JP2007050312A - Method and apparatus for biologically treating waste water - Google Patents

Method and apparatus for biologically treating waste water Download PDF

Info

Publication number
JP2007050312A
JP2007050312A JP2005235145A JP2005235145A JP2007050312A JP 2007050312 A JP2007050312 A JP 2007050312A JP 2005235145 A JP2005235145 A JP 2005235145A JP 2005235145 A JP2005235145 A JP 2005235145A JP 2007050312 A JP2007050312 A JP 2007050312A
Authority
JP
Japan
Prior art keywords
tank
containing water
alkylene carbonate
kjeldahl nitrogen
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005235145A
Other languages
Japanese (ja)
Inventor
Takumi Tada
匠 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2005235145A priority Critical patent/JP2007050312A/en
Publication of JP2007050312A publication Critical patent/JP2007050312A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently treat waste water which contains alkylene carbonate such as ethylene carbonate and propylene carbonate and is discharged from a plant for manufacturing an electronic device. <P>SOLUTION: The apparatus 10 for treating waste water biologically is provided with an aerobic treatment tank 12, a denitrification tank 14 and a re-aeration tank 16. Kjeldahl nitrogen-containing water containing ammonia nitrogen or the like is supplied to the aerobic treatment tank 12 from a nitrogen-containing water line 31 to oxidize Kjeldahl nitrogen aerobically. The nitrified liquid withdrawn from the aerobic treatment tank 12 is sent to the denitrification tank 14 to denitrify ethylene carbonate or the like contained in alkylene carbonate-containing water to be supplied to the denitrification tank from an alkylene carbonate-containing water line 32 into a hydrogen donor. Namely, Kjeldahl nitrogen-containing water and alkylene carbonate-containing water are separately collected and the former is introduced into the aerobic treatment tank 12 and the latter is introduced in the denitrification tank 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭酸エチレンを含む排水の生物的処理方法に関し、特に、炭酸エチレンを含む剥離液が用いられる電子デバイスの製造工程から排出される排水の生物的処理方法および生物的処理装置に関する。   The present invention relates to a biological treatment method for wastewater containing ethylene carbonate, and more particularly to a biological treatment method and biological treatment apparatus for wastewater discharged from a manufacturing process of an electronic device using a stripping solution containing ethylene carbonate.

半導体素子、または液晶素子等の電子デバイスの製造工程では、リソグラフィ工程、エッチング等の加工工程、剥離工程、洗浄工程等において種々の薬品が使用され、各工程から様々な性状の排水が発生する。例えば、基板を研磨する基板の前処理工程では、化学機械的研磨剤(Chemical-Mechanical Polishing、以下「CMP」)等を含む排水が排出され、基板等をエッチングするエッチング工程では酢酸等を含む排水が排出される。   In the manufacturing process of an electronic device such as a semiconductor element or a liquid crystal element, various chemicals are used in a lithography process, a processing process such as etching, a peeling process, a cleaning process, and the like, and wastewater having various properties is generated from each process. For example, in a substrate pretreatment process for polishing a substrate, wastewater containing chemical-mechanical polishing (CMP) or the like is discharged, and in an etching process for etching a substrate or the like, wastewater containing acetic acid or the like is discharged. Is discharged.

こうした排水は、必要に応じて適宜、他工程から排出される排水と混合され、排水の性状に応じて物理化学的、または生物的に処理される。例えば従来、CMP含有排水のような無機系の排水であれば凝集沈殿、ろ過、活性炭吸着、イオン交換、あるいは膜分離等の物理化学的方法で処理される。一方、酢酸、エタノール、またはアセトン等を含む有機系の排水は、生物的に処理されることが多い。   Such waste water is appropriately mixed with waste water discharged from other processes as needed, and is treated physicochemically or biologically depending on the properties of the waste water. For example, conventionally, inorganic wastewater such as CMP-containing wastewater is treated by physicochemical methods such as coagulation sedimentation, filtration, activated carbon adsorption, ion exchange, or membrane separation. On the other hand, organic wastewater containing acetic acid, ethanol, acetone, or the like is often treated biologically.

ところで、電子デバイスの製造工程の一つである剥離工程では、基板等に塗布されたフォトレジストを基板等から除去するため、様々な種類の剥離液が用いられている。従来、剥離液としては、硫酸と過酸化水素との混合液、フッ化水素酸等のフッ素化合物を含むフッ酸系の液体、またはモノエタノールアミン等を含む有機アミン系の液体等が用いられている。また、近年では炭酸エチレンまたは炭酸プロピレン等(以下、「炭酸アルキレン」と称する)を含む液体も用いられるようになっている。   By the way, in the peeling process which is one of the manufacturing processes of an electronic device, various types of stripping solutions are used in order to remove the photoresist applied to the board or the like from the substrate or the like. Conventionally, as a stripping solution, a mixed solution of sulfuric acid and hydrogen peroxide, a hydrofluoric acid-based liquid containing a fluorine compound such as hydrofluoric acid, or an organic amine-based liquid including monoethanolamine is used. Yes. In recent years, liquids containing ethylene carbonate or propylene carbonate (hereinafter referred to as “alkylene carbonate”) have also been used.

このため近時では電子デバイスの製造工程から、炭酸アルキレンを含む炭酸アルキレン含有水も排出されるようになっている。炭酸アルキレンは有機物であるが、安定であるため、排水の生物的処理に関与する微生物に資化されにくいと考えられている。すなわち、従来、炭酸アルキレン含有水は通常の活性汚泥法では処理することが困難であると考えられ、炭酸アルキレンの生物的分解を促進するため、所定の条件下で馴養された炭酸アルキレン分解菌を用いて生物的処理を行う方法が提案されている(例えば特許文献1)。
特開2005−13929号公報
For this reason, recently, water containing alkylene carbonate including alkylene carbonate is also discharged from the manufacturing process of electronic devices. Although alkylene carbonate is an organic substance, it is considered to be difficult to be assimilated by microorganisms involved in biological treatment of wastewater because it is stable. That is, conventionally, it is considered that alkylene carbonate-containing water is difficult to treat with a normal activated sludge process, and in order to promote the biodegradation of alkylene carbonate, an alkylene carbonate-degrading bacterium acclimatized under predetermined conditions is used. There has been proposed a method for performing biological treatment using the method (for example, Patent Document 1).
Japanese Patent Laid-Open No. 2005-13929

しかし特許文献1に記載された方法では、電子デバイス製造工場の排水処理施設内に、炭酸アルキレン含有水を処理するために馴養された炭酸アルキレン分解菌を高濃度に保持する処理槽を別途設ける必要がある。このため、電子デバイス製造工場の排水処理設備が大型化する。   However, in the method described in Patent Document 1, it is necessary to separately provide a treatment tank for maintaining a high concentration of alkylene carbonate-decomposing bacteria acclimatized to treat alkylene carbonate-containing water in the wastewater treatment facility of the electronic device manufacturing factory. There is. For this reason, the waste water treatment facility of the electronic device manufacturing factory is enlarged.

また上述したとおり、電子デバイス製造工場では炭酸アルキレン含有水以外にも様々な種類の排水が発生しているため、炭酸アルキレン含有水を単独で処理する特許文献1の方法では、電子デバイス製造工場全体の排水処理効率を向上させることができない。一方で、炭酸アルキレン含有水を、他の工程等から排出される排水と混合して処理する場合、他工程から排出される排水の流量または汚染物質濃度等の変動の影響により、処理水の水質が不安定になる。   In addition, as described above, since various types of wastewater are generated in addition to the alkylene carbonate-containing water in the electronic device manufacturing factory, the method of Patent Document 1 in which the alkylene carbonate-containing water is treated alone is the entire electronic device manufacturing factory. The wastewater treatment efficiency cannot be improved. On the other hand, when water containing alkylene carbonate is mixed with wastewater discharged from other processes, the quality of the treated water is affected by fluctuations in the flow rate of wastewater discharged from other processes or the concentration of contaminants. Becomes unstable.

本発明は上記課題に鑑みてなされ、炭酸アルキル含有水を排出する電子デバイス製造工場の排水処理設備の大型化を防止し、工場全体の排水処理効率の改善に寄与し、かつ、安定した水質の処理水を得ることができる排水の生物的処理方法、および排水の生物的処理装置を提供することを目的とする。   The present invention has been made in view of the above problems, prevents an increase in wastewater treatment facility of an electronic device manufacturing factory that discharges alkyl carbonate-containing water, contributes to improvement of wastewater treatment efficiency of the whole factory, and has stable water quality. An object of the present invention is to provide a biological treatment method for waste water from which treated water can be obtained, and a biological treatment apparatus for waste water.

本発明の発明者は、従来、生物的に分解されがたいと考えられていた炭酸アルキレン含有水が、生物的脱窒工程の電子供与体として有効であることを見出し、本発明を完成させた。すなわち本発明は、炭酸アルキレン含有水が従属性脱窒細菌のエネルギー源となることに着目し、ケルダール窒素含有水の処理工程の中に炭酸アルキレン含有水の処理を組み込むことにより、窒素を含む排水の生物的処理と炭酸アルキル含有水の生物的処理とを有機的に結合させて合理的な処理を行うものである。具体的には本発明は以下を提供する。   The inventor of the present invention has found that water containing alkylene carbonate, which has been conventionally considered to be difficult to be decomposed biologically, is effective as an electron donor in the biological denitrification process, and has completed the present invention. . That is, the present invention pays attention to the fact that alkylene carbonate-containing water is an energy source for dependent denitrifying bacteria, and by incorporating the treatment of alkylene carbonate-containing water into the treatment process of Kjeldahl nitrogen-containing water, The biological treatment is organically combined with the biological treatment of alkyl carbonate-containing water to perform a rational treatment. Specifically, the present invention provides the following.

