMOX reaction tank 1 and the circulation tank 20 was set to 7.3 L / hr. Moreover, the acid for pH adjustment was added to the circulation tank 20 so that the measured pH value of pH meter 4A, 4B might become a value shown in Table 1.
The quality of treated water in each part was examined, and the results are shown in Table 1.

比較例1
実施例1において、原水のNO−Nを330mg/Lとし、また、膜エレメントに水素ガスを供給しない他は同様に処理を行い、各部の処理水の水質を調べ、結果を表1に示した。
Comparative Example 1
In Example 1, the raw water NO 2 —N was set to 330 mg / L and hydrogen gas was not supplied to the membrane element. The treatment was performed in the same manner, the quality of the treated water in each part was examined, and the results are shown in Table 1. It was.

比較例2
実施例1において、原水のNO−Nを330mg/Lとし、また、pH計4A,4Bの測定pH値が表1に示す値となるように循環槽20にpH調整のための酸を添加した他は同様に処理を行い、各部の処理水の水質を調べ、結果を表1に示した。
Comparative Example 2
In Example 1, the raw water NO 2 —N is set to 330 mg / L, and an acid for pH adjustment is added to the circulation tank 20 so that the measured pH values of the pH meters 4A and 4B are the values shown in Table 1. Otherwise, the treatment was performed in the same manner, and the quality of the treated water in each part was examined. The results are shown in Table 1.

比較例3
実施例1において、pH計4A,4Bの測定pH値が表1に示す値となるように循環槽20にpH調整のための酸を添加した他は同様に処理を行い、各部の処理水の水質を調べ、結果を表1に示した。
Comparative Example 3
In Example 1, the treatment was performed in the same manner except that an acid for pH adjustment was added to the circulation tank 20 so that the measured pH values of the pH meters 4A and 4B would be the values shown in Table 1, and the treated water of each part was treated. The water quality was examined and the results are shown in Table 1.

Figure 2007190492
Figure 2007190492

表1より明らかなように、ANAMMOX微生物による脱窒処理と水素酸化微生物による脱窒処理とを組み合わせると共に処理水を循環させることにより、ANAMMOX反応で副生する硝酸性窒素や残留する亜硝酸性窒素を高度に除去して高水質の処理水を得ることができることが分かる。   As is clear from Table 1, nitrate nitrogen produced as a by-product in the ANAMMOX reaction and residual nitrite nitrogen can be obtained by combining denitrification treatment with ANAMMOX microorganisms and denitrification treatment with hydrogen oxidation microorganisms and circulating the treated water. It can be seen that high-quality treated water can be obtained by removing the water at a high level.

なお、比較例1では、水素還元処理が行われないため、処理水中に硝酸性窒素が多く含まれるという問題がある。水素還元処理水のpHを8.0とした比較例2では、水素還元処理により硝酸性窒素を窒素ガスにまで還元してしまうため(この結果、水素還元処理水のNO−Nが非常に少ない。)、処理水の水質は良好であるが、水素ガス使用量が多いという問題がある。水素還元処理水のpHを9.6とした比較例3では、水素還元処理における硝酸性窒素の還元が不十分であり、良好な処理水水質が得られないという問題がある。 In Comparative Example 1, since the hydrogen reduction treatment is not performed, there is a problem that a large amount of nitrate nitrogen is contained in the treated water. In Comparative Example 2 where the pH of the hydrogen reduction treated water was 8.0, nitrate nitrogen was reduced to nitrogen gas by the hydrogen reduction treatment (as a result, the NO 2 -N of the hydrogen reduction treated water was very high). The quality of treated water is good, but there is a problem that the amount of hydrogen gas used is large. In Comparative Example 3 in which the pH of the hydrogen-reduced treated water is 9.6, there is a problem in that the reduction of nitrate nitrogen in the hydrogen-reducing treatment is insufficient, and good treated water quality cannot be obtained.

