JP4622057B2 - Organic wastewater treatment method - Google Patents

Organic wastewater treatment method Download PDF

Info

Publication number
JP4622057B2
JP4622057B2 JP2000208229A JP2000208229A JP4622057B2 JP 4622057 B2 JP4622057 B2 JP 4622057B2 JP 2000208229 A JP2000208229 A JP 2000208229A JP 2000208229 A JP2000208229 A JP 2000208229A JP 4622057 B2 JP4622057 B2 JP 4622057B2
Authority
JP
Japan
Prior art keywords
sludge
ozone
amount
treatment
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000208229A
Other languages
Japanese (ja)
Other versions
JP2002018471A (en
Inventor
好雄 堺
正憲 若山
晴男 三宅
昭男 大山
雅秀 柴田
哲朗 深瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Sewage Works Agency
Kurita Water Industries Ltd
Original Assignee
Japan Sewage Works Agency
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Sewage Works Agency, Kurita Water Industries Ltd filed Critical Japan Sewage Works Agency
Priority to JP2000208229A priority Critical patent/JP4622057B2/en
Publication of JP2002018471A publication Critical patent/JP2002018471A/en
Application granted granted Critical
Publication of JP4622057B2 publication Critical patent/JP4622057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機性排液を活性汚泥の存在下に好気性生物処理する方法、特に活性汚泥処理系における余剰汚泥を減容化する有機性排液の処理方法に関する。
【0002】
【従来の技術】
活性汚泥処理法などのように、好気性微生物の作用を利用して、有機性排液を好気条件で処理する好気性生物処理方法は、処理コストが安く、処理性能も優れているため、一般に広く利用されているが、難脱水性の余剰汚泥が大量に発生する。このため汚泥を減容化する処理方法が注目されている。
【0003】
このような汚泥の減容化を行う処理方法として、曝気槽または固液分離装置から汚泥を引き抜き、この引抜汚泥をオゾン処理、加熱処理、酸またはアルカリ処理等の改質処理により易生物分解性に改質し、改質された汚泥を曝気槽に返送して生物分解させる方法が提案されている(例えば特開平7−116685号)。
【0004】
この方法では引抜汚泥を易生物分解性に改質して曝気槽に返送することにより、易分解性となった改質汚泥を曝気槽内の微生物に資化させ、これにより余剰汚泥の発生量が減少する。この場合負荷BODから生成する汚泥量よりも多い量の引抜汚泥を改質して返送すると、余剰汚泥量を実質的にゼロにすることができる。
【0005】
このような処理方法では、生成汚泥量は流入する負荷BODに比例するので、流入する負荷量に一定の係数を乗じた量の汚泥を引き抜いて改質処理することにより、所定の減容化を行うことができる。改質処理としてオゾン処理を行う場合、想定される負荷量に対応する一定量の汚泥を引き抜き、想定される汚泥濃度に対応する汚泥乾物量を改質するのに必要な一定量のオゾンを注入して改質を行っている。
【0006】
ところが流入する負荷BODは変動し、また曝気槽や固液分離装置の処理条件も変動するため、引抜汚泥の汚泥濃度も変動する。これに対して従来は負荷および汚泥濃度を一定量に仮定して、一定流量で汚泥を引き抜き一定量のオゾン注入を行っているため、実際の汚泥濃度が高い場合にはオゾン注入量が過少となり汚泥減容化率が低くなる。逆に汚泥濃度が低い場合には過剰のオゾンが排ガスとして排出されて排オゾン塔での触媒や活性炭消耗の原因となる。一般的には汚泥濃度が高い場合を想定してオゾン注入量が決められるため、汚泥濃度が低い場合には大量の余剰オゾンが排出され、これを処理するための処理装置が大型化するという問題点がある。
【0007】
【発明が解決しようとする課題】
本発明の課題は、汚泥減容化のための汚泥改質に使用するオゾンの量を過不足なく、必要最少限の量として改質を行うことができ、これにより効率よく汚泥を減容化することができ、処理設備を小型化することができる有機性排液の処理方法を得ることである。
【0008】
【課題を解決するための手段】
本発明は、次の有機性排液の処理方法である。
(1) 有機性排液を曝気槽に導入して、活性汚泥の存在下に好気性生物処理する生物処理工程と、
曝気槽から混合液を固液分離装置に導いて固液分離し、分離液を処理液として排出し、分離汚泥の少なくとも一部を曝気槽に返送する固液分離工程と、
分離汚泥または混合液から活性汚泥の少なくとも一部を引き抜き、この引抜汚泥にオゾンを加えて易生物分解性に改質し、改質汚泥を曝気槽に返送する改質処理工程と、
引抜汚泥中の汚泥濃度を計測する汚泥濃度計測工程と、
引抜汚泥の汚泥乾物量あたりのオゾン消費率が0.002〜0.1g−O 3 /g−SSの範囲で一定となるように、汚泥引抜量を制御する制御工程とを含む有機性排液の処理方法。
(2) 改質処理工程で加えるオゾン量が定量である上記(1)記載の方法。
【0009】
本発明において処理の対象となる有機性排液は、通常の好気性生物処理法により処理される有機物を含有する排液であるが、難生物分解性の有機物または無機物が含有されていてもよく、またアンモニア性窒素等が含有されていてもよい。このような有機性排液としては、下水、し尿、食品工場排水その他の産業排液などがあげられる。
【0010】
本発明における好気性生物処理は、有機性排液を曝気槽に導入して、活性汚泥の存在下に好気性生物処理を行うように構成する。また固液分離工程は曝気槽から混合液を固液分離装置に導いて固液分離し、分離液を処理液として排出し、分離汚泥の少なくとも一部を曝気槽へ返送するように構成する。このような処理系としては、有機性排液を曝気槽で活性汚泥と混合して曝気し、混合液を固液分離装置において固液分離し、分離汚泥の一部を曝気槽に返送する標準活性汚泥処理法における好気性生物処理が一般的であるが、これを変形した他の処理方法、例えば、環状水路に被処理液を循環させるオキシデーションデッチ法などでもよい。アンモニア性窒素を含む排液を処理する場合は硝化脱窒工程を組合せて処理することができる。
【0011】
本発明では、このような好気性生物処理における処理系からの生物汚泥の一部を引き抜き、この引抜汚泥を易生物分解性に改質する改質処理を行う。生物汚泥を引き抜く場合、固液分離装置で分離された分離汚泥の一部を引き抜くのが好ましいが、曝気槽から混合液の状態で引き抜いてもよい。分離汚泥から引き抜く場合、余剰汚泥として排出される部分の一部または全部を引抜汚泥として引き抜くことができるが、余剰汚泥に加えて、返送汚泥として曝気槽に返送される返送汚泥の一部をさらに引き抜いて改質処理することもできる。この場合系外に排出する余剰汚泥の発生量をより少なくし、場合によってはゼロにすることができる。
