JPH08192197A - Method and device for treating sludge using ozone - Google Patents

Method and device for treating sludge using ozone

Info

Publication number
JPH08192197A
JPH08192197A JP535895A JP535895A JPH08192197A JP H08192197 A JPH08192197 A JP H08192197A JP 535895 A JP535895 A JP 535895A JP 535895 A JP535895 A JP 535895A JP H08192197 A JPH08192197 A JP H08192197A
Authority
JP
Japan
Prior art keywords
sludge
ozone
treatment
value
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP535895A
Other languages
Japanese (ja)
Inventor
Shigeo Sato
茂雄 佐藤
Shigeo Aoyanagi
重夫 青柳
Koichi Shimizu
公一 清水
Hiroshi Noguchi
寛 野口
Rie Matsui
理恵 松井
Keiichi Tsukamoto
慶一 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP535895A priority Critical patent/JPH08192197A/en
Publication of JPH08192197A publication Critical patent/JPH08192197A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE: To efficiently treat sludge with ozone before concentrating the sludge using pH as an index. CONSTITUTION: A sludge feed pump 8 is driven using a controller 6 to feed sludge into a contact tank 1 and ON signal is outputted from the controller 6 to an ozone generator 4 to generate ozone gas, and the ozone gas is fed into the sludge from a diffuser pipe 2 provided at the bottom of the tank 1 so as to be agitated by an agitation device, thereby the ozone gas comes into contact with the sludge to effect ozone processing. When the sludge is subjected to ozone processing, it is sterilized and the value of pH changes. A pH meter 5 is provided in the tank 1 and when pH value or a change in pH value of the meter 5 has reached a set value, the controller 6 outputs OFF signal to the ozone generator 4 to stop generation of ozone. Consequently, ozone processing can be achieved economically.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、汚泥をオゾン処理する
装置を有する汚泥処理システムにおける汚泥のオゾン処
理方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sludge ozone treatment method and apparatus in a sludge treatment system having a device for ozone treatment of sludge.

【0002】[0002]

【従来の技術】汚泥処理施設では図17に示すように、
汚泥は、濃縮、消化、脱水等の処理を経て最終処分され
る。汚泥濃度は、消化、脱水に影響を与える。効率的に
消化を行うためには、汚泥濃縮で高濃度の汚泥を得るこ
とが必要である。
2. Description of the Related Art In a sludge treatment facility, as shown in FIG.
The sludge is finally disposed of after undergoing treatments such as concentration, digestion and dehydration. Sludge concentration affects digestion and dehydration. In order to efficiently digest, it is necessary to obtain a high concentration of sludge by concentrating sludge.

【0003】汚泥の集約処理では、複数の処理場で発生
した汚泥は、汚泥集約処理施設へポンプ圧送され、一括
した処理が行われる。汚泥輸送中の汚泥性状変化が後段
の濃縮、消化、脱水等に影響を与える。
In the sludge aggregating process, the sludges generated at a plurality of treatment plants are pumped to a sludge aggregating treatment facility to be collectively processed. Changes in sludge properties during sludge transportation affect subsequent concentration, digestion, dehydration, etc.

【0004】[0004]

【発明が解決しようとする課題】近年、生活水準の向
上、下水排除方式の変遷,面整備の進捗等により流入下
水中の有機物濃度が増加している。このため、濃縮装置
において、腐敗進行により汚泥の性状変化が変化し、濃
縮性の低下を招いている。濃縮性の低下は、後続汚泥処
理システムの処理効率の低下及び、返流水による水処理
システムへの有機物負荷増大を引き起こしている。
In recent years, the organic matter concentration in the inflowing sewage has been increasing due to the improvement of living standard, the transition of the sewage removal system, the progress of the surface preparation and the like. For this reason, in the concentrating device, changes in the properties of the sludge change due to the progress of rotting, which leads to a decrease in the concentration property. The decrease in the concentration property causes a decrease in the treatment efficiency of the subsequent sludge treatment system and an increase in the load of organic substances on the water treatment system due to the return water.

【0005】また、下水道の普及にともない、年々下水
処理水量は増加しており、汚泥の発生量もほぼ同じ比率
で増加している。この汚泥の処理は、処理地に制約の大
きな大都市のみならず、処理を新しく開始した中小都市
の場合も、少量の汚泥では効率の良い汚泥処理が難しい
ため、大きな問題となっている。この汚泥処理問題の解
決策の一つとして、汚泥集約処理が注目されている。そ
の長所として、1)汚泥処理施設のスケールメリット、
2)汚泥処理場の環境対策の集約化、3)エネルギー回
収の効率化、4)維持管理面のコストの低減、5)汚泥
の資源化の向上、等が挙げられる。
With the spread of sewerage, the amount of treated sewage is increasing year by year, and the amount of sludge generated is increasing at almost the same rate. This sludge treatment is a big problem not only in large cities with large restrictions on the treatment area, but also in small and medium-sized cities that have newly started treatment, because efficient sludge treatment with a small amount of sludge is difficult. As one of the solutions to this sludge treatment problem, sludge intensive treatment is drawing attention. The advantage is that 1) economies of scale of sludge treatment facilities,
2) Centralization of environmental measures for sludge treatment plants, 3) efficiency of energy recovery, 4) reduction of maintenance costs, and 5) improvement of sludge resource utilization.

【0006】集約処理において、輸送中の汚泥の腐敗が
問題となっている。汚泥輸送ラインの圧送中に汚泥の腐
敗が進行し、後段の濃縮装置での濃縮性が悪化、脱水装
置での脱水性の悪化を引く起こす。また、腐敗により発
生する硫化水素が原因で、輸送施設の腐敗を引き起こす
等の問題も起きている。
Separation of sludge during transportation has become a problem in intensive treatment. Separation of sludge progresses during the pumping of the sludge transportation line, which deteriorates the concentrating property in the subsequent concentrating device and the dewatering property in the dewatering device. In addition, hydrogen sulfide generated by decay causes problems such as corruption of transportation facilities.