なお、実施例1において、比較例1,2よりも原水NO−N濃度を低くしたのは、ANAMMOX反応で生成したNO−Nが水素還元処理によりNO−Nに転換され、このNO−Nが原水と共にANAMMOX反応に供されるため、この分を考慮して原水NO−N濃度を調整したことによる。 In Example 1, the concentration of raw water NO 2 -N was lower than that of Comparative Examples 1 and 2 because NO 3 -N produced by the ANAMOX reaction was converted to NO 2 -N by hydrogen reduction treatment. Since 2- N is subjected to the ANAMOX reaction together with the raw water, the concentration of the raw water NO 2 -N is adjusted in consideration of this amount.

本発明の窒素含有排水の処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing apparatus of the nitrogen-containing waste_water | drain of this invention.

符号の説明Explanation of symbols

1 ANAMMOX反応槽
10 膜エレメント
20 循環槽
1 ANAMOX reaction tank 10 Membrane element 20 Circulation tank

Claims (17)

窒素を含有する排水を生物学的脱窒処理する窒素含有排水の処理方法において、
アンモニア性窒素を電子供与体、亜硝酸性窒素を電子受容体とする独立栄養性脱窒微生物の作用により脱窒処理する第一の独立栄養型脱窒工程と、
該第一の独立栄養型脱窒工程の処理水を水素ガスを電子供与体、亜硝酸性窒素および/または硝酸性窒素を電子受容体とする独立栄養性脱窒微生物の作用により脱窒処理する第二の独立栄養型脱窒工程と、
該第二の独立栄養型脱窒工程の処理水を前記第一の独立栄養型脱窒工程に返送する処理水循環工程と
を有することを特徴とする窒素含有排水の処理方法。
In the method of treating nitrogen-containing wastewater, which biologically denitrifies wastewater containing nitrogen,
A first autotrophic denitrification step of denitrifying by the action of an autotrophic denitrifying microorganism using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor;
The treated water of the first autotrophic denitrification step is denitrified by the action of an autotrophic denitrifying microorganism using hydrogen gas as an electron donor and nitrite nitrogen and / or nitrate nitrogen as an electron acceptor. A second autotrophic denitrification step;
A method for treating nitrogen-containing wastewater, comprising: a treated water circulation step for returning treated water of the second autotrophic denitrification step to the first autotrophic denitrification step.
請求項1において、前記第一の独立栄養型脱窒工程の処理水の一部を生物学的脱窒処理水として系外へ排出すると共に、残部を前記第二の独立栄養型脱窒工程に送給することを特徴とする窒素含有排水の処理方法。   In Claim 1, while discharging a part of treated water of said 1st autotrophic denitrification process out of the system as biological denitrification process water, the remainder is said 2nd autotrophic denitrification process. A method for treating nitrogen-containing wastewater, characterized by being fed. 請求項1又は2において、前記第二の独立栄養型脱窒工程は、被処理水と水素ガスとを、膜を介して接触させる水素ガス供給工程を含むことを特徴とする窒素含有排水の処理方法。   3. The treatment of nitrogen-containing wastewater according to claim 1, wherein the second autotrophic denitrification step includes a hydrogen gas supply step in which water to be treated and hydrogen gas are brought into contact with each other through a membrane. Method. 請求項3において、前記膜の被処理水側表面に微生物を付着、増殖せしめることにより該膜の被処理水側で微生物反応を行うことを特徴とする窒素含有排水の処理方法。   4. The method for treating nitrogen-containing wastewater according to claim 3, wherein a microorganism reaction is carried out on the treated water side of the membrane by causing microorganisms to adhere to and propagate on the treated water side surface of the membrane. 請求項1ないし4のいずれか1項において、前記第二の独立栄養型脱窒工程またはその前段に、該第二の独立栄養型脱窒工程の処理水のpHが8.8〜9.4になるようにpH調整するpH調整工程を有することを特徴とする窒素含有排水の処理方法。   The pH of the treated water in the second autotrophic denitrification step or the preceding stage thereof in any one of claims 1 to 4 is 8.8 to 9.4. A method for treating nitrogen-containing wastewater, comprising a pH adjustment step of adjusting pH so as to become. 