(1) ケルダール窒素を含むケルダール窒素含有水を、酸素供給手段を備える好気槽に導入し、硝化細菌の存在下に前記ケルダール窒素を硝化して硝化処理液を得る好気工程と、 前記硝化処理液と、炭酸アルキレンを含みケルダール窒素を実質的に含まない炭酸アルキレン含有水と、を脱窒槽に導入し、脱窒細菌の存在下に脱窒する脱窒工程と、を含む排水の生物的処理方法。   (1) an aerobic step of introducing Kjeldahl nitrogen-containing water containing Kjeldahl nitrogen into an aerobic tank equipped with an oxygen supply means, and nitrifying the Kjeldahl nitrogen in the presence of nitrifying bacteria to obtain a nitrification solution; A denitrification step of introducing a treatment liquid and an alkylene carbonate-containing water containing alkylene carbonate and substantially free of Kjeldahl nitrogen into a denitrification tank and denitrifying in the presence of denitrifying bacteria; Processing method.

本発明では、ケルダール窒素含有水と、炭酸アルキル含有水とは混合されず、別々に生物処理装置に導入される。ケルダール窒素含有水は、アンモニア源となるケルダール窒素、すなわちケルダール法により測定されるアンモニア態窒素および/または有機性窒素化合物を含む。好気工程では、有機性窒素化合物は好気性微生物の働きによりアンモニア態窒素に分解される。このため、ケルダール窒素含有水はアンモニア態窒素のみを含む場合のみならず、有機性窒素化合物のみを含む場合、またはアンモニア態窒素と有機性窒素化合物とを含む場合でも、そのまま本発明方法による処理に供することができる。   In the present invention, the Kjeldahl nitrogen-containing water and the alkyl carbonate-containing water are not mixed and are separately introduced into the biological treatment apparatus. The Kjeldahl nitrogen-containing water contains Kjeldahl nitrogen as an ammonia source, that is, ammonia nitrogen and / or organic nitrogen compounds measured by the Kjeldahl method. In the aerobic process, organic nitrogen compounds are decomposed into ammonia nitrogen by the action of aerobic microorganisms. Therefore, Kjeldahl nitrogen-containing water not only contains only ammonia nitrogen, but also contains only organic nitrogen compounds, or even contains ammonia nitrogen and organic nitrogen compounds, it can be used for the treatment according to the method of the present invention as it is. Can be provided.

ケルダール窒素含有水は、ケルダール窒素以外の生物分解可能な汚染物質、例えば亜硝酸態窒素および/または硝酸態窒素(以下、「非ケルダール窒素」と称する)、およびBOD(生物学的酸素要求量として測定される有機物成分)等を含んでいてもよい。   Kjeldahl nitrogen-containing water is a biodegradable contaminant other than Kjeldahl nitrogen, such as nitrite nitrogen and / or nitrate nitrogen (hereinafter referred to as “non-Kjeldahl nitrogen”), and BOD (as biological oxygen demand) Organic component to be measured) and the like may be included.

電子デバイス製造工程の中で排出されるケルダール窒素含有水の具体例としては、例えば以下が挙げられる。半導体用シリコンウェハ、または液晶用ガラス基板といった基板等にフォトレジスト等を塗布してパターンを転写するリソグラフィ工程から排出されるテトラメチルアンモニウムハイドロオキサイド(TMAH)を含む排水、転写されたパターンに従って基板等をエッチング等する加工工程から排出されるアンモニアを含む排水、および剥離工程から排出される排水であって、モノエタノールアミン等のアルカノールアミン等を含む排水等である。   Specific examples of Kjeldahl nitrogen-containing water discharged during the electronic device manufacturing process include the following. Wastewater containing tetramethylammonium hydroxide (TMAH) discharged from a lithography process in which a photoresist or the like is applied to a substrate such as a silicon wafer for a semiconductor or a glass substrate for liquid crystal to transfer the pattern, the substrate according to the transferred pattern, etc. Wastewater containing ammonia discharged from a processing step such as etching, and wastewater discharged from a stripping step, including wastewater containing alkanolamine such as monoethanolamine.

一方、炭酸アルキレン含有水は、炭酸アルキレンを含み、ケルダール窒素を実質的に含まない。ここで本明細書において、「炭酸アルキレン」とは、具体的には炭酸エチレンおよび/または炭酸プロピレンを意味する。また、「ケルダール窒素を実質的に含まない」とは、ケルダール窒素濃度がBOD濃度の20質量%未満であることを意味する。   On the other hand, the alkylene carbonate-containing water contains alkylene carbonate and does not substantially contain Kjeldahl nitrogen. In this specification, “alkylene carbonate” specifically means ethylene carbonate and / or propylene carbonate. Further, “substantially free of Kjeldahl nitrogen” means that the Kjeldahl nitrogen concentration is less than 20% by mass of the BOD concentration.

炭酸アルキレン含有水に含まれる炭酸アルキレン濃度は、任意であり特に限定されず、排水として排出される濃度のまま、処理することができる。炭酸アルキレン含有水は、炭酸アルキレン以外の有機物、例えばイソプロピルアルコール(IPA)、エタノール、アセトン、酢酸、プロピレングリコールモノメチルエーテル(PGME)、およびプロピレングリコールモノメチルエーテルアセテート(PGMEA)等を含んでもよい。また、炭酸アルキレン含有水は、ケルダール窒素以外の汚染物質、例えば非ケルダール窒素を任意の濃度で含んでもよい。   The alkylene carbonate concentration contained in the alkylene carbonate-containing water is arbitrary and is not particularly limited, and can be treated with the concentration discharged as waste water. The water containing alkylene carbonate may contain organic substances other than alkylene carbonate, such as isopropyl alcohol (IPA), ethanol, acetone, acetic acid, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), and the like. Further, the alkylene carbonate-containing water may contain contaminants other than Kjeldahl nitrogen, for example, non-Kjeldahl nitrogen at an arbitrary concentration.

炭酸アルキレン含有水は、ケルダール窒素含有水が好気槽で処理されて得られる硝化処理液に含まれる非ケルダール窒素を窒素ガスに還元する際の電子供与体として用いられる。このため、炭酸アルキレン含有水を生物的に処理するための特別の工程及び設備を設ける必要がない。また、従来、従属栄養性脱窒微生物による脱窒反応の際に添加されていたメタノール、またはIPA等を添加する必要がなく、あるいはメタノール等の添加量を低減することができる。   The alkylene carbonate-containing water is used as an electron donor when reducing non-Kjeldahl nitrogen contained in a nitrification treatment liquid obtained by treating Kjeldahl nitrogen-containing water in an aerobic tank to nitrogen gas. For this reason, it is not necessary to provide a special process and equipment for biologically treating the alkylene carbonate-containing water. In addition, it is not necessary to add methanol or IPA that has been added in the conventional denitrification reaction by heterotrophic denitrifying microorganisms, or the amount of methanol or the like can be reduced.

具体的には、従属栄養性脱窒微生物による脱窒反応では、脱窒槽に流入する非ケルダール窒素の2.5倍量のメタノール等の有機物が理論上必要となる。しかし、脱窒反応に利用される有機物の利用率は100%とはならないため、通常、理論上の必要量の110〜130質量%の有機物が脱窒槽に添加される。   Specifically, in the denitrification reaction by heterotrophic denitrifying microorganisms, organic matter such as methanol, which is 2.5 times the amount of non-Kjeldahl nitrogen flowing into the denitrification tank, is theoretically required. However, since the utilization factor of the organic matter used for the denitrification reaction is not 100%, 110 to 130% by mass of the theoretically necessary amount of organic matter is usually added to the denitrification tank.

ここで、電子デバイス製造工程の中で排出されるケルダール窒素含有水は、ケルダール窒素濃度が30〜500mg/L、排出水量が500〜5,000m/日であるのに対し、炭酸アルキレンを使用する剥離工程から排出される排水に含まれる炭酸アルキレンの濃度は100〜3,000mg−as BOD/L、排出水量は500〜5,000m/日である。このため本発明によれば、炭酸アルキレンを使用する剥離工程から排出される排水を脱窒槽に添加することにより、脱窒反応に必要な有機物量の30〜300質量%程度をまかなうことができる。なお、以下において、炭酸アルキレンを使用する剥離工程から排出され、汚染物質の主体(例えば70質量%以上)が炭酸アルキレンである排水と、炭酸アルキレン以外の有機物をも含む炭酸アルキレン含有水とを区別するため、前者を「アルキレン排液」、後者を「混合アルキレン排液」と称する場合がある。 Here, Kjeldahl nitrogen-containing water discharged during the electronic device manufacturing process uses alkylene carbonate, while Kjeldahl nitrogen concentration is 30 to 500 mg / L, and the discharged water amount is 500 to 5,000 m 3 / day. The concentration of alkylene carbonate contained in the wastewater discharged from the peeling step is 100 to 3,000 mg-as BOD / L, and the amount of discharged water is 500 to 5,000 m 3 / day. For this reason, according to this invention, about 30-300 mass% of the amount of organic substances required for a denitrification reaction can be covered by adding the waste_water | drain discharged | emitted from the peeling process using an alkylene carbonate to a denitrification tank. In the following, waste water discharged from a peeling process using alkylene carbonate and having a main contaminant (for example, 70% by mass or more) of alkylene carbonate is distinguished from water containing alkylene carbonate containing organic substances other than alkylene carbonate. Therefore, the former may be referred to as “alkylene drainage” and the latter as “mixed alkylene drainage”.

ケルダール窒素含有水の窒素濃度が高い場合、または排出量が多い場合等、アルキレン排液の添加のみでは脱窒反応の際に必要な有機物量が不足する場合、アルキレン排液に他の工程から排出される有機物含有水を混合してなる混合アルキレン排液を脱窒槽に流入させてもよい。アルキレン排液に混合される他工程からの排水としては、電子デバイスの洗浄工程およびラビング工程から排出されるIPA含有水、エタノール含有水、アセトン含有水、並びにエッチング工程から排出される酢酸含有水等が挙げられる。   When the nitrogen concentration of Kjeldahl nitrogen-containing water is high or the discharge amount is large, if the amount of organic matter necessary for the denitrification reaction is insufficient only by adding the alkylene drain solution, the alkylene drain solution is discharged from other processes. A mixed alkylene drainage obtained by mixing the organic substance-containing water may be allowed to flow into the denitrification tank. Waste water from other processes mixed with the alkylene waste liquid includes IPA-containing water, ethanol-containing water, acetone-containing water discharged from the cleaning process and rubbing process of the electronic device, and acetic acid-containing water discharged from the etching process. Is mentioned.