なお、本発明では被処理液中の有機物が微生物により資化されて生成される生物汚泥を生成汚泥、固液分離装置で処理液と分離されて得られる汚泥を分離汚泥、固液分離装置から曝気槽に返送される分離汚泥の一部を返送汚泥、改質処理されるために曝気槽または固液分離装置から引き抜かれる汚泥を引抜汚泥、改質処理がなされた汚泥を改質汚泥、好気性生物処理系外へ排出される汚泥を余剰汚泥と称する。
【0012】
引抜汚泥を生物が分解し易い性状に改質する改質処理方法としては、引抜汚泥にオゾンを加えて易生物分解性に改質する方法、すなわちオゾン処理による改質処理を採用する。オゾン処理による改質処理、処理操作が簡単かつ処理効率が高いため好ましい。
【0013】
改質処理としてのオゾン処理は、好気性生物処理系から引き抜いた汚泥をオゾンと接触させればよく、オゾンの酸化作用により汚泥は易生物分解性に改質される。オゾン処理はpH5以下の酸性領域で行うと酸化分解効率が高くなる。このときのpHの調整は、硫酸、塩酸または硝酸などの無機酸をpH調整剤として生物汚泥に添加するか、生物汚泥を酸発酵処理して調整するか、あるいはこれらを組合せて行うのが好ましい。pH調整剤を添加する場合、pHは3〜4に調整するのが好ましく、酸発酵処理を行う場合、pHは4〜5となるように行うのが好ましい。
【0014】
オゾン処理は、引抜汚泥または酸発酵処理液をそのまま、または必要により遠心分離機などで濃縮した後pH5以下に調整し、オゾンと接触させることにより行うことができる。なお、pH調整は必ずしも要しない。接触方法としては、オゾン処理槽に汚泥を導入してオゾンを吹込む方法、機械攪拌による方法、充填層を利用する方法などが採用できる。オゾンとしてはオゾンガスの他、オゾン含有空気、オゾン化空気などのオゾン含有ガスが使用できる。オゾンは0.002〜0.1g−O3/g−SS、好ましくは0.01〜0.08g−O3/g−SSの消費率となるようにするのが望ましい。オゾン処理により生物汚泥は酸化分解されて、BOD成分に変換される。オゾン処理する汚泥乾物量はオゾン処理槽1m3あたり0.7〜40kg−SS/h、好ましくは1〜25kg−SS/h程度とする。
【0020】
このようにして易生物分解性に改質した改質汚泥は、好気性生物処理工程の曝気槽に導入して好気性処理を行い、好気性微生物に資化させる。曝気槽では生物汚泥のVSS/SS比を0.2〜0.8、好ましくは0.3〜0.7、MLVSSを500〜10000mg/l、好ましくは1000〜5000mg/lに維持するように制御することにより、汚泥の性状を悪化させることなく好気性生物処理を行う。
【0021】
本発明では前記生物処理工程から引き抜く引抜汚泥の汚泥濃度(汚泥乾物濃度)を計測するために汚泥濃度計測工程を設ける。引抜汚泥の濃度の計測は、水分を蒸発させて残存固形物への秤量を行う直接定量式の汚泥濃度計、あるいは光、超音波、マイクロ波等を用いる間接定量式の汚泥濃度計などを用いて汚泥の乾物重量を測定する。これらは連続的に、または間欠的に計測することができる。
【0022】
制御工程は引抜汚泥中の汚泥乾物量あたりの改質のためのオゾン消費率が0.002〜0.1g−O 3 /g−SSの範囲で一定となるように、汚泥引抜量を制御するように構成する。この場合、改質槽に加えるオゾン量を定量としておき、引抜汚泥濃度の変動に対応して引抜汚泥中の汚泥乾物量が上記の一定量となるように汚泥引抜流量を変化させると、単純にポンプまたは弁の制御をするだけでよいので制御が容易になり好ましい。
【0024】
上記の汚泥引抜量を制御するためには、これらの計測手段を設け、その計測結果をコンピュータ等の制御装置に入力し、制御するのが好ましい。この場合、引抜汚泥の汚泥濃度の変動により上記の制御を行っても長期には平均化した処理が行われ、目的とする汚泥減容化を行えるように、汚泥引抜量の設定を行っておくことができる。
【0025】
上記のようにして生物処理系からの引抜汚泥を易生物分解性に改質して生物処理系に返送して好気性処理を行うと、改質汚泥は生物処理系の好気性微生物に資化されて減容化する。このとき引抜汚泥の汚泥濃度を計測し、その濃度変化に応じて引抜汚泥量を制御すると、引抜汚泥中の汚泥乾物量に対応する量のオゾンが加えられ、効率のよい改質が行われる。この場合加えられたオゾンは過不足なく改質に利用され、目的とする汚泥の減容化が達成できる。
【0026】
【発明の効果】
以上の通り、本発明によれば、生物処理工程で生成する汚泥を改質処理工程でオゾンを加えて改質する際、引抜汚泥の汚泥乾物量あたりのオゾン消費率が0.002〜0.1g−O 3 /g−SSの範囲で一定となるように、引抜汚泥の汚泥濃度の変動に応じて引抜汚泥量を制御するようにしたので、汚泥減容化のための汚泥改質に使用するオゾンの量を過不足なく、必要最少限の量として改質を行うことができ、これにより効率よく汚泥を減容化することができ、処理設備を小型化することができる。
【0027】
【発明の実施の形態】
次に本発明の実施形態について説明する。図1は実施形態の好気性生物処理装置を示すフローシートであり、改質処理としてオゾン処理を採用した例である。
【0028】
図1において、1は好気性生物処理系で、曝気槽2および固液分離装置3から構成されている。曝気槽2には被処理液路4、返送汚泥路5およびオゾン処理汚泥導入路6が連絡し、また底部には散気装置7が設けられ、空気供給路8が連絡している。曝気槽2から固液分離装置3に連絡路9が連絡している。固液分離装置3には処理液路10および分離汚泥排出路11が連絡し、分離汚泥排出路11から返送汚泥路5が分岐している。返送汚泥路5にはポンプ12が設けられている。
【0029】
21は改質処理系で、オゾン処理槽22およびオゾン発生機23から構成されている。オゾン処理槽22には引抜汚泥路24および排オゾン路25が上部に連絡している。排オゾン路25は、触媒や活性炭などを充填した排オゾン処理塔(図示せず)と接続する。引抜汚泥路24にはポンプ26が設けられている。またオゾン処理槽22の下部にはオゾン注入路27およびオゾン処理汚泥導入路6が連絡している。28は原料空気供給路である。
【0030】
30は制御装置であり、引抜汚泥路24に設けられた汚泥濃度計31および汚泥流量計32から計測信号を入力し、ポンプ26に制御信号を出力するように接続するとともに、オゾン注入路27に設けられたオゾン濃度計33およびオゾン流量計34から計測信号を入力し、オゾン発生機23および送風器35に制御信号を出力するように接続している。
【0031】
上記の装置による有機性排液の好気性生物処理方法は、被処理液路4から有機性排液を曝気槽2に導入し、またポンプ12を駆動して返送汚泥路5から返送汚泥を返送し、曝気槽2内の活性汚泥と混合し、空気供給路8から供給される空気を散気装置7から散気して好気性生物処理を行う。これにより排液中の有機物は生物酸化反応によって分解される。
【0032】
曝気槽2内の混合液(好気性処理液)の一部は連絡路9を通して固液分離装置3に導入し、沈殿分離により分離液と分離汚泥とに分離する。分離液は処理液として処理液路10から系外に排出する。分離汚泥は分離汚泥排出路11から取出し、その一部は返送汚泥として返送汚泥路5から曝気槽2に返送する。
【0033】
分離汚泥の残部は、ポンプ26を駆動して引抜汚泥路24からオゾン処理槽22に導入する。余剰汚泥が生じる場合は、余剰汚泥排出路29から系外へ排出することができるが、生成汚泥量より多い汚泥をオゾン処理槽22へ導入してオゾン処理し、曝気槽2に戻すと、余剰汚泥の発生量がゼロになるので、余剰汚泥排出路29を省略することもできる。オゾン処理槽22では、オゾン発生機23で発生したオゾンをオゾン注入路27から導入し、汚泥と接触させてオゾン処理する。これにより、汚泥は易生物分解性物質に変換される。オゾン排ガスは排オゾン路25から排オゾン処理塔を経て系外へ排出する。