請求項1ないし5のいずれか1項において、前記第一の独立栄養型脱窒工程に導入される水のpHが6.5〜8.0となるようにpH調整するpH調整工程を有することを特徴とする窒素含有排水の処理方法。   6. The method according to claim 1, further comprising a pH adjustment step of adjusting the pH of water introduced into the first autotrophic denitrification step to be 6.5 to 8.0. A method for treating nitrogen-containing wastewater. 請求項1ないし6のいずれか1項において、前記窒素含有排水中のアンモニア性窒素に対する亜硝酸性窒素の割合が1.3モル倍以下であることを特徴とする窒素含有排水の処理方法。   The method for treating nitrogen-containing wastewater according to any one of claims 1 to 6, wherein a ratio of nitrite nitrogen to ammonia nitrogen in the nitrogen-containing wastewater is 1.3 mol times or less. 窒素を含有する排水を生物学的脱窒処理する窒素含有排水の処理装置において、
アンモニア性窒素を電子供与体、亜硝酸性窒素を電子受容体とする独立栄養性脱窒微生物の作用により脱窒処理する第一の独立栄養型脱窒手段と、
水素ガスを電子供与体、亜硝酸性窒素および/または硝酸性窒素を電子受容体とする独立栄養性脱窒微生物の作用により脱窒処理する第二の独立栄養型脱窒手段と、
該第二の独立栄養型脱窒手段の処理水を前記第一の独立栄養型脱窒手段に返送する処理水循環手段と
を有することを特徴とする窒素含有排水の処理装置。
In a nitrogen-containing wastewater treatment apparatus for biologically denitrifying wastewater containing nitrogen,
A first autotrophic denitrification means for denitrification by the action of an autotrophic denitrifying microorganism using ammoniacal nitrogen as an electron donor and nitrite nitrogen as an electron acceptor;
A second autotrophic denitrification means for performing denitrification treatment by the action of an autotrophic denitrifying microorganism using hydrogen gas as an electron donor, nitrite nitrogen and / or nitrate nitrogen as an electron acceptor,
A treatment apparatus for treating nitrogen-containing wastewater, comprising treated water circulation means for returning treated water of the second autotrophic denitrification means to the first autotrophic denitrification means.
請求項8において、前記第一の独立栄養型脱窒手段の処理水の一部を生物学的脱窒処理水として系外へ排出する手段と、残部を前記第二の独立栄養型脱窒手段に送給する手段とを有することを特徴とする窒素含有排水の処理装置。   The means for discharging a part of the treated water of the first autotrophic denitrification means as biological denitrification treated water as the biological denitrification treated water according to claim 8, and the rest as the second autotrophic denitrification means And a nitrogen-containing wastewater treatment apparatus. 請求項8又は9において、前記第二の独立栄養型脱窒手段は、被処理水と水素ガスとを、膜を介して接触させる水素ガス供給手段を含むことを特徴とする窒素含有排水の処理装置。   10. The treatment of nitrogen-containing wastewater according to claim 8, wherein the second autotrophic denitrification means includes hydrogen gas supply means for bringing the water to be treated and hydrogen gas into contact with each other through a membrane. apparatus. 請求項10において、前記膜の被処理水側表面に微生物を付着、増殖せしめることにより該膜の被処理水側で微生物反応を行うことを特徴とする窒素含有排水の処理装置。   11. The apparatus for treating nitrogen-containing wastewater according to claim 10, wherein microorganisms are reacted on the treated water side of the membrane by attaching and growing microorganisms on the treated water side surface of the membrane. 請求項8ないし11のいずれか1項において、前記第二の独立栄養型脱窒手段またはその前段に、該第二の独立栄養型脱窒手段の処理水のpHが8.8〜9.4になるようにpH調整するpH調整手段を有することを特徴とする窒素含有排水の処理装置。   The pH of the treated water of the second autotrophic denitrification means or the preceding stage thereof according to any one of claims 8 to 11 is 8.8 to 9.4. A treatment apparatus for nitrogen-containing wastewater, characterized by comprising pH adjusting means for adjusting pH so as to become. 