(2) 前記脱窒工程からの流出液を、酸素供給手段を備える再曝気槽に導入し、好気性微生物の存在下に前記脱窒工程からの流出液に含まれる有機物を分解する再曝気工程をさらに含む(1)に記載の排水の生物的処理方法。   (2) A re-aeration step of introducing the effluent from the denitrification step into a re-aeration tank equipped with an oxygen supply means, and decomposing organic substances contained in the effluent from the de-nitrification step in the presence of aerobic microorganisms. The biological treatment method of waste water according to (1), further comprising:

従属性微生物による脱窒反応では、反応に必要な量の有機物を過不足なく脱窒槽に供給するために、酸化還元電位(ORP)またはNOx−N等の測定による有機物添加量の制御法が提案されている。しかし、かかる制御法は追従性または測定精度等が必ずしも十分でない場合がある。このため、理論上の必要量の110〜130%程度の一定量の有機物が脱窒槽に供給される場合が多い。このような場合、ケルダール窒素含有水のケルダール窒素濃度が減少する等して好気槽のケルダール窒素負荷が低下すると、脱窒槽からの流出液に有機物が残留するおそれがある。   In the denitrification reaction by subordinate microorganisms, a method for controlling the amount of organic matter added by measuring redox potential (ORP) or NOx-N is proposed in order to supply the necessary amount of organic matter to the denitrification tank without excess or deficiency. Has been. However, such a control method may not always have sufficient followability or measurement accuracy. For this reason, a certain amount of organic substance of about 110 to 130% of the theoretical required amount is often supplied to the denitrification tank. In such a case, if the Kjeldahl nitrogen load in the aerobic tank is reduced due to a decrease in the Kjeldahl nitrogen concentration of the Kjeldahl nitrogen-containing water, organic substances may remain in the effluent from the denitrification tank.

(2)記載の発明では、脱窒工程の後段に好気的処理を行なう再曝気工程を設けることにより、好気槽のケルダール窒素負荷が低下した場合でも、脱窒槽からの流出液の水質悪化を防止できる。   In the invention described in (2), the water quality of the effluent from the denitrification tank deteriorates even when the Kjeldahl nitrogen load in the aerobic tank is reduced by providing a re-aeration process after the denitrification process. Can be prevented.

(3) 前記ケルダール窒素含有水と、前記炭酸アルキレン含有水と、を排出する電子デバイス製造工程から、該ケルダール窒素含有水と該炭酸アルキレン含有水とを別々に収集し、前記ケルダール窒素含有水を前記好気槽に導入し、前記炭酸アルキレン含有水を前記脱窒槽に導入する(1)または(2)に記載の排水の生物的処理方法。   (3) Collecting the Kjeldahl nitrogen-containing water and the alkylene carbonate-containing water separately from the electronic device manufacturing process for discharging the Kjeldahl nitrogen-containing water and the alkylene carbonate-containing water, The biological treatment method of waste water according to (1) or (2), wherein the method is introduced into the aerobic tank, and the alkylene carbonate-containing water is introduced into the denitrification tank.

本発明では、電子デバイスの製造工程の中に、少なくともケルダール窒素含有水を排出する工程と、アルキレン排液を排出する工程とを含む電子デバイス製造工程からの排水処理を合理化する。すなわち本発明では、電子デバイス製造工場から排出される排水のうち、主としてケルダール窒素を含む排水(窒素系排水)は窒素含有水路を介して好気槽に導入する。一方、アルキレン排液および他の有機物を含む排水(有機物系排水)は、窒素系排水とは別に収集し、炭酸アルキレン含有水路を介して好気槽に導入することなく脱窒槽に導入する。このように窒素系排水と有機物系排水とを別々に収集し、それぞれを異なる生物処理槽に供給して別々の処理工程で処理することで、好気槽の有機物負荷を低くできるため、好気槽の大型化を防止できる。   In the present invention, wastewater treatment from an electronic device manufacturing process including at least a process of discharging Kjeldahl nitrogen-containing water and a process of discharging an alkylene drainage is rationalized in the manufacturing process of the electronic device. That is, in the present invention, of the waste water discharged from the electronic device manufacturing factory, waste water mainly containing Kjeldahl nitrogen (nitrogen-based waste water) is introduced into the aerobic tank through the nitrogen-containing water channel. On the other hand, wastewater containing alkylene waste liquid and other organic matter (organic matter wastewater) is collected separately from nitrogen wastewater and introduced into the denitrification tank through the alkylene carbonate-containing water channel without being introduced into the aerobic tank. By collecting nitrogen wastewater and organic matter wastewater separately, supplying them to different biological treatment tanks and treating them in separate treatment steps, the load on organic matter in the aerobic tank can be lowered. The enlargement of the tank can be prevented.

また、電子デバイス製造工程から排出される排水の性状、つまり汚染物質の濃度または排水の発生量等は、電子デバイスの製造工程ごとに変動する。このため、複数の製造工程からの排水を無分別に混合して好気槽に導入すると、好気槽の大型化を招く。さらに好気槽に対するケルダール窒素負荷が低下すると、脱窒槽での脱窒反応が進まなくなることから、脱窒槽での有機物除去が進まずに、脱窒槽からの流出液の水質が悪化する。   In addition, the properties of the wastewater discharged from the electronic device manufacturing process, that is, the concentration of pollutants or the amount of generated wastewater vary for each electronic device manufacturing process. For this reason, if wastewater from a plurality of manufacturing processes is mixed indiscriminately and introduced into the aerobic tank, the aerobic tank is enlarged. Further, when the Kjeldahl nitrogen load on the aerobic tank is lowered, the denitrification reaction in the denitrification tank does not proceed, so the organic matter removal in the denitrification tank does not proceed and the water quality of the effluent from the denitrification tank deteriorates.

これに対し、本発明に従って窒素系の排水と有機物系の排水とを別々に収集するようにすれば、複数の電子デバイス製造工程から排出され異なるタイミングで性状が変化する複数種類の排水の処理を合理化することが容易となる。具体的には、生物的処理装置への窒素系排水の流入と、有機物系排水の流入のタイミングをそれぞれ調整することにより、容易に脱窒槽からの流出液の水質悪化を防止できる。より具体的な手段としては、例えば炭酸アルキレン含有水路の途中に、炭酸アルキレン含有水の貯槽を設けて脱窒槽に流入する炭酸アルキレン含有水の流量を調整する等が挙げられる。   On the other hand, if nitrogen-based wastewater and organic-based wastewater are collected separately according to the present invention, it is possible to treat multiple types of wastewater that are discharged from multiple electronic device manufacturing processes and whose properties change at different timings. It becomes easy to rationalize. Specifically, the deterioration of the water quality of the effluent from the denitrification tank can be easily prevented by adjusting the timing of the inflow of the nitrogenous wastewater into the biological treatment apparatus and the inflow of the organic wastewater. More specifically, for example, an alkylene carbonate-containing water storage tank may be provided in the middle of the alkylene carbonate-containing water channel to adjust the flow rate of the alkylene carbonate-containing water flowing into the denitrification tank.

(4) ケルダール窒素を含むケルダール窒素含有水が供給される窒素含有水路、および酸素供給手段を備え、硝化細菌の存在下に前記ケルダール窒素を硝化して硝化処理液を得る好気槽と、 一端が前記好気槽に接続され前記硝化処理液が供給される硝化処理液路、および炭酸アルキレンを含みケルダール窒素を実質的に含まない炭酸アルキレン含有水が供給される炭酸アルキレン含有水路を備え、脱窒細菌の存在下に脱窒する脱窒槽と、を含む排水の生物的処理装置。   (4) an aerobic tank comprising a nitrogen-containing water channel to which Kjeldahl nitrogen-containing water containing Kjeldahl nitrogen is supplied, and an oxygen supply means, and nitrifying the Kjeldahl nitrogen in the presence of nitrifying bacteria to obtain a nitrification treatment solution; Is connected to the aerobic tank and is supplied with the nitrification solution, and an alkylene carbonate-containing water channel is supplied with alkylene carbonate-containing water containing alkylene carbonate and substantially free of Kjeldahl nitrogen. A biological treatment apparatus for wastewater, including a denitrification tank for denitrification in the presence of nitrifying bacteria.

(5) 一端が前記脱窒槽に接続され前記脱窒槽からの流出液が供給される脱窒処理液路、および酸素供給手段を備え、好気性微生物の存在下に前記脱窒槽からの流出液に含まれる有機物を分解する再曝気槽をさらに含む(4)に記載の排水の生物的処理装置。   (5) A denitrification treatment liquid path, one end of which is connected to the denitrification tank and supplied with the effluent from the denitrification tank, and an oxygen supply means, and the effluent from the denitrification tank in the presence of aerobic microorganisms The biological treatment apparatus for wastewater according to (4), further comprising a re-aeration tank for decomposing the organic matter contained therein.

(6) 前記再曝気槽は、前記炭酸アルキレン含有水に含まれる全BOD成分の90質量%以上を分解できるように設計されたものである(4)または(5)に記載の排水の生物的処理装置。   (6) The re-aeration tank is designed so that 90% by mass or more of all BOD components contained in the alkylene carbonate-containing water can be decomposed, and the biological wastewater according to (4) or (5) Processing equipment.

本発明では、電子デバイス製造工程から排出される炭酸アルキレン含有水を、脱窒槽における脱窒反応の主たる有機物源とする。このため、脱窒槽は好気槽の処理条件、好気槽に導入されるケルダール窒素含有水の性状の変動、および炭酸アルキレン含有水の性状の変動等を考慮して設計されたものであることが好ましい。具体的には、脱窒槽は、好気槽に対するケルダール窒素負荷が最大になった場合に硝化処理液に含まれて脱窒槽に持ち込まれる非ケルダール窒素のほぼ全量を脱窒できるように、槽容積等が決定されたものであることが好ましい。   In this invention, the alkylene carbonate containing water discharged | emitted from an electronic device manufacturing process is made into the main organic substance source of the denitrification reaction in a denitrification tank. For this reason, the denitrification tank is designed in consideration of the processing conditions of the aerobic tank, fluctuations in the properties of Kjeldahl nitrogen-containing water introduced into the aerobic tank, fluctuations in the properties of alkylene carbonate-containing water, etc. Is preferred. Specifically, the denitrification tank has a tank volume so that almost all of the non-Kjeldahl nitrogen contained in the nitrification solution and brought into the denitrification tank can be denitrified when the Kjeldahl nitrogen load on the aerobic tank is maximized. Etc. are preferably determined.