【0034】
オゾン処理汚泥はオゾン処理汚泥導入路6から曝気槽2に導入する。オゾン処理により汚泥は易生物分解性に改質されるので、これを曝気槽2に戻すことにより被処理液路4から流入するBODとともに、曝気槽2内の活性汚泥中の微生物により資化されて分解する。アンモニア性窒素を含有する被処理液を処理する場合には、曝気槽2の前に脱窒槽を設け、この脱窒槽に被処理液、返送汚泥およびオゾン処理汚泥を導入するとともに、曝気槽2から硝化液を循環して脱窒およびBOD除去を行い、曝気槽2では主に硝化を行うように処理が行われる。
【0035】
上記の処理において、引抜汚泥路24の引抜汚泥の汚泥濃度を汚泥濃度計31で計測し、また引抜汚泥の流量を汚泥流量計32で計測して制御装置30に入力する。制御装置30では汚泥濃度の変動に応じて、引抜汚泥の汚泥乾物量が一定となるように流量を演算してポンプ26に制御信号を送り、汚泥流量を制御する。このときオゾン注入路27のオゾン濃度計33でオゾン濃度を計測し、オゾン流量計34でオゾンガスの流量を測定して制御装置30に入力し、制御装置30からの制御信号によりオゾン発生機23のオゾン発生量を一定にし、かつ送風機35の送風量を一定にするように制御する。なお、送風機35の送風量とオゾン発生機23の電圧および電流を一定とすれば一定量のオゾンが発生するので、送風量とオゾン発生機23の電圧および電流を一定値に設定すれば必ずしもオゾンの濃度および流量を測定して制御しなくてもよい。
【0036】
これによりオゾン処理槽22に注入するオゾン量は一定になり、かつ汚泥濃度の変動に応じて汚泥流量が変化するため、オゾン処理槽22に注入される汚泥乾物重量は一定となる。このためオゾンが過不足なく注入されることになるため、所定の汚泥減容化が達成され、しかも未反応のオゾンが排出される量は少なくなり、排オゾン処理装置を小型化することができる。この方法では単に汚泥引抜量を変化させるだけで正確に制御でき、その操作は容易である。
【0037】
他の制御方法としては、引抜汚泥流量を一定にしておき、汚泥濃度の変動に応じてオゾン処理槽22に注入するオゾン量を変動させる方法も考えられる。オゾンの注入量を変動させるためには、送風機35の送風量を一定としておき、汚泥濃度の変動に応じてオゾン発生機23の電圧等を制御することにより発生するオゾンの濃度を増減させ、オゾン発生量を変化させることができる。またオゾン発生機23の電圧等を一定として発生するオゾン濃度は変えず、送風機35の送風量を変化させることによってもオゾンの注入量を変化させることができる。
【0038】
これらの中ではオゾン注入量を一定にしておき、汚泥濃度の変動に合わせて汚泥流量を変化させる方法が最も容易かつ正確に汚泥乾物量に対するオゾン量を制御することができるので好ましい。
【0039】
上記の方法により引抜汚泥の乾物流量に対応するオゾン量を改質槽に供給してオゾン処理による改質を行うことにより、必要最少限のオゾンを供給して効率よく汚泥の改質を行って所定の汚泥減容化を行うことができ、しかも排オゾン量を少なくして、これにより排オゾン処理装置を小型化することができる。
【0040】
上記の実施形態はオゾン処理による改質の例であるが、他の薬剤および/またはエネルギーを加えて汚泥の改質を行う場合も、これに準じて処理を行うことができる。また上記の好気性生物処理系および改質処理系の具体的な構成は図示のものに限らず、変更することが可能である。
【0041】
以下、本発明の設計例について説明する。
設計例1
有機物をBODとして150〜200mg/l含む下水を容量1000m3の曝気槽に1000m3/dで導入し、DOが0.5〜1ppmとなるよう空気曝気しながら活性汚泥処理したのち、曝気槽流出水を固液分離装置(最終沈殿池)に導入して固液分離を行い、固液分離により得られる分離汚泥は固液分離装置から引き抜き、一部は曝気槽に返送し、他部はオゾン処理槽に供給する。生成汚泥量は平均して1日あたり約130kgで、オゾン処理槽に供給する引抜汚泥量は1日あたりに発生する汚泥の約3.4倍に当たる440kgとする。オゾン処理槽にはオゾン発生機からオゾンを供給して処理し、オゾン処理汚泥を上記好気性処理装置の曝気槽へ返送する。この場合、供給するオゾン濃度を120g/m3、オゾンガス流量を7.9m3/hで一定に設定し、引抜汚泥の濃度の変動に応じて引抜流量を変動させ、汚泥乾物に対するオゾン消費率を0.05g−O3/g−SS(=乾燥重量で1gの汚泥に対し、オゾンを0.05g反応させる)で一定となるようオゾン注入量を一定にする。このとき、オゾン注入量に対応する引抜汚泥流量yは下式で表される。
y=引抜汚泥の乾物量/引抜汚泥濃度 ・・・(1)
【0042】
ここで引抜汚泥濃度は図2(a)の□印のように変動する場合、引抜汚泥流量を図2(a)の●印のように変動させると、引抜汚泥の乾物量(=引抜汚泥の濃度(%)×引抜汚泥流量)は図2(b)の●印のように一定となる。ここでオゾンの注入量は一定で、引抜汚泥の乾物量も一定なので、オゾン消費率を図2(b)の□印のように一定とすることができる。
【0043】
比較例1
設計例1において最高汚泥濃度0.7重量%を基準として、オゾン消費率が0.05g−O3/g−SSとなるように、引抜汚泥流量を図3(a)の●印に示す通り一定にする。このときオゾン注入量も一定とする。ここで汚泥濃度は図3(a)の□印(図2(a)の□印と同じ)のように変動するので、引抜汚泥の乾物量は図3(b)の●印のように汚泥濃度の変動に伴って引抜汚泥濃度と同じ変動パターンを示す。この時、オゾン注入量は一定で、引抜汚泥の乾物量が変化するのでオゾン消費率は図3(b)の□印のように変動する。
【0044】
以上の例から、引抜汚泥の乾物量に対して一定のオゾン注入量となるように引抜汚泥流量を変化させることにより、排ガス中のオゾン濃度を低くできることがわかる。
【図面の簡単な説明】
【図1】実施例の好気性生物処理装置を示すフローシートである。
【図2】(a)は設計例1の引抜汚泥濃度と引抜汚泥流量の日変動、(b)は設計例1のオゾン消費率と引抜汚泥の乾物量の日変動をそれぞれ表したグラフである。
【図3】(a)は比較例1の引抜汚泥濃度と引抜汚泥流量の日変動、(b)は比較例1のオゾン消費率と引抜汚泥の乾物量の日変動をそれぞれ表したグラフである。
【符号の説明】
1 好気性生物処理系
2 曝気槽
3 固液分離装置
4 被処理液路
5 返送汚泥路
6 オゾン処理汚泥導入路
7 散気装置
8 空気供給路
9、28 連絡路
10 処理液路
11 分離汚泥排出路
12、26 ポンプ
21 改質処理系
22 オゾン処理槽
23 オゾン発生機
24 引抜汚泥路
25 排オゾン路
27 オゾン注入路
28 原料空気供給路
29 余剰汚泥排出路
30 制御装置
31 汚泥濃度計
32 汚泥流量計
33 オゾン濃度計
34 オゾン流量計
35 送風機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for aerobic biological treatment of organic effluent in the presence of activated sludge, and more particularly to a method for treating organic effluent for reducing excess sludge in an activated sludge treatment system.
[0002]
[Prior art]