請求項8ないし12のいずれか1項において、前記第一の独立栄養型脱窒手段に導入される水のpHが6.5〜8.0となるようにpH調整するpH調整手段を有することを特徴とする窒素含有排水の処理装置。   13. The method according to claim 8, further comprising pH adjusting means for adjusting pH so that the pH of water introduced into the first autotrophic denitrification means is 6.5 to 8.0. An apparatus for treating nitrogen-containing wastewater. 請求項8ないし13のいずれか1項において、前記窒素含有排水中のアンモニア性窒素に対する亜硝酸性窒素の割合が1.3モル倍以下であることを特徴とする窒素含有排水の処理装置。   The processing apparatus for nitrogen-containing wastewater according to any one of claims 8 to 13, wherein a ratio of nitrite nitrogen to ammonia nitrogen in the nitrogen-containing wastewater is 1.3 mol times or less. 請求項8ないし14のいずれか1項において、前記第一の独立栄養型脱窒手段の処理水が導入される循環槽を有し、該循環槽内に前記第二の独立栄養型脱窒手段が設けられていることを特徴とする窒素含有排水の処理装置。   15. The method according to claim 8, further comprising a circulation tank into which treated water of the first autotrophic denitrification means is introduced, wherein the second autotrophic denitrification means is provided in the circulation tank. An apparatus for treating wastewater containing nitrogen, wherein: 請求項15において、前記循環槽は、前記窒素含有排水が導入される原水導入部と、
前記第一の独立栄養型脱窒手段の処理水が導入される処理水導入部と、
前記原水導入部と処理水導入部との間に設けられた前記第二の独立栄養型脱窒手段を保持する脱窒処理部とを有し、
前記処理水導入部から前記脱窒処理部を経て前記原水導入部に水が流通可能とされており、
前記原水導入部の水を前記第一の独立栄養型脱窒手段に送給する手段と、
前記処理水導入部の水を生物学的脱窒処理水として系外へ排出する手段とを有することを特徴とする窒素含有排水の処理装置。
In Claim 15, the circulation tank, raw water introduction part into which the nitrogen-containing wastewater is introduced,
A treated water introduction part into which treated water of the first autotrophic denitrification means is introduced;
A denitrification treatment unit holding the second autotrophic denitrification means provided between the raw water introduction unit and the treated water introduction unit,
Water can be circulated from the treated water introduction part to the raw water introduction part via the denitrification treatment part,
Means for feeding the raw water introduction section water to the first autotrophic denitrification means;
A treatment apparatus for nitrogen-containing wastewater, characterized by comprising means for discharging water from the treated water introduction section as biological denitrification treated water to the outside of the system.
請求項16において、前記原水導入部と前記脱窒処理部との間、及び、前記処理水導入部と前記脱窒処理部との間の一方に、下端が循環槽底面から離隔した仕切壁が設けられ、他方に、上端が水面下に没している仕切壁が設けられていることを特徴とする窒素含有排水の処理装置。   In Claim 16, the partition wall in which the lower end was separated from the bottom of the circulation tank between the raw water introduction part and the denitrification treatment part and between the treatment water introduction part and the denitrification treatment part. An apparatus for treating nitrogen-containing wastewater, wherein a partition wall having an upper end submerged below the water surface is provided on the other side.
JP2006011270A 2006-01-19 2006-01-19 Method and apparatus for treating nitrogen-containing wastewater Pending JP2007190492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011270A JP2007190492A (en) 2006-01-19 2006-01-19 Method and apparatus for treating nitrogen-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011270A JP2007190492A (en) 2006-01-19 2006-01-19 Method and apparatus for treating nitrogen-containing wastewater