【0007】汚泥腐敗は、嫌気性微生物が汚泥中の有機
物を分解することにより生じる。汚泥腐敗を防止するた
めに、汚泥腐敗の主な原因となる、嫌気性微生物,硫酸
塩還元菌を過酸化水素,次亜鉛素酸ナトリウム等の薬品
を用いて不活性化させる方法がある。しかし、その効果
は明確にされておらず、実用化には至っていない。
Sludge decay is caused by the decomposition of organic matter in sludge by anaerobic microorganisms. In order to prevent sludge spoilage, there is a method of inactivating anaerobic microorganisms and sulfate-reducing bacteria, which are the main causes of sludge spoilage, by using chemicals such as hydrogen peroxide and sodium hypozincate. However, its effect has not been clarified, and it has not been put to practical use.

【0008】実際には、汚泥管を洗浄する等の手段が用
いられているにすぎない。
In practice, only means such as cleaning the sludge pipe is used.

【0009】オゾンを用いて、汚泥の腐敗を防止する場
合には、比較的大量のオゾンが必要となる。そのため、
腐敗防止のための適量のオゾンで処理することが求めら
れ、オゾン注入の監視・制御は、オゾン処理コストを削
減につながる。しかし、汚泥腐敗の直接の原因となる嫌
気性微生物の変化をオンラインでモニタする方法は現状
ではない。従って、嫌気性微生物の変化を含めた、汚泥
の性状の変化をオンラインでモニタする方法・測定装置
の開発が必要である。
When ozone is used to prevent spoilage from spoiling, a relatively large amount of ozone is required. for that reason,
It is required to treat with an appropriate amount of ozone to prevent spoilage, and monitoring / controlling ozone injection leads to reduction in ozone treatment cost. However, there is currently no online method for monitoring changes in anaerobic microorganisms that directly cause sludge decay. Therefore, it is necessary to develop a method / measuring device for online monitoring of changes in sludge properties, including changes in anaerobic microorganisms.

【0010】本発明は、従来のこのような問題点に鑑み
てなされたもので、その目的とするところは、汚泥のp
H値を指標として簡単に効率よくオゾン処理のできる汚
泥のオゾン処理方法およびその装置を提供することにあ
る。
The present invention has been made in view of the above-mentioned problems of the prior art, and its object is to remove p of sludge.
An object of the present invention is to provide a sludge ozonization method and device capable of simply and efficiently performing ozonation using the H value as an index.

【0011】[0011]

【課題を解決するための手段および作用】上記目的を達
成するために、本発明は、汚泥濃縮した後、消化もしく
は脱水をする汚泥処理システムの汚泥濃縮をする濃縮装
置の前段に、バッチ式または連続式の接触槽を設け、こ
の接触層に汚泥を一定量投入又は連続的に流し、この槽
内にオゾン発生装置に発生するオゾンガスを注入して汚
泥に接触させ、このオゾン処理中の汚泥のpHを測定
し、そのpH値を指標として制御装置によりオゾン発生
装置を制御してオゾン注入量を制御し、汚泥をオゾン処
理する。オゾン処理により汚泥のpHが変わるので、p
H値を指標とする制御により効率の良いオゾン処理がで
きる。
Means and Actions for Solving the Problems In order to achieve the above object, the present invention provides a batch type or a pre-stage of a concentrating device for sludge concentration in a sludge treatment system for digesting or dewatering after sludge concentration. A continuous contact tank is provided, and a certain amount of sludge is introduced or continuously flowed into this contact layer, ozone gas generated in the ozone generator is injected into this tank to contact the sludge, and the sludge during the ozone treatment The pH is measured, and the ozone generator is controlled by the controller using the pH value as an index to control the ozone injection amount, and the sludge is subjected to ozone treatment. Since the pH of sludge changes due to ozone treatment, p
Ozone treatment can be performed efficiently by controlling the H value as an index.

【0012】制御の指標としては、処理終了時点または
処理終了位置のpH値、あるいは、処理開始時点または
処理開始位置でのpH値と処理終了時点または処理終了
位置でのpH値との偏差値を用いることができる。
As a control index, the pH value at the processing end time or the processing end position, or the deviation value between the pH value at the processing start time or the processing start position and the pH value at the processing end time or the processing end position. Can be used.

【0013】また、接触槽への流入汚泥の流量ないし濃
度を測定する汚泥流量計ないし汚泥濃度計を設け、その
流量値ないし濃度値をフィードフォワード情報とする制
御を制御装置に組み込んで、上記pH値により制御に流
量値ないし濃度値によるフィードフォワード制御を加え
てオゾン発生装置を制御する。
Further, a sludge flow meter or a sludge densitometer for measuring the flow rate or concentration of sludge flowing into the contact tank is provided, and the control using the flow rate value or the concentration value as feedforward information is incorporated in the control device to adjust the pH value. The feed-forward control based on the flow rate value or the concentration value is added to the control based on the value to control the ozone generator.

【0014】[0014]

【実施例】本発明は、図1に示すように、濃縮B〜最終
処分E等からなる汚泥処理における汚泥濃縮Bの前に汚
泥をオゾン処理Aを行うもので、いずれの汚泥処理方式
(例えば図17)の場合でも濃縮処理装置の前段にオゾ
ン処理装置を設けて汚泥の腐敗防止を図るものである。
EXAMPLE As shown in FIG. 1, the present invention is to perform ozone treatment A on sludge before sludge concentration B in sludge treatment consisting of concentration B to final disposal E etc. Even in the case of FIG. 17), an ozone treatment device is provided before the concentration treatment device to prevent spoilage from spoilage.