The aerobic biological treatment method that treats organic wastewater under aerobic conditions using the action of aerobic microorganisms, such as the activated sludge treatment method, has low treatment costs and excellent treatment performance. Although widely used in general, a large amount of non-dewatering excess sludge is generated. For this reason, a treatment method for reducing the volume of sludge has attracted attention.
[0003]
As a treatment method for reducing the volume of such sludge, the sludge is extracted from an aeration tank or a solid-liquid separator, and this extracted sludge is easily biodegradable by modification treatment such as ozone treatment, heat treatment, acid or alkali treatment. There has been proposed a method in which the modified sludge is returned to the aeration tank for biodegradation (for example, JP-A-7-11685).
[0004]
In this method, the extracted sludge is easily biodegradable and returned to the aeration tank, so that the modified sludge that has become easily degradable is utilized by microorganisms in the aeration tank. Decrease. In this case, when the amount of extracted sludge that is larger than the amount of sludge generated from the load BOD is reformed and returned, the amount of excess sludge can be made substantially zero.
[0005]
In such a treatment method, the amount of generated sludge is proportional to the inflowing load BOD. Therefore, a predetermined volume reduction can be achieved by pulling out the amount of sludge obtained by multiplying the inflowing load by a certain coefficient and performing a reforming treatment. It can be carried out. When performing ozone treatment as a reforming treatment, a certain amount of sludge corresponding to the assumed load is drawn out, and a certain amount of ozone necessary to reform the sludge dry matter amount corresponding to the assumed sludge concentration is injected. And reforming.
[0006]
However, the load BOD that flows in varies, and the processing conditions of the aeration tank and the solid-liquid separation device also vary, so the sludge concentration of the drawn sludge also varies. On the other hand, since the load and sludge concentration are assumed to be constant and sludge is drawn at a constant flow rate and ozone is injected at a constant amount, the ozone injection amount is too low when the actual sludge concentration is high. Sludge volume reduction rate is low. Conversely, when the sludge concentration is low, excess ozone is discharged as exhaust gas, which causes exhaustion of catalyst and activated carbon in the exhaust ozone tower. In general, the amount of ozone injection is determined assuming a high sludge concentration. Therefore, a large amount of excess ozone is discharged when the sludge concentration is low, and the size of the processing equipment for processing this is increased. Tengaa Ru.
[0007]
[Problems to be solved by the invention]
The problem of the present invention is that the amount of ozone used for sludge reforming for sludge volume reduction can be reformed as the minimum amount necessary without excessive or insufficient, thereby efficiently reducing sludge volume. It is possible to obtain an organic drainage treatment method capable of reducing the size of the treatment equipment.
[0008]
[Means for Solving the Problems]
The present invention is the following organic drainage treatment method.