また再曝気槽は、脱窒槽の非ケルダール窒素負荷が低下した場合でも、炭酸アルキレン含有水に含まれるBOD成分を一定の値(例えば5mg/L未満)まで低減できるように設計されたものであることが好ましい。特に、再曝気槽は脱窒槽の非ケルダール窒素負荷が最小値となった場合でも、炭酸アルキレン含有水に含まれるBOD成分の90質量%以上を分解してBOD濃度が5mg/L未満の処理水を得られるように設計されたものであることが好ましい。   The re-aeration tank is designed to reduce the BOD component contained in the alkylene carbonate-containing water to a certain value (for example, less than 5 mg / L) even when the non-Kjeldahl nitrogen load of the denitrification tank decreases. It is preferable. In particular, the re-aeration tank decomposes 90% by mass or more of the BOD component contained in the alkylene carbonate-containing water even when the non-Kjeldahl nitrogen load of the denitrification tank becomes the minimum value, and the treated water having a BOD concentration of less than 5 mg / L. It is preferable that it is designed so that it can be obtained.

好気槽、脱窒槽、および再曝気槽(以下、これらをまとめて「生物処理槽」と称する場合がある)の形式は特に限定されない。具体的には、活性汚泥を浮遊状態で槽内に保持する浮遊式、活性汚泥を担持体に付着させて保持する生物膜式、活性汚泥を粒状化したグラニュール汚泥として保持する上向流汚泥床(USB)式等があり、生物膜式では、担持体に保持された活性汚泥床が固定された状態で被処理水と接触させられる固定床式、担持体に保持された活性汚泥床を流動化させて被処理水と接触させる流動床式、および担持体に保持された活性汚泥床を膨張させて被処理水と接触させる展開床式等の種々の生物処理槽を使用できる。   The types of the aerobic tank, the denitrification tank, and the re-aeration tank (hereinafter may be collectively referred to as “biological treatment tank”) are not particularly limited. Specifically, floating type that keeps activated sludge in the tank in a floating state, biofilm type that keeps activated sludge attached to the carrier, and upward flow sludge that holds activated sludge as granulated sludge There is a floor (USB) type, and in the biofilm type, the activated sludge bed held by the carrier is fixed, the activated sludge bed held by the carrier is contacted with the water to be treated. Various biological treatment tanks such as a fluidized bed type that is fluidized and brought into contact with the water to be treated, and a developed bed type that is in contact with the treated water by expanding the activated sludge bed held on the carrier can be used.

浮遊式の生物処理槽を用いる場合は、処理水と活性汚泥とを分離するため、生物処理槽の後段に固液分離手段を設ける。固液分離手段は、少なくとも最後端の生物処理槽の後段に設ければよい。しかし、各生物処理槽の汚泥濃度を所定範囲に保つため、各生物処理槽の後段に設け、それぞれの生物処理槽に分離された汚泥を返送するようにしてもよい。固液分離手段としては特に限定されず、例えば沈殿池、または膜分離装置等を用いることができる。   When a floating biological treatment tank is used, solid-liquid separation means is provided at the subsequent stage of the biological treatment tank in order to separate the treated water and activated sludge. The solid-liquid separation means may be provided at least after the last biological treatment tank. However, in order to keep the sludge concentration in each biological treatment tank in a predetermined range, it may be provided in the subsequent stage of each biological treatment tank, and the separated sludge may be returned to each biological treatment tank. The solid-liquid separation means is not particularly limited, and for example, a sedimentation basin or a membrane separation device can be used.

活性汚泥を保持する担持体を用いる場合、担持体の種類は特に限定されない。具体的には、活性炭、プラスチック、ゲル、またはスポンジ等を素材とする担持体を使用することができ、特にエステル系ポリウレタン等のスポンジ担体は微生物を高濃度に保持するため、好ましい。担持体の大きさおよび形状は特に限定されないが、10mm四方以下であることが好ましく、特に好気槽および再曝気槽に充填する担持体については3〜7mm四方程度であることが好ましい。担持体の充填量は、好気槽については槽容量の20〜50%、脱窒槽、再曝気槽についても同程度であることが好ましい。   When using a carrier that holds activated sludge, the type of the carrier is not particularly limited. Specifically, a support made of activated carbon, plastic, gel, sponge, or the like can be used. In particular, a sponge carrier such as ester polyurethane is preferable because it maintains microorganisms at a high concentration. The size and shape of the carrier are not particularly limited, but are preferably 10 mm square or less, and particularly about 3 to 7 mm square for the carrier filled in the aerobic tank and the re-aeration tank. The filling amount of the carrier is preferably about 20 to 50% of the tank capacity for the aerobic tank, and about the same for the denitrification tank and the re-aeration tank.

本発明によれば、電子デバイス製造工場の排水処理の全体の処理効率の向上を図り、排水処理設備の大型化を防止して安定した水質の処理水を得ることができる。また、脱窒反応のために添加される有機物の添加コストを低減し、排水処理コストを低減化できる。また、電子デバイス製造工場の複数の工程から排出される各種排水を窒素系排水と有機物排水とに分けて生物的処理装置で処理するため、生物的処理装置を構成する複数の生物処理槽の設計を容易にできる。   ADVANTAGE OF THE INVENTION According to this invention, the processing efficiency of the whole waste water treatment of an electronic device manufacturing factory can be aimed at, the enlargement of waste water treatment equipment can be prevented, and the stable treated water quality can be obtained. Moreover, the addition cost of the organic substance added for the denitrification reaction can be reduced, and the wastewater treatment cost can be reduced. In addition, since various wastewater discharged from multiple processes in the electronic device manufacturing factory is divided into nitrogen-based wastewater and organic wastewater and processed by biological treatment equipment, the design of multiple biological treatment tanks constituting the biological treatment equipment Can be easily done.

以下、図面を参照して本発明について説明する。以下において同一部材については同一符号を付し、説明を省略または簡略化する。   The present invention will be described below with reference to the drawings. In the following, the same members are denoted by the same reference numerals, and description thereof is omitted or simplified.

図1は、本発明の一実施形態に係る排水の生物処理装置(以下、単に「処理装置」)10の模式図である。処理装置10は、好気槽12と、脱窒槽14と、再曝気槽16と、をこの順で並べて構成されている。なお、処理装置10の後段には、処理装置10の処理水を回収して超純水製造装置(図示せず)等の原水として利用するため、水回収装置20が設けられている。水回収装置20は、凝集処理装置22と、濾過装置24と、精密濾過膜(MF膜)装置26と、逆浸透膜(RO膜)装置28とで構成されている。   FIG. 1 is a schematic view of a wastewater biological treatment apparatus (hereinafter simply referred to as “treatment apparatus”) 10 according to an embodiment of the present invention. The processing apparatus 10 is configured by arranging an aerobic tank 12, a denitrification tank 14, and a re-aeration tank 16 in this order. A water recovery device 20 is provided downstream of the processing device 10 in order to recover the treated water of the processing device 10 and use it as raw water for an ultrapure water production device (not shown) or the like. The water recovery device 20 includes a coagulation treatment device 22, a filtration device 24, a microfiltration membrane (MF membrane) device 26, and a reverse osmosis membrane (RO membrane) device 28.

好気槽12と脱窒槽14とは、硝化処理液路33で接続され、脱窒槽14と再曝気槽16とは脱窒処理液路35で接続され、再曝気槽16と水回収装置20とは処理水路37で接続されている。好気槽12には、ケルダール窒素含有水が供給される窒素含有水路31の一端が接続され、窒素含有水路31の他端は、ケルダール窒素含有水を排出するリソグラフィ工程等の排水集水路(図示せず)と接続されている。また、脱窒槽14には、硝化処理液路33とは別に炭酸アルキレン含有水路(以下、「アルキレン含有水路」と省略する)32の一端が接続され、アルキレン含有水路32の他端は、炭酸アルキレンを含有する剥離液を用いる剥離工程の排水集水路(図示せず)と接続されている。   The aerobic tank 12 and the denitrification tank 14 are connected by a nitrification treatment liquid path 33, and the denitrification tank 14 and the re-aeration tank 16 are connected by a denitrification treatment liquid path 35, and the re-aeration tank 16 and the water recovery device 20 are connected. Are connected by a treatment water channel 37. One end of a nitrogen-containing water channel 31 to which Kjeldahl nitrogen-containing water is supplied is connected to the aerobic tank 12, and the other end of the nitrogen-containing water channel 31 is a drainage water collection channel (such as a lithography process) for discharging Kjeldahl nitrogen-containing water (see FIG. (Not shown). Moreover, one end of an alkylene carbonate-containing water channel (hereinafter abbreviated as “alkylene-containing water channel”) 32 is connected to the denitrification tank 14 separately from the nitrification treatment liquid channel 33, and the other end of the alkylene-containing water channel 32 is an alkylene carbonate Is connected to a drainage water collecting channel (not shown) in a peeling process using a peeling solution containing.

好気槽12には、エステル系ポリウレタン製のスポンジ担体11が充填され、酸素供給手段として、空気等の酸素含有気体を供給する散気管13が設けられている。この好気槽12には、アンモニア酸化細菌または/および亜硝酸酸化菌(以下、「硝化細菌」)を主体とする活性汚泥がスポンジ担体11に保持された状態でMLSS濃度3,000〜20,000mg/L程度、保持されている。本実施形態における好気槽12は、散気管13から吹き込まれた気体によりスポンジ担体11が流動化される流動式の生物処理槽である。硝化工程の処理条件としては、溶存酸素濃度(DO)0.5〜4mg/L、特に1〜3mg/L、ケルダール窒素容積負荷0.2〜1.0kg−N/m/日、ケルダール窒素含有水に有機物が含まれる場合にはBOD容積負荷1〜2kg−N/m/日とすることが好ましい。 An aerobic tank 12 is filled with a sponge carrier 11 made of ester polyurethane, and an aeration tube 13 for supplying an oxygen-containing gas such as air is provided as an oxygen supply means. This aerobic tank 12 has an MLSS concentration of 3,000 to 20, with activated sludge mainly composed of ammonia oxidizing bacteria and / or nitrite oxidizing bacteria (hereinafter referred to as “nitrifying bacteria”) held in the sponge carrier 11. About 000 mg / L is retained. The aerobic tank 12 in the present embodiment is a fluid biological treatment tank in which the sponge carrier 11 is fluidized by the gas blown from the air diffuser 13. The processing conditions for nitrification processes, the dissolved oxygen concentration (DO) 0.5~4mg / L, in particular 1-3 mg / L, Kjeldahl nitrogen volume loading 0.2~1.0kg-N / m 3 / day, Kjeldahl nitrogen When the contained water contains an organic substance, the BOD volume load is preferably 1 to 2 kg-N / m 3 / day.

脱窒槽14にはポリエチレングリコール製のゲル担体15が充填されている。この脱窒槽14には、脱窒細菌を主体とする活性汚泥がゲル担体15に保持された状態でMLSS濃度3,000〜20,000mg/L程度、保持されている。本実施形態における脱窒槽14は、攪拌機によりゲル担体15が流動化される流動式の生物処理槽であり、嫌気的条件下で脱窒反応が行われる。脱窒工程の処理条件としては、実質的にDOが存在しない嫌気的条件で、硝酸態窒素負荷0.5〜2kg−N/m/日とすることが好ましい。 The denitrification tank 14 is filled with a gel carrier 15 made of polyethylene glycol. In the denitrification tank 14, an MLSS concentration of about 3,000 to 20,000 mg / L is retained in a state where activated sludge mainly composed of denitrifying bacteria is retained on the gel carrier 15. The denitrification tank 14 in this embodiment is a fluid biological treatment tank in which the gel carrier 15 is fluidized by a stirrer, and the denitrification reaction is performed under anaerobic conditions. As processing conditions of a denitrification process, it is preferable to set it as the nitrate nitrogen load 0.5-2 kg-N / m < 3 > / day on the anaerobic condition which DO does not exist substantially.

再曝気槽16には、エステル系ポリウレタン製のスポンジ担体11が充填され、酸素供給手段として、散気管13が設けられている。散気管13は好気槽12の散気管13と同様の構成であるが、散気管13の気体供給能力は槽の容積等に応じて適宜設定される。本実施形態では再曝気槽16の散気管13の気体供給能力は、好気槽12の散気管13より大きいものとされている。この再曝気槽16には、活性汚泥がスポンジ担体11に保持された状態でMLSS濃度3,000〜20,000mg/L程度、保持されている。本実施形態における再曝気槽16は、散気管13から吹き込まれた気体によりスポンジ担体11が流動化される流動式の生物処理槽である。   The re-aeration tank 16 is filled with a sponge carrier 11 made of ester polyurethane, and an aeration tube 13 is provided as an oxygen supply means. The air diffuser 13 has the same configuration as the air diffuser 13 in the aerobic tank 12, but the gas supply capacity of the air diffuser 13 is appropriately set according to the capacity of the tank. In this embodiment, the gas supply capacity of the air diffuser 13 of the re-aeration tank 16 is greater than that of the air diffuser 13 of the aerobic tank 12. In this re-aeration tank 16, MLSS concentration of about 3000 to 20,000 mg / L is held in a state where activated sludge is held on the sponge carrier 11. The re-aeration tank 16 in the present embodiment is a fluid biological treatment tank in which the sponge carrier 11 is fluidized by the gas blown from the diffusion tube 13.

再曝気槽16は、特に炭酸アルキレン含有水に含まれる全BOD量の大部分(例えば約90%以上)を生物的に分解することにより、BOD濃度が5mg/L未満の処理水を得られるように設計されていることが好ましい。具体的には、再曝気工程の処理条件が、溶存酸素濃度(DO)0.5〜4mg/L、特に1〜3mg/L、BOD窒素容積負荷1〜2kg−N/m/日となるように設計されていることが好ましい。 The re-aeration tank 16 can obtain treated water having a BOD concentration of less than 5 mg / L by biologically decomposing a large portion (for example, about 90% or more) of the total BOD contained in the alkylene carbonate-containing water. It is preferable that it is designed. Specifically, the processing conditions of the re-aeration process are dissolved oxygen concentration (DO) of 0.5 to 4 mg / L, particularly 1 to 3 mg / L, and BOD nitrogen volume load of 1 to 2 kg-N / m 3 / day. It is preferable that it is designed as follows.

再曝気槽16と凝集処理装置22とは処理水路37で接続されている。本実施形態では再曝気槽16にはスポンジ担体11が保持されていることから、再曝気槽16から流出する処理水に含まれる汚泥を分離する固液分離装置は必要ない。しかし、再曝気槽16を浮遊式にした場合は、凝集処理装置22に代えて沈殿池を設け、沈殿池と再曝気槽16とを汚泥返送路で接続して凝集処理装置22で分離された汚泥を、再曝気槽16に返送することが好ましい。なお、硝化処理液路33および脱窒処理液路35の途中にも沈殿池を設け、各沈殿池で分離された汚泥を好気槽12および脱窒槽14にそれぞれ返送してもよい。   The re-aeration tank 16 and the coagulation treatment apparatus 22 are connected by a treatment water channel 37. In this embodiment, since the sponge carrier 11 is held in the re-aeration tank 16, a solid-liquid separation device that separates sludge contained in the treated water flowing out from the re-aeration tank 16 is not necessary. However, when the re-aeration tank 16 is a floating type, a sedimentation basin is provided instead of the agglomeration treatment device 22, and the sedimentation basin and the re-aeration tank 16 are connected by a sludge return path and separated by the agglomeration treatment device 22. It is preferable to return the sludge to the re-aeration tank 16. A sedimentation basin may be provided in the middle of the nitrification treatment liquid passage 33 and the denitrification treatment liquid passage 35, and sludge separated in each precipitation basin may be returned to the aerobic tank 12 and the denitrification tank 14, respectively.

水回収装置20を構成する凝集処理装置22は、生物処理装置10の処理水を被処理水とし、被処理水に鉄塩、アルミニウム塩、または高分子ポリマー等の凝集剤を添加し、必要に応じてpH調整等を行なって、被処理水に含まれる不溶解性の懸濁物(SS)を凝集させて除去する。凝集処理装置22としては、加圧浮上式、または凝集沈殿式等任意の形式のものを用いることができる。   The coagulation treatment apparatus 22 constituting the water recovery apparatus 20 uses the treated water of the biological treatment apparatus 10 as treated water, and adds an aggregating agent such as iron salt, aluminum salt, or polymer polymer to the treated water. The pH is adjusted accordingly, and the insoluble suspension (SS) contained in the water to be treated is aggregated and removed. As the agglomeration processing device 22, an arbitrary type such as a pressure floating type or a coagulation precipitation type can be used.

濾過装置24は、凝集処理液路41を介して凝集処理装置22と接続され、凝集処理装置22により処理水のSSが除去されて得られる凝集処理液のSSをさらに除去する。濾過装置24は、粒状の濾材を備え濾過圧のかけ方としては重力または圧力、濾層の数として単層、二層、または三層、濾過の方向として下向流または上向流等の種々の方式を組み合わせた形式の構成とできる。   The filtration device 24 is connected to the aggregation treatment device 22 via the aggregation treatment liquid passage 41, and further removes SS of the aggregation treatment liquid obtained by removing the SS of treated water by the aggregation treatment device 22. The filtration device 24 includes a granular filter medium. Gravity or pressure is applied as a filtration pressure, a single layer, two layers, or three layers are used as the number of filtration layers, and a downward flow or an upward flow is used as a filtration direction. It can be configured in a form combining these methods.

MF膜装置26は、濾過液路43を介して濾過装置24と接続され、濾過装置24で凝集処理液が清澄化されて得られる濾過液をMF膜で膜濾過する。MF膜としては、孔径30μm以下のものが好ましく、MF膜の膜モジュール形式としては、平膜型または中空糸型等を用いることができる。   The MF membrane device 26 is connected to the filtration device 24 via the filtrate passage 43, and membrane filtrates the filtrate obtained by clarifying the aggregating treatment solution with the filtration device 24 with the MF membrane. As the MF membrane, those having a pore diameter of 30 μm or less are preferable, and as the membrane module type of the MF membrane, a flat membrane type or a hollow fiber type can be used.

RO膜装置28は、MF処理液路45を介してMF膜装置26と接続され、MF膜装置26で濾過液が膜濾過されて得られるMF処理液をRO膜で処理して脱塩する。RO膜としては、ポリアミド膜等が好ましく、膜モジュールの形式としてはスパイラル型等の任意の形式のものを用いることができる。RO膜装置28には脱塩水路47が接続され、RO膜でMF処理液が脱塩されてなる脱塩水が取り出される。   The RO membrane device 28 is connected to the MF membrane device 26 via the MF treatment liquid channel 45, and desalinates the MF treatment solution obtained by membrane filtration of the filtrate in the MF membrane device 26 with the RO membrane. As the RO membrane, a polyamide membrane or the like is preferable, and a membrane module of any type such as a spiral type can be used. A desalted water channel 47 is connected to the RO membrane device 28, and desalted water obtained by desalting the MF treatment liquid with the RO membrane is taken out.

本実施形態では、凝集処理装置22でSSが除去されて得られる処理水を、濾過装置24およびMF膜装置26でさらに処理してSS濃度が極めて低減された清澄な水をRO膜装置28に供給する。このため、RO膜装置28の負荷が少なく、RO膜の汚染が低減され、RO膜装置28の性能を安定化できる。特に本発明に係る生物処理装置10によれば、窒素および有機物濃度が低減された処理水が安定して得られるため、水回収装置20の汚染が防止され、RO膜装置28から得られる脱塩水は、電子デバイスの洗浄用水等として利用できる。   In the present embodiment, the treated water obtained by removing SS in the agglomeration treatment device 22 is further treated by the filtration device 24 and the MF membrane device 26, and the clear water in which the SS concentration is extremely reduced is supplied to the RO membrane device 28. Supply. For this reason, the load of the RO membrane device 28 is small, the contamination of the RO membrane is reduced, and the performance of the RO membrane device 28 can be stabilized. In particular, according to the biological treatment apparatus 10 according to the present invention, treated water with reduced nitrogen and organic matter concentrations can be stably obtained, so that the water recovery apparatus 20 is prevented from being contaminated and demineralized water obtained from the RO membrane apparatus 28. Can be used as cleaning water for electronic devices.

以下、電子デバイスとして液晶を製造する液晶工場から排出される排水を用いた実施例に基づき本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail based on examples using waste water discharged from a liquid crystal factory that manufactures liquid crystals as electronic devices.

〔実施例1〕
実施例1として、図1に示す処理装置10を用い、リソグラフィ工程、洗浄工程および緩衝フッ酸を用いたエッチング工程から排出される排液を混合したケルダール窒素含有水と、剥離工程、ラビング工程、およびエッチング工程から排出される排液を混合した炭酸アルキレン含有水(混合アルキレン排液)とを処理した。
[Example 1]
As Example 1, using the processing apparatus 10 shown in FIG. 1, Kjeldahl nitrogen-containing water mixed with drainage discharged from a lithography process, a cleaning process, and an etching process using buffered hydrofluoric acid, a peeling process, a rubbing process, And the alkylene carbonate containing water (mixed alkylene drainage liquid) which mixed the drainage discharged | emitted from an etching process was processed.

ケルダール窒素含有水は、TMAHを50mg−as N/Lの濃度で含むリソグラフィ工程排液と、N−メチル−2−ピロリドン(NMP)を含む洗浄剤が用いられる洗浄工程からの排液(NMPを50mg−as N/L含む)と、緩衝フッ酸を用いたエッチング工程から排出される排液(アンモニア態窒素を200mg−as N/L含む)と、を混合したものである。ケルダール窒素含有水のBOD濃度は600mg/L、ケルダール窒素濃度は300mg/L、非ケルダール窒素としての硝酸態窒素(NO−N)濃度は111mg/Lであった。 Kjeldahl nitrogen-containing water is drained from a lithography process containing TMAH at a concentration of 50 mg-as N / L and from a washing process using a cleaning agent containing N-methyl-2-pyrrolidone (NMP). 50 mg-as N / L) and waste liquid discharged from the etching process using buffered hydrofluoric acid (containing 200 mg-as N / L of ammonia nitrogen). BOD concentration of Kjeldahl nitrogen-containing water 600 mg / L, Kjeldahl nitrogen concentration 300 mg / L, nitrate nitrogen (NO 3 -N) as a non-Kjeldahl nitrogen concentration was 111 mg / L.

ケルダール窒素含有水は、窒素含有水路31を介してBOD流入量600kg/日、NO−N流入量200kg/日、Kj−T流入量300kg/日となるように好気槽12に導入した。好気槽12の条件は以下とした。
[好気槽条件]
容量 ;1,800m
ケルダール窒素流入負荷;300kg/m/日
ケルダール窒素容積負荷;0.25kg/m/日
BOD流入負荷 ;600kg/m/日
BOD容積負荷 ;1kg/m/日
MLSS ;3,000mg/L
スポンジ担体充填量 ;槽容量の30%
pH ;5.8〜8.6
DO ;2mg/L
Kjeldahl Nitrogen-containing water, BOD inflow 600 kg / day through a nitrogen-containing water channel 31, NO 3 -N inflow 200 kg / day, were introduced into the aerobic tank 12 so that the Kj-T inflow 300 kg / day. The conditions of the aerobic tank 12 were as follows.
[Aerobic tank conditions]
Capacity: 1,800m 3
Kjeldahl nitrogen inflow load; 300 kg / m 3 / day Kjeldahl nitrogen volume load; 0.25 kg / m 3 / day BOD inflow load; 600 kg / m 3 / day BOD volume load; 1 kg / m 3 / day MLSS; 3,000 mg / day L
Sponge carrier filling amount; 30% of tank capacity
pH: 5.8 to 8.6
DO: 2 mg / L

炭酸アルキレン含有水は、剥離工程から排出されるアルキレン排液(炭酸アルキレンとして炭酸エチレンを1,000mg/Lを含む)と、IPAを600mg/Lの濃度で含むラビング工程排液と、PGMEを80mg/Lの濃度で含む洗浄工程排液と、PGMEAを20mg/Lの濃度で含む洗浄工程排液とを混合したものである。炭酸アルキレン含有水のBOD濃度は2,000mg/Lである。   Alkylene carbonate-containing water is an alkylene drainage discharged from the stripping process (containing 1,000 mg / L of ethylene carbonate as alkylene carbonate), a rubbing process drainage containing IPA at a concentration of 600 mg / L, and 80 mg of PGME. This is a mixture of a cleaning process drainage liquid containing a concentration of / L and a cleaning process drainage liquid containing PGMEA at a concentration of 20 mg / L. The BOD concentration of alkylene carbonate-containing water is 2,000 mg / L.

脱窒槽14は、好気槽12の処理条件を考慮して以下の処理条件となるように設計した。また脱窒槽14に流入する非ケルダール窒素の全量を脱窒するために必要な理論量の120質量%の有機物が添加されるよう、アルキレン含有水路32からBOD流入量2,000kg/日で脱窒槽14に炭酸アルキレン含有水を供給した。   The denitrification tank 14 was designed to satisfy the following processing conditions in consideration of the processing conditions of the aerobic tank 12. Further, a denitrification tank is introduced at an BOD inflow rate of 2,000 kg / day from the alkylene-containing water channel 32 so that 120% by mass of an organic substance of a theoretical amount necessary for denitrification of the entire amount of non-Kjeldahl nitrogen flowing into the denitrification tank 14 is added. 14 was supplied with water containing alkylene carbonate.

[脱窒槽条件]
容量 ;1,000m
硝酸態窒素流入負荷;500kg/m/日
硝酸態窒素容積負荷;0.5kg/m/日
MLSS ;3,000mg/L
ゲル担体充填量 ;槽容量の30%
pH ;5.8〜8.6
DO ;0mg/L
[Denitrification tank conditions]
Capacity: 1,000m 3
Nitrate nitrogen inflow load; 500 kg / m 3 / day Nitrate nitrogen volume load; 0.5 kg / m 3 / day MLSS; 3,000 mg / L
Gel carrier filling amount: 30% of tank capacity
pH: 5.8 to 8.6
DO: 0 mg / L

再曝気槽16は、処理装置10に持ち込まれる炭酸アルキレン含有水に含まれる有機物(BOD)の全量を分解できるように設計され、具体的には処理条件を以下とした。   The re-aeration tank 16 is designed so that the total amount of organic matter (BOD) contained in the alkylene carbonate-containing water brought into the processing apparatus 10 can be decomposed. Specifically, the processing conditions are as follows.

[再曝気槽条件]
容量 ;2,000m
BOD流入負荷 ;2,000kg/m/日
BOD容積負荷 ;1kg/m/日
MLSS ;3,000mg/L
スポンジ担体充填量;槽容量の30%
pH ;5.8〜8.6
DO ;2mg/L
[Re-aeration tank conditions]
Capacity: 2,000m 3
BOD inflow load; 2,000 kg / m 3 / day BOD volume load; 1 kg / m 3 / day MLSS; 3,000 mg / L
Sponge carrier filling amount: 30% of tank capacity
pH: 5.8 to 8.6
DO: 2 mg / L

実施例1では、窒素含有水路31からケルダール窒素含有水を好気槽12に導入し、散気管13から槽内液のDOが2mg/Lとなるように空気を吹き込み、ケルダール窒素および有機物を酸化する好気工程を行った。   In Example 1, Kjeldahl nitrogen-containing water is introduced into the aerobic tank 12 from the nitrogen-containing water channel 31, and air is blown from the air diffuser 13 so that the DO in the tank is 2 mg / L, thereby oxidizing the Kjeldahl nitrogen and organic matter. An aerobic process was performed.

好気槽12から流出する硝化処理液は、硝化処理液路33を介して脱窒槽14に導入した。脱窒槽14では、アルキレン含有水路32から炭酸アルキレン含有水をBOD流入負荷2,000kg/日となるように一定量で添加しながら、硝化処理液に含まれる非ケルダール窒素を脱窒する脱窒工程を行った。   The nitrification liquid flowing out from the aerobic tank 12 was introduced into the denitrification tank 14 via the nitrification liquid path 33. In the denitrification tank 14, a denitrification step of denitrifying non-Kjeldahl nitrogen contained in the nitrification solution while adding a fixed amount of alkylene carbonate-containing water from the alkylene-containing water channel 32 to a BOD inflow load of 2,000 kg / day. Went.

脱窒槽12から流出する脱窒処理液は、脱窒処理液路35を介して再曝気槽16に導入した。再曝気槽16では、散気管13から槽内液のDOが2mg/Lとなるように空気を吹き込み、脱窒処理液を好気的に処理して処理水を得た。   The denitrification treatment liquid flowing out from the denitrification tank 12 was introduced into the re-aeration tank 16 through the denitrification treatment liquid path 35. In the re-aeration tank 16, air was blown from the air diffuser 13 so that the DO in the tank was 2 mg / L, and the denitrification solution was treated aerobically to obtain treated water.

処理水は、処理水路37を介して加圧浮上式の凝集処理装置22に導入し、凝集剤として塩化第2鉄を500mg/Lで添加して加圧浮上によりSSを除去して凝集処理液を得た。凝集処理液は、凝集処理液路41からアンスラサイトおよび砂を濾材とする下向流式二層濾過装置24に導入し、濾過装置24でSSを除去して濾過液を得た。濾過液は濾過液路43からカートリッジ式MF膜装置26に導入し、MF処理液をMF処理液路45から取り出した。MF処理液は、スパイラル式のRO膜を備えるRO膜装置28で処理して脱塩水を得た。表1に各処理段階における処理液について、BOD、S−TOC、TOC、Kj−N、NO−N、SS濃度、単位をmg/Lとして示す。なお、以下の表において※は汚泥を含む値である。 The treated water is introduced into the pressure-floating type agglomeration apparatus 22 via the treatment water channel 37, ferric chloride is added at 500 mg / L as a flocculant, SS is removed by pressure flotation, and the agglomeration treatment liquid. Got. The flocculation treatment liquid was introduced from the flocculation treatment liquid passage 41 into a downward flow type two-layer filtration device 24 using anthracite and sand as a filter medium, and SS was removed by the filtration device 24 to obtain a filtrate. The filtrate was introduced into the cartridge type MF membrane device 26 from the filtrate path 43 and the MF treatment liquid was taken out from the MF treatment liquid path 45. The MF treatment solution was treated with an RO membrane device 28 having a spiral RO membrane to obtain demineralized water. Table 1 processing liquid in each processing stage, shown BOD, S-TOC, TOC, Kj-N, NO 3 -N, SS concentration, the unit as mg / L. In the table below, * is the value including sludge.

