JP2004132037A - Circulating flushing toilet and sewage purification method of the circulating flushing toilet - Google Patents

Circulating flushing toilet and sewage purification method of the circulating flushing toilet Download PDF

Info

Publication number
JP2004132037A
JP2004132037A JP2002297063A JP2002297063A JP2004132037A JP 2004132037 A JP2004132037 A JP 2004132037A JP 2002297063 A JP2002297063 A JP 2002297063A JP 2002297063 A JP2002297063 A JP 2002297063A JP 2004132037 A JP2004132037 A JP 2004132037A
Authority
JP
Japan
Prior art keywords
tank
chromaticity
treated water
biological treatment
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002297063A
Other languages
Japanese (ja)
Inventor
Kenji Yamada
山田 健二
Tomoo Ota
太田 智男
Masashi Ota
太田 正史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Original Assignee
Toyota Auto Body Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd filed Critical Toyota Auto Body Co Ltd
Priority to JP2002297063A priority Critical patent/JP2004132037A/en
Publication of JP2004132037A publication Critical patent/JP2004132037A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sanitary Device For Flush Toilet (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a circulating flushing toilet obtaining a stably colored treated water and a sewage purification method of the circulating flushing toilet. <P>SOLUTION: The circulating flushing toilet 1 decomposes an organic matter contained in sanitary sewage from a flushing toilet 5 by a biological treatment tank 6 and, at the same time, it is treated as nitrification and denitrification. Biologically treated water biologically treated by the biological treatment tank 6 is separated into solid-liquid by a filter tank 7, and filtrate is treated as oxidation/decoloration with ozone by a decoloring tank 8. The treated water treated by oxidization (colorization) is temporarily stored in a treated water tank 10, and it is returned to the flushing toilet 5 to reuse it as flushing water. Color of the treated water is continuously/intermittently measured by a color meter 9, and an easy decomposable organic matter stored in an easy decomposable organic matter tank 13 is supplied to the biological treatment tank 6 by controlling a pump 12 with a controller 11 based on the color. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、汚水を浄化し洗浄水として水洗便器に循環させる循環式水洗トイレ及び循環式水洗トイレの汚水浄化方法に関するものである。
【0002】
【従来の技術】
従来より、汚水を浄化し洗浄水として水洗便器に循環させる循環式水洗トイレが開発され、実用化されている。図5に示すように、従来の循環式水洗トイレ100は、水洗便器105からの汚水がまず生物処理槽110で有機物分解、硝化及び脱窒処理をされた後、ろ過槽120で固液分離される。固液分離されたろ過水は、脱色槽140に入り、脱色槽140にオゾンが吹き込まれて酸化により脱色され、処理水タンク150に一旦蓄えられる。そして、蓄えられた処理水は処理水タンク150から洗浄水として水洗便器105に戻される。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の構成の循環式水洗トイレでは、有機物処理は十分行えるが、汚水の性状によっては窒素除去が不十分にとどまる場合がある。特に、汚水中に尿の割合が高い場合には、窒素分が有機物に比べて過剰となり、窒素の除去が不十分になりやすい。このような場合には、硝化過程又は脱窒過程において発生した亜硝酸が蓄積されることとなる。亜硝酸が蓄積されたままろ過水が脱色槽140に入ると、オゾンを消費することにより亜硝酸が酸化して硝酸となる。このため、脱色に使用されるべきオゾンの量が減少してしまい、脱色効果が低下して処理水の色度が高くなり、使用者に不快感を与える問題があった。
【0004】
本発明は、上述の問題点を解決するためになされたものであり、安定した色度の処理水が得られる循環式水洗トイレ及び循環式水洗トイレの汚水浄化方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の循環式水洗トイレは、水洗便器と、当該水洗便器からの汚水を受け入れ、汚水中の有機物を分解するとともに硝化及び脱窒処理する生物処理槽と、当該生物処理槽で生物処理された生物処理水を固液分離するろ過槽と、当該ろ過槽で固液分離されたろ過水中にオゾンガスを吹き込むことにより前記ろ過水を脱色する脱色槽とを有し、脱色槽で脱色処理された処理水を洗浄水として前記水洗便器に循環させるようにした循環式水洗トイレにおいて、前記脱色槽で脱色処理された処理水の色度を連続的又は間欠的に計測する色度計測手段と、前記生物処理槽に易分解性有機物を供給する有機物供給手段と、前記処理水の色度が予め定められた設定値を超えたときに、前記生物処理槽に一定量の前記易分解性有機物を供給するように前記有機物供給手段を制御する制御手段とを備えたことを特徴とする。
【0006】
この構成の循環式水洗トイレでは、生物処理槽が水洗便器から受け入れた汚水中の有機物を分解するとともに硝化及び脱窒処理して生物処理水としてろ過槽に送る。次いで、ろ過槽が生物処理水を固液分離する。固液分離されたろ過水は、脱色槽に送られて、脱色槽にてオゾンガスを吹き込まれて脱色処理される。さらに、色度計測手段が脱色処理された処理水の色度を計測し、その色度が予め定められた設定値を超えると、制御手段が有機物供給手段を制御して生物処理槽に一定量の易分解性有機物を供給する。また、脱色処理された処理水は洗浄水として水洗便器に循環される。このようにして計測した処理水の色度が高くなる原因としては、汚水中の窒素分が有機物に比べて過剰(C/N比が小さい)であるために、生物処理槽において窒素除去が十分行われず、亜硝酸が蓄積してしまうことが考えられる。この結果、脱色槽において亜硝酸がオゾンから酸素を得て硝酸となるために、脱色処理にオゾンを十分使用することができなくなる。このような場合に生物処理槽に易分解性有機物を供給すれば、脱窒処理が促進されて亜硝酸の蓄積を抑え、オゾンの供給量を増加しなくても脱色槽において十分脱色処理を行うことができ、安定した色度の処理水を得ることができる。
【0007】
請求項2に記載の循環式水洗トイレの汚水浄化方法は、水洗便器から汚水を受け入れ、その汚水中の有機物を分解するとともに硝化及び脱窒処理する生物処理工程と、当該生物処理工程において生物処理された生物処理水を固液分離するろ過工程と、当該ろ過工程において固液分離されたろ過水中にオゾンガスを吹き込むことにより前記ろ過水を脱色する脱色工程と、当該脱色工程において脱色処理された処理水の色度を連続的又は間欠的に計測する色度計測工程と、当該色度計測工程において計測された前記処理水の色度が予め定められた設定値を超えたときに、前記生物処理工程に一定量の易分解性有機物を供給する有機物供給工程とからなる。
【0008】
この構成の循環式水洗トイレの汚水浄化方法では、水洗便器から受け入れた汚水中の有機物を分解するとともに硝化及び脱窒処理し、処理された生物処理水を固液分離してろ過し、ろ過水中にオゾンガスを吹き込むことによりろ過水を脱色する。そして、脱色処理された処理水の色度を連続的又は間欠的に計測し、計測された処理水の色度が予め定められた設定値を超えたときに、一定量の易分解性有機物を供給する。このようにして計測した処理水の色度が高くなる原因としては、汚水中の窒素分が有機物に比べて過剰(C/N比が小さい)であるために、生物処理槽において亜硝酸が硝酸に変化せずに亜硝酸のまま蓄積し、窒素除去が十分行われないままに終わってしまうことが考えられる。この結果、亜硝酸がオゾンから酸素を得て硝酸となるために、脱色処理にオゾンを十分使用することができなくなる。このような場合に易分解性有機物を供給すれば、脱窒処理が促進されて亜硝酸の蓄積を抑え、オゾンの供給量を増加しなくても十分脱色処理を行うことができ、安定した色度の処理水を得ることができる。
【0009】
【発明の実施の形態】
以下、本発明を具体化した汚水浄化装置の一実施形態について、図面を参照して説明する。まず、循環式水洗トイレ1の構成について図1及び図2を参照して説明する。図1は、本実施形態の循環式水洗トイレ1の概念図、図2は、本実施形態の循環式水洗トイレ1の構成図である。図1に示すように、循環式水洗トイレ1は、水洗便器5と、水洗便器5からの汚水を受け入れ、汚水に含まれる有機物を分解すると共に硝化及び脱窒処理する生物処理槽6と、生物処理槽6で生物処理された生物処理水を固液分離するろ過槽7と、ろ過水をオゾンによって酸化・脱色処理する脱色槽8と、脱色槽8で酸化・脱色処理された処理水を一旦貯めておく処理水タンク10と、脱色槽8で酸化・脱色処理された処理水の色度を計測する色度計9と、色度計9で計測した色度に基づいてポンプ12を制御する制御装置11と、制御装置11からの信号に基づき易分解性有機物タンク13に貯蔵された易分解性有機物を生物処理槽6に一定量供給するポンプ12とから構成されている。
【0010】