(1) A biological treatment process for introducing an organic drainage liquid into an aeration tank and treating an aerobic biological treatment in the presence of activated sludge;
A solid-liquid separation step in which the liquid mixture is guided from the aeration tank to a solid-liquid separation device to be separated into solid and liquid, the separation liquid is discharged as a processing liquid, and at least a part of the separated sludge is returned to the aeration tank;
A modification treatment step of extracting at least a part of the activated sludge from the separated sludge or the mixed liquid, adding ozone to the extracted sludge to improve biodegradability, and returning the modified sludge to the aeration tank;
Sludge concentration measurement process to measure the sludge concentration in the drawn sludge,
Organic drainage comprising a control step for controlling the amount of sludge drawn so that the ozone consumption rate per amount of sludge dry matter of the drawn sludge is constant in the range of 0.002 to 0.1 g -O 3 / g-SS Processing method.
(2) The method according to (1) above, wherein the amount of ozone added in the reforming treatment step is quantitative .
[0009]
The organic effluent to be treated in the present invention is an effluent containing an organic substance treated by a normal aerobic biological treatment method, but may contain a hardly biodegradable organic substance or an inorganic substance. In addition, ammonia nitrogen may be contained. Such organic effluents include sewage, human waste, food factory effluents and other industrial effluents.
[0010]
The aerobic biological treatment in the present invention is configured to introduce an organic waste liquid into an aeration tank and perform the aerobic biological treatment in the presence of activated sludge. In the solid-liquid separation step, the mixed liquid is guided from the aeration tank to a solid-liquid separation apparatus to be separated into solid and liquid, the separation liquid is discharged as a processing liquid, and at least a part of the separated sludge is returned to the aeration tank. As such a treatment system, organic waste liquid is mixed with activated sludge in an aeration tank and aerated, and the mixed liquid is solid-liquid separated in a solid-liquid separator, and a part of the separated sludge is returned to the aeration tank. The aerobic biological treatment in the activated sludge treatment method is generally used, but another treatment method obtained by modifying the aerobic treatment method, for example, an oxidation detch method in which a liquid to be treated is circulated in an annular water channel may be used. When treating the drainage liquid containing ammonia nitrogen, it can be treated in combination with a nitrification denitrification step.
[0011]
In the present invention, a part of the biological sludge is extracted from the treatment system in such aerobic biological treatment, and the modification treatment is performed to modify the extracted sludge to be easily biodegradable. When extracting biological sludge, it is preferable to extract a part of the separated sludge separated by the solid-liquid separator, but it may be extracted from the aeration tank in a mixed liquid state. When extracting from the separated sludge, part or all of the portion discharged as excess sludge can be extracted as extraction sludge, but in addition to the excess sludge, a part of the return sludge returned to the aeration tank as return sludge is further added. It can also be pulled out and reformed. In this case, the amount of excess sludge generated outside the system can be reduced, and in some cases, it can be reduced to zero.
In the present invention, the biological sludge produced by the organic substances in the liquid to be treated is assimilated by microorganisms is generated, and the sludge obtained by being separated from the treatment liquid by the solid-liquid separator is separated from the sludge and solid-liquid separator. Part of the separated sludge that is returned to the aeration tank is returned to the sludge, and the sludge extracted from the aeration tank or solid-liquid separator to be reformed is extracted. The sludge discharged out of the aerobic biological treatment system is called surplus sludge.
[0012]
The modification treatment method the extracted sludge organisms modified into easily decomposable properties, a method of modifying a readily biodegradable by adding ozone to the extracted sludge, i.e. adopt reforming treatment by the ozone treatment. The modification treatment by ozone treatment is preferable because the treatment operation is simple and the treatment efficiency is high.
[0013]
In the ozone treatment as the reforming treatment, the sludge extracted from the aerobic biological treatment system may be brought into contact with ozone, and the sludge is easily biodegradable by the oxidizing action of ozone. When the ozone treatment is performed in an acidic region having a pH of 5 or less, the oxidative decomposition efficiency is increased. The pH adjustment at this time is preferably performed by adding an inorganic acid such as sulfuric acid, hydrochloric acid or nitric acid to the biological sludge as a pH adjusting agent, adjusting the biological sludge by an acid fermentation treatment, or a combination thereof. . When adding a pH adjuster, it is preferable to adjust pH to 3-4, and when performing an acid fermentation process, it is preferable to carry out so that pH may become 4-5.
[0014]
The ozone treatment can be performed by adjusting the drawn sludge or the acid fermentation treatment solution as it is, or if necessary by concentrating it with a centrifuge, etc., and then adjusting the pH to 5 or less and bringing it into contact with ozone. In addition, pH adjustment is not necessarily required. As a contact method, a method of introducing sludge into an ozone treatment tank and blowing ozone, a method of mechanical stirring, a method of using a packed bed, or the like can be employed. In addition to ozone gas, ozone-containing gas such as ozone-containing air or ozonized air can be used as ozone. It is desirable that ozone has a consumption rate of 0.002 to 0.1 g-O 3 / g-SS, preferably 0.01 to 0.08 g-O 3 / g-SS. Biological sludge is oxidized and decomposed by ozone treatment and converted into BOD components. The amount of sludge dry matter to be ozone-treated is 0.7 to 40 kg-SS / h, preferably about 1 to 25 kg-SS / h per 1 m 3 of the ozone treatment tank.
[0020]
The modified sludge modified to be easily biodegradable in this way is introduced into the aeration tank in the aerobic biological treatment process, subjected to aerobic treatment, and assimilated into aerobic microorganisms. In the aeration tank, the biological sludge is controlled so that the VSS / SS ratio is maintained at 0.2 to 0.8, preferably 0.3 to 0.7, and the MLVSS is maintained at 500 to 10,000 mg / l, preferably 1000 to 5000 mg / l. By doing so, aerobic biological treatment is performed without deteriorating the properties of the sludge.
[0021]
In this invention, in order to measure the sludge density | concentration (sludge dry matter density | concentration) of the extraction sludge extracted from the said biological treatment process, a sludge density | concentration measurement process is provided. The concentration of drawn sludge is measured using a direct quantitative sludge densitometer that evaporates moisture and weighs the remaining solids, or an indirect quantitative sludge densitometer that uses light, ultrasound, microwave, etc. And measure the dry matter weight of the sludge. These can be measured continuously or intermittently.
[0022]
Control step as ozone consumption ratio for modification per sludge dry matter in the extracted sludge is constant in the range of 0.002~0.1g-O 3 / g-SS , to control sludge withdrawal amount Configure as follows. In this case, if the amount of ozone added to the reforming tank is set as a fixed amount, and the sludge extraction flow rate is changed so that the sludge dry matter amount in the extracted sludge becomes the above-mentioned fixed amount corresponding to the fluctuation of the extracted sludge concentration, simply Since it is only necessary to control the pump or the valve, the control becomes easy, which is preferable.
