JP2009148714A - Biological treatment method and apparatus of organic matter-containing water - Google Patents

Biological treatment method and apparatus of organic matter-containing water Download PDF

Info

Publication number
JP2009148714A
JP2009148714A JP2007329506A JP2007329506A JP2009148714A JP 2009148714 A JP2009148714 A JP 2009148714A JP 2007329506 A JP2007329506 A JP 2007329506A JP 2007329506 A JP2007329506 A JP 2007329506A JP 2009148714 A JP2009148714 A JP 2009148714A
Authority
JP
Japan
Prior art keywords
biological treatment
organic matter
membrane
water
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007329506A
Other languages
Japanese (ja)
Other versions
JP5194771B2 (en
Inventor
Hidenari Yasui
英斉 安井
Katsuhiko Momozaki
勝彦 百崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007329506A priority Critical patent/JP5194771B2/en
Priority to TW97146987A priority patent/TWI411584B/en
Priority to KR1020080126405A priority patent/KR101575345B1/en
Priority to CN200810186508XA priority patent/CN101462811B/en
Publication of JP2009148714A publication Critical patent/JP2009148714A/en
Application granted granted Critical
Publication of JP5194771B2 publication Critical patent/JP5194771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent pollution of a separation membrane when used for raw water for pure water production, by biologically treating organic matter-containing water. <P>SOLUTION: Anaerobic sludge containing methanogenic bacteria is held in a reactor 10. Organic matter-containing water mainly containing monomer organic matter (e.g., tetramethyl ammonium hydroxide) biodegraded by the methanogenic bacteria, is supplied to the reactor 10 from a raw water pipe 30 as treating water, to perform the anaerobic biological treatment by the methanogenic bacteria. Treated liquid obtained by the anaerobic biological treatment is separated into solid and liquid by a membrane separation apparatus 12 provided outside the reactor 10 to obtain separated water free from solid matter. The separated water is desalinated by a reverse osmosis membrane apparatus 14 to be raw material for pure water production. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機物含有水を嫌気的に処理する生物処理方法および装置に関し、特に、排水を生物処理して純水製造用の原水として利用する生物処理方法および装置に関する。   The present invention relates to a biological treatment method and apparatus for anaerobically treating organic substance-containing water, and more particularly, to a biological treatment method and apparatus for biologically treating wastewater and using it as raw water for producing pure water.

好気性微生物群集は嫌気性微生物群集に比べて多様な有機物の分解能があると考えられている。このため、好気性微生物群集を利用した好気性生物処理は、複雑な高分子(ポリマー)化合物を含む排水(例えば食品排水)を処理するのに適している。また、嫌気性生物処理では高分子の有機物の加水分解速度が遅いため、一般には、水理学的滞留時間を30日以上とする必要がある。これに対し、好気性生物処理の標準的な水理学的滞留時間は0.5日程度と短い。   Aerobic microbial communities are thought to have a variety of organic matter resolution compared to anaerobic microbial communities. For this reason, the aerobic biological treatment using the aerobic microbial community is suitable for treating wastewater (for example, food wastewater) containing a complex polymer compound. In addition, since the rate of hydrolysis of high molecular organic substances is slow in anaerobic biological treatment, it is generally necessary to set the hydraulic residence time to 30 days or longer. In contrast, the standard hydraulic residence time for aerobic biological treatment is as short as about 0.5 days.

近年、半導体製造工場のように純水を使用しその排水を排出する設備等で、有機物を含む排水を生物処理し、その処理水を純水製造の原料として用いる水回収が進んでいる。このような水回収を行う有機物含有水の生物処理では、従来、好気性生物処理が用いられている。好気性生物処理の際には、好気性微生物を担体に固定することで生物処理槽の微生物保持量を多くして処理速度を高くすることも多い(例えば特許文献1)。担体を使用する場合、例えば生物処理槽あたりの有機物除去速度を1〜2kg−COD/m/day程度に高めることができる。 In recent years, water recovery has been progressing in which wastewater containing organic matter is biologically treated using facilities such as semiconductor manufacturing plants that use pure water to discharge the wastewater, and the treated water is used as a raw material for producing pure water. Conventionally, aerobic biological treatment is used in the biological treatment of organic-containing water that performs such water recovery. In the aerobic biological treatment, the treatment rate is often increased by increasing the amount of microorganisms retained in the biological treatment tank by immobilizing aerobic microorganisms on a carrier (for example, Patent Document 1). When using a support | carrier, the organic substance removal rate per biological treatment tank can be raised to about 1-2 kg-COD / m < 3 > / day, for example.

このような生物処理により得られた処理液を純水製造に再利用する場合、処理液を固液分離装置で処理して微生物体を分離した後、逆浸透膜分離装置等で脱塩処理する(例えば特許文献2)。
特開平9−187785号公報 特開2007−175582号公報
In the case of reusing the treatment liquid obtained by such biological treatment for pure water production, the treatment liquid is treated with a solid-liquid separation device to separate microorganisms, and then desalted with a reverse osmosis membrane separation device or the like. (For example, patent document 2).
JP-A-9-187785 JP 2007-175582 A

上述した通り、排水を純水製造の原水として再利用する際には、一般に膜分離装置による処理が行われる。しかし分離膜は運転条件や被処理水の水質によって目詰まりを生じやすく、特に生物処理液を膜分離すると、微生物自体および微生物が生成した粘質物等が膜面に付着して目詰まりを生じる傾向がある。微生物が生成する粘質物は高分子有機物を主体とする難分解性であり、その生成量は生物処理槽に保持される微生物量にほぼ正比例して増大する。よって、増殖速度が大きい好気性微生物を用いる好気性生物処理では高分子有機物の生成量も多い。特に、担体を添加した生物処理槽を用いる場合、保有微生物量が多くなるため高分子有機物の生成量が多くなる。   As described above, when the waste water is reused as raw water for producing pure water, processing by a membrane separator is generally performed. However, separation membranes are prone to clogging depending on the operating conditions and the quality of the water to be treated. Especially when biological treatment liquid is membrane-separated, microorganisms and mucous substances generated by microorganisms tend to adhere to the membrane surface and cause clogging. There is. The mucilage produced by microorganisms is hardly decomposable mainly composed of high-molecular organic substances, and the amount of production increases almost in direct proportion to the amount of microorganisms retained in the biological treatment tank. Therefore, in the aerobic biological treatment using an aerobic microorganism having a high growth rate, a large amount of macromolecular organic matter is generated. In particular, when a biological treatment tank to which a carrier is added is used, the amount of high-molecular organic substances is increased because the amount of retained microorganisms is increased.

一方、嫌気性微生物は好気性微生物より増殖速度が遅いため、高分子有機物の生成量は比較的少ない。しかし、嫌気性生物処理はそもそも有機物の分解速度が遅いため、被処理水(有機物含有水)に含まれる有機物が分解されきれず、そのまま、またはその分解中間体が処理液に含まれやすい。すなわち、好気性生物処理を行った場合は微生物の生成物により逆浸透膜が汚染される恐れがある。一方、嫌気性生物処理を行った場合は微生物の生成物による膜汚染の恐れは低いものの、処理液に残存した有機物や分解中間体による膜汚染の恐れが高くなる   On the other hand, since anaerobic microorganisms have a slower growth rate than aerobic microorganisms, the amount of macromolecular organic matter produced is relatively small. However, anaerobic biological treatment has a slow organic substance decomposition rate in the first place, so that the organic substance contained in the water to be treated (organic substance-containing water) cannot be completely decomposed, and its decomposition intermediate is easily contained in the treatment liquid. That is, when an aerobic biological treatment is performed, the reverse osmosis membrane may be contaminated by a microbial product. On the other hand, when anaerobic biological treatment is performed, there is a low risk of membrane contamination due to microbial products, but there is a high risk of membrane contamination due to organic substances remaining in the processing solution and decomposition intermediates.

また、排水を生物処理した後、処理液に含まれる微生物体を分離する場合、凝集沈殿や加圧浮上では分離が不十分で、分離水に微生物体等が含まれ後段の逆浸透膜を汚染する。特に、生物処理槽に担体を添加している場合、担体を固液分離するためにスクリーン等が必要になるが、表面積を大きくして活性を高めるようにした担体は粒径が小さくスクリーンを目詰まりさせやすく、これを回避するためには複雑な構成の固液分離装置や広い沈殿池が必要になる。   In addition, when the microbial cells contained in the treatment liquid are separated after biological treatment of the wastewater, the separation is insufficient by coagulation sedimentation or pressurized flotation, and the separated water contains microbial organisms and contaminates the reverse osmosis membrane. To do. In particular, when a carrier is added to the biological treatment tank, a screen or the like is required for solid-liquid separation of the carrier. However, a carrier with a large surface area to increase the activity has a small particle size and a screen. In order to avoid clogging, a solid-liquid separation device having a complicated structure and a wide sedimentation basin are required.

これに対し、生物処理した処理液を、生物処理槽内に設けた浸漬膜で固液分離すれば、微生物体等が良好に分離できるので後段の逆浸透膜の汚染を防ぐことはできる。しかし、浸漬膜自体の目詰まりの問題があり、特に、好気性処理を行う場合、微生物が生成した高分子有機物により浸漬膜が詰まり透過水量が低下する問題がある。   On the other hand, if the biologically treated treatment liquid is subjected to solid-liquid separation with an immersion membrane provided in the biological treatment tank, microorganisms and the like can be well separated, and contamination of the subsequent reverse osmosis membrane can be prevented. However, there is a problem of clogging of the submerged membrane itself. In particular, when an aerobic treatment is performed, there is a problem that the permeated water amount is reduced due to clogging of the submerged membrane by a high molecular organic substance generated by microorganisms.