Figure 2007050312
Figure 2007050312

〔実施例2〕
処理装置10に持ち込まれるケルダール窒素の流入量が低下した場合の影響を調べるため、実施例2として、実施例1を次の点で変更した実験を行なった。まず、好気槽12へ供給するケルダール窒素含有水について、Kj−N濃度100mg/Lとなるように緩衝フッ酸を用いたエッチング工程排液を除いた。これにより、好気槽12へのKj−N流入量を100kg/日に低減した。かかる変更により変更された好気槽12および脱窒槽14の処理条件は以下である。
[Example 2]
In order to examine the influence when the inflow amount of Kjeldahl nitrogen brought into the processing apparatus 10 is lowered, an experiment was conducted as Example 2 in which Example 1 was changed in the following points. First, about the Kjeldahl nitrogen containing water supplied to the aerobic tank 12, the etching process waste_water | drain using the buffer hydrofluoric acid was removed so that it might become Kj-N density | concentration of 100 mg / L. Thereby, the Kj-N inflow rate to the aerobic tank 12 was reduced to 100 kg / day. The processing conditions of the aerobic tank 12 and the denitrification tank 14 changed by this change are as follows.

[好気槽条件]
ケルダール窒素流入負荷;100kg/m・日
[脱窒槽条件]
硝酸態窒素流入負荷 ;300kg/m・日
[Aerobic tank conditions]
Kjeldahl nitrogen inflow load: 100 kg / m 3 · day [denitrification tank conditions]
Nitrate nitrogen inflow load; 300kg / m 3 · day

実施例2の実験条件は上記に示す点以外は実施例1と同様とした。結果を表2に示す。   The experimental conditions of Example 2 were the same as those of Example 1 except for the points described above. The results are shown in Table 2.

Figure 2007050312
Figure 2007050312

〔比較例1〕
比較例1として、図2に示す処理装置100を用いて試験を行なった。処理装置100は、アルキレン含有水路32が脱窒槽14に接続される代わりに窒素含有水路31に接続され、脱窒槽14にIPAを注入するためのIPA路36が接続されている点で図1の処理装置10と構成が異なる。
[Comparative Example 1]
As Comparative Example 1, a test was performed using the processing apparatus 100 shown in FIG. The processing apparatus 100 is connected to the nitrogen-containing water channel 31 instead of the alkylene-containing water channel 32 to the denitrification tank 14, and is connected to the IPA channel 36 for injecting IPA into the denitrification tank 14. The configuration is different from the processing apparatus 10.

比較例1では、実施例1と同じ性状のケルダール窒素含有水と炭酸アルキレン含有水とを被処理水としたが、ケルダール窒素含有水と炭酸アルキレン含有水とはともに好気槽12に導入した。これに伴い、脱窒槽14においては脱窒反応の際に必要な有機物源としてIPAをIPA路36から1,500kg/日で添加した。   In Comparative Example 1, Kjeldahl nitrogen-containing water and alkylene carbonate-containing water having the same properties as in Example 1 were treated water, but both Kjeldahl nitrogen-containing water and alkylene carbonate-containing water were introduced into the aerobic tank 12. Along with this, in the denitrification tank 14, IPA was added from the IPA path 36 at 1,500 kg / day as an organic substance source necessary for the denitrification reaction.

好気槽12、脱窒槽14、および再曝気槽16の構成は処理装置10の好気槽12等と同様の構成である。ただし、比較例1においては、ケルダール窒素含有水および炭酸アルキレン含有水をともに好気槽12に導入するため、ケルダール窒素含有水と炭酸アルキレン含有水との混合被処理液が供給される好気槽12へのBOD流入量は2,600kg/日とした。かかる変更に伴い、好気槽12および再曝気槽16の処理条件を以下のように変更した。   The configurations of the aerobic tank 12, the denitrification tank 14, and the re-aeration tank 16 are the same as those of the aerobic tank 12 of the processing apparatus 10. However, in Comparative Example 1, since both Kjeldahl nitrogen-containing water and alkylene carbonate-containing water are introduced into the aerobic tank 12, an aerobic tank supplied with a mixed liquid to be treated with Kjeldahl nitrogen-containing water and alkylene carbonate-containing water is supplied. The BOD inflow to 12 was 2,600 kg / day. With this change, the processing conditions of the aerobic tank 12 and the re-aeration tank 16 were changed as follows.

[好気槽条件]
容量 ;3,800m
BOD流入負荷;2,600kg/m・日
[再曝気槽条件]
容量 ;250m
BOD流入負荷;250kg/m・日
[Aerobic tank conditions]
Capacity: 3,800m 3
BOD inflow load: 2,600 kg / m 3 · day [re-aeration tank conditions]
Capacity: 250m 3
BOD inflow load: 250 kg / m 3 · day

比較例1の実験条件は上記に示す点以外は実施例1と同様とした。結果を表3に示す。   The experimental conditions of Comparative Example 1 were the same as those of Example 1 except for the points described above. The results are shown in Table 3.

Figure 2007050312
Figure 2007050312

〔比較例2〕
処理装置100に持ち込まれるケルダール窒素の流入量が低下した場合の影響を調べるため、実施例2に倣い比較例1を次の点で変更した実験として比較例2を行なった。まず、好気槽12へ供給するケルダール窒素含有水について、Kj−N濃度100mg/Lとなるように緩衝フッ酸を用いたエッチング工程排液を除いた。これにより、好気槽へのケルダール窒素含有水に由来するKj−N流入量を100kg/日に低減した。かかる変更により、好気槽12および脱窒槽14について処理条件を比較例1に対して以下のように変更した。
[Comparative Example 2]
In order to examine the influence when the inflow amount of Kjeldahl nitrogen brought into the processing apparatus 100 decreases, Comparative Example 2 was performed as an experiment in which Comparative Example 1 was changed in the following points in accordance with Example 2. First, about the Kjeldahl nitrogen containing water supplied to the aerobic tank 12, the etching process waste_water | drain using the buffer hydrofluoric acid was removed so that it might become Kj-N density | concentration of 100 mg / L. Thereby, Kj-N inflow derived from Kjeldahl nitrogen-containing water into the aerobic tank was reduced by 100 kg / day. With this change, the processing conditions for the aerobic tank 12 and the denitrification tank 14 were changed as compared to Comparative Example 1 as follows.

[好気槽条件]
ケルダール窒素流入負荷;100kg/m・日
[脱窒槽条件]
硝酸態窒素流入負荷 ;300kg/m・日
[Aerobic tank conditions]
Kjeldahl nitrogen inflow load: 100 kg / m 3 · day [denitrification tank conditions]
Nitrate nitrogen inflow load; 300kg / m 3 · day

比較例2の実験条件は上記に示す点以外は比較例1と同様とした。結果を表4に示す。   The experimental conditions of Comparative Example 2 were the same as those of Comparative Example 1 except for the points described above. The results are shown in Table 4.

Figure 2007050312
Figure 2007050312

表1および表3に示すように、比較例1では処理水のBOD値が10mg/L、S−COD値が9mg/Lであったのに対し、実施例1では処理水のBOD値は6mg/L、S−TOD値は4mg/Lであり、当業者にとって充分有意な差異があることが示された。この値は、特に処理装置10の後段にRO膜装置28を有する水回収装置20を設けて処理水を再利用する場合には、膜汚染の程度を大きく左右する。   As shown in Tables 1 and 3, in Comparative Example 1, the BOD value of treated water was 10 mg / L and the S-COD value was 9 mg / L, whereas in Example 1, the BOD value of treated water was 6 mg. / L, S-TOD value is 4 mg / L, indicating that there is a sufficiently significant difference for those skilled in the art. This value greatly affects the degree of membrane contamination, particularly when the water recovery device 20 having the RO membrane device 28 is provided at the subsequent stage of the treatment device 10 and the treated water is reused.

また、表1〜4に示すように、実施例1および実施例2では、処理装置10に対するケルダール窒素含有水の性状が変化しても処理水の水質は一定であったのに対し、比較例1および比較例2では処理装置100に対するケルダール窒素含有水の性状が変化した場合、脱窒槽14で添加されたIPAが再曝気槽16で分解されきらず、処理水の水質が大幅に悪化した。   Further, as shown in Tables 1 to 4, in Examples 1 and 2, the quality of the treated water was constant even when the properties of Kjeldahl nitrogen-containing water with respect to the treatment apparatus 10 were changed, whereas the comparative example In 1 and Comparative Example 2, when the properties of Kjeldahl nitrogen-containing water with respect to the treatment apparatus 100 were changed, the IPA added in the denitrification tank 14 could not be decomposed in the re-aeration tank 16, and the quality of the treated water was greatly deteriorated.

さらに、実施例1および実施例2では処理装置10全体の生物処理槽の容量は4,800mであったのに対し、比較例1および比較例2では処理装置100全体の生物処理層の容量は5,050mと大きくなった。このように本発明によれば、小型で被処理液の性状変動に対して安定した水質の処理水を得ることができる。 Furthermore, in Example 1 and Example 2, the capacity of the biological treatment tank in the entire treatment apparatus 10 was 4,800 m 3 , whereas in Comparative Example 1 and Comparative Example 2, the capacity of the biological treatment layer in the treatment apparatus 100 as a whole. Became as large as 5,050 m 3 . As described above, according to the present invention, it is possible to obtain treated water having a small size and stable with respect to fluctuations in properties of the liquid to be treated.

本発明は、電子デバイス製造工場等から排出される排水の処理に利用できる。   The present invention can be used for the treatment of waste water discharged from an electronic device manufacturing factory or the like.

本発明の一実施形態に係る排水の生物的処理装置の模式図である。It is a schematic diagram of the biological treatment apparatus of the waste_water | drain which concerns on one Embodiment of this invention. 比較例に用いた従来例に係る排水の生物処理装置の模式図である。It is a schematic diagram of the biological treatment apparatus of the waste_water | drain based on the prior art example used for the comparative example.

符号の説明Explanation of symbols

10 排水の生物処理装置
12 好気槽
13 散気管(酸素供給手段)
14 脱窒槽
16 再曝気槽
31 窒素含有水路
32 炭酸アルキレン含有水路
35 脱窒処理液路
10 Wastewater biological treatment equipment 12 Aerobic tank 13 Air diffuser (oxygen supply means)
14 Denitrification tank 16 Re-aeration tank 31 Nitrogen-containing water channel 32 Alkylene carbonate-containing water channel 35 Denitrification treatment liquid channel

Claims (6)

ケルダール窒素を含むケルダール窒素含有水を、酸素供給手段を備える好気槽に導入し、硝化細菌の存在下に前記ケルダール窒素を硝化して硝化処理液を得る好気工程と、
前記硝化処理液と、炭酸アルキレンを含みケルダール窒素を実質的に含まない炭酸アルキレン含有水と、を脱窒槽に導入し、脱窒細菌の存在下に脱窒する脱窒工程と、を含む排水の生物的処理方法。
An aerobic step of introducing Kjeldahl nitrogen-containing water containing Kjeldahl nitrogen into an aerobic tank equipped with an oxygen supply means, and nitrifying the Kjeldahl nitrogen in the presence of nitrifying bacteria to obtain a nitrification treatment solution;
A denitrification step of introducing the nitrification treatment liquid and alkylene carbonate-containing water containing alkylene carbonate and substantially free of Kjeldahl nitrogen into a denitrification tank, and denitrifying in the presence of denitrifying bacteria. Biological treatment method.
前記脱窒工程からの流出液を、酸素供給手段を備える再曝気槽に導入し、好気性微生物の存在下に前記脱窒工程からの流出液に含まれる有機物を分解する再曝気工程をさらに含む請求項1に記載の排水の生物的処理方法。   The method further includes a re-aeration step of introducing the effluent from the denitrification step into a re-aeration tank having an oxygen supply means, and decomposing organic substances contained in the effluent from the de-nitrification step in the presence of aerobic microorganisms. The biological treatment method of waste water according to claim 1. 前記ケルダール窒素含有水と、前記炭酸アルキレン含有水と、を排出する電子デバイス製造工程から、該ケルダール窒素含有水と該炭酸アルキレン含有水とを別々に収集し、前記ケルダール窒素含有水を前記好気槽に導入し、前記炭酸アルキレン含有水を前記脱窒槽に導入する請求項1または2に記載の排水の生物的処理方法。   From the electronic device manufacturing process for discharging the Kjeldahl nitrogen-containing water and the alkylene carbonate-containing water, the Kjeldahl nitrogen-containing water and the alkylene carbonate-containing water are collected separately, and the Kjeldahl nitrogen-containing water is aerobic. The biological treatment method of wastewater according to claim 1 or 2, wherein the wastewater is introduced into a tank and the water containing alkylene carbonate is introduced into the denitrification tank. ケルダール窒素を含むケルダール窒素含有水が供給される窒素含有水路、および酸素供給手段を備え、硝化細菌の存在下に前記ケルダール窒素を硝化して硝化処理液を得る好気槽と、
一端が前記好気槽に接続され前記硝化処理液が供給される硝化処理液路、および炭酸アルキレンを含みケルダール窒素を実質的に含まない炭酸アルキレン含有水が供給される炭酸アルキレン含有水路を備え、脱窒細菌の存在下に脱窒する脱窒槽と、を含む排水の生物的処理装置。
A nitrogen-containing water channel to which Kjeldahl nitrogen-containing water containing Kjeldahl nitrogen is supplied, and an oxygen supply means, and an aerobic tank for nitrifying the Kjeldahl nitrogen in the presence of nitrifying bacteria to obtain a nitrification treatment solution;
A nitrification liquid channel having one end connected to the aerobic tank and supplied with the nitrification liquid, and an alkylene carbonate-containing water channel supplied with alkylene carbonate-containing water containing alkylene carbonate and substantially free of Kjeldahl nitrogen, A biological treatment apparatus for wastewater, comprising a denitrification tank that denitrifies in the presence of denitrifying bacteria.
一端が前記脱窒槽に接続され前記脱窒槽からの流出液が供給される脱窒処理液路、および酸素供給手段を備え、好気性微生物の存在下に前記脱窒槽からの流出液に含まれる有機物を分解する再曝気槽をさらに含む請求項4に記載の排水の生物的処理装置。   An organic substance contained in the effluent from the denitrification tank in the presence of an aerobic microorganism, comprising a denitrification treatment liquid path having one end connected to the denitrification tank and supplied with the effluent from the denitrification tank, and oxygen supply means The biological treatment apparatus for waste water according to claim 4, further comprising a re-aeration tank for decomposing the waste water. 前記再曝気槽は、前記炭酸アルキレン含有水に含まれる全BOD成分の90質量%以上を分解できるように設計されたものである請求項4または5に記載の排水の生物的処理装置。   The biological treatment apparatus for wastewater according to claim 4 or 5, wherein the re-aeration tank is designed so that 90% by mass or more of all BOD components contained in the alkylene carbonate-containing water can be decomposed.
JP2005235145A 2005-08-15 2005-08-15 Method and apparatus for biologically treating waste water Pending JP2007050312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235145A JP2007050312A (en) 2005-08-15 2005-08-15 Method and apparatus for biologically treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235145A JP2007050312A (en) 2005-08-15 2005-08-15 Method and apparatus for biologically treating waste water

Publications (1)

Publication Number Publication Date
JP2007050312A true JP2007050312A (en) 2007-03-01

Family

ID=37915124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235145A Pending JP2007050312A (en) 2005-08-15 2005-08-15 Method and apparatus for biologically treating waste water

Country Status (1)

Country Link
JP (1) JP2007050312A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296499A (en) * 2006-05-08 2007-11-15 Japan Organo Co Ltd Waste water treatment method
JP2009072739A (en) * 2007-09-25 2009-04-09 Ibiden Co Ltd Method for biodegradation treatment of material to be treated
JP2009148714A (en) * 2007-12-21 2009-07-09 Kurita Water Ind Ltd Biological treatment method and apparatus of organic matter-containing water
KR100971530B1 (en) * 2009-09-08 2010-07-21 삼성엔지니어링 주식회사 Wastewater treatment apparatus having bioreactor filled with media containing immobilized microbe and method of treating wastewater
KR101045294B1 (en) 2007-09-14 2011-06-29 삼성엔지니어링 주식회사 Method of preparing hydrophilic microbe immobilized media with controlled specific gravity for wastewater treatment
KR101045293B1 (en) 2007-09-14 2011-06-29 삼성엔지니어링 주식회사 Hydrophilic media containing immobilized microbe decomposing TMAH, method of preparing the media and bioreactor having the media
JP2016174993A (en) * 2015-03-18 2016-10-06 三菱レイヨンアクア・ソリューションズ株式会社 Apparatus and method for treating water to be treated

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296499A (en) * 2006-05-08 2007-11-15 Japan Organo Co Ltd Waste water treatment method
KR101045294B1 (en) 2007-09-14 2011-06-29 삼성엔지니어링 주식회사 Method of preparing hydrophilic microbe immobilized media with controlled specific gravity for wastewater treatment
KR101045293B1 (en) 2007-09-14 2011-06-29 삼성엔지니어링 주식회사 Hydrophilic media containing immobilized microbe decomposing TMAH, method of preparing the media and bioreactor having the media
JP2009072739A (en) * 2007-09-25 2009-04-09 Ibiden Co Ltd Method for biodegradation treatment of material to be treated
JP2009148714A (en) * 2007-12-21 2009-07-09 Kurita Water Ind Ltd Biological treatment method and apparatus of organic matter-containing water
KR100971530B1 (en) * 2009-09-08 2010-07-21 삼성엔지니어링 주식회사 Wastewater treatment apparatus having bioreactor filled with media containing immobilized microbe and method of treating wastewater
JP2016174993A (en) * 2015-03-18 2016-10-06 三菱レイヨンアクア・ソリューションズ株式会社 Apparatus and method for treating water to be treated

Similar Documents

Publication Publication Date Title
AU2007238520B2 (en) Method and system for nitrifying and denitrifying wastewater
TWI494281B (en) Apparatus for treating organic waste water
JP5358886B2 (en) Biological treatment method of water containing organic matter
JPH0663592A (en) Ultra-pure water producing apparatus
WO2007019617A1 (en) Biological phosphorous removal
JP2007175582A (en) Treatment apparatus and method of organic matter-containing waste water
JP2008264772A (en) Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
JP2007050312A (en) Method and apparatus for biologically treating waste water
JP4997724B2 (en) Organic wastewater treatment method
JP5034778B2 (en) Membrane separation wastewater treatment method and apparatus
JPH07171594A (en) Method and apparatus for denitrifying and dephosphorizing sewage
US7166220B2 (en) Systems and methods for organic wastewater treatment
EP1807361B1 (en) Anoxic biological reduction system and method
JP2006130397A (en) Waste water treatment system
JP2013000670A (en) Sewage treatment apparatus
JP3474476B2 (en) Sewage treatment method
JP4655570B2 (en) Wastewater treatment equipment containing organic nitrogen compounds
JP7015117B2 (en) Organic wastewater treatment method and organic wastewater treatment system
JP3973069B2 (en) Organic wastewater treatment method and apparatus
JP4390959B2 (en) Wastewater treatment equipment
JP2005211728A (en) Sewage treatment method
JP2006075784A (en) Biological purifying and circulating system tray
JPH0156840B2 (en)
KR100740579B1 (en) Advanced wastewater treatment apparatus and method improved from existing waste water treatment process using activated sludge method
JP2002273466A (en) Method and equipment for treating organic waste water