[0024]
In order to control the amount of sludge extraction described above, it is preferable to provide these measuring means and input the measurement results to a control device such as a computer for control. In this case, even if the above control is performed due to fluctuations in the sludge concentration of the extracted sludge, the averaged treatment is performed in the long term, and the sludge extraction amount is set so that the intended sludge volume reduction can be performed. be able to.
[0025]
When the sludge extracted from the biological treatment system is modified to be easily biodegradable and returned to the biological treatment system for aerobic treatment as described above, the modified sludge is assimilated into aerobic microorganisms in the biological treatment system. Reduced volume. At this time, when the sludge concentration of the extracted sludge is measured and the amount of the extracted sludge is controlled according to the change in the concentration, the amount of ozone corresponding to the amount of sludge dry matter in the extracted sludge is added, and efficient reforming is performed. In this case, the added ozone is utilized for reforming without excess or deficiency, and the target volume reduction of sludge can be achieved.
[0026]
【The invention's effect】
As described above, according to the present invention, the sludge produced in the biological treatment step, when reforming by adding ozone in the reforming process, the ozone consumption rate per sludge dry matter of extracted sludge is 0.002 to 0 The amount of extracted sludge is controlled according to the fluctuation of the sludge concentration of the extracted sludge so that it is constant within the range of 1 g -O 3 / g-SS. The reforming can be performed with the amount of ozone to be used as the minimum necessary amount without excess or deficiency, whereby sludge can be efficiently reduced in volume and the processing equipment can be downsized.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described. FIG. 1 is a flow sheet showing an aerobic biological treatment apparatus of an embodiment, and is an example in which ozone treatment is adopted as a modification treatment.
[0028]
In FIG. 1, reference numeral 1 denotes an aerobic biological treatment system, which includes an aeration tank 2 and a solid-liquid separation device 3. The aeration tank 2 communicates with the liquid passage 4 to be treated, the return sludge passage 5 and the ozone treatment sludge introduction passage 6, and the air diffuser 7 is provided at the bottom and the air supply passage 8 communicates therewith. A communication path 9 communicates from the aeration tank 2 to the solid-liquid separator 3. The treatment liquid path 10 and the separated sludge discharge path 11 communicate with the solid-liquid separator 3, and the return sludge path 5 branches from the separated sludge discharge path 11. A pump 12 is provided in the return sludge path 5.
[0029]
Reference numeral 21 denotes a reforming treatment system, which includes an ozone treatment tank 22 and an ozone generator 23. An extraction sludge passage 24 and a waste ozone passage 25 communicate with the upper portion of the ozone treatment tank 22. The exhaust ozone path 25 is connected to an exhaust ozone treatment tower (not shown) filled with a catalyst, activated carbon or the like. A pump 26 is provided in the extraction sludge passage 24. Further, an ozone injection path 27 and an ozone treatment sludge introduction path 6 communicate with the lower part of the ozone treatment tank 22. Reference numeral 28 denotes a raw material air supply path.
[0030]
Reference numeral 30 denotes a control device which inputs measurement signals from a sludge concentration meter 31 and a sludge flow meter 32 provided in the extraction sludge passage 24 and connects to the pump 26 so as to output a control signal. A measurement signal is input from the provided ozone concentration meter 33 and ozone flow meter 34, and the ozone generator 23 and the blower 35 are connected to output a control signal.
[0031]
In the aerobic biological treatment method of organic waste liquid by the above apparatus, the organic waste liquid is introduced into the aeration tank 2 from the liquid passage 4 to be treated, and the return sludge is returned from the return sludge passage 5 by driving the pump 12. Then, it is mixed with the activated sludge in the aeration tank 2, and the air supplied from the air supply path 8 is diffused from the diffuser 7 to perform the aerobic biological treatment. As a result, the organic matter in the effluent is decomposed by the biooxidation reaction.
[0032]
A part of the mixed liquid (aerobic treatment liquid) in the aeration tank 2 is introduced into the solid-liquid separator 3 through the communication path 9 and separated into a separated liquid and separated sludge by precipitation separation. The separation liquid is discharged out of the system from the processing liquid passage 10 as a processing liquid. The separated sludge is taken out from the separated sludge discharge passage 11, and a part thereof is returned to the aeration tank 2 from the return sludge passage 5 as return sludge.
[0033]
The remainder of the separated sludge is introduced into the ozone treatment tank 22 from the extraction sludge passage 24 by driving the pump 26. When surplus sludge is generated, it can be discharged out of the system from the surplus sludge discharge passage 29. However, if sludge larger than the amount of generated sludge is introduced into the ozone treatment tank 22 and subjected to ozone treatment and returned to the aeration tank 2, surplus Since the amount of sludge generated becomes zero, the excess sludge discharge passage 29 can be omitted. In the ozone treatment tank 22, ozone generated by the ozone generator 23 is introduced from the ozone injection path 27 and is contacted with sludge for ozone treatment. Thereby, sludge is converted into an easily biodegradable substance. The ozone exhaust gas is discharged from the exhaust ozone passage 25 through the exhaust ozone treatment tower to the outside of the system.
[0034]
The ozone-treated sludge is introduced into the aeration tank 2 from the ozone-treated sludge introduction path 6. Since the sludge is easily biodegradable by the ozone treatment, it is assimilated by the microorganisms in the activated sludge in the aeration tank 2 together with the BOD flowing from the liquid channel 4 to be treated by returning it to the aeration tank 2. Disassemble. When processing a liquid to be treated containing ammonia nitrogen, a denitrification tank is provided in front of the aeration tank 2, and the liquid to be treated, the return sludge, and the ozone treatment sludge are introduced into the denitrification tank. The nitrification liquid is circulated to perform denitrification and BOD removal, and the aeration tank 2 performs processing so as to mainly perform nitrification.
[0035]
In the above processing, the sludge concentration of the extracted sludge in the extracted sludge passage 24 is measured by the sludge concentration meter 31, and the flow rate of the extracted sludge is measured by the sludge flow meter 32 and input to the control device 30. In the control device 30, the flow rate is calculated so that the amount of sludge dry matter of the extracted sludge becomes constant according to the fluctuation of the sludge concentration, and a control signal is sent to the pump 26 to control the sludge flow rate. At this time, the ozone concentration meter 33 in the ozone injection path 27 measures the ozone concentration, the ozone flow meter 34 measures the ozone gas flow rate and inputs it to the control device 30. The control signal from the control device 30 causes the ozone generator 23 to Control is performed so that the amount of ozone generated is constant and the amount of air blown by the blower 35 is constant. Note that a constant amount of ozone is generated if the amount of air blown from the blower 35 and the voltage and current of the ozone generator 23 are constant. Therefore, if the amount of air blown and the voltage and current of the ozone generator 23 are set to a constant value, the amount of ozone is not necessarily reduced. It is not necessary to measure and control the concentration and flow rate.