Publications (1)

Publication Number Publication Date
JP2007190492A true JP2007190492A (en) 2007-08-02

Family

ID=38446586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011270A Pending JP2007190492A (en) 2006-01-19 2006-01-19 Method and apparatus for treating nitrogen-containing wastewater

Country Status (1)

Country Link
JP (1) JP2007190492A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162463A (en) * 2009-01-14 2010-07-29 Kurita Water Ind Ltd Method and apparatus for anaerobic treatment
JP2010284617A (en) * 2009-06-15 2010-12-24 Eidensha:Kk Bioreactor element, method for producing the same and method for using the same
CN103588352A (en) * 2013-09-03 2014-02-19 北京工业大学 Two-stage backflow simultaneous nitrogen and phosphorus removal device and technology for denitrification phosphorus removal, shortcut nitrification and anaerobic ammonia oxidation of municipal sewage
JP2016174981A (en) * 2015-03-18 2016-10-06 株式会社クボタ Apparatus and method for treating water
CN111573830A (en) * 2019-02-18 2020-08-25 桂林理工大学 Device and method for deep denitrification by coupling anaerobic ammonia oxidation and hydrogen autotrophic denitrification

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162463A (en) * 2009-01-14 2010-07-29 Kurita Water Ind Ltd Method and apparatus for anaerobic treatment
JP2010284617A (en) * 2009-06-15 2010-12-24 Eidensha:Kk Bioreactor element, method for producing the same and method for using the same
CN103588352A (en) * 2013-09-03 2014-02-19 北京工业大学 Two-stage backflow simultaneous nitrogen and phosphorus removal device and technology for denitrification phosphorus removal, shortcut nitrification and anaerobic ammonia oxidation of municipal sewage
CN103588352B (en) * 2013-09-03 2015-01-07 北京工业大学 Two-stage backflow simultaneous nitrogen and phosphorus removal device and technology for denitrification phosphorus removal, shortcut nitrification and anaerobic ammonia oxidation of municipal sewage
JP2016174981A (en) * 2015-03-18 2016-10-06 株式会社クボタ Apparatus and method for treating water
CN111573830A (en) * 2019-02-18 2020-08-25 桂林理工大学 Device and method for deep denitrification by coupling anaerobic ammonia oxidation and hydrogen autotrophic denitrification

Similar Documents

Publication Publication Date Title
JP3937664B2 (en) Biological nitrogen removal method and apparatus
JP4951826B2 (en) Biological nitrogen removal method
JP5347221B2 (en) Nitrogen-containing liquid processing method and apparatus
JP4496735B2 (en) Biological treatment of BOD and nitrogen-containing wastewater
US20190389756A1 (en) Apparatus and operating method for deep denitrification and toxicity reduction of wastewater
JP4632356B2 (en) Biological nitrogen removal method and system
JP5025020B2 (en) Organic waste treatment system and method
JP4882175B2 (en) Nitrification method
WO2009099207A1 (en) Method and apparatus for treating nitrate waste liquid
JP2006088092A (en) Method and apparatus for treating nitrogen-containing liquid
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
US20100193431A1 (en) Nitrite type nitrification-reactive sludge, production method therefor, production apparatus therefor, and waste water treatment method and waste water treatment apparatus
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP2010000480A (en) Effective denitrification method for organic raw water
JP2003047990A (en) Biological denitrifier
JP2007190492A (en) Method and apparatus for treating nitrogen-containing wastewater
JP2005246135A (en) Method for biologically removing nitrogen
JP3925902B2 (en) Biological nitrogen removal method and apparatus
JP4302341B2 (en) Biological nitrogen removal method and apparatus
KR20140063454A (en) Apparatus and method for treatment wastewater
JP4837706B2 (en) Ammonia nitrogen removal equipment
JP4848144B2 (en) Waste water treatment equipment
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP5451283B2 (en) Nitrogen-containing wastewater treatment method
JP5292659B2 (en) A method for nitrification of ammonia nitrogen-containing water