【0015】オゾン処理装置の基本構成は、図10に示
すように、接触槽1に汚泥を供給ポンプ8で投入し、オ
ゾン発生装置4からのオゾンガスを散気管2により汚泥
中に注入し、撹拌器3で撹拌して汚泥にオゾンを接触さ
せ、pH計5で測定した汚泥のpH値等をもとに制御装
置6で注入オゾン量を計算し、オゾン発生装置4を制御
し、汚泥のオゾン処理を効率よく行うものである。
As shown in FIG. 10, the basic constitution of the ozone treatment device is that the sludge is put into the contact tank 1 by the supply pump 8 and the ozone gas from the ozone generator 4 is injected into the sludge by the diffusion pipe 2 and stirred. The sludge is brought into contact with ozone by the vessel 3, the amount of injected ozone is calculated by the controller 6 based on the pH value of the sludge measured by the pH meter 5, and the ozone generator 4 is controlled to control the ozone of the sludge. The processing is performed efficiently.

【0016】以下に、オゾン処理による汚泥腐敗防止効
果と汚泥の色の変化の実験例を示す。
The following is an experimental example of the sludge decay prevention effect and the color change of the sludge by the ozone treatment.

【0017】(1)実験方法 都市下水処理場で得られた汚泥試料について、オゾン処
理実験と汚泥放置実験を行い、汚泥腐敗の抑制効果を把
握する。汚泥腐敗の評価指標として、硫酸塩還元菌数と
硫化水素の発生量、濃縮性の変化を用いた。
(1) Experimental method The sludge sample obtained at the municipal wastewater treatment plant is subjected to an ozone treatment experiment and a sludge leaving experiment to grasp the effect of suppressing sludge decay. Changes in the number of sulfate-reducing bacteria, the amount of hydrogen sulfide generated, and the concentration were used as indicators of sludge decay.

【0018】1)オゾン処理実験 オゾン処理は半回分式で行った。実験装置を図11に示
す。有効容積50L(直系φ=261mm、高さH=
1.300mm)の接触槽1に汚泥をいれ、接触槽底部
に設置した散気管2を通して濃度50g/Nm3のオゾ
ンガスを吹き込み、排オゾンガスを接触槽上部から引き
抜いた。オゾン処理の間、接触槽1を恒温槽19中で2
5℃に保った。オゾン処理開始後0,5,12,25,
50,75,100,150,200分経過毎に汚泥を
採取し、硫酸塩還元菌数の測定を行った。また、処理開
始後0,50,100,200分にサンプリングした汚
泥を放置実験、沈降試験の試料とし、オゾンによる汚泥
の腐敗防止効果を調べた。
1) Ozone treatment experiment Ozone treatment was carried out by a semi-batch method. The experimental apparatus is shown in FIG. Effective volume 50L (Direct system φ = 261mm, Height H =
Sludge was put in a contact tank 1 (1.300 mm), ozone gas having a concentration of 50 g / Nm 3 was blown through a diffuser 2 installed at the bottom of the contact tank, and exhaust ozone gas was extracted from the upper part of the contact tank. During the ozone treatment, the contact bath 1 was placed in the constant temperature bath 19 for 2 seconds.
It was kept at 5 ° C. 0, 5, 12, 25 after starting ozone treatment,
Sludge was collected every 50, 75, 100, 150, 200 minutes, and the number of sulfate-reducing bacteria was measured. Further, sludge sampled at 0, 50, 100, and 200 minutes after the start of treatment was used as a sample for a standing experiment and a sedimentation test, and the effect of ozone to prevent the sludge from decaying was examined.

【0019】2)汚泥放置実験 汚泥放置実験装置の概要を図12に示す。オゾン処理実
験装置(図11)で処理した汚泥を、三角フラスコ18
に入れ、磁性撹拌子3aを電磁装置3bで回転させて撹
拌し、汚泥から発生する気体をガスホルダー21にトラ
ップする。それぞれの注入率でオゾン処理した試料につ
いて、汚泥を封入後、0,4,12,24,48時間経
過毎にガスホルダ中の硫化水素濃度を測定し、同時に汚
泥を採取して硫酸塩還元菌濃度を測定した。また、48
時間放置させた汚泥を採取し、沈降試験の試料とした。
2) Sludge leaving experiment The outline of the sludge leaving experiment device is shown in FIG. Sludge treated with the ozone treatment experimental device (Fig. 11) was transferred to an Erlenmeyer flask 18
The magnetic stirrer 3a is rotated by the electromagnetic device 3b and stirred, and the gas generated from the sludge is trapped in the gas holder 21. For the samples treated with ozone at the respective injection rates, the hydrogen sulfide concentration in the gas holder was measured every 0, 4, 12, 24, and 48 hours after enclosing the sludge, and at the same time, the sludge was collected and the concentration of sulfate-reducing bacteria was reduced. Was measured. Also, 48
The sludge left to stand for a period of time was collected and used as a sample for a sedimentation test.

【0020】(2)結果 1)オゾン処理実験における硫酸塩還元菌数の変化 初期TS(蒸発残留物)濃度10400mg/Lの汚泥
試料について、オゾン処理実験を行った結果を図13に
示す。横軸は、単位汚泥あたりに注入したオゾン量の積
算値(オゾン注入率)、縦軸は、硫酸塩還元菌数を示
す。
(2) Results 1) Change in the number of sulfate-reducing bacteria in the ozone treatment experiment The result of the ozone treatment experiment conducted on the sludge sample having an initial TS (evaporation residue) concentration of 10400 mg / L is shown in FIG. The horizontal axis represents the integrated value of the amount of ozone injected per unit sludge (ozone injection rate), and the vertical axis represents the number of sulfate-reducing bacteria.

【0021】図13より、始めは10の6乗オーダーで
あった硫酸塩還元菌数が、オゾン処理によって減少し、
オゾン注入率約200mg/Lで10の1乗オーダーま
で低下している。従って、オゾン処理により硫酸塩還元
菌は不活性化される。
From FIG. 13, the number of sulfate-reducing bacteria, which was on the order of 10 6 in the beginning, was decreased by ozone treatment,
At the ozone injection rate of about 200 mg / L, it has dropped to the order of the 10th power. Therefore, the sulfate reducing bacteria are inactivated by the ozone treatment.

【0022】2)オゾン処理実験におけるpHの変化 図14に、オゾン処理による汚泥のpHの変化を示す。
オゾン処理によりpHは減少している。
2) Changes in pH in Ozone Treatment Experiment FIG. 14 shows changes in pH of sludge due to ozone treatment.
The pH is decreased by the ozone treatment.

【0023】3)放置実験における硫酸塩還元菌数と硫
化水素発生量 図15に放置実験における硫酸塩還元菌数の変化を示
す。横軸には放置した時間を経過時間として示す。縦軸
には硫酸塩還元菌数を示した。また、図16には硫化水
素発生量の変化を示した。横軸には経過時間、縦軸には
単位汚泥量あたりの硫化水素発生量の積算値を示した。
なお図中のA,B,C,Dは、オゾン処理実験において
オゾンを0,100,200,475mg/L注入した
試料を表す。
3) Number of Sulfate-Reducing Bacteria and Amount of Hydrogen Sulfide Generated in Left-Hand Experiment FIG. The abscissa indicates the time of standing as elapsed time. The vertical axis shows the number of sulfate-reducing bacteria. Further, FIG. 16 shows changes in the amount of hydrogen sulfide generated. The horizontal axis shows elapsed time, and the vertical axis shows integrated value of hydrogen sulfide generation amount per unit sludge amount.
Note that A, B, C, and D in the figure represent samples in which ozone was injected at 0, 100, 200, and 475 mg / L in the ozone treatment experiment.

【0024】図15に示すように、試料C(オゾン注入
率約200mg/L)では、12時間硫酸塩還元菌の生
成を抑制している。試料D(オゾン注入率約475mg
/L)では、汚泥を48時間放置しても硫酸塩還元菌数
は像せず、一定であった。すなわち、オゾン注入率47
5mg/Lで、汚泥の腐敗を48時間以上制御できるこ
とがわかる。
As shown in FIG. 15, in sample C (ozone injection rate: about 200 mg / L), the production of sulfate-reducing bacteria was suppressed for 12 hours. Sample D (Ozone injection rate approx. 475 mg
/ L), the number of sulfate-reducing bacteria was not imaged and was constant even when the sludge was allowed to stand for 48 hours. That is, the ozone injection rate is 47
It can be seen that 5 mg / L can control sludge rotting for 48 hours or more.

【0025】図16に放置実験における硫化水素発生量
の変化を示す。この図でも上記のことが確認できる。試
料D(オゾン注入率約475mg/L)では48時間放
置しても硫化水素は発生しなかった。また、試料Cでは
硫化水素の発生量を測定しなかったが、図15の硫酸塩
還元菌の結果及び試料Dの硫化水素発生試験の結果か
ら、12時間以上硫化水素の発生を抑制できることが容
易に推測できる。これらの結果から、少なくとも汚泥に
対してオゾンを200mg/L注入すれば、次工程の重
力濃縮槽の平均的な滞留時間(12時間)の硫化水素に
よる施設の腐食、悪臭の発生、腐敗による沈降性の悪化
等を防止できる。汚泥輸送などを経て、重力濃縮を行う
ため、それに要する時間が例えば48時間以上であれ
ば、オゾン注入率約475mg/Lで処理する必要があ
る。
FIG. 16 shows changes in the amount of hydrogen sulfide generated in the standing experiment. This figure also confirms the above. In sample D (ozone injection rate: about 475 mg / L), hydrogen sulfide was not generated even after standing for 48 hours. Although the amount of hydrogen sulfide generated was not measured in Sample C, it is easy to suppress the generation of hydrogen sulfide for 12 hours or more from the results of the sulfate-reducing bacteria in FIG. 15 and the results of the hydrogen sulfide generation test in Sample D. Can be guessed. From these results, if at least 200 mg / L of ozone is injected into the sludge, the facility will be corroded by hydrogen sulfide at the average residence time (12 hours) in the gravity concentrating tank in the next step, generation of a foul odor, and settling due to putrefaction. It is possible to prevent deterioration of sex. Since gravity concentration is carried out through sludge transportation and the like, if the time required for this is, for example, 48 hours or more, it is necessary to treat at an ozone injection rate of about 475 mg / L.

【0026】一方、オゾン処理過程でのpHの変化(図
14)と上記の結果を比較すれば、必要なオゾン注入率
をpHの値から判断できることが分かる。例えば、12
時間以上の腐敗防止が必要であれば、pH値が6.1に
なるまでオゾン処理を行い、48時間以上の腐敗防止が
必要な場合はpH値が5.8になるまでオゾン処理を行
えばよい。また、初期pH値からの差、即ち、12時間
の腐敗防止に対して0.3のpH低下、48時間腐敗防
止に対しては0.6のpH低下を判断値としてオゾン処
理を行えばよい。
On the other hand, by comparing the change in pH during the ozone treatment process (FIG. 14) with the above results, it can be seen that the required ozone injection rate can be determined from the pH value. For example, 12
If it is necessary to prevent spoilage for more than time, perform ozone treatment until the pH value becomes 6.1. If it is necessary to prevent spoilage for more than 48 hours, perform ozone treatment until the pH value becomes 5.8. Good. Further, the ozone treatment may be carried out with a difference from the initial pH value, that is, a pH decrease of 0.3 for 12-hour decay prevention and a pH decrease of 0.6 for 48-hour decay prevention, as judgment values. .

【0027】オゾン注入率(単位汚泥容積に注入するオ
ゾン質量)を制御する方法としては、 1)オゾン注入時間(接触時間、滞留時間)を制御する
方法、2)注入オゾン濃度を制御する方法、3)注入オ
ゾン流量を制御する方法、4)以上3つの組み合わせが
一般的に知られている。
As a method of controlling the ozone injection rate (mass of ozone injected per unit sludge volume), 1) a method of controlling the ozone injection time (contact time, residence time), 2) a method of controlling the injected ozone concentration, 3) A method of controlling the injected ozone flow rate, 4) A combination of the above three is generally known.

【0028】また、目標を達成するための必要オゾン注
入率は、汚泥濃度(蒸発残量物濃度)にほぼ比例するこ
とが別の実験で確認できている。
In addition, it has been confirmed by another experiment that the required ozone injection rate for achieving the target is almost proportional to the sludge concentration (concentration of evaporative residue).

【0029】以上の結果に基づいた、汚泥オゾン処理装
置の実施例について図面を参照して説明する。なお、図
中上記図10に示したものと同一構成部分は同一符号を
付してその重複する説明を省略する。
An embodiment of the sludge ozone treatment apparatus based on the above results will be described with reference to the drawings. In the figure, the same components as those shown in FIG. 10 are designated by the same reference numerals, and their duplicated description will be omitted.

【0030】実施例1 図2について、この実施例はバッチ式オゾン処理に関す
るもので、装置は図10で説明したものと同様の構成と
なっている。制御装置6は汚泥送給ポンプ8を運転させ
て接触槽1に汚泥を投入させ、投入が完了するとオゾン
発生装置4にON信号を出力してオゾンガスを発生さ
せ、接触槽1にてオゾンガスを汚泥に接触させる。
Example 1 With reference to FIG. 2, this example relates to a batch type ozone treatment, and the apparatus has the same configuration as that described in FIG. The controller 6 operates the sludge feed pump 8 to load the sludge into the contact tank 1, and when the charging is completed, outputs an ON signal to the ozone generator 4 to generate ozone gas, and the contact tank 1 sludges the ozone gas. Contact.

【0031】pH計5で測定したpH値が目標値に達す
るまで、または、初期pH値との差が目標値に達するま
でオゾンガスを汚泥に注入し、目標値に達すると、オゾ
ン発生装置4にOFF信号を出力してオゾンガス発生を
停止させる。次いで汚泥ポンプ9を運転させてオゾン処
理の済んだ汚泥を次の濃縮工程に送り出す。
Ozone gas is injected into the sludge until the pH value measured by the pH meter 5 reaches the target value, or until the difference from the initial pH value reaches the target value. An OFF signal is output to stop ozone gas generation. Then, the sludge pump 9 is operated to send the sludge that has been subjected to the ozone treatment to the next concentration step.

【0032】したがって、この実施例によれば主にオゾ
ン注入時間を制御することにより汚泥を効率よくオゾン
処理することができる。
Therefore, according to this embodiment, the sludge can be efficiently ozone-treated mainly by controlling the ozone injection time.

【0033】実施例2 図3について、この実施例はバッチ式オゾン処理に関す
るもので、装置は図2の装置における汚泥流入路に汚泥
濃度計11を設けると共に、オゾンガス供給路にオゾン
濃度計12及びガス流量計13を設けたものとなってい
る。
Example 2 With reference to FIG. 3, this example relates to a batch type ozone treatment. The apparatus is provided with a sludge concentration meter 11 in the sludge inflow path in the apparatus of FIG. 2 and an ozone concentration meter 12 and an ozone concentration meter 12 in the ozone gas supply path. A gas flow meter 13 is provided.

【0034】制御装置6は汚泥送給ポンプ8により汚泥
を接触槽1に投入する時に汚泥濃度計11が測定した汚
泥濃度(汚泥濃度の平均値)に従って注入オゾン濃度、
注入オゾン流量の一方又は両方の設定を制御する機能を
備えており、投入完了後オゾン発生装置にON信号を出
力してオゾンガスを発生させると共に、オゾン発生装置
に濃度設定信号ないし流量設定信号を出力して発生する
オゾンガスの濃度ないし流量が設定値と等しくなるよう
に制御し、pH値が目標値に達したらオゾン発生装置に
OFF信号を出力する。
The control device 6 controls the injected ozone concentration according to the sludge concentration (average sludge concentration) measured by the sludge concentration meter 11 when the sludge is fed into the contact tank 1 by the sludge feed pump 8.
It is equipped with a function to control one or both settings of the injected ozone flow rate, and outputs an ON signal to the ozone generator to generate ozone gas after completion of injection, and also outputs a concentration setting signal or flow rate setting signal to the ozone generator. The concentration or flow rate of the ozone gas thus generated is controlled to be equal to the set value, and when the pH value reaches the target value, an OFF signal is output to the ozone generator.

【0035】したがって、この実施例によれば、主に汚
泥濃度により注入するオゾン濃度ないしオゾン流量を制
御することによって汚泥を効率よくオゾン処理すること
ができる。
Therefore, according to this embodiment, the sludge can be efficiently ozone-treated by controlling the ozone concentration or the ozone flow rate to be injected mainly depending on the sludge concentration.

【0036】実施例3 図4について、この実施例は連続オゾン処理に関するも
ので、装置は、接触槽1として隔壁1a〜1dにより接
触室A1とA2及び流路B1〜B3がが形成され、汚泥供給
ポンプ8によって投入された汚泥が点線で示すように流
れるように構成したものを使用する。
Example 3 With reference to FIG. 4, this example relates to continuous ozone treatment. The apparatus has contact chambers A 1 and A 2 and channels B 1 to B 3 with partition walls 1a to 1d. The sludge that is formed and is introduced by the sludge supply pump 8 is configured to flow as shown by the dotted line.

【0037】そして接触室A1及びA2に散気管21及び
2を設けると共に、処理汚泥流出路B2にpH計5を設
け、オゾン供給路にオゾン濃度計12及びガス流量計1
3を設ける。
Further, air diffusers 2 1 and 2 2 are provided in the contact chambers A 1 and A 2 , a pH meter 5 is provided in the treated sludge outflow path B 2 , and an ozone concentration meter 12 and a gas flow meter 1 are provided in the ozone supply path.
3 is provided.

【0038】制御装置6はpH計5で測定した接触槽1
の処理汚泥流出位置でのpH値が目標値になるように、
濃度制御信号又は流量制御信号をオゾン発生装置4に出
力し、注入オゾン濃度、注入オゾン流量の一方または両
方を制御するようになっている。
The control device 6 is the contact tank 1 measured by the pH meter 5.
Of the pH value at the treated sludge outflow position of
A concentration control signal or a flow rate control signal is output to the ozone generator 4 to control one or both of the injected ozone concentration and the injected ozone flow rate.

【0039】したがって、この実施例によれば、注入オ
ゾン濃度ないし注入オゾン流量を制御しながら汚泥をそ
のpH値が目標値となるように効率よく連続オゾン処理
することができる。
Therefore, according to this embodiment, the sludge can be efficiently subjected to continuous ozone treatment so that the pH value thereof becomes the target value while controlling the injected ozone concentration or the injected ozone flow rate.

【0040】実施例4 図5について、この実施例は連続式オゾン処理に関する
もので、装置は図4の装置の汚泥流入位置及び処理汚泥
流出位置にpH計51,52を設けたものである。
Example 4 With reference to FIG. 5, this example relates to continuous ozone treatment, in which the apparatus is provided with pH meters 5 1 and 5 2 at the sludge inflow position and the treated sludge outflow position of the apparatus of FIG. is there.

【0041】そして、制御装置6によりpH計51の及
び52で測定したpH値の偏差が目標値となるように、
濃度制御信号ないし流量制御信号をオゾン発生装置4に
出力し、注入オゾン濃度、注入オゾン流量の一方または
両方を制御するようになっている。
Then, the controller 6 controls the deviation of the pH values measured by the pH meters 5 1 and 5 2 to reach the target value.
A concentration control signal or a flow rate control signal is output to the ozone generator 4 to control one or both of the injected ozone concentration and the injected ozone flow rate.

【0042】したがって、この実施例によれば、注入オ
ゾン濃度ないし注入オゾン流量を制御しながら汚泥をそ
の処理前後のpH値の差が一定となるように効率よく連
続オゾン処理することができる。
Therefore, according to this embodiment, the sludge can be efficiently subjected to continuous ozone treatment while controlling the injected ozone concentration or the injected ozone flow rate so that the difference in pH value before and after the treatment becomes constant.

【0043】実施例5 図6について、この実施例は連続オゾン処理に関するも
ので、装置は図4の装置の汚泥供給路に汚泥流量計14
を設けたものとなっている。そして、制御装置6は汚泥
流量計14で測定した流量値をフィードフォワード情報
として図4の装置で行っているpH制御にこの情報に基
づくフィードフォワード制御を付加した制御を行う。
Example 5 Referring to FIG. 6, this example relates to continuous ozone treatment, and the apparatus is a sludge flow meter 14 in the sludge supply path of the apparatus of FIG.
Is provided. Then, the control device 6 performs the control in which the feedforward control based on this information is added to the pH control performed by the device of FIG. 4 using the flow rate value measured by the sludge flowmeter 14 as the feedforward information.

【0044】実施例6 図7について、この実施例は連続オゾン処理に関するも
ので、装置は図5の装置の汚泥供給路に汚泥流量計14
を設けたものとなっている。そして、制御装置6は汚泥
流量計14で測定した流量値をフィードフォワード情報
として図5の装置で行っているpH制御にこの情報に基
づくフィードフォワード制御を付加した制御を行う。
Example 6 With reference to FIG. 7, this example relates to continuous ozone treatment, and the apparatus is a sludge flow meter 14 in the sludge supply path of the apparatus of FIG.
Is provided. Then, the control device 6 performs control in which the feedforward control based on this information is added to the pH control performed by the device of FIG. 5 using the flow rate value measured by the sludge flowmeter 14 as feedforward information.

【0045】実施例7 図8について、この実施例は連続オゾン処理に関するも
ので、装置は図4の汚泥供給路に汚泥濃度計11及び汚
泥流量計14を設けたものとなっている。
Example 7 With reference to FIG. 8, this example relates to continuous ozone treatment, and the apparatus is provided with a sludge concentration meter 11 and a sludge flow meter 14 in the sludge supply path of FIG.

【0046】そして制御装置6は汚泥濃度計11及び汚
泥流量計14で測定した汚泥濃度及び汚泥流量から汚泥
固形物量を演算し、フィードフォワード情報として図4
の装置で行っているpH制御にこの情報に基づくフィー
ドフォワード制御を付加した制御を行う。
Then, the control device 6 calculates the sludge solid content from the sludge concentration and the sludge flow rate measured by the sludge concentration meter 11 and the sludge flow meter 14, and the feed forward information is shown in FIG.
The control is performed by adding the feedforward control based on this information to the pH control performed by the device.

【0047】実施例8 図9について、この実施例は連続オゾン処理に関するも
ので、装置は図5の汚泥供給路に汚泥濃度計11及び汚
泥流量計14を設けたものとなっている。そして制御装
置6は汚泥濃度計11及び汚泥流量計14で測定した汚
泥濃度及び汚泥流量から汚泥固形物量を演算し、フィー
ドフォワード情報として図5の装置で行っているpH制
御にこの情報に基づくフィードフォワード制御を付加し
た制御を行う。
Example 8 With reference to FIG. 9, this example relates to continuous ozone treatment, and the apparatus is provided with a sludge concentration meter 11 and a sludge flow meter 14 in the sludge supply path of FIG. Then, the control device 6 calculates the sludge solid amount from the sludge concentration and the sludge flow rate measured by the sludge concentration meter 11 and the sludge flow meter 14, and feeds it based on this information in the pH control performed by the device of FIG. 5 as feedforward information. Performs control with forward control added.

【0048】[0048]

【発明の効果】本発明は、上述のとおり構成されている
ので、次に記載する効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0049】(1)オゾン処理による汚泥中の嫌気性微
生物の変化を含めた、汚泥の性状変化を、pHの測定に
より簡易的にモニタすることができる。
(1) Changes in the properties of sludge including changes in anaerobic microorganisms in sludge due to ozone treatment can be easily monitored by measuring pH.

【0050】(2)腐敗防止に必要なオゾンの注入量を
簡易的に求めることができる。
(2) The injection amount of ozone required for preventing decay can be easily obtained.

【0051】(3)腐敗防止を目的としたオゾン処理装
置において、過剰なオゾン注入を防ぐことができ、オゾ
ン処理のコストを低減させることができる。
(3) In an ozone treatment apparatus for the purpose of preventing spoilage, it is possible to prevent excessive ozone injection and reduce the cost of ozone treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる汚泥処理システムを示
すブロック図。
FIG. 1 is a block diagram showing a sludge treatment system according to an embodiment of the present invention.

【図2】実施例1にかかるバッチ式オゾン処理装置の構
成図。
FIG. 2 is a configuration diagram of a batch-type ozone processing apparatus according to the first embodiment.

【図3】実施例2にかかるバッチ式オゾン処理装置の構
成図。
FIG. 3 is a configuration diagram of a batch-type ozone processing apparatus according to a second embodiment.

【図4】実施例3にかかる連続式オゾン処理装置の構成
図。
FIG. 4 is a configuration diagram of a continuous ozone processing apparatus according to a third embodiment.

【図5】実施例4にかかる連続式オゾン処理装置の構成
図。
FIG. 5 is a configuration diagram of a continuous ozone processing apparatus according to a fourth embodiment.

【図6】実施例5にかかる連続式オゾン処理装置の構成
図。
FIG. 6 is a configuration diagram of a continuous ozone processing apparatus according to a fifth embodiment.

【図7】実施例6にかかる連続式オゾン処理装置の構成
図。
FIG. 7 is a configuration diagram of a continuous ozone processing apparatus according to a sixth embodiment.

【図8】実施例7にかかる連続式オゾン処理装置の構成
図。
FIG. 8 is a configuration diagram of a continuous ozone processing apparatus according to a seventh embodiment.

【図9】実施例8にかかる連続式オゾン処理装置の構成
図。
FIG. 9 is a configuration diagram of a continuous ozone processing apparatus according to an eighth embodiment.

【図10】オゾン処理装置の基本的制御システム構成
図。
FIG. 10 is a basic control system configuration diagram of an ozone processing apparatus.

【図11】オゾン処理室内実験装置構成図。FIG. 11 is a structural diagram of an ozone treatment chamber experimental device.

【図12】汚泥放置実験装置構成図。FIG. 12 is a configuration diagram of a sludge leaving test device.

【図13】オゾン処理実験における硫酸塩還元菌数変化
を示すグラフ。
FIG. 13 is a graph showing changes in the number of sulfate-reducing bacteria in an ozone treatment experiment.

【図14】オゾン処理におけるpH変化を示すグラフ。FIG. 14 is a graph showing a pH change in ozone treatment.

【図15】放置実験における硫酸塩還元菌数変化を示す
グラフ。
FIG. 15 is a graph showing changes in the number of sulfate-reducing bacteria in the standing experiment.

【図16】放置実験における硫化水素発生量変化を示す
グラフ。
FIG. 16 is a graph showing changes in the amount of hydrogen sulfide generated in the standing experiment.

【図17】従来汚泥処理方式例を示すブロック図。FIG. 17 is a block diagram showing an example of a conventional sludge treatment method.

【符号の説明】[Explanation of symbols]

1…接触槽(オゾン処理槽) 2…散気管 3…撹拌器 4…オゾン発生装置 5…pH計 6…制御装置 7…排オゾン用ブロワ 8…汚泥供給ポンプ 9…汚泥ポンプ 11…汚泥濃度計 12…オゾン濃度計 13…ガス流量計 14…汚泥流量計 1 ... Contact tank (ozone treatment tank) 2 ... Air diffuser 3 ... Stirrer 4 ... Ozone generator 5 ... pH meter 6 ... Control device 7 ... Exhaust ozone blower 8 ... Sludge supply pump 9 ... Sludge pump 11 ... Sludge concentration meter 12 ... Ozone concentration meter 13 ... Gas flow meter 14 ... Sludge flow meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野口 寛 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 松井 理恵 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 (72)発明者 塚本 慶一 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Noguchi 2-11-17 Osaki, Shinagawa-ku, Tokyo Stock Company Inside Shameidensha (72) Rie Matsui 2-1-117 Osaki, Shinagawa-ku, Tokyo Stock Association Shameidensha (72) Inventor Keiichi Tsukamoto 2-17 Osaki, Shinagawa-ku, Tokyo Stock company Shameidensha

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 汚泥を濃縮した後、消化もしくは脱水を
する汚泥処理において、 前記汚泥の濃縮前に、汚泥を接触槽に投入し、その汚泥
にオゾンガスを注入し、汚泥のpHを測定し、汚泥のp
H値を指標として、前記注入するオゾンガス量を制御す
ることを特徴とした汚泥のオゾン処理方法。
1. In sludge treatment for digesting or dehydrating sludge after it has been concentrated, before concentrating the sludge, the sludge is put into a contact tank, ozone gas is injected into the sludge, and the pH of the sludge is measured, Sludge p
A method for ozone treatment of sludge, characterized in that the amount of ozone gas to be injected is controlled using the H value as an index.
【請求項2】 汚泥を濃縮した後、消化もしくは脱水を
する汚泥処理システムにおける前記汚泥濃縮前に行う汚
泥の処理装置であって、汚泥が投入される接触槽と、こ
の接触槽にオゾンガスを送給するオゾン発生装置と、接
触槽内の汚泥のpHを測定するpH計と、このpH計の
測定値を指標として前記オゾン発生装置のオゾン発生量
を制御する制御装置と、を有することを特徴とした汚泥
のオゾン処理装置。
2. A sludge treatment device performed before sludge concentration in a sludge treatment system for digesting or dehydrating sludge after concentrating the sludge. An ozone generator for supply, a pH meter for measuring the pH of sludge in the contact tank, and a controller for controlling the ozone generation amount of the ozone generator using the measured value of the pH meter as an index. Ozone treatment equipment for sludge.
【請求項3】 前記制御装置の制御の指標を、処理開始
時点または処理開始位置でのpH値と処理終了時点また
は処理終了位置でのpH値との偏差値としたことを特徴
とする請求項2記載の汚泥のオゾン処理装置。
3. The control index of the control device is a deviation value between a pH value at a processing start point or a processing start position and a pH value at a processing end point or a processing end position. The sludge ozone treatment device according to 2.
【請求項4】 請求項2又は3の装置において、流入汚
泥量ないし流入汚泥濃度を測定する汚泥流量計ないし汚
泥濃度を設け、制御装置に測定した流量値ないし濃度値
をフィードフォワード情報とする制御部を組み込んだこ
とを特徴とする汚泥のオゾン処理装置。
4. The control according to claim 2, wherein a sludge flow meter or sludge concentration for measuring the inflow sludge amount or inflow sludge concentration is provided, and the measured flow rate value or concentration value is used as feedforward information. Ozone treatment device for sludge characterized by incorporating a part.
【請求項5】 前記制御装置の制御の指標を、処理終了
時点または処理終了位置のpH値としたことを特徴とす
る請求項2〜4のいずれか1つに記載の汚泥のオゾン処
理装置。
5. The sludge ozone treatment device according to claim 2, wherein the control index of the control device is a pH value at a treatment end point or a treatment end position.
【請求項6】 前記接触槽をバッチ式接触槽とし、処理
をバッチ式で行うことを特徴とする請求項2〜5のいず
れか1つに記載の汚泥のオゾン処理装置。
6. The sludge ozone treatment apparatus according to claim 2, wherein the contact tank is a batch-type contact tank, and the treatment is performed in a batch-type.
【請求項7】 前記接触槽を汚泥を連続的に流して処理
できる連続式接触槽としたことを特徴とする請求項2〜
5のいずれか1つに記載の汚泥のオゾン処理装置。
7. The continuous contact tank capable of treating sludge by continuously flowing sludge therein.
The sludge ozonation apparatus according to any one of 5 above.
JP535895A 1995-01-18 1995-01-18 Method and device for treating sludge using ozone Pending JPH08192197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP535895A JPH08192197A (en) 1995-01-18 1995-01-18 Method and device for treating sludge using ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP535895A JPH08192197A (en) 1995-01-18 1995-01-18 Method and device for treating sludge using ozone

Publications (1)

Publication Number Publication Date
JPH08192197A true JPH08192197A (en) 1996-07-30

Family

ID=11608960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP535895A Pending JPH08192197A (en) 1995-01-18 1995-01-18 Method and device for treating sludge using ozone

Country Status (1)

Country Link
JP (1) JPH08192197A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018471A (en) * 2000-07-05 2002-01-22 Japan Sewage Works Agency Method for treating organic wasteliquid
JP2002045891A (en) * 2000-08-08 2002-02-12 Kurita Water Ind Ltd Agitating device for biological sludge and ozone treating device
JP2014211319A (en) * 2013-04-17 2014-11-13 栗田工業株式会社 Slime monitoring device, slime monitoring method, slime remover addition device, and slime remover addition method
CN113651413A (en) * 2021-09-22 2021-11-16 中宜环科仪器江苏有限公司 Ozone adding control method and system based on antibiotic on-line monitoring

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018471A (en) * 2000-07-05 2002-01-22 Japan Sewage Works Agency Method for treating organic wasteliquid
JP2002045891A (en) * 2000-08-08 2002-02-12 Kurita Water Ind Ltd Agitating device for biological sludge and ozone treating device
JP4599686B2 (en) * 2000-08-08 2010-12-15 栗田工業株式会社 Biological sludge agitation device and ozone treatment device
JP2014211319A (en) * 2013-04-17 2014-11-13 栗田工業株式会社 Slime monitoring device, slime monitoring method, slime remover addition device, and slime remover addition method
CN113651413A (en) * 2021-09-22 2021-11-16 中宜环科仪器江苏有限公司 Ozone adding control method and system based on antibiotic on-line monitoring

Similar Documents

Publication Publication Date Title
US6500340B1 (en) Pasteurizing sludge to exceptional quality
US6113789A (en) Pasteurization process
BRPI0717486B1 (en) sludge treatment system and sludge reduction and biosolid reduction methods in a wastewater treatment process
BRPI0716961B1 (en) METHODS FOR TREATING WASTE WATER IN A WASTE WATER TREATMENT PLANT, AND TO REDUCE FOAM FORMATION OR WASTE WATER TUMPING IN AN ACTIVATED WATER BASIN
CN107487838B (en) Method and device for realizing efficient phosphorus removal of low-temperature sewage by domesticating special sludge structure through SBR (sequencing batch reactor)
US6039867A (en) Device for continuous disintegration of activated sludge
JP2003200198A (en) Method and apparatus for treating sludge
Chiavola et al. Techno-economic evaluation of ozone-oxidation for sludge reduction at the full-scale. Comparison between the application to the return activated sludge (RAS) and the sludge digestion unit
JPS63270598A (en) Device for treating sludge
JPH08192197A (en) Method and device for treating sludge using ozone
US3730883A (en) Sewage disposal method
JP2001113150A (en) Pressurized gas-liquid mixing device and waste liquid treating device using the same
JP3697933B2 (en) Water treatment method and apparatus using ozone
JP2006075779A (en) Sludge volume reduction device and method, and organic waste water treatment system
JP3572727B2 (en) Ozone injection amount control method and ozone injection amount control device in sludge treatment system
JPH02222798A (en) Pretreatment of sludge
JP2004008892A (en) Treatment method for organic waste fluid and treatment apparatus therefor
JP3552436B2 (en) Sludge ozone treatment method and treatment apparatus
JP2002119991A (en) Method for adjusting activated sludge, and method and apparatus for treating organic wastewater using the same
JP4230617B2 (en) Wastewater treatment equipment containing organic solids
Zheng Sludge reduction by mixed liquor ozonation
JP2002001398A (en) Process and equipment for treating sludge
JPH08192198A (en) Method and device for preventing decomposition of sludge
JPH09187798A (en) Method for ozone treatment of waste water sludge and apparatus therefor
Jongsuphaphong et al. Design and application of new type of oxygen supplier for water and wastewater treatment