[0036]
As a result, the amount of ozone injected into the ozone treatment tank 22 becomes constant, and the sludge flow rate changes according to fluctuations in the sludge concentration, so that the weight of sludge dry matter injected into the ozone treatment tank 22 becomes constant. For this reason, since ozone is injected without excess or deficiency, predetermined sludge volume reduction is achieved, and the amount of unreacted ozone is reduced, and the exhaust ozone treatment device can be downsized. . This method can be accurately controlled simply by changing the amount of sludge extraction, and the operation is easy.
[0037]
Other control methods, leave the extracted sludge flow rate constant, a method Ru also considered to vary the amount of ozone injected into the ozone treatment tank 22 in accordance with a variation in the sludge concentration. In order to vary the amount of ozone injected, the amount of ozone generated is increased or decreased by controlling the voltage of the ozone generator 23 or the like according to the variation in sludge concentration, while keeping the amount of air blown by the blower 35 constant. The amount of generation can be changed. Moreover, the ozone injection amount can also be changed by changing the air flow rate of the blower 35 without changing the ozone concentration generated with the voltage of the ozone generator 23 being constant.
[0038]
Among them leave a constant ozone injection amount, not preferred as it can be controlled the amount of ozone for the most easily and accurately sludge dry matter is a method of changing the sludge flow rate in accordance with the variation of the sludge concentration.
[0039]
By supplying the amount of ozone corresponding to the dry matter flow rate of the extracted sludge to the reforming tank by the above method and performing reforming by ozone treatment, the minimum amount of ozone is supplied and the sludge is efficiently reformed. A predetermined sludge volume reduction can be performed, and the amount of exhausted ozone can be reduced, thereby reducing the size of the exhausted ozone treatment device.
[0040]
The above embodiment is an example of reforming by ozone treatment, but when sludge is reformed by adding other chemicals and / or energy, the treatment can be performed according to this. The specific configurations of the aerobic biological treatment system and the modification treatment system are not limited to those shown in the drawings, and can be changed.
[0041]
Hereinafter, design examples of the present invention will be described.
Design example 1
Sewage containing 150 to 200 mg / l of organic matter as BOD is introduced into an aeration tank with a capacity of 1000 m 3 at 1000 m 3 / d, and after activated sludge treatment with air aeration so that DO becomes 0.5 to 1 ppm, the aeration tank flows out. Water is introduced into the solid-liquid separation device (final sedimentation basin) for solid-liquid separation, and the separated sludge obtained by solid-liquid separation is withdrawn from the solid-liquid separation device, part of it is returned to the aeration tank, and the other part is ozone. Supply to the treatment tank. The amount of produced sludge is about 130 kg per day on average, and the amount of extracted sludge supplied to the ozone treatment tank is 440 kg, which is about 3.4 times the amount of sludge generated per day. The ozone treatment tank is supplied with ozone from an ozone generator, and the ozone treatment sludge is returned to the aeration tank of the aerobic treatment apparatus. In this case, the ozone concentration to be supplied is set to 120 g / m 3 , the ozone gas flow rate is set to a constant value of 7.9 m 3 / h, the extraction flow rate is changed according to the change in the concentration of the extracted sludge, and the ozone consumption rate for the sludge dry matter is set. The ozone injection amount is made constant so as to be constant at 0.05 g-O 3 / g-SS (= 0.05 g of ozone is reacted with 1 g of sludge by dry weight). At this time, the extraction sludge flow rate y corresponding to the ozone injection amount is expressed by the following equation.
y = amount of dry sludge extracted / concentrated sludge (1)
[0042]
Here, if the drawn sludge concentration varies as indicated by □ in FIG. 2 (a), the amount of dry matter of the extracted sludge (= the amount of drawn sludge is changed if the drawn sludge flow rate is varied as indicated by the ● mark in FIG. 2 (a). Concentration (%) × drawn sludge flow rate) is constant as indicated by ● in FIG. Here, the amount of ozone injected is constant, and the dry matter amount of the extracted sludge is also constant, so that the ozone consumption rate can be made constant as indicated by the □ marks in FIG.
[0043]
Comparative Example 1
With reference to the maximum sludge concentration of 0.7% by weight in design example 1, the drawn sludge flow rate is as shown by the ● marks in FIG. 3 (a) so that the ozone consumption rate is 0.05 g-O 3 / g-SS. Keep it constant. At this time, the ozone injection amount is also constant. Here, the sludge concentration fluctuates as indicated by □ in FIG. 3 (a) (same as □ in FIG. 2 (a)), so the dry matter amount of the extracted sludge is sludge as indicated by ● in FIG. 3 (b). It shows the same variation pattern as the extracted sludge concentration with the concentration variation. At this time, the ozone injection amount is constant and the dry matter amount of the extracted sludge changes, so the ozone consumption rate fluctuates as indicated by □ in FIG.
[0044]
From the above examples, it can be seen that the ozone concentration in the exhaust gas can be lowered by changing the extraction sludge flow rate so that the amount of ozone injected is constant with respect to the dry matter amount of the extraction sludge.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing an aerobic biological treatment apparatus of an embodiment.
FIGS. 2A and 2B are graphs showing daily fluctuations in the extracted sludge concentration and the extracted sludge flow rate in Design Example 1, and FIG. .