生物処理槽6は、図2に示すように、汚水中のアンモニアを硝化処理して硝酸に変換する曝気槽6bと、曝気槽6bで硝化処理された硝酸を脱窒処理して窒素ガスに変換する脱窒槽6aとから構成されており、各槽が仕切られた状態となっている。水洗便器5からの汚水は、脱窒槽6aを通り、汚水中のアンモニアが曝気槽6bで硝化処理されて硝酸に変換される。生物処理槽6で有機物分解された生物処理水は、その後ろ過槽7でろ過膜7aによって固液分離される。そして、ろ過槽7で固液分離されたろ過水は、脱色槽8にてオゾン発生器18で発生したオゾンによって酸化脱色処理されることになる。尚、曝気槽6bとろ過槽7とは、エアーブロワー17aに接続されており、エアーブロワー17aで発生した高圧の空気が散気管17b,17cを通じて各槽に送り込まれるようになっている。さらに、脱窒槽6aは、図2に示すように攪拌機15により活性汚泥と汚水が撹拌され、活性汚泥中の微生物と有機物等の接触が促進されるようになっている。
【0011】
また、図2に示すように、ろ過槽7での固液分離による残留汚泥は、循環ポンプ(図示せず)によって循環されて、生物処理槽6の脱窒槽6aに流入する。脱窒槽6aでは、流入した汚泥に含まれる硝酸が脱窒処理されて窒素ガスとして大気中に放出される。また、ろ過槽7で固液分離されたろ過水は、脱色槽8で、オゾン発生器18で発生したオゾンによって酸化処理され、ろ過水中の色度成分が分解されることにより脱色される。それと共に、脱色槽8では、ろ過水中の難生物分解性有機物が易分解性有機物に変換される。ここで、曝気槽6bで行われる硝化処理においてアンモニアから亜硝酸に変化するにとどまり、硝酸化しなかった場合、脱色槽8において亜硝酸がオゾンから酸素を得て硝酸となる。脱色槽8で酸化処理(脱色)された処理水は、処理水タンク10に一旦貯められる。そして、循環ポンプ(図示せず)によって水洗便器5に戻され、洗浄水として再利用される。処理水は、必ずしも処理水タンク10に貯めなければならないものではなく、脱色槽8から直接、循環ポンプによって水洗便器5に戻すようにしてもよい。
【0012】
ここで、脱色槽8から処理水タンク10に至る配管には、色度計9が設置されている。本実施形態で使用している色度計9は、透過光測定法を用いるものであり、これは、計測する水の淡黄色から黄褐色の程度を吸光光度法により波長390nm付近の吸光度で測定するものである。連続式の色度計を用いれば、連続して又は間欠的に色度を計測することができる。色度計9は、脱色槽8において酸化処理された後の処理水の色度を計測し、計測結果を制御装置11に送出する。制御装置11では、受け取った色度を予め設定した色度(本実施形態では100度)と比較し、設定値を超えた場合にはポンプ12を動作させるように制御する。
【0013】
有機物供給手段の構成要素であるポンプ12は、周知のチューブポンプ等の送液ポンプであり、制御装置11からの動作信号に従って動作し、一定量の易分解性有機物を易分解性有機物タンク13から脱窒槽6aに送出し、また、制御装置11からの停止信号に従って停止し、易分解性有機物の送出を停止する。有機物供給手段はポンプに限らず、重力滴下をソレノイドで開閉するように構成してもよい。脱窒槽6aに供給する易分解性有機物は、微生物による脱窒作用が発揮できるものであれば、特に限定されるものではないが、例えば、酢酸ナトリウム、クエン酸ナトリウム、グルコース、メタノール等が挙げられる。また、ここでは易分解性有機物を液状で供給しているが、一定量を供給できる形態であれば液状に限られるものではなく、例えばタブレットや粉末等の固形物を一定量計量して落下させるように構成してもよい。
【0014】
次に、図3を参照して制御装置11によるポンプ12の制御について説明する。図3は、制御装置11のポンプ制御処理のフローチャートである。まず、色度計9が計測した処理水の色度を受信する(S1)。そして、その色度が100度以上かどうかを判断する(S3)。100度以上になると、オゾンによる脱色効果が低下していると判断するものである。100度以上になると、かなり黄色味が強く感じられ、使用者に不快感を与えるおそれが強くなる。色度が100度以上であれば(S3:YES)、ポンプ12に運転信号を送信する(S5)。運転信号を受けて、ポンプ12は、一定量の易分解性有機物を易分解性有機物タンク13から脱窒槽6aに送出させる。易分解性有機物が供給されると、脱窒槽6aにおいて脱窒処理が促進され、亜硝酸の蓄積が低下する。このため、徐々に色度は低下していくことになる。
【0015】
色度が100度以上でなければ(S3:NO)、処理水の色度は正常であると判断し、ポンプ12に停止信号を送信する(S7)。停止信号を受けて、ポンプ12は、動作している場合には易分解性有機物の送出を停止する。既に停止している場合には、停止したままなにも行わない。制御装置11は、以上の処理を繰り返し行う。
【0016】
このように、ポンプ12は色度計9により計測された色度に基づいて動作し、易分解性有機物を易分解性有機物タンク13から脱窒槽6aに送出させる。尚、このポンプ12は、あらかじめ設定した時間間隔で間欠的に運転されるようになっており、運転信号を連続的に受信しても設定時間が経過しなければ運転されない。また、使用者の少ない夜間等の時間帯に集中してポンプ12を運転するようにしてもよい。
【0017】
以上説明したように、本実施形態の循環式水洗トイレによれば、脱色槽8において脱色処理された処理水の色度を連続又は間欠的に監視し、その色度が100度以上になった場合には、ポンプ12を制御して易分解性有機物を脱窒槽6aに供給し、脱窒槽6aにおける脱窒処理を促進している。これにより、ろ過水における亜硝酸の蓄積が緩和され、脱色槽8においてオゾンが脱色処理に十分使用できるようになり、色度が回復する。従って、オゾンを追加することなく安定した色度の処理水を得ることができる。特に、汚水の有機物と窒素分の比率の変動が大きい場合にも対応できる効果がある。
【0018】
尚、本発明は上記実施の形態に限定されるものではなく、各種の変形が可能である。例えば、図4に示すのは、別の形態のポンプ制御処理のフローチャートである。この実施形態では、色度が100度以上になった場合にポンプ12を動作させ、易分解性有機物を脱窒槽6aに供給し、動作を継続した結果色度が40度を下回った時に停止させるように制御している。具体的には、まず、色度計9において計測された処理水の色度を受信する(S11)。そして、その色度が100度以上かどうかを判断する(S13)。色度が100度以上であれば(S13:YES)、ポンプ12に運転信号を送信する(S15)。運転信号を受けて、ポンプ12は、一定量の易分解性有機物を易分解性有機物タンク13から脱窒槽6aに送出させる。易分解性有機物が供給されると、脱窒槽6aにおいて脱窒処理が促進され、亜硝酸の蓄積が低下する。このため、徐々に色度は低下していく。そして、再び色度計9から色度を受信し(S17)、尚色度が40度以上であれば(S19:YES)、継続してポンプ12に運転信号を送信する(S15)。ポンプ12は、これを受けて、継続して一定量の易分解性有機物を易分解性有機物タンク13から脱窒槽6aに送出させる。そして、色度が40度を下回るまでS15〜S19を繰り返す。尚、ポンプ12は、上記実施形態と同様に間欠運転されている。色度が40度以上でなくなれば(S19:NO)、処理水の色度は正常に戻ったと判断し、ポンプ12に停止信号を送信する(S21)。S11で受信した色度が100度以上でなければ(S13:NO)、処理水の色度は正常であると判断し、ポンプ12に停止信号を送信する(S21)。停止信号を受けて、ポンプ12は、動作している場合には易分解性有機物の送出を停止する。既に停止している場合には、停止したままなにも行わない。この実施形態では、色度を継続して監視し、通常中水の上限といわれる40度になった時点で易分解性有機物の供給を停止している。供給を止める色度は40度に限らず、設置環境に合わせて適宜設定することができる。
【0019】
【発明の効果】
上記説明から明らかなように、請求項1に記載の循環式水洗トイレによれば、処理水の色度を連続的又は間欠的に計測するので、色度が高くなった場合には生物処理槽に易分解性有機物を供給して脱窒処理を促進させ、色度が高くなる原因の一つである亜硝酸の蓄積を解消することができる。従って、過剰な亜硝酸によりオゾンの脱色処理が追いつかない状態も解消されるので、オゾンの供給量を増加しなくても脱色槽において十分脱色処理を行うことができ、安定した色度の処理水を得ることができる。
【0020】
請求項2に記載の循環式水洗トイレの汚水浄化方法によれば、処理水の色度を連続的又は間欠的に計測するので、色度が高くなった場合には易分解性有機物を供給して脱窒処理を促進させ、色度が高くなる原因の一つである亜硝酸の蓄積を解消することができる。従って、過剰な亜硝酸によりオゾンの脱色処理が追いつかない状態も解消されるので、オゾンの供給量を増加しなくても十分脱色処理を行うことができ、安定した色度の処理水を得ることができる。
【図面の簡単な説明】
【図1】本実施形態の循環式水洗トイレ1の概念図である。
【図2】本実施形態の循環式水洗トイレ1の構成図である。
【図3】制御装置11のポンプ制御処理のフローチャートである。
【図4】別の形態のポンプ制御処理のフローチャートである。
【図5】従来の循環式水洗トイレ1の概念図である。
【符号の説明】
1  循環式水洗トイレ
5  水洗便器
6  生物処理槽
7  ろ過槽
8  脱色槽
9  色度計
11  制御装置
12  ポンプ
13  易分解性有機物タンク
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a circulating flush toilet that purifies sewage water and circulates the flush water as flush water, and a method for purifying sewage of a circulating flush toilet.
[0002]
[Prior art]
BACKGROUND ART A circulating flush toilet that purifies sewage water and circulates the flush water as flush water has been developed and put into practical use. As shown in FIG. 5, in the conventional circulating flush toilet 100, sewage from the flush toilet 105 is first subjected to organic matter decomposition, nitrification, and denitrification in a biological treatment tank 110, and then solid-liquid separation in a filtration tank 120. You. The filtered water that has been subjected to solid-liquid separation enters the decolorization tank 140, where ozone is blown into the decolorization tank 140 to be decolorized by oxidation, and is temporarily stored in the treated water tank 150. Then, the stored treated water is returned from the treated water tank 150 to the flush toilet 105 as washing water.
[0003]
[Problems to be solved by the invention]
However, in the circulating flush toilet configured as described above, the organic matter treatment can be sufficiently performed, but the nitrogen removal may be insufficient depending on the properties of the sewage. In particular, when the ratio of urine in the sewage is high, the nitrogen content becomes excessive compared to the organic matter, and the nitrogen removal tends to be insufficient. In such a case, nitrous acid generated in the nitrification process or the denitrification process is accumulated. When the filtered water enters the decolorizing tank 140 while nitrous acid is accumulated, the nitrous acid is oxidized to nitric acid by consuming ozone. For this reason, there has been a problem that the amount of ozone to be used for decolorization decreases, the decolorization effect decreases, the chromaticity of the treated water increases, and the user feels uncomfortable.
[0004]
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a circulating flush toilet and a method of purifying sewage of a circulating flush toilet capable of obtaining treated water having stable chromaticity. .
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the circulation flush toilet according to claim 1 is a flush toilet and a biological treatment tank that receives sewage from the flush toilet, decomposes organic matter in the sewage, and performs nitrification and denitrification. A filtration tank for solid-liquid separation of biologically treated water biologically treated in the biological treatment tank, and a decolorization tank for decolorizing the filtered water by blowing ozone gas into the filtered water solid-liquid separated in the filtration tank. In a circulating flush toilet configured to circulate the treated water decolorized in the decolorization tank as the wash water to the flush toilet, the chromaticity of the treated water decolorized in the decolorization tank is continuously or intermittently. Chromaticity measuring means for measuring, organic matter supply means for supplying easily decomposable organic matter to the biological treatment tank, when the chromaticity of the treated water exceeds a predetermined set value, the biological treatment tank A certain amount of said ease Characterized in that a control means for controlling the organic substance supply means to supply a solution of organic material.
[0006]
In the circulating flush toilet having this configuration, the biological treatment tank decomposes organic matter in the sewage received from the flush toilet, and performs nitrification and denitrification treatment to send the treated water to the filter tank as biological treatment water. Next, the filtration tank performs solid-liquid separation of the biological treatment water. The filtered water that has been subjected to solid-liquid separation is sent to a decolorization tank, where ozone gas is blown in the decolorization tank to be decolorized. Further, the chromaticity measuring means measures the chromaticity of the decolorized treated water, and when the chromaticity exceeds a predetermined set value, the control means controls the organic matter supply means to supply a predetermined amount to the biological treatment tank. Supplies easily decomposable organic substances. Further, the decolorized treated water is circulated to the flush toilet as washing water. The cause of the increase in the chromaticity of the treated water measured in this way is that the nitrogen content in the sewage is excessive (the C / N ratio is small) compared to the organic matter. It is conceivable that nitrous acid is not accumulated and accumulates. As a result, since nitrous acid obtains oxygen from ozone and turns into nitric acid in the decolorizing tank, ozone cannot be sufficiently used for the decolorizing treatment. In such a case, if the easily decomposable organic matter is supplied to the biological treatment tank, the denitrification treatment is promoted, the accumulation of nitrous acid is suppressed, and the decolorization treatment is sufficiently performed in the decolorization tank without increasing the supply amount of ozone. Thus, treated water having a stable chromaticity can be obtained.
[0007]
The method for purifying sewage of a circulating flush toilet according to claim 2 is a biological treatment step of receiving sewage from a flush toilet, decomposing organic matter in the sewage, and nitrifying and denitrifying the biological waste. A filtration step of solid-liquid separation of the treated biological treated water, a decolorization step of decolorizing the filtered water by blowing ozone gas into the filtered water subjected to solid-liquid separation in the filtration step, and a decolorization treatment in the decolorization step A chromaticity measuring step of continuously or intermittently measuring the chromaticity of water, and when the chromaticity of the treated water measured in the chromaticity measuring step exceeds a predetermined set value, the biological treatment An organic substance supply step of supplying a fixed amount of easily decomposable organic substance to the step.
[0008]
In the sewage purification method of the circulating flush toilet of this configuration, the organic matter in the sewage received from the flush toilet is decomposed, nitrified and denitrified, the treated biologically treated water is separated into solid and liquid, filtered, and filtered water. The filtered water is decolorized by blowing ozone gas into the filter. Then, the chromaticity of the decolorized treated water is measured continuously or intermittently, and when the measured chromaticity of the treated water exceeds a predetermined set value, a certain amount of easily decomposable organic matter is removed. Supply. The cause of the increase in the chromaticity of the treated water measured in this way is that the nitrogen content in the wastewater is excessive (the C / N ratio is small) compared to the organic matter. It is conceivable that the nitrite is accumulated as it is without changing to the above, and the nitrogen removal is not sufficiently performed. As a result, since nitrous acid obtains oxygen from ozone to become nitric acid, ozone cannot be sufficiently used for the decolorizing treatment. In such a case, if the easily decomposable organic substance is supplied, the denitrification treatment is promoted, the accumulation of nitrous acid is suppressed, and the decolorization treatment can be sufficiently performed without increasing the supply amount of ozone, and the stable color is obtained. The degree of treated water can be obtained.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a sewage purification apparatus embodying the present invention will be described with reference to the drawings. First, the configuration of the circulating flush toilet 1 will be described with reference to FIGS. FIG. 1 is a conceptual diagram of the circulating flush toilet 1 of the present embodiment, and FIG. 2 is a configuration diagram of the circulating flush toilet 1 of the present embodiment. As shown in FIG. 1, the circulation flush toilet 1 includes a flush toilet 5, a biological treatment tank 6 that receives sewage from the flush toilet 5, decomposes organic matter contained in the sewage, and performs nitrification and denitrification processing. A filtration tank 7 for solid-liquid separation of biologically treated water biologically treated in the treatment tank 6, a decolorization tank 8 for oxidizing and decolorizing the filtered water with ozone, and a treated water oxidized and decolorized in the decolorization tank 8 once. A treated water tank 10 for storing, a chromaticity meter 9 for measuring the chromaticity of the treated water oxidized and decolorized in the decolorizing tank 8, and a pump 12 based on the chromaticity measured by the chromaticity meter 9. The control device 11 includes a pump 12 for supplying a predetermined amount of easily decomposable organic matter stored in the easily decomposable organic matter tank 13 to the biological treatment tank 6 based on a signal from the control device 11.
[0010]
As shown in FIG. 2, the biological treatment tank 6 comprises an aeration tank 6b for nitrifying ammonia in sewage and converting it into nitric acid, and a denitrification treatment for nitric acid which has been nitrified in the aeration tank 6b to convert it into nitrogen gas. The denitrification tanks 6a are configured to be separated from each other. The sewage from the flush toilet 5 passes through the denitrification tank 6a, and the ammonia in the sewage is nitrified in the aeration tank 6b to be converted to nitric acid. The biologically treated water decomposed by the organic substance in the biological treatment tank 6 is then subjected to solid-liquid separation in the filtration tank 7 by the filtration membrane 7a. The filtered water solid-liquid separated in the filtration tank 7 is oxidized and decolorized in the decolorization tank 8 by the ozone generated by the ozone generator 18. The aeration tank 6b and the filtration tank 7 are connected to an air blower 17a, and high-pressure air generated by the air blower 17a is sent to each tank through the diffuser pipes 17b and 17c. Further, in the denitrification tank 6a, as shown in FIG. 2, the activated sludge and the sewage are stirred by the stirrer 15, so that the contact between the microorganisms in the activated sludge and the organic matter is promoted.
[0011]
Further, as shown in FIG. 2, the residual sludge by the solid-liquid separation in the filtration tank 7 is circulated by a circulation pump (not shown) and flows into the denitrification tank 6a of the biological treatment tank 6. In the denitrification tank 6a, nitric acid contained in the sludge that has flowed in is denitrified and released into the atmosphere as nitrogen gas. The filtered water that has been solid-liquid separated in the filtration tank 7 is oxidized by the ozone generated in the ozone generator 18 in the decolorization tank 8 and decolorized by decomposing the chromaticity components in the filtered water. At the same time, in the decolorizing tank 8, the hardly biodegradable organic matter in the filtered water is converted into easily decomposable organic matter. Here, in the nitrification treatment performed in the aeration tank 6b, only nitrous acid is changed to nitrite, and when nitrification is not performed, nitric acid is converted from ozone to oxygen in the decolorization tank 8 to be nitric acid. The treated water that has been oxidized (decolorized) in the decolorizing tank 8 is temporarily stored in a treated water tank 10. Then, the water is returned to the flush toilet 5 by a circulation pump (not shown), and is reused as washing water. The treated water does not necessarily have to be stored in the treated water tank 10 and may be returned to the flush toilet 5 directly from the decolorization tank 8 by a circulation pump.
[0012]
Here, a chromaticity meter 9 is installed in a pipe from the decolorization tank 8 to the treated water tank 10. The chromaticity meter 9 used in the present embodiment uses a transmitted light measurement method, which measures the degree of light yellow to yellowish brown of water to be measured by an absorbance method at an absorbance near a wavelength of 390 nm. Is what you do. If a continuous chromaticity meter is used, chromaticity can be measured continuously or intermittently. The chromaticity meter 9 measures the chromaticity of the treated water that has been oxidized in the decolorization tank 8, and sends the measurement result to the control device 11. The controller 11 compares the received chromaticity with a preset chromaticity (100 degrees in the present embodiment), and controls the pump 12 to operate when the chromaticity exceeds the set value.
[0013]
The pump 12, which is a component of the organic substance supply means, is a liquid feed pump such as a well-known tube pump, and operates according to an operation signal from the control device 11 to remove a certain amount of easily decomposable organic substances from the easily decomposable organic substance tank 13. It is sent to the denitrification tank 6a and stopped in accordance with a stop signal from the control device 11 to stop sending easily decomposable organic matter. The organic material supply means is not limited to a pump, and may be configured to open and close gravity drop with a solenoid. The easily decomposable organic matter to be supplied to the denitrification tank 6a is not particularly limited as long as it can exert a denitrification action by microorganisms, and examples thereof include sodium acetate, sodium citrate, glucose, and methanol. . In addition, here, the easily decomposable organic substance is supplied in a liquid form, but the liquid is not limited to a liquid as long as it can supply a constant amount. For example, a solid such as a tablet or powder is measured and dropped in a fixed amount. It may be configured as follows.
[0014]
Next, control of the pump 12 by the control device 11 will be described with reference to FIG. FIG. 3 is a flowchart of the pump control process of the control device 11. First, the chromaticity of the treated water measured by the chromaticity meter 9 is received (S1). Then, it is determined whether the chromaticity is 100 degrees or more (S3). When the temperature exceeds 100 degrees, it is determined that the decolorizing effect of ozone is reduced. When the angle is 100 degrees or more, the yellow color is strongly felt, and the user is more likely to feel uncomfortable. If the chromaticity is 100 degrees or more (S3: YES), an operation signal is transmitted to the pump 12 (S5). Upon receiving the operation signal, the pump 12 causes a fixed amount of easily decomposable organic matter to be sent from the easily decomposable organic matter tank 13 to the denitrification tank 6a. When the easily decomposable organic substance is supplied, the denitrification treatment is promoted in the denitrification tank 6a, and the accumulation of nitrous acid decreases. Therefore, the chromaticity gradually decreases.
[0015]
If the chromaticity is not 100 degrees or more (S3: NO), it is determined that the chromaticity of the treated water is normal, and a stop signal is transmitted to the pump 12 (S7). Upon receiving the stop signal, the pump 12 stops sending the easily decomposable organic matter when it is operating. If it has already stopped, nothing is done while it is stopped. The control device 11 repeats the above processing.
[0016]
As described above, the pump 12 operates based on the chromaticity measured by the chromaticity meter 9 and sends the easily decomposable organic matter from the easily decomposable organic matter tank 13 to the denitrification tank 6a. The pump 12 is operated intermittently at a preset time interval. Even if the operation signal is continuously received, the pump 12 is not operated unless the set time has elapsed. Further, the pump 12 may be operated in a concentrated manner during a time period such as nighttime when the number of users is small.
[0017]
As described above, according to the circulating flush toilet of the present embodiment, the chromaticity of the treated water decolorized in the decolorization tank 8 is continuously or intermittently monitored, and the chromaticity becomes 100 degrees or more. In such a case, the easily decomposable organic matter is supplied to the denitrification tank 6a by controlling the pump 12, thereby promoting the denitrification treatment in the denitrification tank 6a. As a result, the accumulation of nitrous acid in the filtered water is reduced, and ozone can be sufficiently used in the decolorization tank 8 for the decolorization treatment, and the chromaticity is restored. Therefore, treated water having stable chromaticity can be obtained without adding ozone. In particular, there is an effect capable of coping with a case where the ratio of the organic matter and the nitrogen content in the sewage varies greatly.
[0018]
Note that the present invention is not limited to the above embodiment, and various modifications are possible. For example, FIG. 4 is a flowchart of another form of pump control processing. In this embodiment, the pump 12 is operated when the chromaticity becomes 100 degrees or more, the easily decomposable organic matter is supplied to the denitrification tank 6a, and the operation is stopped when the chromaticity falls below 40 degrees as a result of continuing the operation. Is controlled as follows. Specifically, first, the chromaticity of the treated water measured by the chromaticity meter 9 is received (S11). Then, it is determined whether the chromaticity is 100 degrees or more (S13). If the chromaticity is 100 degrees or more (S13: YES), an operation signal is transmitted to the pump 12 (S15). Upon receiving the operation signal, the pump 12 causes a fixed amount of easily decomposable organic matter to be sent from the easily decomposable organic matter tank 13 to the denitrification tank 6a. When the easily decomposable organic substance is supplied, the denitrification treatment is promoted in the denitrification tank 6a, and the accumulation of nitrous acid decreases. Therefore, the chromaticity gradually decreases. Then, the chromaticity is received again from the chromaticity meter 9 (S17). If the chromaticity is 40 degrees or more (S19: YES), the operation signal is continuously transmitted to the pump 12 (S15). In response to this, the pump 12 continuously sends a fixed amount of easily decomposable organic matter from the easily decomposable organic substance tank 13 to the denitrification tank 6a. Then, S15 to S19 are repeated until the chromaticity falls below 40 degrees. The pump 12 is operated intermittently as in the above embodiment. If the chromaticity is not 40 degrees or more (S19: NO), it is determined that the chromaticity of the treated water has returned to normal, and a stop signal is transmitted to the pump 12 (S21). If the chromaticity received in S11 is not 100 degrees or more (S13: NO), it is determined that the chromaticity of the treated water is normal, and a stop signal is transmitted to the pump 12 (S21). Upon receiving the stop signal, the pump 12 stops sending the easily decomposable organic matter when it is operating. If it has already stopped, nothing is done while it is stopped. In this embodiment, the chromaticity is continuously monitored, and the supply of the easily decomposable organic substance is stopped when the chromaticity reaches 40 degrees, which is usually referred to as the upper limit of the water content. The chromaticity at which the supply is stopped is not limited to 40 degrees, and can be appropriately set according to the installation environment.
[0019]
【The invention's effect】
As is clear from the above description, according to the circulating flush toilet according to claim 1, the chromaticity of the treated water is measured continuously or intermittently. The denitrification treatment can be promoted by supplying easily decomposable organic substances to the solution, and the accumulation of nitrous acid, which is one of the causes of high chromaticity, can be eliminated. Therefore, the state in which the ozone decolorization process cannot keep up with the excess nitrous acid is also eliminated, so that the decolorization process can be sufficiently performed in the decolorization tank without increasing the supply amount of ozone, and the treated water having a stable chromaticity can be obtained. Can be obtained.
[0020]
According to the method for purifying circulated flush toilets according to claim 2, since the chromaticity of the treated water is measured continuously or intermittently, when the chromaticity increases, easily decomposable organic substances are supplied. To promote the denitrification treatment, and eliminate the accumulation of nitrous acid, which is one of the causes of the increase in chromaticity. Therefore, the state in which the ozone decolorization process cannot keep up with the excess nitrous acid is also resolved, so that the decolorization process can be performed sufficiently without increasing the supply amount of ozone, and the treated water having a stable chromaticity can be obtained. Can be.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a circulating flush toilet 1 of the present embodiment.
FIG. 2 is a configuration diagram of a circulation type flush toilet 1 of the present embodiment.
FIG. 3 is a flowchart of a pump control process of the control device 11;
FIG. 4 is a flowchart of another embodiment of a pump control process.
FIG. 5 is a conceptual diagram of a conventional circulating flush toilet 1.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Circulating flush toilet 5 Washing toilet 6 Biological treatment tank 7 Filtration tank 8 Decolorization tank 9 Chromaticity meter 11 Controller 12 Pump 13 Easy-to-decompose organic matter tank

Claims (2)

水洗便器と、当該水洗便器からの汚水を受け入れ、汚水中の有機物を分解するとともに硝化及び脱窒処理する生物処理槽と、当該生物処理槽で生物処理された生物処理水を固液分離するろ過槽と、当該ろ過槽で固液分離されたろ過水中にオゾンガスを吹き込むことにより前記ろ過水を脱色する脱色槽とを有し、脱色槽で脱色処理された処理水を洗浄水として前記水洗便器に循環させるようにした循環式水洗トイレにおいて、
前記脱色槽で脱色処理された処理水の色度を連続的又は間欠的に計測する色度計測手段と、
前記生物処理槽に易分解性有機物を供給する有機物供給手段と、
前記処理水の色度が予め定められた設定値を超えたときに、前記生物処理槽に一定量の前記易分解性有機物を供給するように前記有機物供給手段を制御する制御手段と
を備えたことを特徴とする循環式水洗トイレ。
A flush toilet, a biological treatment tank that receives sewage from the flush toilet, decomposes organic matter in the sewage, and performs nitrification and denitrification treatment; and filtration for solid-liquid separation of biologically treated water biologically treated in the biological treatment tank. A tank, and a decolorization tank for decolorizing the filtered water by blowing ozone gas into the filtered water that has been solid-liquid separated in the filtration tank, wherein the treated water that has been decolorized in the decolorization tank is used as washing water for the flush toilet. In a circulating flush toilet that is circulated,
Chromaticity measuring means for continuously or intermittently measuring the chromaticity of the treated water decolorized in the decolorizing tank,
Organic substance supply means for supplying the easily decomposable organic substance to the biological treatment tank,
Control means for controlling the organic substance supply means so as to supply a constant amount of the easily decomposable organic substance to the biological treatment tank when the chromaticity of the treated water exceeds a predetermined set value. A flush flush toilet characterized by the following.
水洗便器から汚水を受け入れ、その汚水中の有機物を分解するとともに硝化及び脱窒処理する生物処理工程と、
当該生物処理工程において生物処理された生物処理水を固液分離するろ過工程と、
当該ろ過工程において固液分離されたろ過水中にオゾンガスを吹き込むことにより前記ろ過水を脱色する脱色工程と、
当該脱色工程において脱色処理された処理水の色度を連続的又は間欠的に計測する色度計測工程と、
当該色度計測工程において計測された前記処理水の色度が予め定められた設定値を超えたときに、前記生物処理工程に一定量の易分解性有機物を供給する有機物供給工程とからなる循環式水洗トイレの汚水浄化方法。
A biological treatment step of receiving sewage from the flush toilet, decomposing organic matter in the sewage, and nitrifying and denitrifying;
A filtration step of solid-liquid separation of biologically treated water biologically treated in the biological treatment step,
A decolorizing step of decolorizing the filtered water by blowing ozone gas into the filtered water subjected to solid-liquid separation in the filtration step,
A chromaticity measurement step of continuously or intermittently measuring the chromaticity of the treated water that has been decolorized in the decolorization step,
When the chromaticity of the treated water measured in the chromaticity measurement step exceeds a predetermined set value, a circulation comprising an organic substance supply step of supplying a fixed amount of easily decomposable organic substances to the biological treatment step How to purify sewage from flush toilets.
JP2002297063A 2002-10-10 2002-10-10 Circulating flushing toilet and sewage purification method of the circulating flushing toilet Pending JP2004132037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297063A JP2004132037A (en) 2002-10-10 2002-10-10 Circulating flushing toilet and sewage purification method of the circulating flushing toilet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297063A JP2004132037A (en) 2002-10-10 2002-10-10 Circulating flushing toilet and sewage purification method of the circulating flushing toilet

Publications (1)

Publication Number Publication Date
JP2004132037A true JP2004132037A (en) 2004-04-30

Family

ID=32286857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297063A Pending JP2004132037A (en) 2002-10-10 2002-10-10 Circulating flushing toilet and sewage purification method of the circulating flushing toilet

Country Status (1)

Country Link
JP (1) JP2004132037A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086991A (en) * 2006-09-07 2008-04-17 Nikko Co Circulation type method and apparatus for treating human waste
KR100878324B1 (en) 2008-11-21 2009-01-13 주식회사 메덱스이엔씨 Cycle type flush toilet
CN101182723B (en) * 2006-11-27 2013-02-13 朝日技术工业株式会社 Circulation type water washing urinal for males
CN115557643A (en) * 2022-10-18 2023-01-03 威海智洁环保技术有限公司 Urban domestic sewage treatment system and resource utilization method
WO2023100650A1 (en) * 2021-11-30 2023-06-08 Wota株式会社 Recycling-based wastewater treatment unit and recycling-based wastewater treatment system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086991A (en) * 2006-09-07 2008-04-17 Nikko Co Circulation type method and apparatus for treating human waste
CN101182723B (en) * 2006-11-27 2013-02-13 朝日技术工业株式会社 Circulation type water washing urinal for males
KR100878324B1 (en) 2008-11-21 2009-01-13 주식회사 메덱스이엔씨 Cycle type flush toilet
WO2023100650A1 (en) * 2021-11-30 2023-06-08 Wota株式会社 Recycling-based wastewater treatment unit and recycling-based wastewater treatment system
JP2023080503A (en) * 2021-11-30 2023-06-09 Wota株式会社 Circulating wastewater treatment unit and circulating wastewater treatment system
CN115557643A (en) * 2022-10-18 2023-01-03 威海智洁环保技术有限公司 Urban domestic sewage treatment system and resource utilization method
CN115557643B (en) * 2022-10-18 2023-07-18 威海智洁环保技术有限公司 Urban domestic sewage treatment system and resource utilization method

Similar Documents

Publication Publication Date Title
JP6084150B2 (en) Denitrification treatment method and denitrification treatment apparatus
JP2004097856A (en) Equipment and method for waste liquid treatment
JP2007050312A (en) Method and apparatus for biologically treating waste water
JP2004132037A (en) Circulating flushing toilet and sewage purification method of the circulating flushing toilet
JP2009186437A (en) Radioactive nitrate waste liquid treating apparatus
JP2003247255A (en) Circulation type flush toilet system
KR100453646B1 (en) advanced wastwater treatment system using a submerged type membrane
JP2010058078A (en) Water treating system used for water treating method and it
JP5186429B2 (en) Method and apparatus for denitrification treatment of digested sludge separation liquid
JP2008031744A (en) Circulating toilet system
JP2008149227A (en) Waste liquid treatment method and waste liquid treatment apparatus
JP2001047089A (en) Method and apparatus for treating sewage
JP3552754B2 (en) Advanced treatment method of organic sewage and its apparatus
JP2000350997A (en) Method and apparatus for treating sewage
JP2006075784A (en) Biological purifying and circulating system tray
JP2000288540A (en) Method and apparatus for treating night soil wastewater
JPH05277475A (en) Treatment method for water containing organic substance
JP2946163B2 (en) Wastewater treatment method
JP4403704B2 (en) Biofilm filtration apparatus and treatment method
JP2006035138A (en) Activated sludge processing equipment
JP2006124918A (en) Biotechnological purification circulation system toilet
JP7376143B2 (en) Circulating wastewater treatment unit and circulating wastewater treatment system
KR100469641B1 (en) advanced wastwater treatment apparatus using a submerged type membrane
JP2006075736A (en) Biological purifying and circulating system tray
JP3782738B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A02 Decision of refusal

Effective date: 20070522

Free format text: JAPANESE INTERMEDIATE CODE: A02