また、有機物含有水に窒素成分が含まれる場合、好気性生物処理過程でアンモニアが酸化されて硝酸を生成し、槽内液のpHが低下するため、中和用のアルカリ添加を要する。これに続いて嫌気性条件下で硝酸の脱窒処理を行う場合はアルカリが生成されpHが上がるため、中和用に酸の添加が必要となる。このように、生物処理過程で中和用に添加された酸またはアルカリは、後段の逆浸透膜の塩類負荷となる。   Further, when the organic substance-containing water contains a nitrogen component, ammonia is oxidized in the aerobic biological treatment process to generate nitric acid, and the pH of the solution in the tank is lowered, so that an alkali for neutralization is required. Subsequently, when denitrification of nitric acid is performed under anaerobic conditions, an alkali is generated and the pH is raised, so that an acid needs to be added for neutralization. Thus, the acid or alkali added for neutralization in the biological treatment process becomes a salt load on the reverse osmosis membrane in the latter stage.

このように、有機物含有水を生物処理して純水製造に再利用する場合、排水処理プロセスが逆浸透膜による処理に悪影響を与えることがあった。本発明は、かかる課題に対し、有機物含有水の生物処理において、処理水を純水製造用水として再利用する際の逆浸透膜による処理がスムーズに行える方法および装置を提供することを目的とする。   As described above, when the organic substance-containing water is biologically treated and reused for producing pure water, the wastewater treatment process may adversely affect the treatment by the reverse osmosis membrane. The present invention has an object to provide a method and an apparatus capable of smoothly performing a treatment with a reverse osmosis membrane when reusing treated water as pure water production water in biological treatment of organic matter-containing water. .

有機物の嫌気性生物処理は、酸生成菌群による有機物からの酸生成工程と、メタン生成菌群による酸からのメタン生成工程とに分けられる。本発明者らは、膜汚染の原因物質となる高分子の有機物は、主として酸生成工程に関与する酸生成菌群に代謝されることを見出した。そこで、酸生成菌群による酸生成工程を経ずにメタン生成を行わせることで上記課題を解決することを着想し、本発明を完成させた。具体的には、本発明は以下を提供する。   Anaerobic biological treatment of organic substances is divided into an acid production process from organic substances by acid-producing bacteria and a methane production process from acids by methanogenic bacteria. The present inventors have found that high-molecular organic substances that cause membrane contamination are metabolized mainly to acid-producing bacteria that are involved in the acid-generating process. Therefore, the present invention was completed by conceiving that the above-mentioned problem can be solved by causing methane generation without an acid generation step by the acid-producing bacteria group. Specifically, the present invention provides the following.

(1) 有機物含有水を嫌気性生物処理槽に導入し、 前記嫌気性生物処理槽内のメタン生成菌群により嫌気性生物処理し、 前記嫌気性生物処理により得られた処理液を好気性生物処理せずに膜分離し、 前記膜分離により得られた分離水を逆浸透膜で処理する有機物含有水の生物処理方法。
(2) 前記有機物含有水は、全有機物炭素に対するモノマー有機物の割合が70%以上からなる(1)に記載の有機物含有水の生物処理方法。
(3) 槽内液の温度を15℃以上40℃以下として前記嫌気性処理を行う(1)または(2)に記載の有機物含有水の生物処理方法。
(4) 前記処理液を、前記嫌気性処理過程で加温された状態のまま前記膜分離および前記逆浸透膜処理に供する(3)に記載の有機物含有水の生物処理方法。
(5) 前記モノマー有機物は、テトラメチルアンモニウムヒドロキシド、モノエタノールアミン、ジエチレングリコールモノブチルエーテル、イソプロピルアルコール、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドおよび酢酸からなる群より選ばれるいずれか1以上である(1)から(4)のいずれかに記載の有機物含有水の生物処理方法。
(6) 有機物含有水が導入されメタン生成菌群によりメタン生成を行う嫌気性生物処理槽と、 前記嫌気性生物処理槽と接続され前記嫌気性生物処理槽から排出された処理液を膜分離する膜分離装置と、 前記膜分離装置の分離水を処理する逆浸透膜装置と、を備える有機物含有水の生物処理装置。
(7) 前記有機物含有水は、全有機物炭素に対するモノマー有機物の割合が70%以上からなる(6)に記載の有機物含有水の生物処理装置。
(8) 前記嫌気性処理槽は、槽内液の温度を15℃以上40℃以下として運転され、
前記処理液は、前記嫌気性処理槽で加温された状態で前記膜分離装置および前記逆浸透膜装置に供給されるよう構成されている(6)または(7)に記載の有機物含有水の生物処理装置。
(9) 前記逆浸透膜装置の透過水から熱回収を行い、回収された熱で前記嫌気性処理槽を加温する熱回収加熱装置をさらに備える(8)に記載の有機物含有水の生物処理装置。
(10) 前記膜分離装置は、精密濾過膜または限外濾過膜を備える(6)から(9)のいずれかに記載の有機物含有水の生物処理装置。
(11) 前記嫌気性生物処理槽で発生したバイオガスを前記膜分離装置に供給して前記膜分離装置を曝気洗浄する洗浄装置をさらに備える(6)から(10)のいずれかに記載の有機物含有水の生物処理装置。
(1) Water containing organic matter is introduced into an anaerobic biological treatment tank, anaerobic biological treatment is performed by a group of methanogens in the anaerobic biological treatment tank, and the treatment liquid obtained by the anaerobic biological treatment is treated as an aerobic organism. A biological treatment method for water containing organic matter, wherein membrane separation is performed without treatment, and the separated water obtained by the membrane separation is treated with a reverse osmosis membrane.
(2) The biological treatment method for organic matter-containing water according to (1), wherein the organic matter-containing water comprises 70% or more of the monomeric organic matter relative to the total organic carbon.
(3) The biological treatment method for organic matter-containing water according to (1) or (2), wherein the anaerobic treatment is performed at a temperature of the liquid in the tank of 15 ° C. or higher and 40 ° C. or lower.
(4) The biological treatment method for organic matter-containing water according to (3), wherein the treatment liquid is subjected to the membrane separation and the reverse osmosis membrane treatment while being heated in the anaerobic treatment process.
(5) The monomer organic substance is any one or more selected from the group consisting of tetramethylammonium hydroxide, monoethanolamine, diethylene glycol monobutyl ether, isopropyl alcohol, dimethylacetamide, dimethylformamide, dimethylsulfoxide and acetic acid (1) To (4). The biological treatment method for organic substance-containing water according to any one of (4).
(6) An anaerobic biological treatment tank in which organic substance-containing water is introduced and methane is produced by the methanogenic bacteria group, and a treatment liquid connected to the anaerobic biological treatment tank and discharged from the anaerobic biological treatment tank is subjected to membrane separation. A biological treatment apparatus for organic matter-containing water, comprising: a membrane separation apparatus; and a reverse osmosis membrane apparatus for treating separated water of the membrane separation apparatus.
(7) The biological treatment apparatus for organic matter-containing water according to (6), wherein the organic matter-containing water has a ratio of monomer organic matter to total organic matter carbon of 70% or more.
(8) The anaerobic treatment tank is operated with the temperature of the liquid in the tank being 15 ° C or higher and 40 ° C or lower,
The treatment liquid is configured to be supplied to the membrane separation device and the reverse osmosis membrane device in a state of being heated in the anaerobic treatment tank, and the organic substance-containing water according to (6) or (7) Biological treatment equipment.
(9) The biological treatment of organic matter-containing water according to (8), further comprising a heat recovery heating device that recovers heat from the permeated water of the reverse osmosis membrane device and warms the anaerobic treatment tank with the recovered heat. apparatus.
(10) The biological treatment apparatus for organic matter-containing water according to any one of (6) to (9), wherein the membrane separation device includes a microfiltration membrane or an ultrafiltration membrane.
(11) The organic matter according to any one of (6) to (10), further comprising a cleaning device that supplies biogas generated in the anaerobic biological treatment tank to the membrane separation device to aerate and clean the membrane separation device. Biological treatment equipment for contained water.

本明細書において、「全有機物炭素」とは水中に含まれる各種有機態炭素化合物を総称するものとし、不揮発性有機物のみならず、一般的なTOC計では測定されない揮発性有機物も含むものとする。「モノマー有機物」とは、排水中に含まれる種々の有機物のうち微生物が直接吸収できる程度の低分子の有機物を総称するものとする。「モノマー有機物」に対して、微生物の細胞壁を通過できず菌体外酵素により分解されるような有機物は一般に有機物同士が重合され分子量が大きく、本明細書では「モノマー有機物」はこのような高分子有機物を除く有機物を指す語として用いる。モノマー有機物の具体例としては、メタン生成菌群の基質として利用される低分子有機物(例えば蟻酸、酢酸、メタノール、メチルアミン等)やテトラメチルアンモニウムヒドロキシド、モノエタノールアミン、ジエチレングリコールモノブチルエーテル、イソプロピルアルコール、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドが挙げられる。本発明では、特に、モノマー有機物としてのメチル基を有する化合物(テトラメチルアンモニウム、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド)の含有割合が高い有機物含有水が好適な処理対象となる。   In this specification, “total organic carbon” is a general term for various organic carbon compounds contained in water, and includes not only non-volatile organic substances but also volatile organic substances that are not measured by a general TOC meter. “Monomer organic substance” is a generic term for organic substances of low molecular weight that can be directly absorbed by microorganisms among various organic substances contained in waste water. In contrast to “monomer organic matter”, organic matter that cannot pass through the cell wall of microorganisms and is decomposed by extracellular enzymes generally has a large molecular weight because the organic matter is polymerized. In this specification, “monomer organic matter” It is used as a term that refers to organic substances excluding molecular organic substances. Specific examples of monomeric organic substances include low molecular weight organic substances (eg, formic acid, acetic acid, methanol, methylamine, etc.), tetramethylammonium hydroxide, monoethanolamine, diethylene glycol monobutyl ether, isopropyl alcohol, which are used as substrates for methanogens. , Dimethylacetamide, dimethylformamide, and dimethylsulfoxide. In the present invention, organic substance-containing water having a high content ratio of a compound having a methyl group (tetramethylammonium, dimethylacetamide, dimethylformamide, dimethylsulfoxide) as a monomer organic substance is a suitable treatment target.

本発明では、被処理水中の有機物をメタン生成菌群により嫌気性生物処理する。被処理水中の有機物組成はモノマー有機物が主となるように設定することが好ましい。モノマー有機物は、メタン生成菌群により生物分解されるため、被処理水の性状をモノマー有機物主体とすることで、被処理水中の有機物を良好に生物分解して処理液への有機物の残留を抑制し、後段の分離膜の汚染を防止できる。また、本発明では、特に、モノマー有機物としてメチル基を有する化合物(テトラメチルアンモニウム、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド)の含有割合が高い有機物含有水を処理対象とすることにより酸生成菌群による膜汚染物質の生成を抑制することで、高分子有機物による膜汚染を防止する。   In the present invention, the organic matter in the water to be treated is treated with an anaerobic organism by the methanogen group. It is preferable that the organic composition in the water to be treated is set so as to be mainly composed of monomeric organic substances. Monomer organic matter is biodegraded by the methanogen group, so the nature of the treated water is mainly composed of monomeric organic matter, so that the organic matter in the treated water can be successfully biodegraded to prevent residual organic matter in the treatment liquid. In addition, contamination of the subsequent separation membrane can be prevented. Further, in the present invention, in particular, depending on the acid-producing bacteria group, an organic substance-containing water having a high content of a compound having a methyl group (tetramethylammonium, dimethylacetamide, dimethylformamide, dimethylsulfoxide) as a monomer organic substance is treated. Suppressing the production of membrane contaminants prevents membrane contamination by polymeric organic matter.

なお、メタン生成菌群を主体とする嫌気性処理では硝化反応は実質的に起こらない。このため、被処理水に窒素化合物が含まれる場合、窒素成分は生物処理工程で脱窒されず逆浸透膜装置に持ち込まれる。よって、被処理水に窒素化合物が含まれない方が逆浸透膜装置の負荷は低くできる。一方で、被処理水に窒素化合物が含まれ逆浸透膜装置に供給される液に窒素成分が含まれる場合、逆浸透膜で濃縮された窒素成分が逆浸透膜装置での微生物の増殖を抑制する可能性があることを本発明者らは見出した。そこで、逆浸透膜装置で微生物が増殖しやすい条件(例えば被処理水に高分子有機物が10〜30%程度含まれるような場合)では、被処理水に積極的に窒素化合物を含ませてもよい。   In the anaerobic treatment mainly composed of methanogens, the nitrification reaction does not occur substantially. For this reason, when a nitrogen compound is contained in to-be-processed water, a nitrogen component is not denitrified by a biological treatment process, but is brought into a reverse osmosis membrane apparatus. Therefore, the load of the reverse osmosis membrane device can be reduced when the water to be treated does not contain a nitrogen compound. On the other hand, when nitrogen compounds are contained in the water to be treated and the liquid supplied to the reverse osmosis membrane device contains nitrogen components, the nitrogen component concentrated in the reverse osmosis membrane suppresses the growth of microorganisms in the reverse osmosis membrane device. The inventors have found that this is possible. Therefore, under conditions where microorganisms are likely to grow in the reverse osmosis membrane device (for example, when about 10 to 30% of high molecular organic substances are contained in the water to be treated), the water to be treated may be positively incorporated with nitrogen compounds. Good.

嫌気性生物処理槽内で、被処理水中の有機物を良好に生物分解させ、後段の膜汚染を防止するためには、被処理水中の有機物に占めるモノマー有機物の割合は高い方が良い。被処理水中にバクテリアや高分子の有機物が含まれる場合、これらを基質とする酸生成菌群の生物分解が起こり、膜汚染の原因となる可溶性の高分子有機物が生成される。酸生成菌群の代謝物は、15℃未満または40℃を超えると30%程度しか分解されないものの、15℃以上40℃以下であれば90%程度が分解される。よって、嫌気性生物処理槽を15℃以上40℃以下とすれば、モノマー有機物以外の有機物の含有量が比較的高くても、膜汚染を防止できる。   In order to satisfactorily biodegrade the organic matter in the water to be treated in the anaerobic biological treatment tank and prevent subsequent membrane contamination, the proportion of the monomer organic matter in the organic matter in the water to be treated is preferably high. When bacteria or high-molecular organic substances are contained in the water to be treated, biodegradation of acid-producing bacteria using these as substrates occurs, and soluble high-molecular organic substances that cause membrane contamination are generated. The metabolite of the acid-producing bacteria group is decomposed only about 30% when it is less than 15 ° C or exceeds 40 ° C, but about 90% is decomposed when it is 15 ° C or more and 40 ° C or less. Therefore, if the anaerobic biological treatment tank is set to 15 ° C. or higher and 40 ° C. or lower, film contamination can be prevented even if the content of organic substances other than the monomer organic substances is relatively high.

温度条件は30℃以上40℃以下が特に好ましい。上述した通り、温度条件により酸生成菌群の代謝物の分解効率が違うため、温度条件によって被処理水の性状を代えてもよい。具体的には、温度条件が15℃以上30℃未満であれば、被処理水中の有機物に占めるモノマー有機物の割合は75%以上とするとよい。また、温度条件が15℃未満または40℃を超える場合はモノマー有機物の割合を90%以上とするとよい。   The temperature condition is particularly preferably 30 ° C. or higher and 40 ° C. or lower. As described above, since the decomposition efficiency of the metabolite of the acid-producing bacteria group differs depending on the temperature condition, the property of the water to be treated may be changed depending on the temperature condition. Specifically, when the temperature condition is 15 ° C. or higher and lower than 30 ° C., the ratio of the monomer organic matter to the organic matter in the water to be treated is preferably 75% or more. Moreover, when temperature conditions are less than 15 degreeC or exceeds 40 degreeC, it is good to make the ratio of a monomer organic substance 90% or more.

また、pHが6以上9以下であれば、酸生成菌群の代謝物は良好に分解されるが、pHがこの範囲外であればその分解率は30%程度に低下する。よって、嫌気性生物処理槽の槽内液のpHは6以上9以下に調整することが好ましいが、酸生成菌群の代謝物の生成が少ない場合、つまりモノマー有機物の割合が十分に高い(実質100%)場合など、pHを調整しなくてもよい場合もある。   Further, if the pH is 6 or more and 9 or less, metabolites of the acid-producing bacteria group are decomposed well, but if the pH is outside this range, the decomposition rate is reduced to about 30%. Therefore, it is preferable to adjust the pH of the liquid in the anaerobic biological treatment tank to 6 or more and 9 or less, but when the amount of metabolites of the acid-producing bacteria group is small, that is, the ratio of the monomer organic substance is sufficiently high (substantially In some cases, the pH may not be adjusted.

なお、本発明は半導体のほか、液晶ディスプレイ等の電子産業工場の製造プロセス排水に適用することによって、食品工場排水や下水処理場排水のように高分子成分や雑多な化合物が含まれることなく、嫌気性生物処理で効率よく処理を行うことが可能である。この他に化学工場排水のように水中に含まれる有機物とその濃度が比較的明らかな排水を対象に適用することができる。これらの排水は、組成が明確であるためラボ実験によって処理能力を知ることができるというメリットがある。   In addition to semiconductors, the present invention can be applied to manufacturing process wastewater of an electronic industry factory such as a liquid crystal display, so that it does not contain polymer components or miscellaneous compounds like food factory wastewater or wastewater treatment plant wastewater. It is possible to perform processing efficiently by anaerobic biological treatment. In addition to this, organic substances contained in water and wastewater whose concentration is relatively clear, such as chemical factory wastewater, can be applied to the target. Since these wastewaters have a clear composition, there is an advantage that the treatment capacity can be known by laboratory experiments.

本発明では、被処理水中の有機物をモノマー有機物主体とすることで、酸生成菌群による代謝物の生成を抑制し、メタン生成菌群により有機物を分解する。本発明では、嫌気性生物処理後に好気性生物処理を行うことなく、有機物が十分に分解された生物処理液を得ることができる。よって、酸生成菌群および好気性微生物群集による高分子有機物の生成を抑制するとともに、処理液中の残存有機物量を低減できる。このため、生物処理工程後段で膜分離を行う際の分離膜の汚染を防止できる。   In the present invention, the organic matter in the water to be treated is mainly composed of monomeric organic matter, thereby suppressing the production of metabolites by the acid-producing bacteria group and decomposing the organic substance by the methanogenic bacteria group. In the present invention, a biological treatment liquid in which organic matter is sufficiently decomposed can be obtained without performing an aerobic biological treatment after an anaerobic biological treatment. Therefore, it is possible to suppress the production of high-molecular organic substances by the acid-producing bacteria group and the aerobic microorganism community, and to reduce the amount of remaining organic substances in the treatment liquid. For this reason, it is possible to prevent contamination of the separation membrane when performing membrane separation in the latter stage of the biological treatment process.

以下、本発明について図面を用いて詳細に説明する。以下、同一部材については同一符号を付し、説明を省略または簡略化する。   Hereinafter, the present invention will be described in detail with reference to the drawings. Hereinafter, the same members are denoted by the same reference numerals, and description thereof is omitted or simplified.

図1は、本発明に用いられる有機物含有水の生物処理装置(以下、単に「処理装置」という)1の模式図である。処理装置1は、嫌気性生物処理槽(以下、「リアクタ」)10、膜分離装置12、逆浸透膜装置14を含む。リアクタ10の入口には、原水管30が接続されている。リアクタ10は、処理液管32を介して膜分離装置12と接続され、膜分離装置12は分離水管34を介して逆浸透膜装置14と接続されている。逆浸透膜装置14の出口には、透過水管36が接続されている。   FIG. 1 is a schematic view of a biological treatment apparatus (hereinafter simply referred to as “treatment apparatus”) 1 for organic substance-containing water used in the present invention. The treatment apparatus 1 includes an anaerobic biological treatment tank (hereinafter “reactor”) 10, a membrane separation device 12, and a reverse osmosis membrane device 14. A raw water pipe 30 is connected to the inlet of the reactor 10. The reactor 10 is connected to the membrane separation device 12 via a treatment liquid pipe 32, and the membrane separation device 12 is connected to the reverse osmosis membrane device 14 via a separation water pipe 34. A permeate pipe 36 is connected to the outlet of the reverse osmosis membrane device 14.

原水管30の途中には第1熱交換器21が設けられ、透過水管36の途中には第2熱交換器22が設けられている。第1熱交換器21と第2熱交換器22とは流体管39で接続され、熱交換に用いられる流体を第1熱交換器21と第2熱交換器22との間で循環させる。第1熱交換器21、第2熱交換器22、および流体管39は熱回収加熱装置を構成している。   A first heat exchanger 21 is provided in the middle of the raw water pipe 30, and a second heat exchanger 22 is provided in the middle of the permeated water pipe 36. The first heat exchanger 21 and the second heat exchanger 22 are connected by a fluid pipe 39, and a fluid used for heat exchange is circulated between the first heat exchanger 21 and the second heat exchanger 22. The first heat exchanger 21, the second heat exchanger 22, and the fluid pipe 39 constitute a heat recovery heating device.

リアクタ10には、排泥管35とガス排管31が接続されている。排泥管35からは、リアクタ10内の余剰汚泥が取り出され、リアクタ10内で発生したガスはガス排管31から取り出される。ガス排管31は膜分離装置12に接続され、膜分離装置12内に設けられた分離膜(図示せず)を曝気洗浄するように構成され、洗浄装置として機能する。また、膜分離装置12には出口端がリアクタ10に接続された返送管33も接続されている。逆浸透膜装置14には、濃縮側にブライン管37が接続されている。   A sludge pipe 35 and a gas exhaust pipe 31 are connected to the reactor 10. Excess sludge in the reactor 10 is taken out from the waste mud pipe 35, and gas generated in the reactor 10 is taken out from the gas exhaust pipe 31. The gas exhaust pipe 31 is connected to the membrane separation device 12 and is configured to aeration-clean a separation membrane (not shown) provided in the membrane separation device 12 and functions as a cleaning device. Further, a return pipe 33 whose outlet end is connected to the reactor 10 is also connected to the membrane separation device 12. A brine tube 37 is connected to the reverse osmosis membrane device 14 on the concentration side.

本発明では、原水管30からは被処理水をリアクタ10に供給する。望ましくはモノマー有機物が有機物全体の70%以上を占める被処理水をリアクタ10に供給する。リアクタ10の好適な運転条件は、上述した通り、pH6〜9、温度15〜40℃特に30〜40℃である。このような条件であれば、メタン生成菌群の基質とならない高分子の有機物が多少、含まれる場合にも酸生成菌群代謝物による膜汚染を防止できる。   In the present invention, treated water is supplied from the raw water pipe 30 to the reactor 10. Desirably, to-be-treated water in which the monomer organic matter accounts for 70% or more of the whole organic matter is supplied to the reactor 10. Suitable operating conditions for the reactor 10 are, as described above, pH 6-9, temperature 15-40 ° C, especially 30-40 ° C. Under such conditions, membrane contamination by acid-producing fungal group metabolites can be prevented even when there are some high-molecular organic substances that do not serve as substrates of methanogenic bacterial groups.

リアクタ10内のメタン生成菌群はグラニュール状または浮遊性のどちらの状態であってもよいが、メタン生成菌群は、酸生成菌群に比べて粘質物を生成しにくいためグラニュール汚泥を形成しにくい。このため、リアクタ10から排出される処理液にはリアクタ10内の汚泥が含まれやすい。   The methanogen group in the reactor 10 may be in either a granular state or a floating state. However, since the methanogen group is less prone to produce sticky matter than the acid-producing group, granule sludge is used. Hard to form. For this reason, the treatment liquid discharged from the reactor 10 is likely to contain sludge in the reactor 10.

本発明ではリアクタ10後段に膜分離装置12を設けるため、処理液に含まれる微生物体を良好に固液分離できる。膜分離装置12は、本実施形態のようにリアクタ10とは別に設けられていることが好ましい。膜は、限外濾過膜(UF膜)または精密濾過膜(MF膜)を用いればよく、一般的なメタン生成菌の直径より孔径が小さいことが好ましく、具体的には孔径が100nm以下程度であることが好ましい。   In the present invention, since the membrane separation device 12 is provided at the rear stage of the reactor 10, the microorganisms contained in the treatment liquid can be solid-liquid separated satisfactorily. The membrane separation device 12 is preferably provided separately from the reactor 10 as in this embodiment. The membrane may be an ultrafiltration membrane (UF membrane) or a microfiltration membrane (MF membrane), and preferably has a pore size smaller than the diameter of a general methanogen, specifically, a pore size of about 100 nm or less. Preferably there is.

膜分離装置12のモジュール形式は特に限定されないが、リアクタ10から送液される汚泥が膜分離装置12の内部で閉塞又は滞留しにくいように構成されていることが好ましく、例えばチューブラ形式や平膜形式を好適に使用できる。また、処理液中の液分と固形分とを分離する分離膜は、本実施形態のようにリアクタ10外に設ける、いわゆる槽外型とすれば膜面流速のコントロールが容易であるため膜面の汚れ防止の観点から好ましい。   The module type of the membrane separation device 12 is not particularly limited, but is preferably configured so that the sludge sent from the reactor 10 is less likely to block or stay inside the membrane separation device 12, such as a tubular type or a flat membrane. The format can be suitably used. Further, if the separation membrane for separating the liquid content and the solid content in the processing liquid is provided outside the reactor 10 as in the present embodiment, so-called outside tank type, the membrane surface flow rate can be easily controlled. It is preferable from the viewpoint of prevention of contamination.

本実施態様では、膜分離装置12にはガス排管31が接続されており、リアクタ10からは処理液が生成ガスとともに膜分離装置12に送られる。ガスは、膜分離装置12内の被処理水流路に沿って移動しながら分離膜を曝気洗浄する。膜分離装置12に供給された処理液は装置内を通過する間に固液分離され、透過側から固形分が除去された分離水が装置外へ取り出される。一方、固形分が濃縮された濃縮汚泥液はガスとともに膜分離装置12の被処理液流路内を移動し、返送管33からリアクタ10に返送される。   In the present embodiment, a gas exhaust pipe 31 is connected to the membrane separation device 12, and the treatment liquid is sent from the reactor 10 to the membrane separation device 12 together with the generated gas. The gas aeration-cleans the separation membrane while moving along the water channel to be treated in the membrane separation device 12. The processing liquid supplied to the membrane separation device 12 is separated into solid and liquid while passing through the inside of the device, and separated water from which the solid content has been removed is taken out from the permeation side. On the other hand, the concentrated sludge liquid in which the solid content is concentrated moves in the liquid flow path of the membrane separation device 12 together with the gas, and is returned to the reactor 10 from the return pipe 33.

メタン生成菌群は好気性微生物に比べて増殖速度が遅いが、このような汚泥返送を行ってリアクタ10内の汚泥濃度を4,000〜10,000mg/L程度に維持すれば、好気性の活性汚泥による好気性生物処理を行う場合と同程度の分解速度を得ることができる。よって、汚泥濃度を上記範囲とすれば、リアクタ10の水理学的滞留時間を0.5〜2日程度にできる。リアクタ10からは排泥管35を介して適宜、余剰汚泥を引き抜き、リアクタ10内の汚泥濃度を調整する。   The methanogenic group has a slower growth rate than aerobic microorganisms. However, if such sludge is returned to maintain the sludge concentration in the reactor 10 at about 4,000 to 10,000 mg / L, aerobic microorganisms can be obtained. A decomposition rate comparable to that in the case of performing aerobic biological treatment with activated sludge can be obtained. Therefore, if the sludge concentration is within the above range, the hydraulic residence time of the reactor 10 can be set to about 0.5 to 2 days. The excess sludge is appropriately extracted from the reactor 10 through the sludge pipe 35, and the sludge concentration in the reactor 10 is adjusted.

膜分離装置12で固形分が分離された分離水は、膜分離装置12の後段に設けられた逆浸透膜装置14で脱塩して純水製造の原水として利用する。本実施形態ではリアクタ10は30〜40℃で運転され、処理液の温度も30〜40℃である。ここではリアクタ10から排出された処理液を好気性処理せず、人為的に温度降下もさせず、膜分離装置12および逆浸透膜装置14に送る。30℃前後の液は逆浸透膜分離が容易なので、リアクタ10からの処理液を温かい状態で逆浸透膜装置14に送ることで、逆浸透膜装置14のフラックスを高くできる。   The separated water from which the solid content has been separated by the membrane separation device 12 is desalted by the reverse osmosis membrane device 14 provided at the subsequent stage of the membrane separation device 12 and used as raw water for pure water production. In this embodiment, the reactor 10 is operated at 30 to 40 ° C., and the temperature of the treatment liquid is also 30 to 40 ° C. Here, the treatment liquid discharged from the reactor 10 is sent to the membrane separation device 12 and the reverse osmosis membrane device 14 without being subjected to an aerobic treatment and without causing a temperature drop artificially. Since the liquid at around 30 ° C. is easily separated by reverse osmosis membrane, the flux of the reverse osmosis membrane device 14 can be increased by sending the treatment liquid from the reactor 10 to the reverse osmosis membrane device 14 in a warm state.

逆浸透膜装置14から取り出された液は、依然として温かい。そこで、本実施態様では透過水を取り出す透過水管36の途中に設けた第2熱交換器22で透過水を熱交換して熱回収を行う。第2熱交換器22での熱交換により温められた熱交換媒体は流体管39を介して第1熱交換器21に送る。第1熱交換器21では、温められた熱交換媒体で原水管30から送られる原水を加温してリアクタ10に送る。   The liquid removed from the reverse osmosis membrane device 14 is still warm. Therefore, in this embodiment, heat is recovered by exchanging the permeated water with the second heat exchanger 22 provided in the middle of the permeated water pipe 36 for extracting the permeated water. The heat exchange medium warmed by the heat exchange in the second heat exchanger 22 is sent to the first heat exchanger 21 via the fluid pipe 39. In the 1st heat exchanger 21, the raw | natural water sent from the raw | natural water pipe 30 is heated with the warmed heat exchange medium, and it sends to the reactor 10. FIG.

逆浸透膜装置14で処理され、塩類が除去された透過水は、純水製造用の原水として利用できる。具体的には、逆浸透膜装置14の後段に脱炭酸装置やイオン交換装置、紫外線殺菌装置等の純水製造装置を構成する機器類を配置し、これら機器類を用いて逆浸透膜装置14から取り出した透過水を処理することで純水が製造できる。濃縮水は別途、処理すれば透過水と同様、水回収できる。   The permeated water that has been treated by the reverse osmosis membrane device 14 and from which salts have been removed can be used as raw water for producing pure water. Specifically, devices constituting a pure water production apparatus such as a decarboxylation device, an ion exchange device, and an ultraviolet sterilization device are arranged after the reverse osmosis membrane device 14, and the reverse osmosis membrane device 14 is used by using these devices. Pure water can be produced by treating the permeated water taken out from the water. If the concentrated water is treated separately, water can be recovered in the same manner as the permeated water.

[実施例1]
実施例1として、図1に示す処理装置1を模した実験装置による実験を行った。実験装置のリアクタ10は有効容積1m、水理学的滞留時間は0.5日で運転した。リアクタ10内には、メタノールを処理する嫌気性リアクタから取り出したグラニュール汚泥を後述する被処理液で馴養し浮遊性汚泥を保持させた。リアクタ10内の浮遊性汚泥の濃度は4,000mg/Lで、現存量(湿重量比較)の40%がメタン生成菌群、60%がメタン生成菌群の自己消化残渣であった。
[Example 1]
As Example 1, an experiment using an experimental apparatus simulating the processing apparatus 1 shown in FIG. The reactor 10 of the experimental apparatus was operated with an effective volume of 1 m 3 and a hydraulic residence time of 0.5 days. In the reactor 10, granular sludge taken out from an anaerobic reactor for treating methanol was conditioned with a liquid to be treated, which will be described later, to hold floating sludge. The concentration of airborne sludge in the reactor 10 was 4,000 mg / L, and 40% of the existing amount (wet weight comparison) was a self-digesting residue of the methanogen group and 60% of the methanogen group.

被処理水としては全有機物炭素濃度750mg/L、窒素濃度218mg/L、リン濃度1.0mg−P/Lの有機物含有水を用いた。全有機物の組成は、テトラメチルアンモニウムヒドロキシド濃度250mg/L、モノエタノールアミン濃度250mg/L、酢酸濃度250mg/Lであり、モノマー有機物の含有割合は、全有機物炭素に対して実質100%であった。   As the water to be treated, organic substance-containing water having a total organic carbon concentration of 750 mg / L, a nitrogen concentration of 218 mg / L, and a phosphorus concentration of 1.0 mg-P / L was used. The composition of the total organic matter was a tetramethylammonium hydroxide concentration of 250 mg / L, a monoethanolamine concentration of 250 mg / L, and an acetic acid concentration of 250 mg / L. The monomer organic content was substantially 100% of the total organic carbon. It was.

被処理水は加温して、リアクタ10内の槽内液の温度が35℃となるようにするとともに、槽内液のpHが7.5となるように調整した。膜分離装置12内には、直径0.52cmのチューブ状UF膜(孔径30nm)を104本、配置し、チューブ内にリアクタ10から排出された生物処理液をガスとともに流入させ、濃縮液とガスはリアクタ10に戻した。膜分離装置12の透過水量(フラックス)は1.0m/dayとした。   The water to be treated was heated so that the temperature of the liquid in the tank in the reactor 10 was 35 ° C., and the pH of the liquid in the tank was adjusted to 7.5. 104 membrane-shaped UF membranes (pore diameter: 30 nm) having a diameter of 0.52 cm are arranged in the membrane separation device 12, and the biological treatment liquid discharged from the reactor 10 is caused to flow into the tube together with the gas. Was returned to the reactor 10. The amount of permeated water (flux) of the membrane separator 12 was 1.0 m / day.

上記条件で30日間の実験を継続したところ、膜分離装置12のフラックスは上記値を維持でき、通水抵抗は最大で30kPaであった。膜分離装置12から得られた分離水のTOC濃度は実験期間中、3〜4mg/Lの範囲にありTOC除去率は99.5%であった。また、この分離水を逆浸透膜装置14(逆浸透膜として全芳香族ポリアミド系の超低圧膜を備えたスパイラル式のもの)により750kPaで脱塩処理したところ、20時間経過後の透過水量は通水開始時の90%を維持していた。   When the experiment for 30 days was continued under the above conditions, the flux of the membrane separation device 12 was able to maintain the above value, and the water flow resistance was 30 kPa at the maximum. The TOC concentration of the separated water obtained from the membrane separator 12 was in the range of 3 to 4 mg / L during the experiment period, and the TOC removal rate was 99.5%. Further, when this separated water was desalted at 750 kPa with a reverse osmosis membrane device 14 (spiral type having a wholly aromatic polyamide ultra-low pressure membrane as a reverse osmosis membrane), the amount of permeated water after 20 hours passed was 90% at the start of water flow was maintained.

[実施例2]
実施例2では、実施例1で用いたUF膜に代え、孔径400nmのMF膜を用いた。その他は実施例1と同様の条件で実験を行ったところ、MF膜を取り付けた膜分離装置からの分離水のTOC濃度は実施例1と同様に3〜4mg/Lの範囲であった。また、膜分離装置12のフラックスは1.0m/dayを維持し、分離水を実施例1と同様に逆浸透膜装置14で処理した場合のフラックスは、通水開始から20時間経過後も当初の90%を維持した。一方、通水抵抗は最大で40kPaとなり、実施例1より高かった。リアクタ10内の汚泥は、メタン生成菌群の平均直径が800nmであったことから、MF膜を用いた場合はメタン生成菌が分離膜の孔に詰まって膜の閉塞を招いたものと推察された。
[Example 2]
In Example 2, instead of the UF membrane used in Example 1, an MF membrane having a pore diameter of 400 nm was used. Other than that, the experiment was conducted under the same conditions as in Example 1. As a result, the TOC concentration of the separated water from the membrane separation apparatus equipped with the MF membrane was in the range of 3 to 4 mg / L. Further, the flux of the membrane separation device 12 is maintained at 1.0 m / day, and the flux when the separated water is treated by the reverse osmosis membrane device 14 in the same manner as in Example 1 is the original after 20 hours from the start of water flow. Of 90%. On the other hand, the maximum water resistance was 40 kPa, which was higher than Example 1. As the sludge in the reactor 10 had an average diameter of the methanogenic bacteria group of 800 nm, it was assumed that when the MF membrane was used, the methanogenic bacteria were clogged in the pores of the separation membrane, causing the membrane to be clogged. It was.

[比較例1]
比較例1では被処理水の性状を変更した。具体的には、実施例1で用いた被処理水に下水汚泥を500mg−TOC/L添加し、全有機物炭素に対するモノマー有機物の割合を58%とした。また、この被処理水を用いることで、リアクタ10内の汚泥組成も変更した。具体的には、比較例1で用いたリアクタ10の浮遊性汚泥は、汚泥濃度8,000mg/Lで現存量(湿重量比較)の20%がメタン生成菌群、酸生成菌群が20%であった。残りの60%は、下水汚泥由来のバクテリアと自己消化残渣であった。
[Comparative Example 1]
In Comparative Example 1, the properties of the water to be treated were changed. Specifically, 500 mg-TOC / L of sewage sludge was added to the treated water used in Example 1, and the ratio of the monomer organic matter to the total organic carbon was 58%. Moreover, the sludge composition in the reactor 10 was also changed by using this treated water. Specifically, the floating sludge of the reactor 10 used in Comparative Example 1 has a sludge concentration of 8,000 mg / L, 20% of the existing amount (wet weight comparison) is a methane-producing fungus group, and an acid-producing fungus group is 20%. Met. The remaining 60% was bacteria derived from sewage sludge and autolysis residue.

このように、被処理水の性状を変更し、リアクタ10内の微生物相を変更させた以外は実施例1と同様の条件で実験を行った。その結果、膜分離装置12のフラックスが徐々に低下するとともに、実験開始から20日後に通水抵抗が30kPaを超えた。比較例1では膜分離装置12の分離水のTOC濃度は18〜43mg/Lであった。   As described above, the experiment was performed under the same conditions as in Example 1 except that the properties of the water to be treated were changed and the microflora in the reactor 10 was changed. As a result, the flux of the membrane separation device 12 gradually decreased, and the water flow resistance exceeded 30 kPa 20 days after the start of the experiment. In Comparative Example 1, the TOC concentration of the separation water in the membrane separation device 12 was 18 to 43 mg / L.

[実施例3]
実施例3として、被処理水に添加する下水汚泥の量を300mg−TOC/Lとした(モノマー有機物の割合約71%)。被処理水性状の変更に伴い、リアクタ10内の汚泥組成も変更した。具体的には、実施例3で用いたリアクタ10の浮遊性汚泥は、汚泥濃度8,000mg/Lで現存量(湿重量比較)の30%がメタン生成菌群、酸生成菌群が30%であった。
[Example 3]
In Example 3, the amount of sewage sludge added to the water to be treated was 300 mg-TOC / L (a monomer organic substance ratio of about 71%). The sludge composition in the reactor 10 was also changed in accordance with the change in the treated water state. Specifically, the floating sludge of the reactor 10 used in Example 3 has a sludge concentration of 8,000 mg / L, 30% of the existing amount (compared with wet weight) is 30% of the methanogenic group, and the acid-producing group of bacteria. Met.

被処理水の性状とリアクタ10内の微生物相を変更させた以外は比較例1と同様の条件で実験を行った。その結果、膜分離装置12のフラックスは実施例1と同様の挙動で、分離水のTOC濃度は3〜5mg/L、分離水を処理した逆浸透膜装置14のフラックスは88%を維持した。   The experiment was performed under the same conditions as in Comparative Example 1 except that the properties of the water to be treated and the microflora in the reactor 10 were changed. As a result, the flux of the membrane separation device 12 behaved in the same manner as in Example 1, the TOC concentration of separated water was 3 to 5 mg / L, and the flux of the reverse osmosis membrane device 14 treated with separated water was maintained at 88%.

上記実験から、被処理水中の有機物の70%以上をモノマー有機物とし、メタン生成菌群を含む汚泥で嫌気性処理を行えば、生物処理の後段での分離膜の目詰まりを防止できることが示された。   From the above experiment, it is shown that if 70% or more of the organic matter in the water to be treated is monomeric organic matter and anaerobic treatment is performed with sludge containing methanogens, clogging of the separation membrane at the later stage of biological treatment can be prevented. It was.

[参考例1]
実施例3において、リアクタ10の槽内液の温度を10℃とした。その結果、膜分離装置12のフラックスは低下し、7日後で通水抵抗が30kPaを超えた。また、これとは別に、リアクタ10の槽内液の温度を50℃にしたところ、同様に、膜分離装置12のフラックスは低下し、3日後で通水抵抗が30kPaを超えた。
[Reference Example 1]
In Example 3, the temperature of the liquid in the tank of the reactor 10 was 10 ° C. As a result, the flux of the membrane separation device 12 decreased, and after 7 days, the water flow resistance exceeded 30 kPa. Separately from this, when the temperature of the liquid in the tank of the reactor 10 was set to 50 ° C., similarly, the flux of the membrane separation device 12 decreased, and the water flow resistance exceeded 30 kPa after 3 days.

[参考例2]
実施例3において、リアクタ10の槽内液のpHを5とした。その結果、膜分離装置12の通水抵抗が急上昇し、10日後で通水抵抗が30kPaを超えた。また、これとは別に、リアクタ10の槽内液のpHを10にしたところ、同様に、膜分離装置12の通水抵抗が急上昇し、8日後で通水抵抗が30kPaを超えた。
[Reference Example 2]
In Example 3, the pH of the liquid in the tank of the reactor 10 was set to 5. As a result, the water flow resistance of the membrane separation device 12 increased rapidly, and the water flow resistance exceeded 30 kPa after 10 days. Separately from this, when the pH of the liquid in the tank of the reactor 10 was set to 10, similarly, the water flow resistance of the membrane separation device 12 rapidly increased, and the water flow resistance exceeded 30 kPa after 8 days.

[比較例2]
比較例2として、リアクタ内部に空気を吹き込む散気装置を設けることで、リアクタを好気性生物処理槽とした。リアクタを好気性に代えた以外は実施例1と同様の条件で実験を行った結果、好気性生物処理槽から流出する処理液のTOC濃度は実施例1と同様に3〜4mg/Lの範囲であった。しかし、膜分離装置12フラックスは、20日間しか所定のフラックスを維持できなかった。また、好気性生物処理槽の槽内液には溶解性TOCが200mg/Lの濃度で含まれていた。一方、実施例1の嫌気性のリアクタの槽内液の溶解性TOC濃度は10mg/L程度であった。このように、比較例2では槽内液中の溶解性TOC濃度は実施例1より高く、溶解性TOCを構成する高分子有機物の量は好気性生物処理槽に導入される被処理水に比べて約60倍になっていた。
[Comparative Example 2]
As Comparative Example 2, the reactor was an aerobic biological treatment tank by providing a diffuser for blowing air into the reactor. As a result of conducting the experiment under the same conditions as in Example 1 except that the reactor was changed to aerobic, the TOC concentration of the treatment liquid flowing out from the aerobic biological treatment tank was in the range of 3 to 4 mg / L as in Example 1. Met. However, the membrane separator 12 flux could maintain a predetermined flux only for 20 days. Further, the solution in the aerobic biological treatment tank contained soluble TOC at a concentration of 200 mg / L. On the other hand, the soluble TOC concentration of the liquid in the tank of the anaerobic reactor of Example 1 was about 10 mg / L. Thus, in Comparative Example 2, the soluble TOC concentration in the liquid in the tank is higher than that in Example 1, and the amount of the polymer organic matter constituting the soluble TOC is higher than that of the water to be treated introduced into the aerobic biological treatment tank. About 60 times.

生物処理槽に導入される被処理水中の有機物に対する汚泥(細菌)の転換率は、好気性微生物については0.3g/gであるのに対し、嫌気性微生物の場合は0.04g/gであった。高分子有機物は最近の自己消化により生成することから、転換率が高いほど高分子有機物が多く生成されたと推定された。   The conversion rate of sludge (bacteria) to organic matter in the water to be treated introduced into the biological treatment tank is 0.3 g / g for aerobic microorganisms and 0.04 g / g for anaerobic microorganisms. there were. Since high-molecular organic substances are produced by recent self-digestion, it was estimated that the higher the conversion rate, the more high-molecular organic substances were produced.

また、比較例2において膜分離装置12で膜分離した分離水を実施例1と同様に逆浸透膜で処理したところ、20時間経過後の透過水量は通水開始時の60%に低下していた。この比較例2と実施例1により、好気性生物処理に代えて、メタン生成菌群による嫌気性生物処理を行うことで、分離膜を汚染する高分子有機物の生成を抑制できることが示された。   Moreover, when the separation water membrane-separated with the membrane separation apparatus 12 in the comparative example 2 was processed with the reverse osmosis membrane similarly to Example 1, the amount of permeated water after 20 hours has fallen to 60% at the time of a water flow start. It was. By this comparative example 2 and Example 1, it was shown that it can replace with an aerobic biological process, and can suppress the production | generation of the high molecular organic substance which pollutes a separation membrane by performing the anaerobic biological process by a methanogen.

さらに、比較例2では好気性生物処理槽の微生物群集には硝化細菌が含まれており、原水中の窒素成分が硝酸に酸化されていた。このため、好気性生物処理槽の槽内液のpHが低下し、処理液の水質が悪化した。そこで、槽内液のpHが5を下回った時点でアルカリを添加してpHを7に調整した。また、一定時間、好気性条件を継続した後、生物処理槽への空気供給を停止して嫌気性条件とすることで脱窒させた。嫌気性条件で脱窒する場合は無機酸を添加し、pHを7にした。このような回分式の脱窒処理を行い、pH調整を行った結果、処理液中の塩類濃度が高くなった。このため、膜分離装置後段の逆浸透膜装置の浸透圧は実施例1に比べて100〜200kPa程度高くなり、逆浸透膜装置による脱塩効率が低下したので、逆浸透膜装置を15〜20%程度、増やす必要が生じた。   Furthermore, in Comparative Example 2, the microbial community in the aerobic biological treatment tank contained nitrifying bacteria, and the nitrogen component in the raw water was oxidized to nitric acid. For this reason, the pH of the liquid in the aerobic biological treatment tank was lowered, and the water quality of the treatment liquid was deteriorated. Therefore, when the pH of the solution in the tank was below 5, the alkali was added to adjust the pH to 7. Moreover, after continuing aerobic conditions for a fixed time, it denitrified by stopping the air supply to a biological treatment tank and setting it as anaerobic conditions. In the case of denitrifying under anaerobic conditions, an inorganic acid was added to adjust the pH to 7. As a result of such batch-type denitrification treatment and pH adjustment, the salt concentration in the treatment liquid increased. For this reason, the osmotic pressure of the reverse osmosis membrane device at the latter stage of the membrane separation device is about 100 to 200 kPa higher than that of Example 1, and the desalination efficiency by the reverse osmosis membrane device is reduced. It was necessary to increase it by about%.

以上の実験から、本発明に従って被処理水をモノマー有機物主体としてメタン生成菌群を含む嫌気汚泥による嫌気性生物処理を行うことで処理液に含まれる高分子有機物や未分解有機物の量を減らし、分離膜の汚染を防止できることが示された。   From the above experiments, according to the present invention, the amount of macromolecular organic matter and undecomposed organic matter contained in the treatment liquid is reduced by performing anaerobic biological treatment with anaerobic sludge containing methanogenic bacteria as the main component of the water to be treated according to the present invention, It was shown that contamination of the separation membrane can be prevented.

本発明は、有機物含有水を生物処理して純水製造に再利用するために用いることができる。   The present invention can be used for biologically treating organic substance-containing water and reusing it for the production of pure water.

本発明に用いられる生物処理装置の模式図。The schematic diagram of the biological treatment apparatus used for this invention.

符号の説明Explanation of symbols

1 生物処理装置
10 嫌気性生物処理槽
12 膜分離装置
14 逆浸透膜装置
21 第1熱交換器(熱回収加熱装置)
22 第2熱交換器(熱回収加熱装置)
DESCRIPTION OF SYMBOLS 1 Biological treatment apparatus 10 Anaerobic biological treatment tank 12 Membrane separation apparatus 14 Reverse osmosis membrane apparatus 21 1st heat exchanger (heat recovery heating apparatus)
22 Second heat exchanger (heat recovery heating device)

Claims (11)

有機物含有水を嫌気性生物処理槽に導入し、
前記嫌気性生物処理槽内のメタン生成菌群により嫌気性生物処理し、
前記嫌気性生物処理により得られた処理液を好気性生物処理せずに膜分離し、
前記膜分離により得られた分離水を逆浸透膜で処理する有機物含有水の生物処理方法。
Introducing water containing organic matter into an anaerobic biological treatment tank,
Anaerobic biological treatment by the methanogen group in the anaerobic biological treatment tank,
Membrane separation without aerobic biological treatment treatment liquid obtained by the anaerobic biological treatment,
The biological treatment method of the organic substance containing water which processes the separated water obtained by the said membrane separation with a reverse osmosis membrane.
前記有機物含有水は、全有機物炭素に対するモノマー有機物の割合が70%以上からなる請求項1に記載の有機物含有水の生物処理方法。   The method for biological treatment of organic matter-containing water according to claim 1, wherein the organic matter-containing water is composed of 70% or more of the monomer organic matter with respect to the total organic carbon. 槽内液の温度を15℃以上40℃以下として前記嫌気性処理を行う請求項1または2に記載の有機物含有水の生物処理方法。   The biological treatment method for organic matter-containing water according to claim 1 or 2, wherein the anaerobic treatment is performed by setting the temperature of the liquid in the tank to 15 ° C or higher and 40 ° C or lower. 前記処理液を、前記嫌気性処理過程で加温された状態のまま前記膜分離および前記逆浸透膜処理に供する請求項3に記載の有機物含有水の生物処理方法。   The biological treatment method for organic matter-containing water according to claim 3, wherein the treatment liquid is subjected to the membrane separation and the reverse osmosis membrane treatment while being heated in the anaerobic treatment process. 前記モノマー有機物は、テトラメチルアンモニウムヒドロキシド、モノエタノールアミン、ジエチレングリコールモノブチルエーテル、イソプロピルアルコール、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドおよび酢酸からなる群より選ばれるいずれか1以上である請求項1から4のいずれかに記載の有機物含有水の生物処理方法。   The monomeric organic substance is at least one selected from the group consisting of tetramethylammonium hydroxide, monoethanolamine, diethylene glycol monobutyl ether, isopropyl alcohol, dimethylacetamide, dimethylformamide, dimethylsulfoxide, and acetic acid. The biological treatment method of the organic substance containing water in any one. 有機物含有水が導入されメタン生成菌群によりメタン生成を行う嫌気性生物処理槽と、
前記嫌気性生物処理槽と接続され前記嫌気性生物処理槽から排出された処理液を膜分離する膜分離装置と、
前記膜分離装置の分離水を処理する逆浸透膜装置と、を備える有機物含有水の生物処理装置。
An anaerobic biological treatment tank in which organic matter-containing water is introduced and methane is produced by the methanogen group,
A membrane separator connected to the anaerobic biological treatment tank and membrane-separating the treatment liquid discharged from the anaerobic biological treatment tank;
A biological treatment apparatus for water containing organic matter, comprising: a reverse osmosis membrane apparatus for treating separated water of the membrane separation apparatus.
前記有機物含有水は、全有機物炭素に対するモノマー有機物の割合が70%以上からなる請求項6に記載の有機物含有水の生物処理装置。   The biological treatment apparatus for organic matter-containing water according to claim 6, wherein the organic matter-containing water has a ratio of monomer organic matter to total organic carbon of 70% or more. 前記嫌気性処理槽は、槽内液の温度を15℃以上40℃以下として運転され、
前記処理液は、前記嫌気性処理槽で加温された状態で前記膜分離装置および前記逆浸透膜装置に供給されるよう構成されている請求項6または7に記載の有機物含有水の生物処理装置。
The anaerobic treatment tank is operated at a temperature of the liquid in the tank of 15 ° C. or more and 40 ° C. or less,
The biological treatment of organic substance-containing water according to claim 6 or 7, wherein the treatment liquid is configured to be supplied to the membrane separation device and the reverse osmosis membrane device while being heated in the anaerobic treatment tank. apparatus.
前記逆浸透膜装置の透過水から熱回収を行い、回収された熱で前記嫌気性処理槽を加温する熱回収加熱装置をさらに備える請求項8に記載の有機物含有水の生物処理装置。   The biological treatment apparatus for organic matter-containing water according to claim 8, further comprising a heat recovery heating apparatus that recovers heat from the permeated water of the reverse osmosis membrane apparatus and warms the anaerobic treatment tank with the recovered heat. 前記膜分離装置は、精密濾過膜または限外濾過膜を備える請求項6から9のいずれかに記載の有機物含有水の生物処理装置。   The biological treatment apparatus for organic matter-containing water according to any one of claims 6 to 9, wherein the membrane separation device includes a microfiltration membrane or an ultrafiltration membrane. 前記嫌気性生物処理槽で発生したバイオガスを前記膜分離装置に供給して前記膜分離装置を曝気洗浄する洗浄装置をさらに備える請求項6から10のいずれかに記載の有機物含有水の生物処理装置。   The biological treatment of organic substance-containing water according to any one of claims 6 to 10, further comprising a cleaning device that supplies biogas generated in the anaerobic biological treatment tank to the membrane separation device to aerate and wash the membrane separation device. apparatus.
JP2007329506A 2007-12-21 2007-12-21 Biological treatment method and apparatus for water containing organic matter Active JP5194771B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007329506A JP5194771B2 (en) 2007-12-21 2007-12-21 Biological treatment method and apparatus for water containing organic matter
TW97146987A TWI411584B (en) 2007-12-21 2008-12-03 Method and apparatus for biologically treating organic matter-containing water
KR1020080126405A KR101575345B1 (en) 2007-12-21 2008-12-12 Biological Treatment Apparatus and Biological Treatment Process of Aqueous Organic Wastes
CN200810186508XA CN101462811B (en) 2007-12-21 2008-12-22 Biological treatment method and apparatus for organic containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329506A JP5194771B2 (en) 2007-12-21 2007-12-21 Biological treatment method and apparatus for water containing organic matter

Publications (2)

Publication Number Publication Date
JP2009148714A true JP2009148714A (en) 2009-07-09
JP5194771B2 JP5194771B2 (en) 2013-05-08

Family

ID=40803638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329506A Active JP5194771B2 (en) 2007-12-21 2007-12-21 Biological treatment method and apparatus for water containing organic matter

Country Status (2)

Country Link
JP (1) JP5194771B2 (en)
CN (1) CN101462811B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184178A (en) * 2009-02-10 2010-08-26 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2012206042A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Treatment apparatus of organic wastewater
ES2401445A1 (en) * 2013-02-01 2013-04-19 Universidade De Santiago De Compostela Integrated system of a methanogenic anaerobic reactor and membrane bioreactor for the elimination of organic material and nitrogen from wastewater
JP2017042755A (en) * 2015-08-24 2017-03-02 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Immersion type membrane filtration system using reciprocating membrane
CN113069924A (en) * 2021-03-25 2021-07-06 广东碟中碟膜技术有限公司 Equipment and process for preheating raw water by using heat of reverse osmosis system

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101962235B (en) * 2009-07-24 2013-05-01 中国石油化工股份有限公司 Method for high temperature wastewater treatment and reuse in MTO process
CN101905945B (en) * 2010-07-20 2011-07-20 刘伟 Municipal sludge energy treatment system
TWI555708B (en) * 2011-01-17 2016-11-01 財團法人工業技術研究院 System and method for treating simultaneously wastewater containing organic and inorganic pollutants
CN102951730B (en) * 2011-08-19 2014-04-02 中国石油天然气股份有限公司 Method for biochemical treatment of dimethyl sulfoxide (DMSO) in carbon fiber production wastewater
CN102659257B (en) * 2012-05-14 2013-07-10 广西师范大学 Technology for treating white gourd juice wastewater and preparing ethanol by fermentation
WO2013185350A1 (en) * 2012-06-15 2013-12-19 乐金电子研发中心(上海)有限公司 Internal-circulation aeration anammox-membrane bioreactor
CN103663856A (en) * 2013-04-26 2014-03-26 郭强 High mixed-flow anaerobic combined type membrane biological reaction treatment process
CN105347475B (en) * 2015-10-30 2018-01-19 东华大学 A kind of symmetrical built-in anaerobic membrane bioreactor
CN105366806B (en) * 2015-12-03 2018-04-10 清华大学 A kind of micro- aerobic membrane bioreactor of anaerobism and its operation method
CN105712475A (en) * 2016-01-25 2016-06-29 河南弘康环保科技有限公司 Method for treating wastewater containing dimethyl formamide or dimethylacetamide
WO2018168522A1 (en) * 2017-03-15 2018-09-20 栗田工業株式会社 Water treatment chemical for membranes, and membrane treatment method
CN107151082B (en) * 2017-06-26 2020-11-03 中电环保股份有限公司 Zero-discharge treatment system and method for DMF (dimethyl formamide) -containing wastewater
CN111268841B (en) * 2020-02-25 2022-11-22 苏州翔铭化工设备有限公司 Method for desalting yeast drum wastewater
CN113501621A (en) * 2021-07-26 2021-10-15 上海东振环保工程技术有限公司 Developer solution effluent disposal system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185372A (en) * 1985-02-08 1986-08-19 Kurita Water Ind Ltd Apparatus for treating excretion sewage
JPS63270597A (en) * 1987-04-30 1988-11-08 Taisei Corp Biological treating device for toxic waste liquid
JPH0487698A (en) * 1990-07-31 1992-03-19 Tadayoshi Doi Treatment of waste water
JPH06233997A (en) * 1993-02-10 1994-08-23 Kurita Water Ind Ltd Preparation of high purity water
JPH10510214A (en) * 1995-02-17 1998-10-06 リュウ,ソク・ウォン High-concentration wastewater treatment method using membrane separation
JPH11504855A (en) * 1995-05-12 1999-05-11 ヘンケル−エコラープ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシャフト Wastewater treatment method for producing high yield drinking water
JP2001170631A (en) * 1999-12-22 2001-06-26 Kubota Corp Method and device for stirring membrane type reaction vessel
JP2001340854A (en) * 2000-05-31 2001-12-11 Kubota Corp Method for decoloring biologically treated water
JP2002066588A (en) * 2000-08-25 2002-03-05 Toshiba Corp Waste water treatment equipment
JP2003002775A (en) * 2001-06-21 2003-01-08 Nikki-Bioscan Co Ltd Fertilizer response accelerator and method for manufacturing the same, fertilizer containing fertilizer response accelerator and method for cultivating plant
JP2007050312A (en) * 2005-08-15 2007-03-01 Kurita Water Ind Ltd Method and apparatus for biologically treating waste water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278962C (en) * 2004-12-17 2006-10-11 清华大学 Resource process for percolation liquid of city life garbage landfill

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185372A (en) * 1985-02-08 1986-08-19 Kurita Water Ind Ltd Apparatus for treating excretion sewage
JPS63270597A (en) * 1987-04-30 1988-11-08 Taisei Corp Biological treating device for toxic waste liquid
JPH0487698A (en) * 1990-07-31 1992-03-19 Tadayoshi Doi Treatment of waste water
JPH06233997A (en) * 1993-02-10 1994-08-23 Kurita Water Ind Ltd Preparation of high purity water
JPH10510214A (en) * 1995-02-17 1998-10-06 リュウ,ソク・ウォン High-concentration wastewater treatment method using membrane separation
JPH11504855A (en) * 1995-05-12 1999-05-11 ヘンケル−エコラープ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシャフト Wastewater treatment method for producing high yield drinking water
JP2001170631A (en) * 1999-12-22 2001-06-26 Kubota Corp Method and device for stirring membrane type reaction vessel
JP2001340854A (en) * 2000-05-31 2001-12-11 Kubota Corp Method for decoloring biologically treated water
JP2002066588A (en) * 2000-08-25 2002-03-05 Toshiba Corp Waste water treatment equipment
JP2003002775A (en) * 2001-06-21 2003-01-08 Nikki-Bioscan Co Ltd Fertilizer response accelerator and method for manufacturing the same, fertilizer containing fertilizer response accelerator and method for cultivating plant
JP2007050312A (en) * 2005-08-15 2007-03-01 Kurita Water Ind Ltd Method and apparatus for biologically treating waste water

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184178A (en) * 2009-02-10 2010-08-26 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2012206042A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Treatment apparatus of organic wastewater
ES2401445A1 (en) * 2013-02-01 2013-04-19 Universidade De Santiago De Compostela Integrated system of a methanogenic anaerobic reactor and membrane bioreactor for the elimination of organic material and nitrogen from wastewater
WO2014118416A1 (en) * 2013-02-01 2014-08-07 Universidade De Santiago De Compostela Integrated system of a methanogenic anaerobic reactor and membrane bioreactor for the elimination of organic material and nitrogen from wastewater
US9725345B2 (en) 2013-02-01 2017-08-08 Universidade De Santiago De Compostela Integrated system of a methanogenic anaerobic reactor and membrane bioreactor for the elimination of organic material and nitrogen from wastewater
JP2017042755A (en) * 2015-08-24 2017-03-02 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Immersion type membrane filtration system using reciprocating membrane
US9833741B2 (en) 2015-08-24 2017-12-05 Doosan Heavy Industries & Constructions Co., Ltd. Submerged membrane filtration system using reciprocating membrane
US10232316B2 (en) 2015-08-24 2019-03-19 DOOSAN Heavy Industries Construction Co., LTD Submerged membrane filtration system using reciprocating membrane
CN113069924A (en) * 2021-03-25 2021-07-06 广东碟中碟膜技术有限公司 Equipment and process for preheating raw water by using heat of reverse osmosis system

Also Published As

Publication number Publication date
JP5194771B2 (en) 2013-05-08
CN101462811B (en) 2013-08-21
CN101462811A (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
Li et al. Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling
JP5194783B2 (en) Biological treatment method and apparatus for water containing organic matter
CN103112991B (en) Coking wastewater treatment system and coking wastewater treatment method
KR20100115412A (en) Appliance for processing sewage having biological process, sludge separator and membrane separator
CN101219842A (en) Technique and equipment for recycling leachate of garbage
KR101394888B1 (en) 1,4-dioxane-containing wastewater treatment method and disposal plant
TWI596063B (en) Method for treating organic waste water and treating waste containing organic matter
JP6727056B2 (en) Wastewater treatment equipment and wastewater treatment method
CN111762970A (en) Method for treating leachate of garbage transfer station
JP2002306930A (en) Method for treating water and equipment for water treatment
JP2011173040A (en) Waste water treatment method and apparatus
WO2010041041A1 (en) Method, system and apparatus for reducing oxyanion content
JP2010017614A (en) Method and apparatus for treating organic wastewater
JP2012192367A (en) Treatment device for organic waste water containing nitrogen
JP2010017615A (en) Method and apparatus for treating dmso-containing wastewater
EP1807361B1 (en) Anoxic biological reduction system and method
JP2014198290A (en) Treatment apparatus and treatment method of organic effluent
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP2012206041A (en) Treatment method of organic wastewater
Nguyen et al. Anaerobic membrane bioreactors for industrial wastewater treatment
JP2014008431A (en) Method and apparatus for anaerobic digestion treatment of organic wastewater
CN203173936U (en) Coking waste water oxidation and biochemical treatment equipment
TWI411584B (en) Method and apparatus for biologically treating organic matter-containing water
CN212174737U (en) Integrated treatment system for zero discharge of domestic garbage sewage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5194771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250