FIG. 3A is a graph showing daily fluctuations in the extracted sludge concentration and the drawn sludge flow rate in Comparative Example 1, and FIG. 3B is a graph showing the daily fluctuations in the ozone consumption rate and the dry matter amount of the drawn sludge in Comparative Example 1. .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Aerobic biological treatment system 2 Aeration tank 3 Solid-liquid separator 4 Processed liquid path 5 Return sludge path 6 Ozone treatment sludge introduction path 7 Aeration apparatus 8 Air supply path 9, 28 Connection path 10 Process liquid path 11 Separation sludge discharge Paths 12, 26 Pump 21 Reformation treatment system 22 Ozone treatment tank 23 Ozone generator 24 Extraction sludge path 25 Drain ozone path 27 Ozone injection path 28 Raw material air supply path 29 Surplus sludge discharge path 30 Controller 31 Sludge concentration meter 32 Sludge flow rate Total 33 Ozone concentration meter 34 Ozone flow meter 35 Blower

Claims (2)

有機性排液を曝気槽に導入して、活性汚泥の存在下に好気性生物処理する生物処理工程と、
曝気槽から混合液を固液分離装置に導いて固液分離し、分離液を処理液として排出し、分離汚泥の少なくとも一部を曝気槽に返送する固液分離工程と、
分離汚泥または混合液から活性汚泥の少なくとも一部を引き抜き、この引抜汚泥にオゾンを加えて易生物分解性に改質し、改質汚泥を曝気槽に返送する改質処理工程と、
引抜汚泥中の汚泥濃度を計測する汚泥濃度計測工程と、
引抜汚泥の汚泥乾物量あたりのオゾン消費率が0.002〜0.1g−O 3 /g−SSの範囲で一定となるように、汚泥引抜量を制御する制御工程とを含む有機性排液の処理方法。
A biological treatment process for introducing an organic effluent into an aeration tank, and aerobic biological treatment in the presence of activated sludge;
A solid-liquid separation step in which the liquid mixture is guided from the aeration tank to a solid-liquid separation device to be separated into solid and liquid, the separation liquid is discharged as a processing liquid, and at least a part of the separated sludge is returned to the aeration tank;
A modification treatment step of extracting at least a part of the activated sludge from the separated sludge or the mixed liquid, adding ozone to the extracted sludge to improve biodegradability, and returning the modified sludge to the aeration tank;
Sludge concentration measurement process to measure the sludge concentration in the drawn sludge,
Organic drainage comprising a control step for controlling the amount of sludge drawn so that the ozone consumption rate per amount of sludge dry matter of the drawn sludge is constant in the range of 0.002 to 0.1 g -O 3 / g-SS Processing method.
改質処理工程で加えるオゾン量が定量である請求項1記載の方法。The method according to claim 1, wherein the amount of ozone added in the reforming treatment step is quantitative .
JP2000208229A 2000-07-05 2000-07-05 Organic wastewater treatment method Expired - Fee Related JP4622057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000208229A JP4622057B2 (en) 2000-07-05 2000-07-05 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000208229A JP4622057B2 (en) 2000-07-05 2000-07-05 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2002018471A JP2002018471A (en) 2002-01-22
JP4622057B2 true JP4622057B2 (en) 2011-02-02

Family

ID=18704851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000208229A Expired - Fee Related JP4622057B2 (en) 2000-07-05 2000-07-05 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4622057B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4066458B2 (en) * 2004-07-15 2008-03-26 株式会社日立プラントテクノロジー Method and apparatus for reducing excess sludge volume
JP5105251B2 (en) * 2008-09-24 2012-12-26 株式会社日立プラントテクノロジー Comprehensive immobilization carrier and method for producing the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117389A (en) * 1981-01-12 1982-07-21 Toshiba Corp Apparatus for treating sewage
JP3348455B2 (en) * 1993-03-03 2002-11-20 栗田工業株式会社 Aerobic treatment of nitrogen and / or phosphorus deficient organic effluent
JP3648751B2 (en) * 1993-10-22 2005-05-18 栗田工業株式会社 Aerobic treatment method of organic drainage
JPH08103786A (en) * 1994-10-06 1996-04-23 Kurita Water Ind Ltd Aerobic treating method for organic waste liquid
JPH08192179A (en) * 1995-01-18 1996-07-30 Meidensha Corp Device for setting residence time of sludge in activated sludge process
JPH08192197A (en) * 1995-01-18 1996-07-30 Meidensha Corp Method and device for treating sludge using ozone
JPH09150184A (en) * 1995-11-30 1997-06-10 Ebara Corp Treatment of organic sewage
JPH09168791A (en) * 1995-12-20 1997-06-30 Meidensha Corp Control of quantity of activated sludge in activated sludge treatment
JP3447037B2 (en) * 1995-12-25 2003-09-16 株式会社荏原製作所 Aerobic digestion of activated sludge
JP3716516B2 (en) * 1996-11-14 2005-11-16 栗田工業株式会社 Method and apparatus for aerobic treatment of organic drainage
JPH10165976A (en) * 1996-12-05 1998-06-23 Nissin Electric Co Ltd Sewage water treatment apparatus
JP3397096B2 (en) * 1997-09-19 2003-04-14 栗田工業株式会社 Apparatus and method for ozone treatment of biological sludge
JP3627894B2 (en) * 1997-10-30 2005-03-09 株式会社荏原製作所 Organic wastewater treatment method and equipment
JP3290621B2 (en) * 1997-12-26 2002-06-10 神鋼パンテツク株式会社 Method and apparatus for treating organic wastewater
JP2000246293A (en) * 1999-02-26 2000-09-12 Meidensha Corp Sludge treatment method and apparatus

Also Published As

Publication number Publication date
JP2002018471A (en) 2002-01-22

Similar Documents

Publication Publication Date Title
US3660277A (en) Oxygenation-ozonation of bod-containing water
US6086765A (en) Multi-stage facultative wastewater treatment system and method hydrolyzing biosolids
JP3831949B2 (en) Biological treatment method and apparatus for organic drainage
JP4780552B2 (en) Biological wastewater treatment method
JP4622057B2 (en) Organic wastewater treatment method
JP3551526B2 (en) Aerobic treatment of organic wastewater
JP4631162B2 (en) Organic waste treatment methods
CN216005557U (en) Integrated treatment system for high-ammonia-nitrogen wastewater difficult to biodegrade
JP2007253011A (en) Biological treatment method and apparatus for organic liquid waste
JP3552754B2 (en) Advanced treatment method of organic sewage and its apparatus
JP3661354B2 (en) Aerobic treatment method of organic drainage
JPH11333494A (en) Method and apparatus for biological dentrification of waste water
JP4581174B2 (en) Biological treatment method
JP2946163B2 (en) Wastewater treatment method
JP4503248B2 (en) Wastewater treatment method
JP4862209B2 (en) Organic drainage treatment method and apparatus
JP2001269697A (en) Nitrogen-containing drainage treating method
JP2001000984A (en) Treatment method using ozone and hydrogen peroxide
JPH05277475A (en) Treatment method for water containing organic substance
JP2004132037A (en) Circulating flushing toilet and sewage purification method of the circulating flushing toilet
JPH0788495A (en) Method for aerobic treatment of organic drainage
JP2002186988A (en) Wastewater treatment device and method for treating wastewater
JP4230617B2 (en) Wastewater treatment equipment containing organic solids
JP4915035B2 (en) Wastewater treatment method
JP2003053395A (en) Integrated treatment equipment for garbage, night soil and organic sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees